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1 Introduction

In this paper we argue that a change in the nature of technological opportunities in the mid 1990s inter-

acted with cross region differences in employment protection to become a prominent cause of the observed

divergence in productivity between the US and the EU. The emergence of accelerating improvements in

computing power coupled with steepening adoption rates of communication technology resulted in a large

variance in realized productivity and profits for firms choosing to use these technologies. The increase

in variance is good for aggregate productivity and appealing to individual firms because good news is

unbounded while bad news is bounded by the option to exit or fire workers. When in the mid-nineties

these technological opportunities arose, the expected net benefits of exploring this technology were higher

in countries with low EPL because the option to shut down was less costly. We give robust evidence that

in countries with high EPL, high-risk innovative sectors (which are associated with intensive ICT use) are

relatively small. The negative relationship also holds between other exit frictions (i.e. low cost recovery

of capital for exiting firms) and the relative size of risky sectors. We explain the empirical findings using

a matching model with endogenous technology choice, i.e. firms can choose between a risky and a safe

technology. In a calibrated version of the model, high firing or exit costs reduce the number of jobs in

the risky sector, lower productivity in the risky sector, and lower aggregate productivity.

Our paper draws from and combines results from a variety of different literatures. The main question

we look at is prominent in the literature on innovation, IT and productivity growth. The model we

use is derived from models in the search literature that mostly have been used to study the effects of

frictions (including EPL) in labor markets, but recently these models are used for studying allocation

and productivity as well. Further, our use of model calibration, and comparison of model simulations

with moments and parameter estimates from data draw on a rich macro literature. Finally, we follow a

lengthy sequence of papers studying the effect of EPL on labor markets and macro outcomes. We discuss

these points in turn.

Growth accounting exercises in the US have shown most of the acceleration of output growth to

be due to ICT capital deepening and to increases in TFP associated with ICT use (for an overview of

the findings, see Jorgenson, Ho and Stiroh 2008). Cross-region comparisons (van Ark, O’Mahony and
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Timmer, 2008) show that ICT production and use has been much lower in the EU than in the US and

that this may explain much of the relative slowdown. The growth accounting literature is not, however,

capable of explaining why the ICT producing sector in the EU is smaller, why ICT investment and thus

ICT-capital deepening is lower, why the contribution from ICT-using industries is smaller, and thus why

aggregate productivity diverges. The link we make between technology choice and employment protection

and exit costs in general depends on the special nature of information and communication technology.

A nice case study of such risky innovation is given by Brynjolfsson McAfee, Sorell, and Zhu (2008),

where the benefits of adopting an innovative IT system arise in conjunction with a reorganization of the

production process. The success of the innovation can only be determined by experimenting with the

new organization in the market. In case of failure, the configuration of the hardware, software, process,

and organization structure needs to be changed again, while in case of success, the system is scaled up,

for example by replicating it in other locations. This fits nicely with the findings of Bloom, Sadun, and

Van Reenen (2007) that U.S. multinational firms have high returns to investment in IT in their UK

subsidiaries because they only transplant the IT implementations that were adopted successfully in the

US.

Consistent with this innovation strategy, Brynjolfsson, McAfee and Zhu (2009), find that the cross-

sectional variance of profits in IT using firms is higher, and has been increasing steadily since 1995,

relative to the cross-sectional variance of profits in firms with low IT uptake. In many cases, the IT and

organizational investments do not lead to success and require either another round of attempts at getting

the implementation right, or exit. Similarly, Bartelsman (2008) finds that the variance of market share

changes among firms in an industry is higher in those countries and industries where firms have higher

adoption rates of broadband internet. In this paper, we find that the variance of productivity across

firms and the churn of jobs has become higher since 1995 in ICT intensive industries. While the direction

of causality is diffi cult to ascertain, this evidence shows that higher rates of adoption of new technology

coincide with increased cross-sectional variation in profits, productivity, market share, and employment.

Although we do not explicitly model the process of experimental innovation in detail, our model is

consistent with it. To model this process, the decision to innovate not only requires a fixed entry fee but

also requires some complementary factor input, say labor, with an associated flow of factor payments.
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Specifically, the risky sector firms are modelled as in Mortensen and Pissarides (1994) and the safe

sector firms are as in Pissarides (2000). Both sectors are connected with each other through the pool of

unemployed workers from which both sectors hire and EPL reduces the risky and increases the safe sector.

The Mortensen-Pissarides search model is particularly useful to study labor market policies because it is

simple and simultaneously solves for the labor market stocks and flows.1 Frictions are essential in our

model to explain the coexistence of vacancies and unemployed workers, but they also are needed to allow

for an equilibrium where both high and low productivity firms can simultaneously exist. As in Mortensen

and Lentz (2008), a key factor for aggregate productivity is the allocation of workers to different firms.

We calibrate our model for the US using a variety of sources including the EUKLEMS dataset

(O’Mahony, and Timmer 2009) and a novel dataset built up from firm-level sources (Bartelsman, Halti-

wanger, and Scarpetta 2009, from now on called BHS). By exploring new data sources we are able to

get more information on primitives that previously had to be fixed at arbitrary values. For example, we

use our model to derive a relation between the underlying ex ante mean and variance of the productivity

distribution in the risky sectors and the observed (truncated) mean and variances.2 Further we can gen-

erate experiments such as considering the effect of changing the estimated US level of EPL (one month

of production) to European levels (seven months of production).3 Simulated data generated from the

model in this manner shows the same relationship between sector size and EPL interacted with riskiness

that we find in the actual data.

By now there exists a huge literature on the effects of EPL on labor market performance based

on cross country evidence.4 The main conclusions are that the effects on employment are negative but

small. Participation is typically smaller in countries with strong EPL and the effects on unemployment are

essentially zero. EPL reduces the flows in and out of employment and increases unemployment duration.

1The effects of EPL have been studied extensively in the search matching literature using a single sector model. See e.g.
Brügeman (2006), Burda (1992), Garibaldi (1998), Ljungqvist (2002) and Mortensen and Pissarides (1999). Alvarez and
Veracierto (2001) study EPL in a Lucas-Prescott search model. Those papers do not consider the allocation of workers over
risky and safe sectors.

2Acemoglu and Shimer (2000) show that under search frictions, technology dispersion can be an equilibrium response of
firms with the same potential outcomes.

3There is a lot of variation in severance payments and procedural cost within Europe. Severance payments range from
from 0 in e.g. the UK and Belgium to 18 months in Italy and 20 months in Portugal for a worker who has been employed
for 20 years. In many European countries, severance payments are equal to one month salary for each year worked.

4This literature includes Addison and Teixeira (2003), Bertola (1990), Blanchard (1998), Lazear (1990), Nickell and
Layard (1998), Blanchard and Portugal (1998), OECD (2004).

3



Autor, Kerr, and Kugler (2008) give some evidence that EPL reduces productivity at the plant level

but they cannot rule out that their results are (partly) due to confounding economic shocks. Samaniego

(2006) gives evidence that EPL is negatively correlated with ICT diffusion. In a related empirical exercise,

Bartelsman, Perotti, and Scarpetta (2008) show that the productivity of broadband intensive industries

relative to other industries is lower in countries with high EPL. Bassanini, Nunziata and Venn (2009)

give evidence that productivity in high turnover industries is relatively low if EPL is strong which is

consistent with our findings. However, in our model, turnover is endogenous and depends on the choice

of technology. Our paper is to our knowledge the first one that gives evidence that firing costs may harm

productivity and innovation by decreasing the size of innovative sectors. We also confirm Samaniego’s

finding of a negative correlation between broadband use and EPL across countries. The advantage of cross

country industry panel data is that an attempt can be made to identify the causal effect by controlling

for the possible correlation between strong EPL and other active labor market policies. The sectoral

variation can be used for identification because we can see how relative sector size within a country

varies across countries. Our equilibrium search model explicitly allows for competition between firms in

the innovative and firms in the safe sector and we can jointly derive relative sector sizes, equilibrium

participation, unemployment and employment rates in both sectors. The mechanism that we propose is

related to Saint-Paul (2002) where countries with high EPL specialize in secure goods at the end of their

product cycle while countries with low EPL specialize in more innovative goods.

Finally, there exists a large literature on optimal layoff taxes, i.e. Bentolila and Bertola (1990),

Hopenhayn and Rogerson (1993) and Ljungqvist. Blanchard and Tirole (2008) and Michau (2009) show

that optimal layoff taxes are positive if workers are risk averse and cannot borrow against future income.

The motivation for this is Pigouvian; firms do not internalize the increase in UI expenditures when

they fire a worker. Since we assume risk neutral workers (or alternatively complete capital markets),

those effects are absent in our model. Finally, Acemoglu and Shimer show that UI benefits can have a

positive effect on firm productivity because it stimulates workers to search for high productivity jobs and

stimulates firms to create those jobs.

The paper is organized as follows. Section 2 summarizes the stylized facts on the productivity diver-

gence. Section 3 discusses our theoretical model which is calibrated in section 4. Section 5 shows our
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main empirical finding that risky sectors are relatively smaller in high-EPL-countries. We conclude with

some reflections on the importance of this link between EPL and productivity and with ideas for future

research.

2 Stylized Facts

This section presents some stylized facts on productivity, risky innovation, and sectoral allocation of

labor. We start with a picture that begs the important question: Why has productivity in the EU

stopped converging to the US level, and has it actually been diverging since the mid-nineties? Using data

from the EUKLEMS database, Figure 1 shows real value added per hour worked in the market sector in

the EU-15 versus the United States.5 The finding has spawned an exploration into the details, breaking

the pattern down into contributions of countries and industries, and further into the contributions for

each factor of production. Overall, van Ark, O’Mahony and Timmer (2008) argue that the European

productivity slowdown is attributable to the slower emergence of the ’knowledge economy’ in Europe

compared to the United States. The findings are that the EU enjoys lower growth contributions from

investment in information and communication technology and has a relatively small share of technology

producing industries. The EU also has slower multifactor productivity growth than in the U.S. where

the acceleration in productivity likely is associated with advances in the innovative uses of information

technology.

The explanation of the why for these findings that we put forward in this paper has to do with the

nature of innovation in both the production and use of information and communication technologies. In

our model, we assume that the innovative sector also is ’high risk’. That is, a firm that invests in these

technologies or sectors has a higher variance of payoffs than a firm that invests in more traditional sectors

or in more traditional types of capital equipment. In a recent paper, Brynjolfsson, McAfee, Sorell, and

Zhu (2008) argue that the payoff associated with ICT-related business investments comes from scaling

5Output of the fifteen EU countries are converted to dollars using industry-of-origin purchasing power parity data from
the EUKLEMS database. The same pattern emerges if one displays relative total factor productivity (TFP) which takes
into account changes in both capital and labor quality. However, for consistency with measures used in our model and
because these data are more consistent across source, we will stick to indicators of ppp-adjusted real value added and hours
worked.
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Figure 1: Labor Productivity EU15 relative to US; source: EUKLEMS

up a successful venture after it has shown its success in smaller-scale experiments. The upshot is that

investing in such experiments has a high chance of failure and a very small chance of a very high payoff.

Data from Compustat, linked to the Harte-Hank indicators on firm-level ICT investments, show that the

cross-sectional variance of profits of ICT-intensive firms versus non-ICT intensive firms starts diverging

in the mid-nineties (Brynjolfsson, McAfee, and Zhu 2009), see Figure 2.

Similar evidence is found by analyzing a country/industry panel dataset of indicators built up from

firm-level data. Using linked longitudinal data on sales and broadband use at the firm-level for 13 EU

countries, Bartelsman (2008) finds that industries that have a higher percentage of workers with access

to broadband internet exhibit higher variance of the distribution of firm-level sales growth.

Using the same datasource, the table below shows results for the regression of the coeffi cient of

variation of labor productivity productivity across firms in an industry on the percentage of workers

with broadband access within the industry. The data (labelled ONS, and described in the section on

empricial evidence) cover the years 2001 through 2005, during which time the penetration of broadband
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Figure 2: Variance of Gross Profit Margin, source: Brynjolfsson et al. (2009)

was growing rapidly.

Cc,i,t = α+ γBc,i,t +
∑
j

δjDj + εc,i,t (1)

Where C is the coeffi cient of variation of industry productivity in country c, industry i, and year t, B

is the percentage of workers in the industry with access to broadband internet, and D are dummy variable

for each country, industry, and time periods. The regression is run both in levels and first differences. In

both cases, the correlation is significantly positive, as shown in table 1. 6 This correlation does not imply

causality, and needs to be interpreted with care because the ex-post observed variance in an industry

may already reflect the endogenous firm-level choice of whether to invest in safe or risky innovation.

Levels First-differences

γ 0.97
(2.47)

2.03
(3.72)

R2 0.40 0.07
D.F. 650 461
Fixed effects ctry, ind, time ctry, ind, time

Table 1: Productivity variance and broadband use

6We ran the regression without fixed effects and all combinations of country, industry, and or time dimmies. In first
differences, all coeffi cients are significant and roughly equal in size. In levels, regressions with industry but no country
dummies gave an insignificant (negative) correlation. This points to the possibility of an ommitted variable that boosts
both the variance of productivity and the use of broadband, for example decling prices of ICT goods and services.
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The data on ICT use at the firm level, linkable to other longitudinal firm-level data is not available

in the U.S. However, the BHS dataset includes time series information on firm entry and exit and on job

creation and destruction for detailed industries in the U.S. We use the broadband intensity of industries

in Europe from the ONS dataset to rank industries by ’ICT intensity’. We use this industry ranking

from Europe to split the U.S. industries into high-ICT and low-ICT groups and create indicators of

employment-weighted gross firm turnover and gross job flows for the two aggregates.7 Next, we average

the gross job turnover (job creation plus job destruction divided by employment) and employment-

weighted gross firm turnover (jobs flows of employees shed at firm exit plus hires at entering firms

divided by employment) for the periods 1986-1994 and 1995-2004. The results are shown in table 2. The

patterns are roughly the same as shown for the variance of profitability of firms by Brynjolfsson et al.

(2009)

Gross Job Flows Entry-Exit Job Flows
1986—1994 1995—2004 1986—1994 1995—2004

High ICT Industries 17.5 23.1 6.8 10.4
Low ICT Industries 17.5 18.6 8.1 8.1

Table 2: Gross Job Flows

The next stylized facts portray the productivity and employment evolution of the EU and the US,

split between high-risk industries and low-risk industries. First, we must make a ranking of riskiness.

Based on the above, a good candidate measure of the riskiness of the industry is the fraction of workers

with access to broadband. We calculate this ranking for the EU15 country with the lowest OECD-EPL

indicator, namely the United Kingdom. Other indicators of riskiness related to the observed distribution

of firm-level productivity, such as the variance of the productivity distribution across firms, generate the

same stylized results. In section 5 we discuss this in greater detail. First, the productivity levels (ppp-

adjusted real value added per hour) of the risky industries within the broad market sector are higher

7The cut-off industry for high-versus low-ICT using sectors is chosen to split employment in Europe evenly.
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than the safe sector, both in the EU15 and in the U.S, see Figure 3. However, in the EU the risky sector

productivity is forty percent higher than the safe sector, with a slight increase over time, while in the

US, the risky sector starts sixty percent more productive, but rises rapidly over time and ends up twice

as productive as the safe sector. Next, the share of employment going to the risky sector in the EU stays

near fifty percent, while it is nearly at sixty percent in the U.S.8

1990 1995 2000 2005
0.45

0.5

0.55

0.6

year

Employment share risky sector

US
EU

1990 1995 2000 2005
1.2

1.5

1.8

2.1

year

Relative productivity risky sector

US
EU

Figure 3: Risky Sector vs Safe Sector: US and EU

A nearly identical picture emerges when we split the EU15 into countries with high EPL and low

EPL (see figure 4). During the late 1990s high-EPL countries in the EU did not see an accerleration in

productivity or employment share in the risky sector. These are the main stylized facts to be explained by

our model and explored further in detail in section 6. The distribution of EPL across countries does not

change appreciably over time (see Nicoletti, Scarpetta, and Boylaud, 2000), thus changes in EPL alone

cannot explain the productivity divergence. The core of our explanation is that employment protection

makes firing more costly and makes the risky sector less attractive to open jobs. Moreover it shifts the

8 In our model, risky sector productivity is lower in high-EPL countries because low-productive jobs do not shut down.
In the actual industry data, it is likely that firms choose between riskier and safer activities within each industry and that
more safe activities lower average industry productivity in ’risky sectors’in high EPL countries.
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firing threshold productivity level (below which a worker is fired) to the left and reduces the average

productivity in the risky sector. The EPL distribution has not changed much in the nineties so this by

itself cannot explain the US-Europe divergence but our story is that the US was able to better explore

the benefits from the new risky ICT technologies that became available during the nineties.

1990 1995 2000 2005
0.45

0.5

0.55

0.6

year

Employment share risky sector

EU low EPL
EU high EPL

1990 1995 2000 2005
1.2

1.5

1.8

2.1

year

Relative productivity risky sector

EU low EPL
EU high EPL

Figure 4: Risky Sector vs Safe Sector: High and Low EPL EU Countries

3 The model

Consider a labor market of size l ∈ [0.1] with search frictions and free entry of vacancies where risk

neutral firms can invest in one of two technologies; a risky one or a safe one. In the safe technology sector

(0), all matches are equally productive as in Pissarides (2000) while in the risky technology sector (1),

firms are hit by shocks that can increase or decrease productivity as in Mortensen and Pissarides (1994).

Those shocks can be interpreted as demand and or supply shocks. All risk neutral workers are identical.

A matched worker-firm pair in sector 1 produces y + x where x is a draw from F (x) with mean µ and a

variance of σ2. F (x) has no mass points and at this stage we do not have to make assumptions on the

support of F (x). The shocks in the risky sector arrive at a (Poisson) rate λ. When such a shock occurs,
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firms must draw a new value of x from F (x). In sector 0, λ = 0 and consequently all firms produce y. We

assume that new firms start at y + µ rather than at a finite upper support as Mortensen and Pissarides

(1994) assume. So in the absence of shocks (λ = 0) and for µ = 0, sector 0 and 1 would be identical and

the model reduces to the Pissarides (2000) model.

Wages in sector i, wi are determined from the generalized Nash bargaining solution with continuous

renegotiation (so the wage changes after a shock occurs) and workers cannot search on the job. When

opening a vacancy, the firm can choose which sector to enter. Vacancy creation cost for sector 0 and 1

are respectively given by c0 and c1. Both sectors are hit by exogenous job destruction shocks, δ. After

such a shock, the match ends and no exit cost has to be paid (as in Brügemann (2007)). This is without

loss of generality; we could alternatively assume that when exogenous job destruction occurs that firms

also have to pay an exit cost but this is equivalent to a decrease in y. Besides exogenous job destruction

the firms in sector 1 choose a unique productivity threshold, xd, below which a job is destroyed. So, in

sector 1, both exogenous and endogenous (at rate λF (xd)) job destruction occurs. When a firm decides

to fire a worker it must pay an exit cost k. We are interested in how this firing tax distorts the sorting

of firms into safe and risky sectors and the participation decision of workers.9 In the absence of frictions,

firms prefer the risky technology because there is no bound on positive shocks while firms have the option

to close the job if a suffi ciently large negative shock arrives.

Denote the total stock of vacancies by v and the stock of unemployment by u and define labor market

tightness θ = v/u. We can also define labor market tightness in each of the sectors as: θ0 = v0/u,θ1 =

v1/u. The total number of matches in each sector is determined by a constant returns to scale matching

function, M0(u, v0) and M1(u, v1) for respectively the safe and the risky sector. The matching functions

are differentiable and strictly concave in each of their arguments. Define the total matching rate for

workers in sector i as mi = Mi/u. The rate at which vacancies are filled in each sector is then: mi/θi.

In this set up, workers always impose negative congestion externalities on each other and positive ones

on vacancies while vacancies only cause negative congestion externalities on other vacancies in the same

sector. We can think of this matching process as one where vacancies for sector 0 are posted on one page

9 In our model, the only productive input is labor, and firing costs thus coincide with the more generic concept of exit
costs. We will use the terms interchangeably. In the empirical section we use different indicators relating to employment
protection, firing costs, and capital losses at exit.
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of the newspaper and vacancies for sector 1 on another page and workers pick a page at random and then

a job at random from that page. Alternatively, we can think of sector 0 being located in one area and

sector 1 in another area. We believe this is a reasonable assumption, i.e. posting an ICT vacancy will

typically not decrease the rate at which workers meet vacancies in the financial sector. If unemployment

increases, the matching rate for all workers goes down and for vacancies it goes up while if the number of

vacancies in sector 1 increases, the matching rate for workers goes up and the matching rate for vacancies

in sector 1 goes down. The matching rates in sector 0 are only indirectly affected. Since unemployment

goes down, the matching rate for firms in sector 0 goes down but less so than in sector 1 because the

congestion externality of type 0 vacancies on type 1 vacancies is absent.

Let Vi,be the asset value of a vacancy and let Ji(x)be the asset value of a filled job in sector i. Free

entry of vacancies implies:

rV0 = −c0 +
m0

θ0
[J0 − V0] = 0 (2)

rV1 = −c1 +
m1

θ1
[J1(0)− V1] = 0 (3)

Firms pay creation cost, c0 or c1 and at rate mi

θi
their vacancies switch to filled jobs. Under free entry,

all profit opportunities are explored in equilibrium so the value of opening a vacancy must be equal to

zero in expectation. Let U be the asset value of an unemployed worker and let Ei(x) be the asset value

for workers employed in sector i. Let S0 be the value of the surplus of a match in sector 0 and S1(x) be

the value of the surplus of a type x match in sector 1.

S0 = J0 + E0 − U (4)

S1(x) = J1(x) + E1(x)− U (5)

By our assumption that wages are determined by a generalized Nash bargaining solution with bargaining

power β, wages in sectors 0 and 1 are implicitly determined by respectively:

E0 − U = βS0 (6)
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E1(x)− U = max [0, βS1(x)] (7)

J1(x) = min[(1− β)S1(x), S1(x)]

Note that S1(x) can be negative for certain realizations of x. The asset value for a filled vacancy in sector

0 is given by :

rJ0 = y − w0 − δJ0. (8)

In the safe sector matches only end if they are hit by a job destruction shock which occurs at rate δ. In

sector 1 endogenous job destruction is also possible but then firms must pay an exit cost k. As mentioned

before, if the job is hit by an exogenous shock δ those cost do not have to be paid. For any realization x,

J1(x) solves:

rJ1(x) = y + x− w1(x)− δJ1(x) + λ

(∫ xu

xd

[J1(z)− J1(x)] dF (z)− F (xd) (J1(x) + k)

)
. (9)

A firm with realization, x, receives during the match: y + x− w1(x). If the job is destroyed exogenously

this value becomes zero, if a technology shock arrives (at rate λ), the firm can close the job and fire the

worker if the shock is below an endogenous threshold xd which occurs with probability F (xd) and this

results in a loss of k. The firm can also decide to continue producing at the new technology if (x > xd)

and the wealth gain or loss for a realization z is then equal to [J1(z)− J1(x)] ,the upper support of F (x)

can be arbitrary large. The threshold value for x below which the job is destroyed, xd, follows from the

following reservation value property:

J1(xd) = −k, (10)

As long as the job is more valuable than the exit cost, it is optimal to remain operational. So the higher

k, the lower the exit threshold. Similarly, the participation constraint for employed workers is that they

should be at least as well of as when they are unemployed. This implies,

E1(xd) = U,
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and that the match surplus at the least productive job is negative:

S1(xd) = −k, (11)

The asset value of being unemployed is:

rU = b+m0 [E0 − U ] +m1 [E1 (0)− U ] . (12)

Unemployed workers receive unemployed benefits b (for positive analysis this can also be interpreted as

home production) and they find jobs in the safe and risky sector at rates m0 and m1 they respectively.

Non participants enjoy home production and are not available for the labor market. Let the distribution

of home production be given by H, then the labor force consists of those workers who receive a higher

payoff from working than from home production:

l = H(rU). (13)

The value of having a job in the safe sector is simply equal to:

rE0 = w0 − δ [E0 − U ] (14)

while the asset value of being employed in the risky sector is given by:

rE1(x) = w1(x)− (δ + λF (xd)) [E1(x)− U ] + λ

∫ xu

xd

[E1(z)− E1(x)] dF (z) (15)

Workers receive a wage w1(x), at rate (δ + λF (xd)) their job is destroyed for exogenous reasons or because

the lower bound threshold productivity is crossed. In that case, the worker becomes unemployed. At

rate λ (1− F (xd)), a match is hit by a technology shock above the threshold and the wealth change

for realization z is given by: [E1(z)− E1(x)]. From the Bellman equations above we can derive a job

destruction equation for sector 1 and job creation conditions for sector 0 and sector 1. Together they

jointly determine θ1, θ1 and xd. Unemployment and vacancies follow from two steady state flow equations.

Details are delegated to the appendix.
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4 Calibration

We calibrate the structural parameters of our model in three steps. In the first step, we fix some exogenous

parameters according to standard values in the literature. In the second step, we set some other exogenous

parameters at values that match the US labor market stocks and flows. In the third step, which is the

key step of our calibration strategy, we set the productivity shock parameters– the arrival rate λ, the

mean µ, and the standard deviation σ– together with the firing costs parameter k in order to match

the observed truncated cross-sectional distribution of US productivity. The right shape comes from the

productivity shock parameters and the right truncation comes from the firing costs parameter. This third

step is most important for us because we are mainly interested in long-run productivity effects. Since we

explore several new data sources we are able to identify the productivity shock parameters including the

arrival rate, which is set to an arbitrary value in previous literature.

4.1 Parameters from other studies

In this step, we fix several parameters according to what is common in the literature and we also normalize

two parameters. The parameter values set in this step can be found in Table 3.

Without loss of generality, we normalize the productivity of the safe sector to y = 1. Following Pis-

sarides (2009), and similar to Shimer (2005) and Hall and Milgrom (2008), we set the monthly interest

rate to r = 0.004. Following Shimer (2005), we abstain from market ineffi ciencies due to search external-

ities by assuming that the Hosios condition β = 1 − η is satisfied and we set unemployment benefits to

b = 0.4. This lies at the upper end of the range, if interpreted entirely as unemployment benefits. It is,

however, too low, if interpretation includes leisure. Hall and Milgrom (2008), for example, think of 0.71

as a reasonable estimate for the flow value of unemployment and think of 0.25 as a reasonable estimate

for unemployment benefits. In our model, we distinguish between non-participation and unemployment

and think only non-participants can fully enjoy leisure. Note that our calibration is different from the

calibration of Hagedorn and Manovskii (2008)– high b and low β– and hence we will not be able to

explain the cyclical properties of labor market tightness. It is worthwhile noting that our key results

on long-run productivity effects and the sectoral allocation of workers are robust to changes along this
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dimension.

We do not have appropriate industry-level vacancy data. Having such data is not crucial though; we

can calibrate the matching function parameters η and ξ using aggregate data. We take the matching

elasticity from Pissarides (2009), that is η = 0.5 which is similar to Hall and Milgrom (2008) and consistent

with the evidence provided in Petrongolo and Pissarides (2001). Without loss of generality, we normalize

the matching effi ciency parameter to ξ = 0.3.10

Parameter Value Description Motivation
y 1 productivity safe sector normalization
r 0.004 monthly interest rate Pissarides (2009)
β 1− η Nash bargaining share worker Hosios condition
b 0.4 unemployment benefits Shimer (2005)
η 0.5 matching elasticity Pissarides (2009)
ξ 0.3 matching effi ciency normalization

Table 3: Calibration according to the literature

4.2 Matching the US labor market stocks and flows

In this step, we set several parameters in order to match the US labor market stocks and flows. We

combine aggregate data from the OECD LFS (stocks) and the JOLTS (flows) with industry-level data

from the EUKLEMS. The parameter values set in this step can be found in Table 4.

We set labor market participation l to match the labor market stocks data from the OECD LFS. That

is, we set labor market participation to l = 0.77. We do not back out the underlying distribution of home

production, because it is not identified using only US data. We carry out various robustness checks and

find that endogenizing labor market participation would strengthen our key results, see section 5.3.

Our safe-risky classification is based on the ONS database. We rank industries in the UK– having

the lowest OECD-EPL of the EU15 and hence being the closest related to the US– by their broadband

intensity. We split the industry ranking according to EU15 employment and call the top half risky and

the bottom half safe. This ranking is consistent with the stylized facts presented in Figure 3. We have

10As is well known from the literature, the matching technology parameter ξ and the vacancy creation cost c0 and c1 are
not separatetely identified.
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also experimented with ranking by variance in productivity and with calling the top quartile risky and

the bottom quartile safe, with similar calibration results.

We set the exogenous job destruction rate δ to match the labor market flows data from the JOLTS.

Distinguishing between the safe and risky sector is not easy. First, the JOLTS data is based on two-

digit industry codes, while our safe-risky classification is based on three-digit industry codes. This

makes it diffi cult to use industry-level data from the JOLTS. We set the total separation rate of the

safe as well as the risky sector equal to the total separation rate of the manufacturing sector, that is

ssafe = srisky = 0.029. Secondly, the safe and risky sector differ in our model only in terms of riskiness,

while in the real world they also differ in other dimensions. There is, for example, a big difference in

skill composition. That is, the safe sector consists of 14% high-skilled, 68% medium-skilled and 18%

low-skilled, while the risky sector consists of 37% high-skilled, 57% medium-skilled and 6% low-skilled,

based on the EUKLEMS. It is important to take this into account, because low-skilled workers face a

much higher separation rate than high-skilled workers. This can easily be a factor five, see for example

Moscarini (2003). Our aim is therefore to match the model for medium-skilled separation rates, which

we construct from the data. For this purpose, we assume that within-sector differences are the same for

the safe and risky sector, that is

ssafehigh

ssafemedium

=
sriskyhigh

sriskymedium

= ωsh < 1

ssafelow

ssafemedium

=
sriskylow

sriskymedium

= ωsl > 1.

We set ωsh = 0.4 and ωsl = 2, implying a factor five difference between high-skilled and low-skilled

and medium-skilled a bid closer related to low-skilled than to high-skilled. From the skill decomposed

separation rates

ssafe = psafehighs
safe
high + psafemediums

safe
medium + psafelow ssafelow

srisky = priskyhigh s
risky
high + priskymediums

risky
medium + priskylow sriskylow
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implying that the medium-skilled separation rates are

ssafemedium =
ssafe

psafehighω
s
h + psafemedium + psafelow ωsl

= 0.026

sriskymedium =
srisky

priskyhigh ω
s
h + priskymedium + priskylow ωsl

= 0.035.

This gives us ssafemedium = 0.026 and sriskymedium = 0.035. In the safe sector of our model, there is only

exogenous separation and hence we set the exogenous job destruction rate to δ = 0.026. Now the

endogenous job destruction rate must be λF (xd) = sriskymedium − δ = 0.008. This serves as target in the

next step of our calibration strategy.

Finally, we take the labor market stocks from the OECD LFS and the relative sector sizes from the

EUKLEMS. Together with our safe-risky classification, this gives us u = 0.04, e0 = 0.32 and e1 = 0.41.

We combine these stocks with the above flows to solve for the implied labor market tightness via the safe

and risky sector flow equations (26) and (27 ). We set the vacancy costs c0 and c1 in order to match labor

market tightness. Vacancy costs are defined relative to productivity which is with Hall and Milgrom

(2008) and Hagedorn and Monovskii (2008). Since we do not have appropriate industry-level vacancy

data, we could not distinguish between safe and risky sector vacancy costs. It seems reasonable, however,

that risky sector vacancy costs are larger than safe sector vacancy costs, since vacancy costs also include

capital installment costs and the risky sector has for example a much larger broadband penetration. We

assume that c1 = 2c0. Using the job creation condition of the safe sector (19) we find that c0 = 0.2092.

Parameter Value Description Motivation
l 0.77 size labor force size labor force (OECD LFS)
δ 0.026 Poisson rate ex. job destr. ex. job destr. (JOLTS, EUKLEMS)
c0 0.2092 vacancy costs safe sector stocks, flows (OECD LFS, JOLTS, EUKLEMS)

Table 4: Calibration in order to match the US labor market stocks and flows

4.3 Matching the cross-sectional distribution of US productivity

In this step, we set the ex ante productivity shock parameters– the arrival rate λ, the mean µ, and the

standard deviation σ– together with the firing costs parameter k in order to match the ex post observed
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truncated cross-sectional distribution of US productivity. More specifically, we match the cross-sectional

mean and variance of risky sector productivity and we require risky sector in- and outflow to be consistent

with the data. The parameter values set in this step can be found in Table 5.

Cross-sectional mean and variance in the model

Let ŷ be the average output per worker in the risky sector. Workers who have not yet received a

shock, a fraction 1− s, produce y. Workers who have already received at least one shock greater than xd,

a fraction s, produce on average y+ 1
1−F (xd)

∫ xu
xd

zdF (z). We can solve for the fraction s using the steady

state flow equation λ (1− F (xd)) (1− s) e1 = (δ + λF (xd)) se1 with the flow into s on the left-hand side

and the flow out of s on the right-hand side, giving us s = λ
δ+λ (1− F (xd)). The average output per

worker in the risky sector is

ŷ = y + s
1

1− F (xd)

∫ xu

xd

zdF (z) = y +
λ

δ + λ

∫ xu

xd

zdF (z) .

The variance of output per worker in the risky sector is

σ̂ = s
1

1− F (xd)

∫ xu

xd

(y + z − ŷ)
2
dF (z) + (1− s) (y − ŷ)

2

=
λ

δ + λ

(∫ xu

xd

z2dF (z)− λ

δ + λ

(∫ xu

xd

zdF (z)

)2)
.

Productivity shocks are assumed to follow a normal distribution with mean µ and standard deviation σ.

Using the analytic expressions for the truncated normal distribution, we can simplify the expressions for

ŷ and σ̂, giving us

ŷ = y +
λ

δ + λ

((
1− Φ

(
xd − µ
σ

))
µ+ ϕ

(
xd − µ
σ

)
σ

)

σ̂ =
λ

δ + λ

((
1− Φ

(
xd − µ
σ

))(
µ2 + σ2

)
+ ϕ

(
xd − µ
σ

)
(xd + µ)σ

)
− (y − ŷ)

2

where ϕ (·) is the probability density function of the standard normal distribution and Φ (·) is its cumu-

lative density function.

Cross-sectional mean and variance in the data

Again, it is important to take the difference in skill decomposition into account, because high-skilled
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are much more productive than low-skilled. This can easily be a factor three, based on evidence from the

EUKLEMS. We assume that within-sector differences are the same for the safe and risky sector, that is

πsafehigh

πsafemedium

=
πriskyhigh

πriskymedium

= ωπh > 1

πsafelow

πsafemedium

=
πriskylow

πriskymedium

= ωπl < 1.

We set ωπh = 2.4 and ωπl = 0.8, implying a factor three difference between high-skilled and low-skilled,

and medium-skilled much closer related to low-skilled than to high-skilled. From the skill decomposed

productivities

πsafe = psafehighπ
safe
high + psafemediumπ

safe
medium + psafelow πsafelow

πrisky = priskyhigh π
risky
high + priskymediumπ

risky
medium + priskylow πriskylow

we can now solve for the medium-skilled productivities

πsafemedium =
πsafe

psafehighω
π
h + psafemedium + psafelow ωπl

πriskymedium =
πrisky

priskyhigh ω
π
h + priskymedium + priskylow ωπl

.

In our model, only the ratio πriskymedium

πsafemedium

is identified (because we have normalized safe sector productivity

to y = 1) which is equal to ŷ, that is

ŷ =
πrisky

πsafe
psafehighω

π
h + psafemedium + psafelow ωπl

priskyhigh ω
π
h + priskymedium + priskylow ωπl

.

We take πrisky

πsafe
= 1.62 from the EUKLEMS. This would imply ŷ = 1.24; however, we do not feel

comfortable in matching such a high number since there may also be other mechanisms that make the

risky sector more productive than the safe sector. Examples are sorting by unobservable characteristics

(see Gautier and Teulings 2006) and risk premia. Therefore, we match a somewhat lower number, namely

ŷ = 1.1 . Next, we set our target for the standard deviation of the productiviy shocks, σ̂ = 0.16, while

the BHS dataset would suggest a cross-sectional standard deviation in the range of 0.2 to 0.3. We also
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want to match a somewhat lower variance because we want to capture the difference between risky sector

variance and safe sector variance. In the BHS data the safe sector productivity also varies across firms,

while it is zero in the model.

Combining the cross-sectional mean and variance with risky sector in- and outflow

In addition to the targets for the cross-sectional mean and variance, we obtain two additional targets

via the risky sector in- and outflow. In the previous step of our calibration strategy we already determined

the implied labor market tightness based on the stocks and flows observed in the data and we also

determined the endogenous separation rate. We combine information from several new data sources on

the cross-sectional distribution distribution of productivity to identify the productivity shocks parameters

including the arrival rate, which had to be set to arbitrary values in previous literature. In addition to the

targets for the cross-sectional mean and variance, we obtain two additional targets via the risky sector

in- and outflow. Appending the targets on the cross-sectional mean and variance with the risky sector

in- and outflow and with the job destruction margin, gives us five equations in five unknowns. We solve

this system of equation and get λ = 0.1410, µ = 0.0653, σ = 0.4989 and k = 1.2227, see the appendix for

the details.

Parameter Value Description
λ 0.1410 Poisson rate productivity shock
µ 0.0653 mean productivity shock
σ 0.4989 std. deviation productivity shock
k 1.2227 firing costs
Motivation endog. job destruction (JOLTS, EUKLEMS), cross-sectional mean (EUK-
LEMS), cross-sectional variance (BHS), stocks and flows (OECD LFS, JOLTS, EUKLEMS)

Table 5: Calibration in order to match the cross-sectional distribution of US productivity

5 Simulations

5.1 The effects of EPL and rising riskiness

The calibrated model allows simulation of steady-state employment shares and relative productivity by

varying any of the model parameters. Of interest for this paper is the effect of differences across economies
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in exit costs, k. Further, our stylized facts point towards an increase over time in the standard deviation

of productivity shocks, σ, in the risky sector. The simulations thus consist of computing steady state

employment and productivity outcomes for a wide range of k and σ.

We allow the exit costs to vary from the calibrated value of the US (k = 1.2), comparable to roughly

one month of output. The low EU values (k = 3) through the high EU values (k = 7) are comparable

to 7 months of production or about 1 year of wages.11 The standard deviation of productivity is varied

from 0.4 to 0.8. This range is consistent with the increase in riskiness that has been observed with rising

ICT use.

The results are presented in Table 6 and in figure 5. The table shows steady state outcomes for a

list of variables for (i) the benchmark σ = 0.5 and (ii) a higher σ = 0.75 to capture the introduction

of the new ICT technology. Across the columns, as firing cost increase, we see that in the risky sector

there will be less firing (more labor hoarding), and because of that risky-sector productivity falls and the

match surplus decreases. Consequently, labor market tightness goes down in the risky sector. Despite the

lower productivity, wages go up in the risky sector because the (employed) worker’s bargaining position

improves in the risky sector. The match surplus in the safe sector goes up because essentially the other

sector is being taxed. The safe sector becomes larger except when risk is low and firing costs are high.

In this case, employment is fairly flat, as increases in the risky sector resulting from the decrease in

outflow balances the decrease in inflow and unemployment drops. The drop in unemployment causes

the safe sector to shrink despite the fact that θ0 increases. Since unemployed workers are less likely to

get hired in the high productivity risky sector their bargaining position with safe-sector employers goes

down. Next, consider what happens if σ increases (i.e. after the ICT revolution). A higher level of firing

cost decreases employment in the risky sector, increases employment in the safe sector, increases wages

in the risky sector, decreases wages in the safe sector and the total employment effect is positive. As

firing costs rise, both the allocation shift towards the safe sector and the increase in labor hoarding will

contribute to lower overall productivity, π ≡ e0y+e1ŷ
e0+e1

. Finally, total output net of vacancy costs, labelled

Ω in the table, unambiguously decreases as firing cost increase, irrespective of σ.

11Examples of European countries with low EPL are Denmark and the UK; examples of European countries with high
EPL are Portugal and Italy. See the appendix table.

22



To summarize, productivity drops with increased firing costs, both from a selection effect (less trun-

cation in the risky sector) and from a reduction in the size of the risky sector. The effect of rising firing

costs increases with σ. The allocation of workers to the risky sector is not very sensitive to firing costs

when σ is low and when firing costs are high, because essentially all jobs are ’hoarded’. Once σ rises,

the allocation of labor to the risky sector falls with firing costs. Further, the effect of firing cost on risky

sector allocation becomes stronger (more negative) as σ increases.

Benchmark σ = 0.50 High σ = 0.75
k = 1.25 k = 3 k = 7 k = 1.25 k = 3 k = 7

xd -0.7289 -1.0098 -1.6879 -0.7806 -1.0475 -1.6930
λF (xd) 0.0079 0.0022 0.0000 0.0183 0.0097 0.0013

ŷ 1.0997 1.0709 1.0554 1.1817 1.1353 1.0708
S1 (0) 3.0123 2.9052 2.8705 3.3146 3.1254 2.9002
θ1 1.1666 1.0851 1.0594 1.4126 1.2559 1.0814
e1 0.4100 0.4127 0.4191 0.5860 0.4455 0.4175

w1 (0) 0.9790 0.9722 0.9701 0.9829 0.9616 0.9447
S0 0.8903 1.0341 1.0760 0.1830 0.7050 1.0403
θ0 0.4076 0.5500 0.5955 0.0172 0.2556 0.5565
e0 0.3161 0.3190 0.3146 0.1102 0.2761 0.3150
w0 0.9866 0.9845 0.9839 0.9973 0.9894 0.9844
u 0.0429 0.0373 0.0353 0.0728 0.0473 0.0366

e1/(e0 + e1) 0.5657 0.5651 0.5712 0.8417 0.6174 0.5700
π 1.0563 1.0400 1.0317 1.1529 1.0836 1.0403
Ω 0.9654 0.9620 0.9582 0.9875 0.9812 0.9638

Table 6: Model Simulation

The left panel of figure 5 illustrates the effects of changing k and σ on employment. If the firing costs

are low enough, employment in the risky sector increases with σ because more vacancies are opened in

the risky sector which implies that fewer unemployed workers are available for the safe sector. For higher

firing costs, σ needs to be higher before risky sector employment ’escapes’from full labor hoarding and

can benefit from the increased risk by truncating the bad draws. For a given level of riskiness, employment

in the risky sector decreases with k, although the effect is small with low levels of σ or high firing costs.

The reduced effect of firing costs on employment share with low σ occurs because the amount of firing

becomes very small as the firing threshold shifts to the left.

The right panel of figure 5 shows that the relative productivity decreases in k and increases in σ.

The relative productivity of the safe sector decreases with k because high exit costs shift the threshold of
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Figure 5: Simulation σ and k

firing to a lower level of productivity. Aggregate productivity decreases rapidly when k increases, both

because the relative productivity declines and because the share of resources allocated to the risky sector

declines. As the variance of the productivity shock increases, the risky sector becomes more attractive

so it grows while the safe sector shrinks. Further, because of the firing threshold, average productivity

of jobs in the risky sector increases in σ. The model can also explain that in countries with high firing

cost the risky sector does not increase in response to an increase in σ and consequently productivity also

remains almost constant. To the contrary in countries with low firing cost, the employment share of the

risky sector and aggregate productivity strongly increases in response to a new technology with a higher

σ as occured at the end of the nineties.

5.2 The effect of an increase in the cost of risky investments

What happens if the cost for risky activities increases? This is in particular relevant in the aftermath of

the credit crisis where in the terminology of Bernanke, Gertler, and Gilchrist (1996), a flight to quality
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Figure 6: An increase in the cost of creating risky jobs

took place.12 . Although our model has no financial sector, we can take a shortcut and model this by

an increase in the vacancy creation cost, c1, for the risky sector. This captures the idea that banks

become reluctant to lent to firms with a high probability to go bankrupt. Figure 6 shows that this can

have substantial effects on productivity because the risky sector becomes smaller. This is one potential

mechanism that can generate long term growth effects of the crisis.

5.3 Endogenous participation

So far we have assumed that labor force participation was exogenous. If we endogenize the participation

rate l according to (13), employment protection has more negative wealth effects because it decreases the

asset value of unemployment and consequently labor force participation.

12Lucas (2008) describes this as: "Everyone wants to get into government-issued and government-insured assets, for
reasons of both liquidity and safety". Caballero and Kurlat (2008) point out that while the US as a whole is regarded to be
save (and this still leads to net capital inflows), all other forms of funding dried up. Flight to quality is not specific for the
current crisis but has been reported to take place in many cyclical downturns. Reinhart and Rogoff (2008) give evidence
that the current crisis shows a lot of similarities with past crises around the entire world.
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6 Data and empirical results

In this section we explore the empirical relationship between EPL and the allocation of resources to risky

sectors. We assess whether risky industries have relatively higher levels of employment in countries with

low firing costs versus countries with high firing costs. Table 7 provides an overview of the data used

for this exercise. The EUKLEMS database (O’Mahony and Timmer 2009) provides measures of output,

hours worked, other factor inputs, prices, and industry purchasing power parities for EU countries and

for US, for disaggregated industries covering the whole economy from 1970 through 2004. We use the

share of hours worked in an industry relative to total hours worked in all industries in each country and

time period as the variable to be explained.13

The firing cost indicators are available from two sources. First, a country-time panel dataset collected

at the OECD (Nicolleti, et al. 2000), provides indicators of the stringency of employment protection

(EPL).14 The time dimension of this dataset may contain interpolations between actual component level

information collected from OECD member countries in specific years, and thus has less reliability than

the cross-country dimension. A complementary dataset of indicators of ‘Costs of doing business’(CDB),

including entry and exit costs has been compiled by the World Bank (see Djankov, La Porta, Lopez de

Silanes, and Schleifer 2002). Current indicators on, for example, hiring and firing costs, or time to start

a business, are available for many countries from 2004 to the present.

Finally, as a source of information on the riskiness of a sector, we make use of two datasets collected

using the method of ‘distributed micro data research’(Bartelsman, Haltiwanger and Scarpetta, 2009).

These datasets include moments computed from the underlying distributions in confidential firm-level

datasets available at national statistical offi ces, aggregated to the country, industry, and year level. First,

for the 1990s data has been collected for a selection of OECD countries, mostly for firms in manufacturing.

Next, a project, coordinated by the UK Offi ce of National Statistics (ONS 2008), and funded by Eurostat,

compiled information from linked longitudinal business registers, production surveys, and e-commerce

13We limit our study to industries in the Market Sector, defined similarly to that in the EUKLEMS dataset. The market
sector includes industries in manufacturing, trade, finance and business services, but excludes agriculture, government and
services. We also exlcude utilities and nuclear fuel production.
14The OECD index is based on 18 factors of employment protection of regular workers against individual dismissal,

specific requirements for collective dismissals and regulation of temporary employment.
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surveys for 13 EU countries for firms in all sectors of the economy for the years 2001 to 2005.

Source Periods Countries Industries Variables

E U K L EM S 1 9 7 0 -2 0 0 5 E U + U S 3 0 , m a rk e t s e c t o r O u tp u t , f a c t o r in p u t s , p r i c e s , P P P s

O E C D -E P L 1 9 8 5 - 2 0 0 5 * O E C D N o in fo E P L in d ic a t o r s

W B -C D B 2 0 0 4 -2 0 0 7 W o r ld N o in fo E n t r y / fir in g c o s t s , r i g id i t i e s

B H S 1 9 9 0 s O E C D , A s ia , L a t A m 1 6 , m a nu fa c t u r in g . M om en t s f r om firm su r v e y s

O N S /E u r o s t a t 2 0 0 1 - 2 0 0 5 1 3 E U c o u n t r i e s 3 0 , m a r k e t M om en t s f r om firm su rv e y s

Table 7: Data sources

In the available data, we have no direct measure of the variance of shocks faced by firms choosing the

‘risky’sector. Instead, we have the variance of the cross sectional distribution of productivity observed

across firms in each industry in the national datasets. As our model shows, for firms choosing risky

strategies the observed variance is truncated with respect to the underlying distribution of shocks, and

the point of truncation depends on firing costs. However, in the model the observed productivity variance

moves monotonically with the variance of the underlying shocks for any level of firing costs. For our

baseline empirical results we therefore use as the sectoral-riskiness indicator the observed variance of

labor productivity within an industry averaged across countries. For robustness, we also use other proxies

for industry riskiness from the ONS and BHS datasets.

To rank industries according to riskiness, the above indicators from the BHS or the ONS dataset are

averaged over time (and across countries where noted) and are turned into an ordinal index of industry-

specific ‘riskiness.’ This ordinal ranking is then normalized into a uniform index ranging from -0.5 for

the lowest risk to 0.5 for the highest risk sector.

The first results are presented for a regression equation of the following general form:

ec,i,t = α+ βCfc,t + γCfc,tR(σ)i + FE + εc,i,t (16)

where ec,i,t is the ratio of hours worked in industry i, country c and year t relative to total hours in that

country and year. The exogenous variable Cfc,t is the firing cost or exit cost indicator, and R (σ)i is

the rank of the industry risk, with a higher rank being more risky. The parameter γ measures the effect
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of the regulatory environment interacted with the indicator of industry risk on the share of employment

in the industry. Depending on specification, industry fixed effects FE (mean levels, including the level

effect of Ri or mean levels and trends) are swept out with appropriate dummy variables.15 This type of

specification has become widespread in evaluation of the impact of policy or environment on performance,

e.g. Rajan and Zingales (1998). Essentially, the equation uses difference-in-differences to identify how

changes in the policy, here Cfc,t, differentially impact different sectors, based on the expected sensitivity

of the sector to the policy change. To our knowledge, we are the first in this literature to explicitly model

the interaction between the ranking and the policy instead of relying on reasoned assumption about the

sensitivity.16

Table 8 presents the baseline results for the full sample of all countries with available data for the

period 1995-2005. In this and in all other Figures, t−statistics are in parenthesis, the risk indicator is

based on the variance of productivity in the entire sample, industry fixed effects and a time trend is

included.

The firing cost variable used is the OECD indicator for stringency of employment protection for regular

workers, and the riskiness indicator is based on the observed variance of labor productivity within an

industry in each of the countries in the ONS dataset. Column (1) shows results when fixed effects control

for industry means and fixed time effects, and column (2) shows the results with industry mean and

an industry specific time trend removed. The dependent variable is the share of hours worked for that

industry as a percentage of total hours for that country and year. The interpretation of the coeffi cient,

γ, is as follows: A movement of the EPL index by 1 point, (say from the German value of 2.7 to the

Belgium value of 1.7), will increase the share of employment in the riskiest industry (rank=.5) by 0.5

percentage point, while reducing the share of employment in the safest sector by the same amount.17

15Country fixed effects are insignificant and numerically very close to zero because the dependent variable is a share and
the level effect of Cf is included.
16Because the employment share variable is bounded between zero and one, we have replicated all our results with a logistic

transformation of the dependent variable. The qualitative results, equation fit, and p-level of all estimates are roughly
equivalent, but the parameter value is less easily interpreted. In all our specifications we correct for heteroskedasticity in
errors that likely occur in each industry cluster.
17The level effect of the exit costs, β, is not shown. Because of the specification of the dependent variable as a share,

and the inclusion of industry fixed effects, the coeffi cient captures small interactions between means of EPL and means of
shares over time and countries. The coeffi cient is always very insignificant and close to zero in magnitude.
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(1) (2)

γ −1.01
(12.75)

−1.01
(12.98)

R2 0.84 0.85
D.F. 5508 5494
Fixed effects industry mean industry mean and trend

Table 8: Regression results
t-statistic in parenthesis. Period: 1995-2005; Industry rank: productivity variance; ExitCost: EPLRegular. See

appendix for country and industry listing.

The next three tables provide some robustness checks concerning the country sample used, the time

periods, the indicators for industry riskiness, and the variables related to layoff and exit costs.

In Table 9, the time periods are varied, as are the country samples. Appendix Table 1 shows a

list of countries, and the specified sub-samples. Generally, samples vary by including or excluding non-

EU OECD members, or including/excluding transition economies. For ease of comparison, only the

parameter γ and the t-statistic are presented. Overall, the general pattern is consistent: higher firing

costs are associated with lower employment shares in high risk industries and higher shares in low risk

industries. The effect is never lower in the latter part of the sample period, consisent with the outcome

of the model simulation with rising risk. The effect varies a bit across country sample, and it seems that

inclusion of the transition economies weakens the effect.

sub-period
Sample 1995-2000 2000-2005 1995-2005

EU −.71
(5.04)

−.84
(5.49)

−.77
(7.15)

EUN −0.87
(6.72)

−.94
(6.89)

−0.91
(9.27)

EURO −.63
(3.32)

−.63
(7.15)

−.62
(4.62)

OECD −0.85
(7.85)

−0.94
(8.09)

−0.89
(10.81)

ALL −0.98
(9.52)

−1.04
(9.57)

−1.01
(12.98)

Table 9: Country/Period sub-samples
t-statistic in parenthesis. Industry rank: productivity variance; ExitCost: EPLRegular; Fixed Eff: industry

means & trends. See appendix for country listing.

Table 10 shows the result after splitting the sample in countries with high versus low firing costs,
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and industries into high risk and low risk sets. In the last column, we see the results for the full set of

industries, split by the level of layoff and exit costs and in the last row we see the results for all countries

split into columns by riskiness. For all of the permutations, the qualitative effect is the same. Looking

across each row, the differential impact of firing costs is higher in the high-risk industry sub-sample,

consistent with the outcome of the model simulation. In the model, firing costs become particularly

onerous when riskiness is high. Looking down the columns, the differential impact of firing costs is higher

with low firing costs, also consistent with the model. When firing costs already are high, there is less

scope for an effect of further increasing these costs because the amount of firing already is minimal.

Industry sub-sample
Country sub-sample Low risk High risk All

Low firing cost −2.67
(6.26)

−3.31
(7.84)

−1.65
(9.92)

High firing cost −1.35
(3.32)

−2.97
(6.52)

−1.07
(6.17)

All −1.03
(5.36)

−1.99
(9.91)

−1.01
(12.98)

Table 10: Country/Industry sub-samples
t-statistic in parenthesis. Period: 1995-2005; Industry Rank: productivity variance; ExitCost: EPLRegular;

Fixed Eff: industry means & trends. See appendix for country and industry listing.

Finally, Table 11 varies the indicators used for exit costs and for ranking of riskiness of industry. The

first alternate indicator of riskiness captures the adoption and intensity of the use of broadband internet

by firms in each industry, from the ONS dataset and is measured as the percentage of workers with access

to broadband internet (DSL pct). The next measure is the ratio of productivity of the top quartile of

firms to the mean in an industry, (P4/P). Because firing costs truncate from below, this indicator may

be less affected by firing costs than the overall variance of productivity18 . The last column shows our

base measure, the variance of productivity. All industry riskiness rankings are averaged across countries

in the ONS dataset. The exit cost indicators are described and the values for each country are given

in the Appendix. For each exit cost indicator, the effect is largest when the riskiness ranking is based

18We also use riskiness indicators drawn from firm-level distributions in the UK which has the lowest level of exit costs in
the EU. The US has even lower firing costs than the UK, but the US productivity variance is only available for manufacturing
industries. We test all our results for all industries with the UK-based riskiness indicator or for manufacturing sectors only,
with US or EU-based riskiness indicators, with very similar results as presented in our main tables.

30



upon broadband penetration, slightly lower for the width of the top of the productivity distribution and

smallest for the overall variance measure of industry riskiness.

Riskiness indicator
Exit Cost DSLpct P4/P Variance

Exitloss% −5.08
(13.49)

−4.04
(10.66)

−3.52
(9.24)

Exitcost% −24.70
(17.01)

−19.38
(13.17)

−15.42
(10.40)

Firerule −0.68
(7.40)

−0.52
(5.64)

−0.45
(4.92)

Firecost −4.66
(15.26)

−4.18
(13.61)

−3.10
(9.99)

EPLoverall −1.04
(13.08)

−0.80
(9.86)

−0.64
(7.91)

EPLregular −1.21
(15.65)

−1.04
(13.46)

−1.01
(12.98)

Table 11: Alternate exit cost and riskiness indicators
t-statistic in parenthesis. Period: 1995-2005; Fixed Eff: industry means & trends. See appendix for indicator

definitions and country and industry listing.

The first four exit cost indicators are sourced from the World Bank Cost of Doing Business Database

and the last two from the OECD. The first two exit cost indicators are not directly associated with costs

of shedding workers, but relate to the percentage of annual revenue that is spent on exit (Exitcost%), and

the percentage of capital investment that may be reclaimed upon exit (Exitloss%). The other indicators

are related to costs of employment protection (an indicator of diffi culty of firing, Firerule, and an indicator

of cost, Firecost%). Table 3 in the Appendix shows the values of these indicators for each country in our

sample in 2004.

As an additional robustness check, we randomly select 1200 industry rankings from all possible ordinal

rankings of our 26 industries and run our baselines regression to estimate the parameter γ for each

ranking. The regressions are based on ’all countries’, for the period 1995-2000, use EPL Regular as exit

cost indicator, and include industry fixed effects and industry time trends. Figure 7 shows the point

estimates for γ with confidence bounds. All the estimates of γ reported in this paper, as well as the

estimates of γ for all the permuations of firing costs, rankings, and samples we have explored, fall well

within the 5 percent largest negative estimates. Our preferred estimate with the productivity variance as

industry and EPL Regular as firing cost lies among the 1 percent largest (absolute) effects of firing costs.
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Figure 7: Estimates of γ with random R(σ)

Finally, we address the issue whether entry costs rather than firing costs are causing the small em-

ployment share of risky sectors. Our first thoughts are that firms in both the safe and risky sector must

pay the entry fee, so that the first order effect of higher entry costs would not discriminate between them.

However, given the shorter expected life of a job in high risk sectors, more entry fees must be made to

maintain employment there compared to the safe sector, reducing its size in equilibrium. In terms of the

search model, fewer vacancies are needed to maintain the necessary flows into the safe sector, so that

its relative size may increase with increase in entry costs. In a simulation of the model, high entry fees

(keeping the ratio of c0/c1 constant) decrease the relative size of the risky sector. However, if firing costs

are increased from the calibrated value, the effect of higher entry fees on relative size is much smaller.

Our empirical findings likewise are mixed, but always retain the negative effect of firing costs. When

we run our basic specification of employment share in an industry regressed on the entry fee indicator, and

the indicator interacted with the industry riskiness ranking, we mostly find significantly negative effects

on the interacted term, similar to the result for the employment protection index. When we included both

entry and exit costs, table 12 shows that the coeffi cient on interacted employment protection variable

remains significant when the entry costs variables are included, but that the size of the coeffi cient is
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reduced. For some of the entry cost indicators, the interacted effect is significantly negative, but for

others it is insignficant or even positive.

Entry Cost Indicator γentry γexit
Starting a Business - # of procedures −.04

(4.03)
−.52
(3.65)

Starting a Business - time (days) −.03
(5.17)

−.58
(5.17)

Starting a Business - cost (pct of capital) −.01
(1.21)

−.95
(11.14)

Diffi culty of hiring (index) −.00
(.44)

−.97
(9.74)

Barriers to entrepreneurship −.11
(1.48)

−.81
(5.38)

Barriers to entrp. license and permits .05
(3.12)

−1.03
(13.09)

none. (only exit cost: EPLRegular) −1.01
(12.98)

Table 12: Labor share regressed on exit and entry costs
t-statistic in parenthesis. Period: 1995-2005; Industry rank: productivity variance; Exit Cost: EPLRegular;

Fixed Eff: industry means & trends.

7 Final remarks

In this paper we argue that the extent to which a country can benefit from the advantages of risky

technologies depends on the institutional arrangements on firing and bankruptcy. The more employment

protection there is, the more costly it is to exercise the job destruction or firm exit option. This mechanism

can explain why the US was better able to explore the benefits of the new information technology starting

in the mid 1990s. We construct a matching model with endogenous technology choice (risky or safe) and

find that if we calibrate the model to the US that firing cost are in the order of about one month of

production. If we increase this level to European levels (7 months of production), this reduces aggregate

productivity by about 10 percent, partly through a direct reduction of average productivity in the risky

sector, and partly through a significant reduction of activity (employment) in the risky sector.

One of our simplifying assumptions was that workers are risk neutral. A natural question to ask

is wheter EPL is more desirable if workers are risk averse? This is not obvious since EPL makes the

unemployment state less attractive because it increases unemployment duration and risk averse workers
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prefer the differences between the good and bad state to be small. In other words, it puts the burden of

unemployment on a smaler group. In richer models where optimal UI benefits and EPL are determined

jointly, optimal EPL may well be positive.

In future work we want to further explore the role of risky technologies on long term productivity and

growth. Simple simulations show that if the price of financing risky projects increases and it becomes

more costly to open risky vacancies, this can have substantial effects on productivity.
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Appendix

A Proofs

A.1 Characterization

In this Appendix, we give an analytical characterization of the equilibrium.

Proposition 1 The job destruction margin is implicitly defined by

y + xd = b+
β

(1− β)
(θ0c0 + θ1c1)−

λ

r + λ+ δ

∫ xu

xd

[1− F (z)] dz − (r + δ) k, (17)

the job creation condition in the risky sector is given by

m1

θ1
=

c1
J1(0)

=
c1

(1− β)S1(0)
=

(r + λ+ δ) c1
−(1− β) (xd + (r + λ+ δ) k)

(18)

and job creation in the safe sector follows from from (20) and (25):

m0

θ0
=

c0 (r + λ+ δ) (r + δ + βm0)

(1− β) (r + λ+ δ) (y − b) + β (1− β)m1 (xd + (r + λ+ δ) k)
. (19)

Proof.

First substitute (8), (12) and (14) in the surplus equation (4):

(r + δ)S0 = y − b−m0 [E0 − U ]−m1 [E1(0)− U ]

Using(6) and (7) yields

(r + δ + βm0)S0 = y − b− βm1S1(0) (20)

Next, we turn to sector 1 and derive an expression for S1

Substitute (9), (12) and (15) in the surplus equation for sector 1 given by (5)

rS1(x) = y + x− w1(x)− δJ1 + λ (1− β)

∫ xu

xd

[S1(z)− S1(x)] dF (z) + w1(x)− δ [E1 − U ]

+λβ

∫ xu

xd

[S1(z)− S1(x)] dF (z)− rU − λF (xd) (S1(x) + k)
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Simplifying yields:

(r + λ+ δ)S1(x) = y + x+ λ

∫ xu

xd

S1(z)dF (z)− rU − λF (xd)k (21)

Use E0 − U = βS0, E1 − U = βS1 (0) and U = βS1 (xd) = −βk to rewrite (12) as

rU = b+m0 [βS0] +m1 [βS1 (0)]

Plug this in (21)

(r + λ+ δ)S1(x) = y − b+ x+ λ

∫ xu

xd

S1(z)dF (z)− β (m0S0 +m1S1(0))− λF (xd)k (22)

Integrating by parts gives

∫ xu

xd

S1(z)dF (z) = S1(xu)− S1(xd)F (xd)−
∫ xu

xd

S′1(z)F (z)dz

Using S1(xd) = −k from (11) and adding and subtracting S1(xd) yields,

∫ xu

xd

S1(z)dF (z) =

∫ xu

xd

S′1(z) [1− F (z)] dz − (1− F (xd)k) ,

plugging this back in (21) gives

(r + λ+ δ)S1(x) = y − b+ x+ λ

∫ xu

xd

S′1(z) [1− F (z)] dz − λ (1− F (xd)k)

−β (m0S0 +m1S1(0))− λF (xd)k

(r + λ+ δ)S1(x) = y − b+ x+ λ

∫ xu

xd

S′1(z) [1− F (z)] dz − β (m0S0 +m1S1(0))− λk (23)

Taking the derivative of S(x) in (21) with respect to x gives S′1(x) = σ
r+λ+δ and substituting this

expression into (23) yields:

(r + λ+ δ)S1(x) = y − b+ x+
λ

r + λ+ δ

∫ xu

xd

[1− F (z)] dz − β (m0S0 +m1S1(0))− λk (24)
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Next, return to the free entry conditions. Equation (2) implies:

J0 =
θ0
m0

c0,

use

J0/ (1− β) =
c0θ0

(1− β)m0
= S0 (25)

Evaluate (24) in x = xd and substitute (11) and (25) in :

− (r + δ) k = y − b+ xd +
λ

r + λ+ δ

∫ xu

xd

[1− F (z)] dz − β

(1− β)
(θ0c0 + θ1c1)

Some rearrangement gives the job destruction equation for sector 1:

y + xd = b+
β

(1− β)
(θ0c0 + θ1c1)−

λ

r + λ+ δ

∫ xu

xd

[1− F (z)] dz − (r + δ) k

In order to derive the Job creation curve in sector 1, use (23) to get:

(S1(x)− (S1(xd)) =
(x− xd)

(r + λ+ δ)

This implies that

S1(0) =
−xd

(r + λ+ δ)
+ S1(xd) =

−xd
(r + λ+ δ)

− k

where xd < 0.

We can now derive the job creation condition for sector 1 from (3):

m1

θ1
=

c1
J1(0)

=
c1

(1− β)S1(0)
=

(r + λ+ δ) c1
−(1− β) (σxd + (r + λ+ δ) k)

The job creation condition for sector 0 follows from From (20), (25):

m0

θ0
=

c0 (r + λ+ δ) (r + δ + βm0)

(1− β) (r + λ+ δ) (y − b) + β (1− β)m1 (xd + (r + λ+ δ) k)

�
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Equation (17) states that the lowest acceptable level of output for a firm is equal to the opportunity

cost of employment for the worker (i.e. the participation constraint) which is equal to the value of home

production, b, plus the value of search. In order for the worker to be willing to continue working, the

firm must compensate this worker for the foregone value of search. θici are vacancy creation cost per

unemployed worker in sector i, the higher this is, the higher the wage and the expected value of search

will be, see Pissarides (2000)). Wages and the value of search are also increasing in β. The third term

on the rhs of (17) is the option value of keeping the job open which is increasing in λ, the larger this

option value, the lower the minimum acceptable level of output is. Finally, the higher the exit cost is, the

lower the acceptable level of output will be. Besides the exit cost, what is new relative to Mortensen and

Pissarides (1994) is that if θ0 goes up xd will go up and job destruction in sector 1 as well. As we will

see, exit cost will increase θ0/θ1. Equations (18) and (19) tell us that labor market tightness in a sector

is decreasing in worker’s bargaining power and increasing in the expected match surplus in that sector.

To close the model, we use the steady state flow equations that give the Beveridge curve which allows

us to calculate the equilibrium unemployment and vacancy rates. In each sector, in- and outflow must

be equal.

m0u = δe0 (26)

m1u = (δ + λF (xd)) (l − u− n− e0) . (27)

Finally, the size of the labor force is given by

l = H(rU) = H

(
b+

β

(1− β)
(θ0c0 + θ1c1)

)
.

where we eliminated rU in a similar way as in (17).

B Appendix Tables
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Country overall EPL reg. EPL Firing Rules Firing Cost Exit Cost Exit Loss

AUS 1.19 1.50
AUT 1.93 2.37 2.0 0.02 0.18 0.27
BEL 2.18 1.73 0.5 0.16 0.04 0.14
CZE 1.90 3.31 1.5 0.22 0.18 0.85
DNK 1.42 1.47 0.5 0.00 0.04 0.37
ESP 3.05 2.61 1.5 0.56 0.15 0.23
FIN 2.02 2.17 2.0 0.26 0.04 0.12
FRA 3.05 2.47 2.0 0.32 0.09 0.54
GER 2.35 2.68 2.0 0.69 0.01 0.44
GRC 2.83 2.41 2.0 0.24 0.09 0.57
IRL 1.11 1.60 1.0 0.13 0.09 0.12
JPN 1.84 2.44
HUN 1.52 1.92
ITA 1.95 1.77 2.0 0.02 0.18 0.57
NLD 2.12 3.05 3.5 0.17 0.04 0.13
POL 1.74 2.23
PRT 3.67 4.33 2.5 0.95 0.09 0.27
SVK 1.92 3.47
SWE 2.24 2.86 2.0 0.26 0.09 0.19
UK 0.75 1.12 0.5 0.22 0.06 0.14
USA 0.21 0.17 0.0 0.00 0.07 0.20

Table 13: Exit Cost Indicators

(X excludes countries from sample)
ALL EUN EU EURO OECD

AUS X X X
AUT
BEL
CZE X X
DNK X
ESP
FIN
FRA
GER
GRC
HUN X X
IRL
ITA
JPN X X X
NLD
POL X X
PRT
SVK X X
SWE
UK X
USA X X X

Table 14: Country samples used in empirical exercise
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Mnemonic Description

Food, Bevarages and Tobacco
Clothing
Wood, Wood Products, Cork
Pulp, paper, publishing
Coke, refined petroleum and nuclear fuel
Chemicals
Rubber and plastics
Other Non-metallic minerals
Metals and Machinery
Machinery n.e.c.
Equipment
Motor Vehicles and Transport Equipment
Misc Manufacturing
Electricity, Gas and Water Supply
Construction
Sale, maintenance and repair of motor vehicles
Wholesale trade and commission trade, ex of motor vehicles
Retail trade, except of motor vehicles and motorcycles
Hotels and Restaurants
Transport
Post and Telecommunications
Banking
Business Services
Personal Services

Table 15: Industries included in empirical exercise
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