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simplex could be induced by quasiconcave preferences. Necessary and suffi  cient con-
ditions are presented. If the answer is affi  rmative, the methods developed here allow 
to reconstruct bounds on indiff erence curves. Furthermore we can construct quasi-
concave utility functions in analogy to the utility function constructed in the proof 
of Afriat’s Theorem. The approach is of interest for decisions under risk, stochastic 
choice, and ex-ante fairness considerations. The method is particularly suitable for 
data collected in a laboratory experiment.

JEL Classifi cation: C14, C91, D11, D12, D81

Keywords: Afriat’s theorem; deterministic preferences; decisions under risk; experi-
mental economcics; nonparametric methods; revealed preference; stochastic choice.

March 2010

1 Technische Universität Dortmund. – I am grateful to my advisor Wolfgang Leininger for his 
support and comments. Thanks to Anthony la Grange and Burkhard Hehenkamp for helpful com-
ments. Views expressed represent exclusively the author’s own opinions. – All correspondence 
to Jan Heufer, Department of Economics and Social Science, Technische Universität Dortmund, 
Vogelpothsweg 87, 44227 Dortmund, Germany. e-mail: jan.heufer@uni-dortmund.de.



1 introduction

The expected utility (EU) hypothesis implies that an individual’s indifference curves in a
probability space are straight parallel lines. Empirical evidence, however, shows that this is
generally not the case. Allais and Hagen (1979), Kahneman and Tversky (1979), Morrison
(1967), and Sopher and Narramore (2000) are just some examples of compelling evidence
that indifference curves systematically deviate from parallelness and straightness.

A related yet different topic are considerations for ex ante fairness. Suppose an indi-
vidual can choose a point on a subset of a probability simplex that represents probabilities
of different consumers for winning a prize. An individual (the dictator in an experimental
setting) can give up some of his own probability of winning the prize in exchange for a
fairer ex ante allocation. Such preferences for fairness have been considered by Karni and
Safra (2002a) and Karni and Safra (2002b) and experimentally investigated by Karni et al.
(2008). The theoretical analysis implies that individuals with preferences for fairness have
quasiconcave preferences in the probabilities; the experimental analysis indicates that
this is often the case.

This paper is concerned with a nonparametric approach to the analysis of decisions on
a probability simplex. The questions are (i) when individuals make decisions on subsets
of a probability simplex, what testable conditions can be found to refute the hypothesis
that individuals have quasiconcave preference on the probability simplex, and (ii) if the
hypothesis is not refuted, how can we reconstruct bounds on the indifference curves?
A key reference here is Machina (1985) who considers implications on choice behavior
when preferences are quasiconcave. The paper is also in the spirit of Varian’s (1982, 1983)
nonparametric approach to demand behavior and the experimental approach of Choi
et al. (2007b; see also Choi et al. 2007a and Fisman et al. 2007).

The rest of the paper is organized as follows. Section 2 reviews two of themost relevant
models for the framework considered here, specifically stochastic choice functions gener-
ated by deterministic preferences over lotteries and considerations for ex ante fairness.
Section 3 introduces the notation and shows how to determine which part of the probabil-
ity simplex is revealed worse to an observation. This is used to redefine budgets by means
of an implicit function, a concept which will be crucial for the proof in the next section.
Section 4 uses the results of the previous section to show the close analogy to the revealed
preference approach for usual commodity spaces. Three axioms are presented which
closely resemble the Weak (Samuelson 1938), Strong (Houthakker 1950), and Generalized
(Afriat 1967, Varian 1982) Axiom of Revealed Preference. The section gives constructive
proofs in anlogy to Afriat’s Theorem to show that consistency with our Generalized
(Strong) Axiom is equivalent to the existence of a (strictly) quasiconcave utility function
which rationalizes the observations. Section 5 discusses further possibilities of analyzing
observations and of reconstructing bounds on indifference curves through unobserved
points. Section 6 illustrates the approach with examples and shows how to approaximate
the power of the test for quasiconcavity by Monte Carlo experiments in the spirit of
Bronars (1987). Section 7 concludes.
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2 models

2.1 Stochastic Choice Generated by Deterministic Preferences over Lotteries

Stochastic choice has been studied bymany researchers in the psychological and also in the
economic literature. Early examples include Block and Marschak (1960) and Becker et al.
(1963); Machina (1985) provides a list of references. More recently, stochastic choices on
linear budgets have been analyzed by Bandyopadhyay et al. (1999), Bandyopadhyay et al.
(2002), Bandyopadhyay et al. (2004), and Heufer (2008). The basic idea is that individuals
have unstable or random preferences, or some important factors that influence choice
are unobservable to the researcher and the choice behavior therefore appears to have
stochastic components. As Machina (1985) states,

[t]he motivation for such an approach is clear: if when confronted with a
choice over two objects the individual chooses each alternative a positive
proportion of the time, it seems natural to suppose that this is because he or
she ‘prefers’ each one to the other those same proportions of the time.

Machina, in the same paper, then goes on to provide “an alternative model of stochas-
tic choice at the individual level”. He assumes that individuals do not have stochastic
preferences over pure outcomes but rather deterministic preferences over lotteries. If an
individual chooses option Awith probability p over option B, then he does not prefer A
over B p proportion of time, but rather the individual actually prefers a lottery that yields
Awith probability p over any pure outcome.

Machina’s interpretation of “stochastic choice” as deterministic preferences over
lotteries has been experimentally tested against the aforementioned hypothesis by Sopher
and Narramore (2000). They find support for Machina’s idea; they report that

[i]n general, subjects prefer mixtures of lotteries over extremes [. . .] More-
over, they are consistent over time, in the sense that the distribution of
choices (for a given linear choice set) does not change very often [. . .] We
interpret these results as supporting the deterministic preference version of
stochastic choice over the random utility interpretation.

Quasiconcave preference, i.e. preferences for randomization, have also been consid-
ered in Crawford (1990), Chew et al. (1991), Camerer (1992), Camerer and Ho (1994), and
Starmer (2000), but the most detailed analysis of its implications can still be found in
Machina (1985).

2.2 Individual Preferences for Ex Ante Fairness

Karni and Safra (2002a) (see also Karni and Safra (2002b)) provide an axiomatic model
of the behavior of an individual with both self interest and preferences for fairness. The
individual chooses a random allocation procedure; preferences for fairness imply convex
indifference curves in a probability simplex, i.e. quasiconcave preferences. Imagine an
experiment with three subject, one being a “dictator” who has to divide an indivisible good
by assigning winning probabilities to each subject. A dictator with strong preferences for
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ex ante fairness might prefer {p1, p2, p3} = {1⁄3 , 1⁄3 , 1⁄3}, whereas a selfish dictator might
prefer {p1, p2, p3} = {1, 0, 0}. Karni et al. (2008) investigate choice behavior in such an
experiment by offering subjects “budgets”, i.e. line segments in the probability simplex.

3 revealed preferences and budget specification

3.1 The Basics

This paper is concerned with decisions on hyperplanes as subsets of a set of lotteries
when preferences are quasiconcave. First, we would like to find refutable conditions on
observed choices which are hypothesized as generated by quasiconcave preferences. As
will be seen later, we can not only find necessary and sufficient conditions for the existence
of a quasiconcave utility function which rationalizes the data, we can even construct
such a utility function using a generalization of Afriat’s (1967) theorem due to Forges
and Minelli (2009). Second, we would like to reconstruct boundaries on the indifference
curves in the simplex which are implied by the observed choices. Arguably one of the
best ways to observe meaningful data in this framework is in a laboratory setting. We
therefore suggest to interpret the analysis here as an outline for experimental research.

Following Machina (1985), individuals are assumed to possess a utility function
V ∶ D(A) → R, where

D(A) = {(p1, . . . , pn) ∶ pi ∈ [0, 1], n∑
i=1

pi = 1} (1)

is a set of lotteries over a set A = {a1, . . . , an} of distinct pure outcomes; the interior of
D(A) is

intD(A) = {(p1, . . . , pn) ∶ pi ∈ (0, 1), n∑
i=1

pi = 1} . (2)

The individual’s choice probabilities over any subset of A correspond to that lottery over
the subset of A which maximizes V(⋅). We assume that generally the set of available
alternatives is of the form

DA(B) = {n−1∑
i=1

λi bi ∶ λi ∈ [0, 1], n−1∑
i=1

λi = 1} , (3)

where the elements of the set B = {b1, . . . , bn−1} are elements of D(A), i.e. B ⊂ A. We will
also refer to a set of available alternatives as a “budget”. Note that a budget is the convex
hull of B. For example, if A = {a1, a2, a3}, D(A) can be represented as a 2-simplex in
which any set of available alternatives is a line segment, as in Figure 1. If A = {a1, . . . , a4},
a budget can be thought of as a hyperplane segment inside a tetrahedron. As will be seen
later, budgets can also be generalized to arbitrary sets in D(A), although it is doubtful
whether that would be of any advantage (or even feasible) in an experimental setting.

Given a set DA(B) of available alternatives, an individual will choose a lottery x ∈
DA(B) which maximizes his utility V(⋅) on DA(B). The choice correspondence on a
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a1 a2

a3

b1

b2

Figure 1: A budget in the simplex.

budget, a sujective mapping CA ∶ D(A) → D(A), is defined as that vector of probabilities
over the elements of B which generates the most preferred distribution over A, i.e.

CA(B) = {argmaxp ∈DA(B)V(p)}. (4)

This is equivalent to stating that the consumer chooses a lottery x ∈ DA(B) such that his
indifference curve through that point is just tangent to the set DA(B); see Figure 2 for an
example.

a1 a2

a3

ω

Figure 2: An optimal choice on the budget.

A preference ≿ ⊂ D(A) ×D(A) is a complete preorder1, i.e. a binary relation which is
complete, reflexive and transitive. That means that ≿ is a set of ordered pairs; it is complete
if either (x, y) ∈ ≿ or (y, x) ∈ ≿ or both; it is reflexive if (x, x) ∈ ≿; it is transitive if (x, y) ∈≿ and (y, z) ∈ ≿ imply (x, z) ∈ ≿; for (x, y) ∈ ≿ we also write x ≿ y. The symmetric part
of ≿ is denoted by ∼ and its asymmetric part is denoted by ≻, i.e. (x, y) ∈ ∼ if (x, y) ∈ ≿
and (y, x) ∈ ≿, and (x, y) ∈ ≻ if (x, y) ∈ ≿ and (x, y) ∉ ≿. A preference is quasiconcave

1A preorder is also called a quasiorder.
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if for all x, y ∈ D(A) x ∼ y implies λ x + (1 − λ) y ≿ y for λ ∈ (0, 1), or alternatively,
if for all y ∈ D(A) the set {x ∈ D(A) ∶ x ≿ y} is convex. It is strictly quasiconcave if{x ∈ intD(A) ∶ x ≿ y} is strictly convex.

We say that the function V(⋅) represents the preference ≿ if for all x, y ∈ D(A), x ≿ y
implies V(x) ≥ V(y) and x ≻ y implies V(x) > V(y).

a1 a2

a3

ω

(a)
a1 a2

a3

ω

(b)

Figure 3: Preferred points and indifference curves for quasiconcave preferences; ω is the most preferred
point in the simplex. Arrows denote increasing preference. Left: Preferences are quasiconcave. Right:
Preferences are strictly quasiconcave.

Quasiconcavity implies that an individual’s indifference curves are convex; see Figure
3 for two examples. We assume that there is a unique ≿-maximal element in D(A),
denoted by ω, i.e. in a simplex representing D(A) there is a single most preferred lottery.
The preferences we consider are therefore single-peaked in D(A), and any utility function
which represents a preference is satiated at ω and nonsatiated at any x ∈ D(A) such that
x ≠ ω.2 If the elements of A are monetary outcomes, ω will be the degenerated lottery
that assigns probability 1 to the maximal element in A (remember that we have assumed
that the outcomes are distinct). If outcomes are different modes of transportation, then
ω might be in the interior of D(A). If a point in the simplex represents an allocation
of winning probabilities of a lottery for different individuals, an individual with strong
preferences for ex ante fairness who gets to choose the point might prefer the element with
equal probabilities, i.e. the centroid of the simplex. For most of the paper we assume that
we know ω, as subjects in an experiment can be easily and incentive-compatibly asked to
reveal ω directly. We later discuss ways to analyze decisions when ω is not known.

3.2 The Revealed Worse Set

Given DA(B) and CA(B), what elements of A are revealed worse than any x ∈ CA(B)
under the hypothesis of quasiconcave preferences? LetHA(B)denote theRn−1 hyperplane
which contains B.

2A utility function V is nonsatiated at x ∈ D(A) if there exists an ε > 0 such that d(x, y) > ε and
V(x) ≥ V(y) for some y ∈ D(A), where d is the Euclidean distance function; a utility function is satiated
at ω if there does not exist an ε > 0 such that d(ω, y) > ε and V(y) ≥ V(ω) for any y ∈ D(A).
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Proposition 1. Suppose CA(B) ⊆ intDA(B). The hyperplane HA(B) separates D(A) into
two disjoint sets. If preferences are (weakly) quasiconcave, then the set dRWA(x) ⊆ D(A)
that is directly revealed worse than any x ∈ CA(B) is the union of HA(B) and the set that
does not contain ω. The set sdRWA(x) ⊂ D(A) that is strictly directly revealed worse than
x ∈ CA(B) is dRWA(x) /HA(B).
Proof Consider Figure 4.(a), where x ∈ CA(B). Suppose y ≻ x. Then by quasiconcavity,
λ x + (1 − λ) y ≻ x for all λ ∈ (0, 1). Suppose λ x + (1 − λ) y = z ∈ DA(B), then z ≻ x,
and by x ∈ CA(B) we have x ≿ z, a contradiction. Obviously, y can be chosen to be any
lottery on HA(B) and λ can be chosen small enough such that z ∈ DA(B), so for every
y ∈ HA(B) we must have that x ≿ y. This obviously holds for more than three outcomes
as well.

a1 a2

a3

x

y
z

ω

(a)
a1 a2

a3

x

y

ω

z

(b)

Figure 4: The hyperplane which contains the budget is the boundary of the directly revealed worse set.

Consider Figure 4.(b), where again x ∈ CA(B). Choose a lottery y in the set that
does not contain ω, i.e. in the postulated set sdRWA(x). We have ω ≻ y. Then by
quasiconcavity, z = λ ω + (1 − λ) y ≻ y. Suppose y ≿ x, then z ≻ x, which contradicts
x ∈ CA(B).
Proposition 2. Suppose CA(B) ⊆ intDA(B). If preferences are strictly quasiconcave, then
the set dRWA(x) ⊆ D(A) that is directly revealed worse than any x ∈ CA(B) is the union
of HA(B) and the set that does not contain ω. The set sdRWA(x) ⊂ D(A) that is strictly
directly revealed worse than x ∈ CA(B) is dRWA(x) / x.
Proof Consider again Figure 4.(a), where again x ∈ CA(B). Suppose y ≿ x. By strict
quasiconcavity this implies that z ≻ x, a contradiction. The rest follows from Proposition
1.

Corollary 1 (of Proposition 2). If preferences are strictly quasiconcave, the set CA(B) is a
singleton and CA is one-to-one and onto.
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Proof Suppose {x, y} ⊆ CA(B). By Proposition 2we have x ≻ y and y ≻ x, a contradiction.

The directly revealed worse set is illustrated in Figure 5.

a1 a2

a3

x

ω

dRW(x)

Figure 5: The directly revealed worse set.

The (indirectly) revealed worse set can be constructed in the following way: Let
SA = {x i ,Bi}i∈{1,...,m} be a set of m observations, where x i ∈ CA(Bi) is the observed
choice on DA(Bi). Suppose x j ∈ dRWA(x i), so x j is directly revealed worse than x i .
Then the set dRWA(x j) is indirectly revealed worse than x i . Suppose xk ∉ dRWA(x i) but
xk ∈ dRWA(x j). Then the set dRWA(xk) is also indirectly revealed worse than x i . That
is, the set RWA(xℓ) that is revealed worse than xℓ is the union of all dRWA(x i) for which
either x i ∈ dRWA(xℓ) or for some chain of observations with indices i, j, k, . . . , c, we
have x i ∈ dRWA(x j), x j ∈ dRWA(xk), . . ., xc ∈ dRWA(xℓ), and similarly for the strictly
revealed worse set. See Figure 6 for an example. We skip the formal proof because it is a
straightforward application of transitivity in conjunction with Proposition 1 or 2.

a1 a2

a3

x

ω

(a)
a1 a2

a3

x

ω

RW(x)

(b)

Figure 6: Construction of a revealed worse set with indirect relations.
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3.3 Decisions on the Boundary of a Budget and the Optimal Design of an Experiment

Suppose that an observed decision {x} = CA(B) is not in intDA(B) but on the boundary.
In that case the above result that all lotteries on the hyperplane which contains DA(B)
are revealed worse than x is not valid because x might not have been the optimal lottery
on that hyperplane. A general analysis would be rather involved in case of more than
three possible outcomes; but as will be seen, the problem can easily be avoided in an
experimental setting.

a1 a2

a3

ω

x

Figure 7: The revealed worse set for a choice on the boundary of the budget.

Consider Figure 7, which depicts the revealed worse set in case x is on the boundary
of a budget. The extension of the budget to the upper left follows the arguments from
above. Note that any lottery outside the indicated revealed worse set can be contained in
a convex set that does also contain ω, but does not intersect the budget or its extension to
the upper left. That is, we can draw a convex indifference set with x on the “worse” side,
so any lottery outside the indicated revealed worse set could indeed be preferred to x.
We cannot do this for a lottery in the revealed worse set; see Figure 8.(a) and also Figure
8.(b) for an extreme example.

As was seen, decisions on the boundary reveal “less information” and are not as
easy to interpret as decisions in the interior of a budget. This suggest that a researcher
designing an experiment should refrain from constructing budgets from lotteries in the
interior of D(A). Instead it appears to be the most promising to construct budgets from
lotteries on the boundary of D(A), as depicted in Figure 9. For an example with four
possible outcomes, see Figure 10.

3.4 Budgets Described by Implicit Functions in the Marschak-Machina Triangle

If budgets are chosen such that for all bi ∈ B ⊂ D(A) we have bi ∉ intD(A), i.e. budgets
are constructed from lotteries on the boundary of D(A) as recommended in Section 3.3,
then our definition of budgets admits the possibility of describing a budget as

B̃ = {x ∈ Rn−1
+ ∶ д̃(x) = 0} ∩ {x ∈ Rn−1

+ ∶ ∑ x j ≤ 1} (5)
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a1 a2

a3

ω

x
y

(a)
a1 a2

a3

ω

x

b

(b)

Figure 8: Left: Any convex set containing themost preferred point and a point “behind” the budget intersects
the hyperplane which contains the budget. Right: The revealed worse set consists merely of the line xb.

a1 a2

a3

b1
b2

Figure 9: A budget as suggested in the text.

with д̃ ∶ Rn−1
+ → R being a continuous and linear function. To see this, we switch from

our usual presentation of D(A) to the so called Marschak-Machina triangle (Marschak
1950, Machina 1982): for n outcomes, we have that pn = 1−∑n−1

i=1 pi , so all lotteries can
be represented by a lottery in the (p1, . . . , pn−1) plane. See Figure 11 for an example and
Section A.1 for a way to construct a function д from the lotteries in B.

Because д(x) = 0 for all x on a budget, we have that both д̃(x) and −д̃(x) describe
the same budget. However, we need to have д̃(x) < 0 if x is on the “worse side” of the
budget, i.e. if x ∈ sdRW(x), and д̃(x) > 0 if x is not on the “worse side” of a budget, i.e.
if x ∉ dRW(x). Furthermore, because we assume that ω is the unique maximal element,
we need д̃(x) < 0 for all x which are not on a budget if ω is an element of the budget. We
therefore define the function д(x) ∶ Rn−1 → Rn−1 as

д(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

д̃(x) if д̃(ω) > 0,
−д̃(x) if д̃(ω) < 0,
−∣д̃(x)∣ if д̃(ω) = 0.

(6)
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a1

a2

a3

a4

b1

b2

b3

Figure 10: A budget in a 3-simplex

See Figure 12 for an example. One immediate advantage of this characterization of
budgets is that we do not need to check whether a given lottery is in the convex hull of a
set of lotteries to determine on which side of a budget that lottery is. Given a function
дi(x) which describes the ith budget in D(A), budgets are then defined as3

Bi = {x ∈ Rn−1
+ ∶ дi(x) = 0} ∩ {x ∈ Rn−1

+ ∶ ∑ x j ≤ 1} . (7)

3.5 The Revealed Preference Relation

Given the definitions of budgets and the analysis in Section 3.4 and Section 3.2, we can
now define the revealed preference relation RA ⊆ D(A) ×D(A) as

x iRAx j if дi(x j) ≤ 0 (8)

and its transitive closure, i.e. the smallest transitive relation on D(A) that contains R,
is denoted R∗

A. Furthermore, we define the strictly revealed preference relation P ⊆
D(A) ×D(A) as

x iPAx j if дi(x j) < 0 (9)

and its transitive close is denoted P∗.

4 representation

4.1 Axioms: Refutable Conditions

Given our construction of the revealed worse set and the revealed preference relation R,
canwe find refutable conditions for the hypothesis of quasiconcave preferences? Necessary

3We drop the subscript A for budgets.
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b1

b2

p1

p2

p1 = 1

p2 = 1

p3 = 1

д(p1, p2) = 1⁄2 + 2⁄3 p1 − p2 = 0

Figure 11: TheMarschak-Machina triangle with b1 = (0, 1⁄2 , 1⁄2) and b2 = (3⁄10 , 7⁄10 , 0).

b1

b2

ω p1

p2

p1 = 1

p2 = 1

p3 = 1

д(p1, p2) = 0

д(p1, p2) < 0

д(p1, p2) > 0

Figure 12: TheMarschak-Machina triangle: Regions for д(x) ⋚ 0.

conditions are easily found; however, as will be shown, we can also find conditions which
are necessary and sufficient for the existence of a quasiconcave utility function that
rationalizes the observations.

Because of the assumption that ω is the unique maximal element in D(A), we need
to augment any set of oberservation by an observation ω – otherwise, we might have
that for some observation i, дi(ω) = 0 and x i ≠ ω, and as will be seen later, this is not a
violation of the Generalized Axiom. We will therefore augment any set of m observations
by an observation consisting of CA(Bm+1) = ω and a function дm+1, which is defined as

дm+1 = −d(x,ω), (10)

where d is the Euclidean distance function, so дm+1(x) < 0 for all x ≠ ω.
Let M = {1, . . . ,m + 1}. We can now state our axioms.
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Definition 1. We say a set of data SA = {x i ,Bi}i∈M for different budgets Bi on a single
D(A) satisfies theWeak Axiom of Revealed Quasiconcave Preference (WARQ) if for all{i, j} ⊆ M such that x i ≠ x j

x iRAx j implies дj(x i) > 0. (11)

We say a set of data satisfies the Strong Axiom of Revealed Quasiconcave Preference
(SARQ) if for all {i, j} ⊆ M such that x i ≠ x j

x iR∗
Ax j implies дj(x i) > 0. (12)

It should be obvious thatWARQ implies SARQ but not vice versa, and that a violation
of WARQ or SARQ implies that preferences cannot be quasiconcave; see Figures 13.(a)
and 13.(b) for examples.

a1 a2

a3

ω

x

y

(a)
a1 a2

a3

ω

(b)

Figure 13: Left: A violation of WARQ and SARQ. Right: A violation of SARQ but not of WARQ.

Definition 2. We say a set of data satisfies the Generalized Axiom of Revealed Quasicon-
cave Preference (GARQ) if for all {i, j} ⊆ M

x iR∗
Ax j implies дj(x i) ≥ 0. (13)

4.2 Representation

We will now proceed to show that our Generalized Axiom (Strong Axiom) is a necessary
and sufficient condition for rationalizability or representation of the data by a continuous
and (strictly) quasiconcave utility function. Because these two axioms are fairly easy to
test in practice given a finite set of observations, they offer an efficient way to refute the
hypothesis of (strictly) quasiconcave preferences.

While an indirect proof of existence is feasible and can be illustrated intuitively, we
will only sketch this approach briefly in Remark 2. We present a constructive proof based
on a generalization of Afriat’s (1967) theorem due to Forges and Minelli (2009).4

4See also the clarification of Afriat’s result by Diewert (1973).
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For the representation theorems, we will continue to assume that budgets are con-
structed from points on the boundary of D(A).
Definition 3. We say a function U(x) rationalizes a set of observations SA = {x i ,Bi}i∈M
if

U(x i) ≥ U(x) if x iRAx (14)

for all i ∈ M.

Note that if we can find a utility function on D(A) which rationalizes the data in
D(A), we can easily find a utility function on the (p1, . . . , pn−1) plane which has the same
properties and rationalizes the data in the (p1, . . . , pn−1) plane because D(A) and the
Marschak-Machina triangle are order isomorphic.

Theorem 1. In the (p1, . . . , pn−1) plane, let budgets be given by Bi = {x ∈ Rn−1
+ ∶ дi(x) =

0}∩{x ∈ Rn−1
+ ∶ ∑ x j ≤ 1} with дi ∶ Rn−1

+ → R being a continuous and linear function and
дi(x i) = 0 for all i ∈ M . The following conditions are equivalent:
(i) The set of observations SA = {x i ,Bi}i∈M satisfies GARQ.
(ii) There exists a function U ∶ D(A) → R that is satiated at ω, nonsatiated at every other

lottery in D(A), continuous and quasiconcave on intD(A) and rationalizes the set of
observations SA.

(iii) There exist numbers {ϕi , λi}i∈M , λi > 0, such that for all i, j ⊆ M
ϕ j ≤ ϕi + λi дi(x j). (15)

Proof We proceed to show (ii)⇒ (i), (i)⇒ (iii), and finally (iii)⇒ (ii) by contruction of
an actual utility function which rationalizes the data.

Proof of (ii)⇒ (i): Let U(x) rationalize the data. If x iRAx j, then U(x i) ≥ U(x j);
if x iR∗

Ax j, then there exist indices (k, . . . , ℓ) such that x iRAxkRA . . . RAxℓRAx j, and
U(x i) ≥ U(xk) ≥ . . . ≥ U(x j) implies U(x i) ≥ U(x j). We want to show that this
implies дj(x i) ≥ 0. Suppose first that x i ≠ ω. If дj(x i) < 0, by the nonsatiation of U we
can find an x ∈ D(A) such that дj(x) < 0 and U(x) > U(x i) ≥ U(x j). But then U does
not rationalize the data. Suppose instead that x i = ω. Then дj(ω) < 0 is ruled out by the
definition of д (Definition 6).

Proof of (i) ⇒ (iii): We need the following definition: A square matrix Γ =[γi j](m+1)×(m+1) is cyclically consistent if γii = 0 for every i ∈ M and for every chain{ j, k, ℓ, . . . , c} ⊂ M, γ jk ≤ 0, γkℓ ≤ 0, . . ., γc j ≤ 0 implies that all terms are zero (see Forges
and Minelli 2009, Section 1.2). Then the following lemma can be shown to hold.

Lemma 1. If a square matrix Γ = [γi j](m+1)×(m+1) is cyclically consistent, there exist
numbers {ϕi , λi}i∈M , λi > 0, such that for all {i, j} ⊆ M we have

ϕ j ≤ ϕi + λiγi j. (16)
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For the proof see Fostel et al. (2004), Sections 2 and 3.
Construct the matrix Γ such that γi j = дi(x j). It can then be shown that if SA satisfies

GARQ, Γ is cyclically consistent:

Lemma 2. A square matrix Γ = [γi j](m+1)×(m+1) with γi j = дi(x j) is cyclically consistent
if and only if SA satisfies GARQ.

The same proof as in Forges and Minelli (2009), Section 1.2, can be applied. With
Lemma 1 and 2 it follows that (i)⇒ (iii).

Proof of (iii)⇒ (ii): Define V ∶ Rn−1
+ → R by

V(x) =min
i∈M
{ϕi + λi дi(x)} . (17)

As the minimum of finitely many concave and continuous functions, V(x) is concave
(and therefore quasiconcave) and continuous.

To show that it rationalizes the data, note that for all j ∈ M we have V(x j) = ϕ j.
To see this, let K = {argmini∈M{ϕi + λi дi(x j)}}. If j ∉ K, then by (15) we have ϕ j <
ϕk + λk дk(x j) = mini∈M{ϕi + λi дi(x j)} = V(x j). But since V(x j) = mini∈M{ϕi +
λi дi(x j)} ≤ ϕ j + λ j дj(x j) = ϕ j, we have ϕ j < V(x j) ≤ ϕ j, a contradiction. For any x
such that дj(x) ≤ 0 (i.e. x jRAx) we have V(x) ≤ ϕ j + λ j дj(x) ≤ ϕ j = V(x j) and for
any x such that дj(x) < 0 (i.e. x jPAx) we have V(x) < ϕ j + λ j дj(x) ≤ ϕ j = V(x j).
Finally, we have V(ω) = ϕm+1 because ω = xm+1, and for all x ∈ D(A), x ≠ ω, we have
V(x) < ϕm+1. To see this, note that ϕm+1 + λm+1 дm+1(x) < ϕm+1 by the definition of
дm+1(x) in Eq. (10), so mini∈M{ϕi + λi дi(x)} < ϕm+1.

Remark 1. In Theorem 1, (i)⇒ (iii) can also be shown by an algorithm very much like
Varian’s (1982) algorithm. Such an algorithm is given in the appendix (A.2, Algorithm 2 and
Lemma 3).

Theorem 2. In the (p1, . . . , pn−1) plane, let budgets be given by Bi = {x ∈ Rn−1
+ ∶ дi(x) =

0}∩{x ∈ Rn−1
+ ∶ ∑ x j ≤ 1} with дi ∶ Rn−1

+ → R being a continuous and linear function and
дi(x i) = 0 for all i ∈ M. The following conditions are equivalent:
(i) The set of observations SA = {x i ,Bi}i∈M satisfies SARQ.
(ii) There exists a function U ∶ D(A) → R that is satiated at ω, nonsatiated at every other

lottery in D(A), continuous and strictly quasiconcave on intD(A) and rationalizes
the set of observations SA.

(iii) There exist numbers {ϕi , λi}i∈M , λi > 0, such that for all i, j ⊆ M
ϕ j < ϕi + λi дi(x j) for all {i, j} ⊆ M with x i ≠ x j, (18a)
ϕ j = ϕi for all {i, j} ⊆ M with x i = x j. (18b)

Proof We proceed in the same way as in the proof to Theorem 1.

Proof of (ii)⇒ (i): Let U(x) rationalize the data. If x iRAx j, then U(x i) ≥ U(x j);
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if x iR∗
Ax j, then there exist indices (k, . . . , ℓ) such that x iRAxkRA . . . RAxℓRAx j, and

U(x i) ≥ U(xk) ≥ . . . ≥ U(x j) implies U(x i) ≥ U(x j). We want to show that this
implies дj(x i) > 0. If дj(x i) < 0, by the nonsatiation of U we can find an x ∈ D(A) such
that дj(x) < 0 and U(x) > U(x i) ≥ U(x j). But then U does not rationalize the data.
If дj(x i) = 0, then by strict quasiconcavity of U we have that for y = λ x i + [1 − λ] x j,
U(y) > max{U(x i),U(x j)} so U(z) > U(x i). But дj(y) = 0, which implies U(x j) ≥
U(z), so U(x i) ≥ U(x j) ≥ U(z) > U(x i), a contradiction.

Proof of (i) ⇒ (iii): This can either be shown using a Theorem of the Alternative
(Rockafellar 1970, Theorem 22.2, pp.198–199) in analogy to Matzkin and Richter (1991,
Lemma 1) by replacing αi j = pi(x j − x i) in their paper with дi(x j), or by means of an
algorithm as in Varian (1982, Algorithm 3), which is done in the Appendix (A.3) with
Lemma 4.

Proof of (iii)⇒ (ii): We follow Matzkin and Richter (1991) in constructing the utility
function. Let T > 0 and define f ∶ Rn−1

+ → R by

f (x1, . . . , xn−1) = [n−1∑
i=1
(x1)2 + T]

1⁄2

− T 1⁄2 . (19)

There exists an ε0 > 0 such that ϕ j < ϕi + λi дi(x j) − ε0 for all {i, j} ⊆ M with x i ≠ x j

and the other two conditions of Theorem 2 (iii) hold as well, as can also be seen in the
proof of Lemma 4. Then we can choose an ε so small that

ϕ j < ϕi + λi дi(x j) − ε f (x j − x i) for all {i, j} ⊆ M with x i ≠ x j, (20a)
λi > 0 for all i ∈ M, (20b)
ϕi = ϕ j for all {i, j} ⊆ M with x i = x j. (20c)

For each i ∈ M we define πi ∶ Rn−1 → R by

πi(x) ≡ ϕi + λi дi(x) − ε f (x − x i). (21)

Clearly, f is strictly convex, so each πi is strictly concave. Furthermore, πi(x i) = ϕi ,
because f (x) = 0⇔ x = 0. Now define V ∶ Rn−1

+ → R by

V(x) =min
i∈M
{πi(x)} . (22)

As the minimum of finitely many strictly concave and continuous functions, V(x) is
strictly concave (and therefore strictly quasiconcave) and continuous.

To show that it rationalizes the data, note that for all j ∈ M we have V(x j) = ϕ j. To
see this, let K = {argmini∈M{πi(x j)}. If j ∉ K, then by (18a) we have ϕ j < πk(x j) =
mini∈M{π(x j)} = V(x j). But since V(x j) = mini∈M{πi(x j)} ≤ π j(x j) = ϕ j, we have
ϕ j < V(x j) ≤ ϕ j, a contradiction. For any x such that дj(x) ≤ 0 (i.e. x jRAx) we have
V(x) < π j(x) ≤ ϕ j = V(x j) and obviously for any x such that дj(x) < 0 (i.e. x jPAx) we
have V(x) < π j(x) ≤ ϕ j = V(x j). Finally, we have V(ω) = ϕm+1 because ω = xm+1, and
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for all x ∈ D(A), x ≠ ω, we have V(x) < ϕm+1. To see this, note that πm+1(x) < ϕm+1 by
the definition of дm+1(x) in Eq. (10), so mini∈M{πi(x)} < ϕm+1.

Remark 2. The equivalence between (i) and (ii) in Theorem 1 and 2 can be shown indirectly
in analogy to Stigum (1973) and using a result due to Debreu (1959, p. 56, Theorem 4.6.1).
Intuitively speaking, the idea is that if SARQ is satisfied we have “enough space” to “draw”
indifference curves of a strictly quasiconcave preference. To show this it would be necessary
to establish that we can find sets L+

A(x) = {p ∈ D(A) ∶ pQx} and L−
A(x) = {p ∈ D(A) ∶

xQp}, where Q, R∗ ⊆ Q ⊂ D(A) ×D(A), is a complete binary relation, such that for the
revealed preferred set RPA(x) (defined in Section 5.1) we have RPA(x) ⊆ L+

A(x), and for the
revealed worse set RWA(x) we have RWA(x) ⊆ L−

A(x), where LA denotes the closure of the
sets. These sets would then satisfy L+

A(x)∩ L−
A(x) = ∅, L+

A(x)∪ L−
A(x) = L+

A(x)∪ L−
A(x) =

D(A), and L+
A(x) would be strictly convex.

Remark 3. It has been shown that theWeak Axiom of Revealed Preference (for the common
commodity space Rm

+ ) implies the Strong Axiom of Revealed Preference for the case of two
commodities but not for more (see Peters and Wakker 1994, John 1997 and Heufer 2007).
Analogously to the proof in Heufer (2007), one can show that WARQ implies SARQ for three
outcomes when the most preferred lottery ω is on the boundary of the probability simplex. In
all other cases (ω in the interior, more than three outcomes), WARQ does not imply SARQ.
A loose version of the argument is this: In Figure 13.(b) SARQ but not WARQ is violated. In
this figure, ω is in the interior of the simplex. Note that the preference cycle forms a closed
curve around ω. Suppose now that ω is on the boundary of the simplex. In that case, no
preference cycle can be closed around ω. Now suppose there are more than three outcomes.
In this case, a preference cycle does not need to be a closed curve around ω; it could indeed
be a closed curve on one “side” of ω.

5 further analysis

5.1 Recoverability: Revealed Worse and Preferred Sets of Arbitray Lotteries

It was shown in Section 3.2 how the revealed worse set can be constructed under the
hypothesis of quasiconcave preferences. In this section, it is shown how one can construct
the revealed worse and the revealed preferred set of arbitrary lotteries in D(A) which
were not observed as decisions. The analysis here closely follows Varian’s (1982) approach.
As in his work, we will focus on quasiconcavity and consistency with GARQ.

Definition 4. Given any lottery x0 ∈ D(A) not previously observed we define the set of
budgets in D(A) which support x0 by

ΘA(x0) = {B0 ∶ {Bi , x i}i∈M∪{0} satisfies GARQ and д0(x0) = 0} , (23)

where

B0 = {x ∈ Rn−1
+ ∶ д0(x) = 0} ∩ {x ∈ Rn−1

+ ∶ ∑ x j ≤ 1} .
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Note that Theorem 1 implies ΘA(x0) is nonempty for all x0. Given ΘA(x0) we can
easily describe the set of all lotteries revealed worse than x0: We require that for every x
in the revealed worse set of x0, we have that x0P∗

Ax holds for all budgets in ΘA(x0) (e.g.
if x0P∗

Ax according to some B0 ∈ ΘA(x0) but not according to some other B0 ∈ ΘA(x0)
then x is not in the revealed worse set). More succinctly, we define the revealed worse set
of x0, RWA(x0, by

RWA(x0) = {x ∈ D(A) ∶ x0P∗
Ax for all B0 ∈ ΘA(x0)} . (24)

Similarly, we can define the revealed preferred set of x0, RPA(x0), by
RPA(x0) = {x ∈ D(A) ∶ xP∗

Ax0 for all B ∈ ΘA(x)} . (25)

Figure 14 shows two examples.

a1 a2

a3

ω

x1
x0

RW(x0)

RP(x0)

a1 a2

a3

ω

x0

RW(x0)

RP(x0)

Figure 14: Revealed worse and revealed preferred sets of an unobserved point x0.

From Figure 14 it appears that RPA(x0) is just the convex hull of all x i which are
revealed preferred to x0. In fact, define

CMA(x0) = interior of conv({x ∈ {x i}i∈M ∶ xR∗
Ax0}), (26)

and let CMA(x0) be the closure of CMA(x0) and
conv({x i}ℓi=1) = {

ℓ∑
i=1

λi x i ∶ λi ∈ [0, 1], ℓ∑
i=1

λi = 1} (27)

is the convex hull of a set of points. Then the following can be shown to hold:

Proposition 3. Let SA = {x i ,Bi}i∈M be a set of observations and let RPA(x0) be defined
by (25). Then

CMA(x0) ⊆ RPA(x0) ⊆ CMA(x0).

20



Proof In analogy to Varian (1982, Fact 12, p. 960) and Knoblauch (1992, Proposition 1, p.
661).

Because it is easy to check whether a point is in the convex hull of a set of points and to
determine whether a point on the boundary of RPA(x0) belongs to RPA(x0), Proposition
5.1 completely describes RPA(x0). Furthermore, from Varian (1982, Fact 3, p. 951) we
know that x0 is in RWA(x) if and only if x is in RPA(x0), so we can easily determine
whether or not a point x is in either RWA(x0) or RPA(x0). See Section A.4 for an efficient
way to determine whether a point is in the convex hull of a set of points.

Notice that Figure 14 provides information about the possible indifference curves
passing through x0. Any such indifference curve cannot intersect RPA(x0) or RWA(x0),
that is, the set of lotteries preferred to x0 must contain RPA(x0), and must be contained
in the complement of RWA(x0), which is the basis for the idea expressed in Remark 2.

5.2 General Budget Sets

Suppose that instead of being (n − 1)-dimensional hyperplanes, budgets are more general
sets in D(A). Can we still find refutable conditions and contruct quasiconcave utility
functions? One could, in principle, use the generalization of Afriat’s Theorem due to
Forges and Minelli (2009), using continuous, differentiable, and quasiconvex functions
д(x) describing the budget, as in Figure 15. The problem, however, is that Forges and
Minelli exploit monotonicity of preferences on the common commodity space Rℓ: their
budgets are bounded by curves which “bulge away” from the origin. To transfer their
analysis to the probability simplex, we would need to define the convexity as “curved
towards” ω.

x i

ω
p1

p2

p1 = 1

p2 = 1

p3 = 1

∇дi(x i)(x − x i) = 0

дi(x) = 0

Figure 15: A quasiconvex budget.

If the functions д̃i(x) satisfy differentiablity and are convex in the sense that they are
“curved towards” ω, we can indeed use Forges and Minelli’s analysis and define

C i = {x ∈ Rn−1
+ ∶ ∇дi(x i)(x − x i) = 0} ∩ {x ∈ Rn−1

+ ∶ ∑ x j ≤ 1} (28)
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and test the “linearized” set of data S̄A = {x i ,C i}i∈M for consistency with GARQ or
SARQ. A similar approach could be used for even more general budget sets such as the
one depicted in Figure 16.

x i

ω
p1

p2

p1 = 1

p2 = 1

p3 = 1

Figure 16: A strictly convex budget set.

5.3 What to do When the Most Preferred Lottery is Unknown

Suppose we do not know the most preferred lottery in D(A), i.e. the point ω. In principle,
GARQ and SARQ are still testable conditions: if an axiom is satisfied for some arbitrary
ω ∈ D(A), we cannot reject the hypothesis of quasiconcavity of preferences. The problem
is then to find an efficient way to test if there is such an ω. One efficient way is to let
Ω = {x i}mi=1 and test the m sets {x i ,Bi}mi=1 ∪ {Ω j,BΩ j} for j ∈ {1, . . . ,m}, where (with
an abuse of notation) BΩ j is the budget for Ω j defined by a function as in Eq. (10). If
this data set satisfies GARQ or SARQ, then we can safely conclude that the hypothesis of
quasiconcavity of preferences cannot be rejected. However, as Figure 17 shows, if GARQ
is rejected we can still not reject our hypothesis.

6 examples and the power of the test

6.1 Examples

Figure 18 shows a set of budgets which will be used to illustrate the revealed preferred
and revealed worse sets, and the utility function constructed in the proof of the theorem.
The most preferred lottery is ω = (1⁄3 , 1⁄3).

Figure 18 also shows decisions generated by the utility function

V(p1, p2) = −[ 3∑
i=1
(1⁄3 − pi)2]

1⁄2

with p3 = 1− p1 − p2. The smooth closed curve around ω is an indifference curve of that
utility function for a lottery close toωwhichwas not observed as a choice; it is contained in
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a1 a2

a3

x1
x2

Figure 17: GARQ is clearly satisfied, but the test described in Section 5.3 will not confirm consistency with
GARQ.

the indifference curve of the utility function constructed by using the numbers computed
by Algorithm 3.

p1

p2

p1 = 1

p2 = 1

p3 = 1

Figure 18: Choices generated by a specified utility function.

Figures 19 and 20 show random decisions on the same budgets; the budgets are not
drawn here. The indifference curve of the constructed utility function through one of
the decisions and the revealed worse and revealed preferred set of that choice are shown.
Notice that, as pointed out in Section 5.1, the indifference curve contains the revealed
preferred set, and is contained in the complement of the revealed worse set.

6.2 Power of the Test

Bronars (1987) suggested a Monte Carlo approach to approximate the power a revealed
preference test has against random behavior. The question is this: Given a set of budgets,
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p1

p2

p1 = 1

p2 = 1

p3 = 1

Figure 19: Random choices which satisfy SARQ.

p1

p2

p1 = 1

p2 = 1

p3 = 1

Figure 20: Random choices which satisfy SARQ.

what is the probability that a consumer who makes random decisions still satisfies a
revealed preference axiom? Obviously, if this probability is high, a test which confirms
consistency of a set of observations with an axiom is not as informative as we would
like it to be: while we cannot reject our hypothesis, it may very well be the case that the
observations were not generated by optimizing behavior. Bronars’ idea was to generate
random choices on a set of budgets, repeat this many times, and compute the fraction of
random sets which do not pass the test. This then is the approximate power.
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For the fifteen budget depicted in Figure 18 we simulated choices by drawing fifteen
scalars λi from a uniform distribution on the unit interval. We let x i = λ bi1 + [1− λ] bi2
for i ∈ {1, . . . , 15} and x16 = ω = (1⁄3 , 1⁄3).

Because all budgets are distinct, SARQ and GARQ are equivalent. We generated
200000 random choice sets. Of these 200000 random sets, only 1696 sets satisfied the
axioms, yielding a very high power of 99.152%. This was repeated by drawing three, six,
nine, and twelve out of the 15 budgets at random each time. Table I shows the results.

Number of Budgets 3 6 9 12 15

Power 12.917% 47.760% 75.994% 91.320% 99.152%

Table I: Power of the test depending on the number of budgets used.

7 discussion and conclusions

This paper introduced a nonparametric approach to the analysis of decisions on a prob-
ability simplex. Easily testable necessary and sufficient conditions were found which
guarantee the existence of a quasiconcave utility function which rationalizes a set of
observations. It was shown how one can construct an actual utility function, and how one
can recover preferences. The analysis is much in the spirit of Afriat’s (1967) and Varian’s
(1982) contribution to revealed preference and nonparametric demand analysis.

While the approach described here is in principle well suited for a laboratory experi-
ment, there are practical issues which need to be addressed. First, unless the recruited
subjects are students of fields likely to cover simplices, it would probably be impractical to
attempt to explain subjects even what a probability simplex is. Second, the presentation of
a hyperplane inside a tetrahedron would require subjects to choose at least two variables
to determine a point on the hyperplane, and it is not clear in how far subjects would be
aware of what they are doing. Also, a graphical presentation for lotteries over more than
four outcomes might be difficult if not impossible.

As for the second point, an experimental investigation of choice behavior should
perhaps be restricted to three outcomes. The first point was already solved elegantly by
Sopher and Narramore (2000) and Karni et al. (2008): Subjects were presented a slider
on a computer screen which they used to determine the λ for the optimal combination of
the two extreme lotteries b1 and b2, i.e. they could choose λ b1 + (1− λ) b2 with a simple
mechanism. Their options were presented by a pie chart – a concept most subjects are
probably familiar with.
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a appendix

a.1 Constructing the Implicit Budget Function

A function д̃i such that д̃i(x) = 0 if and only if x ∈ B̃i can be easily found by solving a
linear programming problem. Let bi be the (n − 1) × (n − 1)matrix that describes the
budget in Marschak-Machina triangle, i.e. bijk is the pk coordinate of the point bij which
is a vertex of the budget. Let α be a scalar and β = (β1, . . . , βn−1). Then solve

h∗ = min
α∈R,β∈Rn−1

0 ⋅ α + 0 ⋅ β
subject to α + n−1∑

k=1
(βk bijk) = 0 for all j ∈ {1, . . . , n − 1} (29)

α + n−1∑
j=1

β j = 1

and let д̃i(x) = α +∑n−1
k=1(βk xk).

a.2 An Algorithm to Construct the Numbers in Theorem 1

This is a straightforward adaptation of Varian’s (1982) algorithm to construct the Afriat
numbers. We also need an algorithm which finds a maximal element of a binary relation
Q, called MaxElement(I,Q), where I = {1, . . . ,m} is a set of indices. An element xμ of a
set {x i}mi=1 is maximal with respect to a binary relation Q if x iQxμ implies xμQx i . We
can use Algorithm 2 in Varian (1982):

Algorithm 1.
Input: A reflexive and transitive binary relation Q defined on a finite set {x i}i∈M indexed
by I = {1, . . . ,m + 1}.
Output: An index μ where x iQxμ implies xμQx i .

1. Set μ = 1 and q0 = x1.
2. For each i ∈ M, if x iQqi−1 set qi = x i and μ = i. Otherwise set qi = qi−1.
This algorithm correctly computes a maximal element (see Varian 1982, Fact 15).

Algorithm 2.
Input: A set of observations {x i}i∈M and {дi(x)}i∈M and the relation R∗

A that satisfies
GARQ.
Output: A set of numbers {ϕi}i∈M and {λi}i∈M .

1. Set I = {1, . . . ,m + 1}, B = ∅.
2. Let μ =MaxElement(I,R∗

A).
3. Set E = {i ∈ I ∶ x iR∗

Axμ}. If B = ∅, set ϕμ = λμ = 1 and go to Step 6. Otherwise go to
Step 4.

4. Set ϕμ =mini∈E min j∈Bmin{ϕ j + λ j дj(x i), ϕ j}.
5. Set λμ =maxi∈E max j∈Bmax{(ϕ j − ϕμ)/дi(x j), 1}.
6. For all i ∈ E, set ϕi = ϕμ and λi = λμ.
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7. Set I = I/E, B = B ∪ E. If I = ∅, stop. Otherwise, go to Step 2.

Lemma 3. Algorithm 2 computes {ϕi}i∈M and {λi}i∈M which satisfy the inequalities in
Theorem 1, condition (iii).

Proof Identical to the proof in Varian (1982), except that pi(x j − x i) is replaced by дi(x j).

a.3 An Algorithm to Construct the Numbers in Theorem 2

Again, this is an adaptation of Varian’s (1982) algorithm to construct the Afriat numbers,
using additional ideas from Chiappori and Rochet (1987) and Matzkin and Richter (1991).

Algorithm 3.
Input: A set of observations {x i}i∈M and {дi(x)}i∈M and the relation R∗

A that satisfies
SARQ.
Output: A set of numbers {ϕi}i∈M and {λi}i∈M .

1. Set I = {1, . . . ,m + 1}, B = ∅, and choose an ε > 0.
2. Let μ =MaxElement(I,R∗

A).
3. Set E = {i ∈ I ∶ x iR∗

Axμ}. If B = ∅, set ϕμ = λμ = 1 and go to Step 6. Otherwise go to
Step 4.

4. Set ϕμ =mini∈E min j∈Bmin{ϕ j + λ j дj(x i) − ε, ϕ j − ε}.
5. Set λμ =maxi∈E max j∈Bmax{(ϕ j − ϕμ + ε)/дi(x j), 1}.
6. For all i ∈ E, set ϕi = ϕμ and λi = λμ.
7. Set I = I/E, B = B ∪ E. If I = ∅, stop. Otherwise, go to Step 2.

Lemma 4. Algorithm 3 computes {ϕi}i∈M and {λi}i∈M which satisfy the inequalities in
Theorem 2, condition (iii).

Proof We need to show the following:

(a) ϕi = ϕ j for all j ∈ B and i ∈ E such that x i = x j,

(b) ϕi = ϕ j for all {i, j} ⊆ E such that x i = x j.

(c) ϕi < ϕ j + λ j дj(x i) for all j ∈ B and i ∈ E such that x i ≠ x j,

(d) ϕ j < ϕi + λi дi(x j) for all j ∈ B and i ∈ E such that x i ≠ x j,

(e) ϕi < ϕ j + λ j дj(x i) for all {i, j} ⊆ E such that x i ≠ x j,

At the first execution of the algorithm we have B = ∅. After Step 6 has been executed
once, B contains only the “equivalent” indices in E, i.e. indices i ∈ E such that x iR∗

Axμ.
These elements are removed from I, such that at the second execution of Step 2, μ =
MaxElement(I,R∗

A) cannot be in B. Indeed, after every execution of Step 6, μ at the next
execution of Step 2 can never be in B.

Proof of (a): For all i ∈ E, we have i ∉ B because either B = ∅ by Step 1 or B ∩ I = ∅
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by Step 6. But if {i, j} ⊆ I and x i = x j, then {i, j} ⊆ E ⊆ I, so {i, j} ∩ B = ∅, hence the
condition is always satisfied.

Proof of (b): If x i = x j, then either {i, j} ⊆ E or {i, j} ∩ E = ∅; furthermore, {i, j} ∩
B = ∅. Then by Step 6 we have ϕi = ϕ j.

Proof of (c): If i ∈ E, then x iR∗
Axμ. Because μ is a maximal element of I, xμR∗

Ax i .
Since R∗ satisfies SARQ, we must have x i = xμ for all i ∈ E. At the first execution of Step
6 we have ϕi = λi = 1 for all i ∈ E. After the first execution of Step 6, we can either use
the proof for (a) respectively (b), or we have that {μ} = E. In the latter case, we have by
Step 4,

ϕi ≤ ϕ j + λ j дj(x i) − ε
and with ε > 0 we have

ϕi < ϕ j + λ j дj(x i).

Proof of (d): Note that at Step 5 we must have дi(x j) > 0 for all j ∈ B. If that were not
the case, x iRAx j for some j ∈ B. But then i would have been moved to B before j was
moved to B. Hence the division in Step 5 is well defined. We have

λi = λμ ≥ ϕ j − ϕi + ε
дi(x j) .

Then

λi дi(x j) ≥ ϕ j − ϕi + ε
and with ε > 0 we have

ϕ j < ϕi + λi дi(x j).

Proof of (e): If {i, j} ⊆ E, then x iR∗
Axμ and xμR∗

Ax i because μ is a maximal element
of I. Because R∗

A satisfies SARQ, we must have x i = xμ for all i ∈ E, hence the condition
is always satisfied.
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a.4 Testing whether a Point is in the Convex Hull of a Finite Set of Points

Let Ξ = {ξi}ℓi=1 be a set of points in Rn. Let ψ be a point in Rn. To test whether ψ is
contained in the convex hull of Ξ, one can set up a linear feasibility problem

find ψ

such that ψ = ℓ∑
i=1

λi ξi (30)

n∑
i=1

λi = 1
λi ≥ 0 for all i = 1, . . . , ℓ.

Equivalently, one can set up a linear program. The problem (30) has a solution if and
only if the following problem has no solution:

find ρ0 ∈ R and ρ ∈ Rn

such that ρ′ξi ≤ ρ0 for all i = 1, . . . , ℓ (31)
ρ′ψ > ρ0

Then we can set up the linear program

h∗ =max ρ′ψ − ρ0
subject to ρ′ξi − ρ0 ≤ 0 for all i = 1, . . . , ℓ (32)

ρ′ψ − ρ0 ≤ 1
where the last condition is artificial so that the solution is bounded. The point ψ then is
not in the convex hull (is not redundant) of Ξ if and only if h∗ of the linear program (32)
is strictly positive. See also Pardalos et al. (1995).
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