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Abstract

This paper describes an approach for selecting instances in regression
problems in the cases where observations x are readily available, but ob-
taining labels y is hard. Given a database of observations, an algorithm
inspired by statistical design of experiments and kernel methods is pre-
sented that selects a set of k instances to be chosen in order to maximize
the prediction performance of a support vector machine. It is shown that
the algorithm significantly outperforms related approaches on a number
of real-world datasets.

1 Introduction

A typical application of regression estimation is to predict some aspect y of real-
world entities that is hard to measure by other, more readily available features
x. A good example can be found in the description of the abalone data set [1]
from the UCI Machine Learning Repository [2]:

The age of abalone is determined by cutting the shell through the
cone, staining it, and counting the number of rings through a mi-
croscope – a boring and time-consuming task. Other measurements,
which are easier to obtain, are used to predict the age.

In some cases, measuring the value of the attribute of interest y may be
so hard that it even becomes a problem to obtain enough measurements to
learn the prediction function. Suppose it is known in advance that for a data
set of n observations xi only k measurements of the corresponding y can be
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obtained, where k << n. The question is which xi1 , . . . , xik
to choose in or-

der to learn the most accurate regression function from the completed sample
(xi1 , yi1), . . . , (xik

, yik
).

This problem setting is relevant in several real-world problems. For example,
in medical diagnosis measuring the attribute of interest may require a risky
medical procedure and hence should be strictly limited to the cases where it is
absolutely necessary, while other measurements x may be routinely measured
for a large set of patients. When user interaction is required to measure y one
often finds that people quickly get bored when they have to answer too many
questions without getting an immediate return.

In this paper, kernelized design of experiments is used to select the most
informative instances for support vector regression with a given kernel K. The
paper is structured as follows: the following section introduces the very basics
of support vector machines (SVMs) and kernel PCA (kPCA), as far as they are
relevant for this paper. Section 3 introduces the statistical problem of design
of experiments (DoE) and the idea of experimental design on observational
data. Section 4 contains the new contribution of this paper, kernelized design
of experiments, which is empirically evaluated in Section 5. Section 6 discusses
related work and 7 concludes.

2 Learning with Kernels

Kernel methods are a very popular and successful area of machine learning.
Their common basis is the so-called kernel trick, which can be applied to any
linear algorithm which depends on the data only in terms of the inner product
of two examples. In this paper we make use of two kernel methods, Support
Vector Regression (SVR) and Kernel PCA (kPCA), in order to apply the kernel
trick to Design of Experiments.

2.1 Support Vector Regression

Given examples (xi, yi) Support Vector Regression ([3]) finds a regression func-
tion f : X → Y by solving the following optimization problem:

||w||2 + C
n∑

i=1

(ξi + ξ′i) → min

subject to
∀n

i=1f(xi) ≥ yi − ε − ξi ∀n
i=1f(xi) ≤ yi + ε + ξ′i

∀n
i=1ξi ≥ 0 ∀n

i=1ξ
′
i ≥ 0

The regression function f for a kernel K has the form

f(x) = w ∗ Φ(x) + b =
∑

i

αiK(xi, x) + b.
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2.2 Kernel PCA

Kernel PCA [4] is an extension of the regular (linear) principal component anal-
ysis (PCA). The idea of PCA is shown in Figure 1: Given a set of data, the
vector along which the data shows the most variance is the first principal com-
ponent. Given the first i principal components, the i+1-st principal component
is the vector orthogonal to the first i principal components along which the data
shows the most variance. It follows that the best reconstruction of the data in
an i-dimensional subspace is given by the first i principal components.

1st p.c.

2nd p.c.

Figure 1: Linear principal component analysis

PCA hence can be kernelized [4]. It can be shown that performing PCA in
feature space is equivalent to finding the solutions �α(1), �α(2), . . . of

nλ�α = K�α

where K is the kernel matrix. To normalize the eigenvectors in feature space
one sets ‖|�α(k)||2 = 1/λk. Principal component extraction for an observation x
is computed by projecting x on the eigenvectors Vk, i. e. computing

VkΦ(x) =
n∑

i=1

�α
(k)
i Φ(xi)Φ(x) =

n∑
i=1

�α
(k)
i K(xi, x). (1)

For non-centered data, i. e.
∑n

i=1 Φ(xi) �= 0, the Φ(x) are replaced by their
centered counterparts

Φ̃(x) = Φ(x) − 1
n

n∑
i=1

Φ(xi).

The kPCA solution can then be computed using the kernel matrix K̃ corre-
sponding to Φ̃ [5]. Kernel PCA can be used to extract features from data in
order to show up the structure defined by the kernel.

3 Design of Experiments

Given a process which can be described by d features x(j) and a feature of inter-
est y, experimental design describes the task of finding a set of k observations
xi ∈ Rd that are maximally informative about the dependency X → Y (it is
customary to choose k = d+1). The matrix X = (x1, . . . , xk)T ∈ Rk×d is called
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an experimental plan. Experimental design is particularly useful when very few
information about the true model f : X → Y is known and gathering examples
(xi, yi) is hard.

In order to extract meaningful information from a small set of observations,
some assumptions are needed. In order to asses the effect of each feature inde-
pendently of the others, it is necessary that the plan is orthogonal:

Definition: A plan X is defined to be orthogonal, iff the matrix S = XT X is
of diagonal form, i.e. for each two columns of the plan X·i · X·j = 0 iff i �= j.

It is not always possible to find an orthogonal plan. For example, for binary
features it can be shown that such a plan only exists for values of n which are
multiples of 4 (Hadamard plans). In this case one has to resort to nearly orthog-
onal plans, that is plans that maximize some criterion measuring orthogonality.
Several criteria based on the non-diagonal entries Sij of S exist, such as:

Ave(S2) :=
∑
i<j

S2
ij/

(m

2

)

Ave|S| :=
∑
i<j

|Sij |/
(m

2

)

Smax := max
i<j

|Sij |
S# := #{i, j|i < j, Sij = Smax}

see [6, 7, 8, 9, 10, 11]. For plans on finite input spaces X, also other criteria
which are based on the frequency of value pairs occurring in each two columns
of the plan can be used [11],

For the special case of an assumed linear dependency y = Xw + b, [12]
have used the criterion of D-optimality, which says to select the plan X which
maximizes the D-value D(X):

Definition: For a plan X, the D-value D(X) is defined as

D(X) := det(X̂T X̂) (2)

where X̂ is defined by

X̂ = (X·1/||X·1||, . . . , X·d/||X·d||). (3)

It has been shown [12, 13] that a D-optimal plan is the one that minimizes
the uncertainty about the factor values w by minimizing the volume of the
confidence ellipsoid for a fixed confidence level around w with respect to all
comparable designs. As an interpretation of the D-value, note that basic linear
algebra says that D(X) is the volume of the parallelepiped that is spanned by
the column vectors of X̂. As these vectors are normalized observations, this
volume is maximized when all vectors are orthogonal to each other.
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3.1 Experimental Design in Observational Data

Experimental design assumes that one is free to choose the observations xi

for which the values yi should be measured. However, there exists situations
like the one investigated in this paper, where only a fixed set x1, . . . , xn of
observations are available to choose from. For example, when the observations
are patients in a medical study, one cannot simply construct new patients that
fit the requirements. The problem of selecting k observations from a set of
n >> k observations, such that the k observations form an optimal plan, is
called experimental design in observational data and has been introduced in
[14, 15].

−2 −1 0 1 2

−
1

0
1

2

x1

x2

Figure 2: Data set (smaller dots) and optimal plan (larger dots)

For special cases, such as all binary features, efficient algorithms exists that
can find subsets of the observations which form orthogonal plans. In the general
case of non-binary data and nearly orthogonal plans, no such algorithm is known
and hence in this paper we use a heuristic search by a genetic algorithm. Each
gene represents a plan and is given by a set of k observation indices in 1, . . . , n.
We use a standard GA with roulette selection, a pool of 1000 genes, mutation
probability 0.1 and crossover probability 0.2 and 1000 iterations. As this paper
is not concerned with the efficiency of the approach, these parameters have been
chosen in an ad-hoc fashion, and it might be easily possible to find better ones,
or a better optimization approach altogether.

4 Kernelized DoE

D-optimality is based on the concept of orthogonality. Obviously, if we have an
orthonormal basis O = o1, . . . , od of the input space, i.e. oi · oj = δij , the inner
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product and hence the orthogonality remains equal if we represent all vectors x
in terms of their coefficients of the basis O, that is if we use

x′ = (o1 · x, . . . , od · x).

This gives rise to a kernelization of D-optimal plans. If we choose an or-
thonormal basis of the feature space and project all observations onto this basis,
we can search for D-optimal plans in feature space. Such a basis, or at least a
basis of the subspace of feature space spanned by the observations (x1, . . . , xn)
via the implicit mapping Φ, can be found by kPCA. Thus, we can perform the
search for D-optimal plans in feature space by using the projections of the ob-
servations to the first k − 1 principal components found by kernel PCA, letting
the number of observations be the dimension + 1. Note that the criterion of
D-optimality is based on the assumption of a linear model, which for SVMs only
holds in feature space, such that observation selection necessarily needs to be
done in feature space. This gives rise to the following algorithm:

1. Input: set of observations x1, . . . , xn, a kernel K and a desired number of
instances k

2. Execute kPCA with kernel K on the x1, . . . , xn

3. Select the k−1 eigenvectors V1, . . . , Vk−1 with largest eigenvalue and com-
pute the projection of all xi onto these eigenvectors using Equation 1. This
gives the set of transformed observations x′

1, . . . , x
′
n ∈ Rk−1

4. Search for an optimal plan on the transformed observations using the
genetic algorithm described in Section 3.1

5. Return the k observations that form the optimal plan

Step 3 is necessary because the feature space dimension can be infinite or at
least as large as the number of observations. Thus, dimensionality is reduced
by kPCA to the k − 1 most informative dimensions in the space spanned up by
the given kernel K.

5 Experiments

The work presented in this paper has been evaluated on 4 regression data
sets from the UCI Machine Learning Repository [2]. We selected data sets
with a high number of examples and limited dimensionality. Data sets were
pre-processed by dichotomizing nominal attributes and z-scaling numerical at-
tributes. Table 1 gives the statistics of the data sets used in our experiments.
For the sake of runtime efficiency, data sets with more than 1000 examples were
down-sampled to a size of 1000.

Four different kernel functions were used in the experiments, the linear ker-
nel, the polynomial kernel with degree 2 and radial basis kernels with width
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Table 1: Data Sets

Name #Examples Dimension
abalone 4177 9
bank8fm 8192 9
cal housing 20640 9
stock 950 10

γ = 0.1, 0.01. These kernels cover the most widely used kernel functions in the
literature; kernel parameters were chosen by prior knowledge.

The proposed method (called kDoE in the following) has been compared to
two other methods for instance selection:

Rand: random sampling has been used as the baseline method

kPCA: in order to evaluate whether the kernel PCA was solely responsible for
the performance of the new method, kernel PCA has been applied and for
each of the first k principal components, the observations with maximal
absolute projection onto this component has been selected.

To estimate the quality of the selected instances, an SVM has been trained on
these instances, using 10-fold cross-validation on the selected examples to tune
the parameter C. The error of this SVM has been compared to the error of
the SVM using the same kernel on all instances in order to account for different
levels of noise in the data sets. That is, we based our comparison on the relative
error

Errrel =
Err

ErrfullSV M

All reported results have been obtained using 10-fold cross-validation.
Results can be seen in Table 2. It is obvious that the new kDoE approach

outperforms the other approaches. Figure 3 shows an exemplary learning curve
for the three approaches on the Abalone data set with dot kernel. It can be seen
that kDoE lower-bounds the other approaches in most of the cases. For larger
k, the learning curves converge.

5.1 Statistical Significance

As the relative errors over the different methods in Table 2 are very close, the
question of statistical significance arises. To compare the three methods over all
data sets, we used both a Binomial test comparing the wins and losses of kDoE
relative to the other methods (with respect to the 10-fold cross-validated error)
and the Wilcoxon Signed Rank Test on the relative errors. Both tests have been
suggested in [16] for the comparison of learners over multiple data sets. The
difference between both is that the Wilcoxon test assumes a commensurability
of the values (which, due to the normalization by using the relative error may be
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Table 2: Relative errors and standard deviation

Data set Kernel kDoE kPCA Rand
abalone dot 2.382 (0.433) 2.528 (0.538) 2.863 (1.537)

radial(0.001) 2.107 (0.234) 2.322 (0.461) 2.265 (0.385)
radial(0.01) 2.270 (0.401) 2.717 (0.453) 2.156 (0.330)
polynomial(2) 2.439 (0.227) 2.359 (0.253) 2.257 (0.159)

bank8fm dot 0.084 (0.027) 0.183 (0.100) 0.086 (0.042)
radial(0.001) 0.057 (0.018) 0.191 (0.108) 0.065 (0.022)
radial(0.01) 0.061 (0.038) 0.143 (0.027) 0.067 (0.018)
polynomial(2) 0.108 (0.023) 0.261 (0.119) 0.119 (0.015)

cal housing dot 0.435 (0.093) 0.469 (0.088) 0.514 (0.187)
radial(0.001) 0.475 (0.073) 0.404 (0.031) 0.536 (0.191)
radial(0.01) 0.427 (0.069) 0.612 (0.034) 0.431 (0.082)
polynomial(2) 0.489 (0.039) 0.559 (0.099) 0.548 (0.105)

stock dot 2.752 (0.167) 9.337 (0.878) 4.141 (2.288)
radial(0.001) 3.190 (0.659) 7.903 (1.592) 3.615 (1.198)
radial(0.01) 2.537 (0.361) 3.821 (1.305) 3.122 (0.453)
polynomial(2) 3.276 (0.339) 3.949 (0.591) 4.106 (0.687)

Table 3: Statistical Comparison of kDoE vs. kPCA

Kernel Wins Losses p-Binom p-Wilcox
dot 4 0 0.0625 0.0625
radial(0.001) 3 1 0.3125 0.125
radial(0.01) 4 0 0.0625 0.0625
polynomial(2) 3 1 0.3125 0.1875
all 14 2 0.0021 0.0003

assumed to hold), while the Binomial test does not depend on this assumption.
We will see that in the experiments both tests agree in their decision about
significance.

As can be seen in Table 3 for the comparison of kDoE versus kPCA and
in Table 3 for the comparison of kDoE versus Rand, both statistical tests con-
firm the superior performance of kDoE. It can be seen that is has a somewhat
less significant performance for the polynomial kernel, and a particularly good
performance for the linear kernel.

6 Related Work

The general problem of instance selection describes the problem of selecting a
small set of highly informative instances from a larger set of examples [17]. In-
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Figure 3: Learning curve for the dot kernel on the Abalone data set (points =
kDoE, triangles = kPCA, squares = Rand).

Table 4: Statistical Comparison of kDoE vs. Rand

Kernel Wins Losses p-Binom p-Wilcox
dot 4 0 0.0625 0.0625
radial(0.001) 4 0 0.0625 0.0625
radial(0.01) 3 1 0.3125 0.3125
polynomial(2) 3 1 0.3125 0.3125
all 14 2 0.0021 0.0055

formative examples can be divided into prototypes and discriminating instances.
Prototypes are examples which are similar to a large number of examples and
can hence be taken as a typical representative of this set of examples. Dis-
criminating instances are examples which are representative of the distinction
between different classes of examples.

A conceptual problem of instance selection in a classification setting is a
missing general measure of instance importance. Several ad-hoc solutions to in-
stance selection in the context of specific learners exist. For example, k-medoids
clustering can be seen as the explicit search for prototypes that represent the
structure of the data.

An approach to instance selection based on data squashing is presented by
[18]: Assuming the optimal model for the data (xi, yi) is represented by a pa-
rameter θ ∈ Rd, the idea is to inspect a set of similar models θj = θ + δj and
inspect the conditional probabilities pij = Pθj

(yi|xi) that these models assign
to the examples. The number of different models tested and the size of the de-
viations δj are given as a parameter to the method. In contrast to the method
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described in this paper, the use of the conditional probabilities assumes the
labels to be known.

Active learning [19] is another approach to deal with the problem of high cost
of assigning labels to observations. In active learning, a measure of certainty of
the learner regarding the label of an example is computed, which is then used
to query the label of the most uncertain unlabeled observation. The problem is
that in order to estimate a meaningful measure of certainty, a reasonably large
set of examples must already be available.

Other approaches which make use of unlabeled examples are known under
the name of semi-supervised learning [20]. As in active learning, a reasonably
large set of examples must already be available in order to use semi-supervised
approaches, which suggest the possibility of combining them with kDoE. In-
stance selection was also recently investigated under the problem of sensor place-
ment [21], however in this approach information about the labels y is assumed
to be known to estimate variances.

In conclusion it can be said that the problem of Design of Experiments is
the most complex of these tasks, as (1) the only knowledge about the labels y
it assumes is the kernel function k, but not any label itself, and (2) it requires
to select all k observations simultaneously, ruling out the possibility to take
information from previously selected examples into account.

In situations where more information is available, it is obvious to assume
that other approaches may outperform kDoE. An optimal combination may be
to use kDoE to bootstrap other learning schemes on a non-labeled data set, such
that kDoE selects an initial set of examples.

7 Conclusions and Future Work

In this paper, an approach for instance selection in observational data was pre-
sented. The selected instances can be used to maximize the predictive perfor-
mance of a support vector machine learner over training sets of size k when
obtaining labels y is hard. It has been shown empirically that the proposed
approach significantly outperforms competing algorithms.

Future work may explore the relationship of kDoE with other learning al-
gorithms, such as active learning. It may also be interesting to explore the
performance of kDoE on very high dimensional data sets, such as text corpora.
Another interesting direction of research includes the investigation of efficient,
deterministic algorithms for observation selection based on D-optimality.

Acknowledgement: The financial support of the Deutsche Forschungsge-
meinschaft (SFB 475, ”Reduction of complexity in multivariate data struc-
tures”) is gratefully acknowledged.
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