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1 Introduction
Instrumental variables (IV) estimation is a major workhorse in applied economics
and is gaining ground in other sciences as well. In some applications, the instru-
ment is only observed for some sub-sample and missing for the remaining sam-
ple, and there are reasons to suspect that the instrument is not missing at random.
To fix ideas, consider estimating the return to schooling using receipt of a college
tuition subsidy as an instrument for schooling. Suppose the tuition subsidy is allo-
cated randomly among all individuals who apply, conditional on some observable
characteristics. However, given some cost of applying for the subsidy, only a sub-
sample of potential college students apply. In this case, the instrument (receipt of
tuition subsidy) satisfies the standard IV assumption of conditional independence
within the sub-sample of applicants, since it is randomly allocated conditional on
observed characteristics. But the instrument is missing or undefined for the sub-
sample of individuals who did not apply. The instrument is missing non-randomly
if applicants for tuition subsidy have a different level of unobservables affecting
earnings, such as innate ability, compared to non-applicants. More generally, in-
struments available only for choice-based sub-samples have this type of missing
instrument structure.

This paper examines IV estimation with partially missing instruments. Our
contributions are to characterize the sources to inconsistency in standard IV esti-
mators when the instruments are missing non-randomly, and propose alternative
IV estimators that are robust to non-randomly missing instruments.2 Commonly,
researchers simply limit the analysis to the sub-sample where the instrument is
non-missing. We show that when the instrument is non-randomly missing, stan-
dard IV estimators applied to the sub-sample where the instrument is non-missing
require strong, auxiliary assumptions to yield consistent estimates. We also show
that this is true for the pooled IV approach proposed by Angrist et al. (2009). They
construct an instrument for the full sample from a linear projection of the partially
observed instrument on the covariates in the sub-sample where the instrument is
non-missing. That auxiliary assumptions are required even under otherwise ideal
conditions for IV estimation – strong instruments and homogeneous treatment ef-
fects – makes partially missing instruments particularly worrisome.

In this paper, we make clear the auxiliary assumptions required for IV estima-

2Our focus is on missing instruments; not missing outcomes, nor missing covariates – on which
there is a large literature in statistics and econometrics (see e.g. Little and Rubin, 2002). In
addition, we are not discussing situations where the model is under-identified, i.e. insufficient
instruments to identify parameters of interest.



IV with Missing Instruments 2

tors to yield consistent estimates when the instrument is non-randomly missing.
There are two main auxiliary assumptions, either of which is sufficient for consis-
tent estimation: (i) the regression error is mean-independent of the covariates in
the sub-sample where the instrument is non-missing, or (ii) the conditional expec-
tation of the instrument is linear in the covariates.

As discussed in detail below, in many (quasi)natural experiments, neither of
these auxiliary assumptions are likely to hold. The standard assumption of the re-
gression error being mean-independent of the covariates in the full-sample, does
not imply that auxiliary assumption (i) holds. In fact, not even full-independence
in the full-sample implies mean-independence in the sub-sample. On the contrary,
in the general case where selection into the sub-sample with non-missing instru-
ments depends on unobservables, such as if high ability students are more likely
to apply for aid, auxiliary assumption (i) is violated.

In addition, auxiliary assumption (ii) is too strong in many IV applications,
where the relationship between the instrument and the covariates is unlikely to
be linear. A leading example is with a binary instrument (e.g. receipt of a tu-
ition subsidy), where the relationship is generally non-linear. It is important to
emphasize that for the issue of partially missing instruments, the relationship of
primary interest is that between the instrument and the included covariates; not
the relationship between the endogenous regressor and the instrument, nor the
relationship between the outcome of interest and the endogenous regressor. As
is well known, consistency of IV estimators does not require the correct speci-
fication of the relationship between the dependent variable and the endogenous
regressor in the first stage (Kelejian 1971). Furthermore, using a linear model to
describe the relationship between the outcome and the endogenous regressor can
be justified even when the outcome is binary or the endogenous regressor takes on
multiple values.3 By contrast, when the instrument is non-randomly missing, the
consistency of the IV estimator may depend on the specification of the relationship
between the instrument and the included covariates.

To avoid having to impose any auxiliary assumptions, we introduce two al-
ternative IV estimators that are robust to non-randomly missing instruments. The
first estimator uses only the sub-sample where the instrument is non-missing. The
second estimator generalizes the pooled IV approach to construct a full-sample
instrument using non-parametric regression. This second estimator preserves the

3See Angrist (2001) for a discussion linear IV estimation with a binary outcome variable.
Angrist and Imbens (1995) discuss linear IV estimation with an endogenous regressor that takes
on multiple values, so-called variable treatment intensity.
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efficiency gain from pooling samples (both the sample with and without missing
instruments), as in Angrist et al (2009), but does not require any auxiliary as-
sumptions to yield consistent estimates. In a Monte Carlo study, we demonstrate
that both of these IV estimators are robust to non-randomly missing instruments
without auxiliary assumptions, in stark contrast to the standard IV estimators.

The next section describes the main model and assumptions, before discussing
a number of well-known IV applications where the instruments are partially miss-
ing. Section 3 examines standard IV estimation using only the sub-sample where
the instrument is non-missing. Section 4 examines consistency of the full-sample
instrument proposed by Angrist et al. (2009). Section 5 describes the proposed IV
estimators that are robust to non-randomly missing instruments without auxiliary
assumptions. Section 6 illustrates our results using a Monte-Carlo study, before
Section 7 concludes.

2 Model
Consider a simple, constant-effect regression model in which an individual’s out-
come Y depends linearly on a scalar regressor of interest S and a vector of covari-
ates X = [1, x2, . . . , xK ]′:

Y = βS +X ′δ + ε, (1)

where ε is the regression error, which is normalized E[ε] = 0, without loss of
generality. To focus on the missing instrument issue, we assume that the marginal
effects are constant and homogeneous. This implies that β is the same in any sub-
sample.4 To make the model non-trivially different from a bivariate model, we
assume that at least one of the included covariates are correlated with the regressor
of interest conditional on the other covariates, that is, Cov(xk, S|X−k) 6= 0 for at
least one k = 1, 2, ..., K.

Assumption 1 states that the the regression error in equation (1) is mean-
independent of the covariates, so that S is the only potentially endogenous vari-
able in the full sample. Throughout this paper, we will assume that Assumption 1
holds.

Assumption 1 Full-sample exogeneity: E[ε|X] = E[ε]

4See e.g. Imbens and Angrist (1994), Angrist and Imbens (1995), Heckman et al. (2006), and
Mogstad and Wiswall (2009) for a discussion of IV estimation in the presence of heterogeneous
treatment effects and variable treatment intensity, when the instrument is fully observed.
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Given Assumption 1, OLS on equation (1) produces consistent estimates of the
parameters [δ, β] whenever Cov(ε, S|X) = 0. The motivation for IV estimation is
that Cov(ε, S|X) 6= 0.

Our point of departure is that the instrument is only observed for some sub-
sample, but missing for the remaining sample. For simplicity, suppose that there
are two sub-samples, denoted by R = {0, 1}, and that there exists a scalar in-
strument Z, which is undefined or missing for the sub-sample with R = 0 but
observed for the sub-sample with R = 1. We consider estimation of the param-
eter β of the endogenous variable S, under standard IV assumptions imposed on
the sub-sample where the instrument is non-missing, R = 1:

Assumption 2 First stage exists: E[SZ|X,R = 1] 6= 0

Assumption 3 Cond. mean indep.: E[ε|Z,X,R = 1] = E[ε|X,R = 1]

These assumptions imply that conditional on the covariates, the instrument is cor-
related with the endogenous regressor and, further, that the regression error is
mean-independent of the instrument, within the sub-sample where the instrument
is non-missing. In the special case where the instrument is observed for the full
sample, pr(R = 1) = 1, Assumptions 2 and 3 become the standard IV assump-
tions. Given that the instrument is missing for the sub-sample with R = 0, it is
not meaningful to impose Assumptions 2 and 3 for the full-sample. Instead, we
follow previous studies performing IV estimation with partially observed instru-
ments in imposing Assumptions 2 and 3 on the sub-sample where the instrument
is non-missing.

As stated in Definition 1, the instrument is missing at random if the sub-sample
where the instrument is non-missing has the same average level of unobservables
affecting the outcome of interest, compared to the sub-sample with missing in-
struments.

Definition 1 Instrument missing at random: E[ε|R = 1, X] = E[ε|X]

Note that the degree of selection into the sub-sample where the instrument is non-
missing is given by E[ε|R = 1, X], since E[ε|X] = E[ε] under Assumption 1 and
we normalize E[ε] = 0.
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2.1 Partially Missing Instruments: Some Examples
Below, we show that partially missing instruments are actually fairly common in
empirical research, in part because of the nature of the instruments used but also
because of data availability. And further, it is quite likely that the partially missing
instruments are missing non-randomly.

To make clear the distinction between fully and partially observed instruments,
consider the vast literature using instruments to estimate the returns to schooling
(for a review, see e.g. Card, 2001). In this literature, interest is in the relation-
ship between wages (Y ) and years of schooling (S), conditional on some covari-
ates (X). A major concern is that years of schooling is endogenous to potential
wages. Instruments derived from compulsory schooling laws (see e.g. Angrist
and Krueger, 1991) and college proximity (see e.g. Card, 1993) are full-sample
instruments, since an individual’s quarter of birth and location of residence are in
principle available for the full sample. However, other instruments for schooling
are partially missing.

An common partially missing instrument for schooling is tuition subsidy, which
was first used by Kane and Rouse (1993) in a study of the return to college. This
instrument is partially missing since receipt of college subsidy is only observed
for applicants, and missing for non-applicants. In general, the take-up rate of tu-
ition subsidies targeted toward students from low income families is quite low.
Many people eligible for support do not apply for it. Carneiro and Heckman
(2002) discuss two possible explanations. First, the non-monetary costs of ap-
plying for financial aid are high, especially for low income people because the
application process is complex. Second, many eligible persons perceive that even
with a substantial tuition subsidy, the returns to college education for them are too
low to pay for the foregone earnings required to attend school. Both explanations
suggest that the tuition subsidy instrument is likely to be missing for a sizable
subgroup and, further, that it is missing non-randomly since applicants for college
subsidy can be expected to have substantially different potential wages compared
to non-applicants.

Even instruments that are in theory available for everyone may in practice be
partially missing because of data availability. For example, the study of returns
to education by Aakvik et al. (2009) use the staged implementation of a major
reform in the comprehensive school system Norway as an instrument for school-
ing. This instrument is partially missing, since there is no information about the
implementation of the reform for about a quarter of all municipalities in Norway.
The instrument is missing non-randomly if potential wages differ systematically
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depending on municipality of residency.5

Another example of partially missing instruments is from the large and grow-
ing literature investigating the effects of family size (S) on child outcome (Y ). In
this literature, the commonly used instrument – twin on second (or higher) birth–
is missing for the sub-sample of children whose parents choose to only have one
child. The motivation for using the twin instrument is that it is thought of as an
exogenous shock to family size, conditional on some covariates like the mother’s
age.6

In a similar vein, the literature investigating the relationship between family
size (S) and maternal labor supply (Y ), faces the problem of partially missing
instruments. For example, Angrist and Evans (1998) uses mixed gender sibship
as an instrument for family size. This instrument is missing for the sub-sample
of mothers who choose to only have one child. The twin and mixed gender sib-
ship instruments are missing non-randomly, insofar family size is endogenous; if
exogenous, there would be no need to search for an instrument in the first place.7

The problem of partially missing instruments also exists in the literature look-
ing at the relationship between institutions on economic performance. For ex-
ample, Acemoglu et al. (2001) investigate the effect of property rights (S), as a
proxy for institutions, on per capita income (Y ). To address the concern for se-
lection bias, they use mortality rates among early European settlers in different
colonies to instrument for property rights. Their theory is that property rights are
affected by settler mortality through the institutions brought by Europeans to their
colonies. However, the instrument is only observed for countries that were col-
onized, and missing for Non-European countries never colonized and, of course,
for European countries themselves. The instrument is missing non-randomly if
colonized countries have a different level of unobservables affecting income per

5The same partially missing instrument is used to study the intergenerational transmission of
human capital in Black et al. (2005b).

6Rosenzweig and Wolpin (1980) are the first to use twin birth as an instrument to estimate
the effect of family size on child outcome. More recently, Black et al. (2005), Caceres-Delpiano
(2006), and Mogstad and Wiswall (2009) have used twin birth to examine the effects of family
size on child outcome. To avoid including the outcomes of twins themselves, these studies restrict
the sample to children with at least one sibling.

7Partially missing instruments are also used in the literature looking at the effect of marital
dissolution on the economic wellbeing of women. Both Bedard and Deschenes (2005) and Ananat
and Michaels (2008) use the gender of the first born as an instrument for divorce. The idea is that
families have preferences for sons over daughters. This instrument is missing for couples without
children, and missing non-randomly if their potential divorce probability is different from couples
with children.
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capita than the rest of the world.
In such applications, where instruments are partially missing, there are two op-

tions. In all the above examples, researchers simply limit the analysis to the sub-
sample where the instruments are non-missing. For example, Black et al. (2005)
estimate the effect of family size on the educational attainment of first born from
families with two or more children, using twin at second birth as instrument for
family size. And Acemoglu et al. (2001) estimate the impact of property rights
on per capita income, restricting the sample to colonized countries for which set-
tler mortality is observed. The second option is to form an instrument that is
defined for the full sample. In a study of family size and child outcome, Angrist
et al. (2009) propose a full-sample instrument based on a linear projection of the
instrument on the covariates in the sub-sample where it is non-missing. Their mo-
tivation for constructing such full-sample instruments is that pooling samples in
this way may generate efficiency gains. Below we consider both ways of dealing
with missing instruments.

3 Sub-Sample IV Estimation
In this section, we apply standard IV methods to the sub-sample with non-missing
instrument, and do not use any of the data from the sub-sample with missing
instruments. As a benchmark, we first briefly summarize IV estimation when the
instrument is fully observed, before turning our attention to the case where the
instrument is partially missing.

3.1 Fully Observed Instrument
When the instrument is fully observed, pr(R = 1) = 1, the standard moment
based IV estimator is given by the sample analog of:

[β(IV ), δ(IV )] = E[Q′W ]−1E[Q′Y ], (2)

where Q = [Z,X] and W = [S,X].8 As is well known, a numerically equivalent
IV estimator for β can be formed by first projecting Z on X and forming the
residual. The residual forZ isZ? = Z−X ′ψ, where the vector of linear projection

8The moment based estimator is implemented in commonly used statistical packages, such
as STATA’s IVREGRESS routine. Since our model is exactly identified, the moment based IV
estimator is equivalent to the two-stage least-squares estimator.
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coefficients in the full-sample is ψ = E[X ′X]−1E[X ′Z]. The IV estimator for β
can then be expressed as the sample analog of:

β(IV ) = E[Z?S]−1E[Z?Y ]. (3)

Substituting (1), we have

β(IV ) = β + E[Z?S]−1E[Z?ε]

Under Assumptions 1-3, the sample analog of β(IV ) yields a consistent estimate
of β since E[Z?ε] = EX{E[Z?ε|X]} and for all X ,

E[Z?ε|X] = E[Zε|X]−X ′ψE[ε|X] = EZ|XZE[ε|Z,X] = 0.

3.2 Partially Missing Instrument
Next, consider the case where the instrument is partially missing, pr(R = 1) ∈
(0, 1). The standard moment based IV estimator applied to the sub-sample with
non-missing instruments, R = 1, is given by the sample analog to:

[β(IV, 1), δ(IV, 1)] = E[Q′W |R = 1]−1E[Q′Y |R = 1]. (4)

As above, a numerically equivalent IV estimator for β can be formed by first
projecting Z on X in the sub-sample with R = 1. The vector of coefficient from
this linear projection for Z is ψ1 = E[X ′X|R = 1]−1E[X ′Z|R = 1], from which
we can form the residual Z∗ = Z −X ′ψ1 in the sub-sample with R = 1. The IV
estimator for β can then be expressed as the sample analog of:

β(IV, 1) = E[Z∗S|R = 1]−1E[Z∗Y |R = 1]. (5)

Proposition 1 shows that the inconsistency in the standard IV estimator ap-
plied to the sub-sample where the instrument is non-missing is the product of two
terms. The first term capture the degree of selection into the sub-sample where
the instrument is non-missing, given by E[ε|R = 1, X]. And the second term
reflects the difference between the linear projection of Z on X , X ′ψ1, and the
conditional expectation function between the instrument and the included covari-
ates, E[Z|X,R = 1]. Note that E[Z|X,R = 1] is in general an unknown and
possibly non-linear function of the X variables.
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Proposition 1 Under Assumptions 1- 3, β(IV, 1) = β if and only if
EX|R=1{E[ε|R = 1, X](E[Z|R = 1, X]−X ′ψ1)} = 0.

Proof Substituting (1) into (5) we get

β(IV, 1) = β + E[Z∗S|R = 1]−1E[Z∗ε|R = 1].

Under Assumptions 1 and 2, β(IV, 1) = β if and only if E[Z∗ε|R = 1] = 0. By
iterating expectations, we can write

E[Z∗ε|R = 1] = EX|R=1{E[Zε|R = 1, X]−X ′ψ1E[ε|R = 1, X]}

Assumption 3 implies Cov(Z, ε|R = 1, X) = 0 and therefore

E[Zε|R = 1, X] = E[Z|R = 1, X]E[ε|R = 1, X].

Substituting this expression, we have

E[Z∗ε|R = 1] = EX|R=1{E[ε|R = 1, X](E[Z|R = 1, X]−X ′ψ1)},

which gives us

β(IV, 1) = β + E[Z∗S|R = 1]−1EX{E[ε|R = 1, X](E[Z|R = 1, X]−X ′ψ1)},

where Assumption 2 implies that E[Z∗S|R = 1] 6= 0.

QED

Proposition 1 raises the question of which auxiliary assumptions ensure con-
sistent estimates from the standard IV estimator applied to the sub-group where
the instrument is non-missing? Corollary 1 states that the sample analog of β(IV, 1)
consistently estimates β if at least one of the following conditions holds: (i) the
instrument is missing at random conditional on covariates, (ii) the covariates are
mean-independent of regression error in the non-missing sub-sample, or (iii) the
conditional expectation of the instrument is linear in the covariates.
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Corollary 1 β(IV, 1) = β if at least one of the following auxiliary assumptions
are imposed:
(i) E[ε|R = 1, X] = E[ε|X] for all X = x

(ii) E[ε|R = 1, X] = E[ε|R = 1] for all X = x

(iii) E[Z|R = 1, X] = X ′ψ1

Proof With auxiliary assumptions (i) and (iii), β(IV, 1) = β follows immediately
from Proposition 1. Under auxiliary assumption (ii), we have

EX|R=1{E[ε|R = 1, X](E[Z|R = 1, X]−X ′ψ1)}

= E[ε|R = 1]EX|R=1{E[Z|R = 1, X]−X ′ψ1} = 0,

since

EX|R=1{E[Z|R = 1, X]} = E[Z|R = 1] = EX|R=1{X ′ψ1}.

QED

Assuming that the instrument is randomly missing, that is, imposing auxiliary
assumption (i) in Corollary 1, implies that there is no selection on unobservables
into a particular sub-sample.9 In the family size application, for instance, this
assumption assumes away the very reason for instrumenting, namely that fertility
is endogenous: If only children have the same potential outcome as children with
siblings, there is no need to instrument for family size.

Auxiliary assumption (ii) is violated when the regression error is not mean-
independent of the covariates within the sub-sample where the instrument is non-
missing. It should be emphasized that the standard assumption of the regression
error being mean-independent of the covariates in the full-sample, Assumption 1,
does not imply that the covariates are mean-independent in either of the two sub-
samples. In fact, not even full-independence in the full-sample implies mean-
independence in either of the two sub-samples.10

On the contrary, if the instrument is non-randomly missing then it is likely that
the distribution of covariates differ between the full-sample and the sub-sample

9Assuming that the instrument is missing at random is analog to the much used assumption of
outcomes or regressors missing at random (Little and Rubin, 2002), which has received criticism
for being far too strong (see e.g. Frangakis and Rubin, 1999).

10And conversely, full-independence in a particular sub-sample does not imply mean-
independence in the full sample.
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where the instrument is non-missing. This occurs in situations where the selection
into the sub-sample depends on covariates, such as whenR = 1{γ0ε+X

′γ1 > 0}.
For example, the probability of having another child is known to decrease with
mother’s age, and the probability of applying for tuition subsidy may fall with
parental wealth. If the instrument is missing non-randomly, E[ε|X,R = 1] will
generally not be equal to E[ε|R = 1], even if ε and X are fully independent in the
full-sample. Another possibility is with conditional heteroscedasticity in the full-
sample, that is, ε ∼ N(0, σ(X)2) so that E[ε|X] = 0 and V ar[ε|X] = σ(X)2.
Then, E[ε|R = 1, X] 6= 0 whenever the instrument is non-randomly missing,
implying that E[ε|R = 1, X] 6= E[ε|X]. Consequently, the regression error is
mean-independent of the covariates in the full-sample, but not in sub-samples.

Auxiliary assumption (iii) from Corollary 1 is violated when the the condi-
tional expectation of the instrument E[Z|X,R = 1] is non-linear in X . The result
that consistency of the standard IV estimator when the instrument is non-randomly
missing may depend on the specification of the relationship between the instru-
ment and the covariates is worrisome, especially since researchers typically pay
little attention to this relationship. For instance, we know that E[Z|X,R = 1]
is generally non-linear if the instrument is binary, such as with twin births or a
dummy variable for receipt of a tuition subsidy.11 Furthermore, in the family size
application, it is well known that the probability of a women having twin birth
increases with her age, at an increasing rate. And in the returns to schooling
example, the receipt of means-tested tuition subsidies may very well be related
non-linearly to parental wealth.

An interesting special case where auxiliary assumption (iii) in Corollary 1
holds, namely when the instrument is mean-independent of the covariates,
E[Z|X,R = 1] = E[Z|R = 1]. This implies that E[Z|X,R = 1] = X ′ψ1 =
µz where µz is the mean of the instrument. Hence, the conditional expecta-
tion function between the instrument and the included covariates is constant, and
β(IV, 1) = β. However, the condition of the instrument being mean-independent
of the covariates is generally quite strong, except in the case where Z is truly ran-
domly assigned as in a controlled laboratory experiment. In many (quasi)natural
experiments, like the examples discussed above, the instrument is not mean-independent
of the covariates.

Finally, it should be noted that the auxiliary assumptions in Corollary 1 are
sufficient, but not necessary. From Proposition 1, it is clear that β(IV, 1) = β

11If X is a dummy variable, then E[Z|X] is necessarily linear in X . However, in general
E[Z|X] is not linear in X .
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when non-linearities cancel each other out, such that the weighted average of the
difference between E[Z|X,R = 1] and X ′ψ1 becomes zero. Although this may
happen by chance, it seems to be a too strong auxiliary assumption, and it is not
testable since the weights E[ε|R = 1, X] are unobserved.

4 Full-Sample Instrument
An alternative to limiting the analysis to the sub-sample where the instrument is
non-missing, is to form an instrument that is defined for the full sample. A mo-
tivation for constructing such full-sample instruments is that pooling samples in
this way may generate efficiency gains. Angrist et al. (2009) propose such a full-
sample instrument using a linear projection of the partially observed instrument
on the covariates in the sub-sample with non-missing instrument. Their linear
projection instrument can be expressed as

ZLP =

{
0 if R = 0
Z −X ′ψ1 if R = 1

(6)

where ψ1 is the vector of coefficients from the regression of Z onX in sub-sample
with R = 1, as defined above. Using the instrument ZLP , the moment based IV
estimator applied to the full-sample is given by the the sample analog of:

[β(IV − LP ), δ(IV − LP )] = E[Q′LPY ]E[Q′LPW ]−1 (7)

where QLP = [ZLP , X] and W = [S,X].12 As above, a numerically equivalent
IV estimator for β can be formed by first projecting ZLP on X . The vector of
coefficient from this linear projection is φ = E[X ′X]−1E[X ′ZLP ], from which
we can form the residual Z∗LP = ZLP − X ′φ. The moment based IV estimator
applied to the full-sample can then be expressed as the sample analog of:

12Another way to view the linear projection instrument is as the following linear imputation
method:

ZLI =
{
X ′ψ1 if R = 0
Z if R = 1,

where the instrument ZLI is constructed by imputing the missing instrument for the R = 0 sub-
sample using the observed covariates X . The imputation uses the linear predictor X ′ψ1, con-
structed using the covariates X observed in both sub-samples, and the ψ1 coefficients from the
regression of the instrument on the covariates in the R = 1 sub-sample. It is straightforward
to show that using ZLI is equivalent to using ZLP as the instrument in the moment based IV
estimator applied to the full-sample.
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β(IV − LP ) = E[Z∗LPS]−1E[Z∗LPY ],

For a full sample with N observations, the sample analog estimators are defined
by

β̂(IV − LP ) =
N∑

i=1

(Z∗LP,iSi)
−1

N∑
i=1

(Z∗LP,iYi)

β̂(IV, 1) =

N1∑
i=1

(Z∗i Si)
−1

N1∑
i=1

(Z∗i Yi)

where, without loss of generality, we have ordered the observations for the R =
1 sub-sample from i = 1, . . . , N1 and the remaining observations from N1 +
1, . . . , N . Lemma 1 states that applying the moment based IV estimator to the full-
sample based on the linear projection instrument is equivalent to using the moment
based IV estimator based on the partially observed instrument in the sub-sample
where the instrument is non-missing. Hence, both estimators provide consistent
estimates of β under the auxiliary assumptions stated in Corollary 1.13

Lemma 1 β̂(IV − LP ) = β̂(IV, 1).

Proof Because the linear projection coefficient φ = E[X ′X]−1E[X ′ZLP ] = 0,
Z∗LP = ZLP . Since ZLP = R(Z −X ′ψ1) = RZ∗, it follows that:

β̂(IV − LP ) = {
N1∑
i=1

Z∗i Si +
N∑

i=N1+1

0Si}−1{
N1∑
i=1

Z∗i Yi +
N∑

i=N1+1

0Yi}

= β̂(IV, 1)

QED
13It should be noted that Angrist et al. (2009) in their Lemma providing the econometric jus-

tification for their IV strategy, only assume that conditional on the covariates, the instrument is
correlated with the endogenous regressor and that the regression error is independent of the instru-
ment, within the sub-sample where the instrument is non-missing (our Assumptions 1-3).
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5 Robust IV Estimators
This section introduces two alternative IV estimators that are robust to non-randomly
missing instruments without auxiliary assumptions.

The first robust IV estimator uses only the sub-sample where the instrument
is non-missing. Let the support of X be denoted as X. Conditioning on some
realization of X = x, we can form a consistent estimator of β for each x ∈ X
from the sample analog of:

βx =
Cov(Y, Z|X = x,R = 1)

Cov(S,Z|X = x,R = 1)
,

Given a vector of weights over X, W = {W (x)}x∈X, we can then form a
weighted average of each of βx as

β(W, 1) =
∑
x∈X

βxW (x), (8)

where the weights W (x) are positive for all x ∈ X and sum to 1. The weights
could be chosen optimally to minimize the variance of the estimator. As the
sample analog of β(W, 1) is a non-parametric estimator of β, it is clear that
β(W, 1) = β under Assumptions 1-3. The simulation exercises below provides an
example of how to estimate β(W, 1).

The second robust IV estimator generalizes the linear projection method to
construct a full-sample instrument using non-parametric regression. This full-
sample instrument is defined as:

ZNP =

{
0 if R = 0
Z − E[Z|X,R = 1] if R = 1

(9)

where E[Z|X,R = 1] is estimated using non-parametric methods in the sub-
sample with non-missing instrument. The advantage of this instrument over the
linear projection instrument, is that ZNP does not restrict the relationship between
Z and X to be linear. Using the instrument ZNP , the moment based IV estimator
applied to the full-sample is given by the the sample analog of:

β(IV −NP ), δ(IV −NP )] = E[Q′NPY ]E[Q′NPW ]−1 (10)

where QNP = [ZNP , X] and W = [S,X]. As the sample analog of β(IV −
NP ) is a non-parametric estimator of β, it is clear that β(IV − NP ) = β under
Assumptions 1-3. The simulation exercises below provides an example of how to
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estimate β(IV −NP ).

6 Simulation
This section uses a Monte-Carlo simulation to illustrate our results. To fix ideas,
let us return to the example where college tuition subsidy (Z) is allocated ran-
domly among applicants conditional on parent’s wealth (X). But, as argued
above, the instrument is only observed for applicants, R = 1, and missing for
individuals who did not apply, R = 0. An individual’s wage Y is specified as a
linear function of a binary indicator for college attendance S and a scalar covariate
X .

Specifically, we specify the following data generating process:

Y = α + δX + βS + ε, X ∼ N(0, 1), ε ∼ N(0, 1), α = 1, δ = 1, β = 1

S = 1{κ1X + κ2Z + κ3ε+ η > 0}, η ∼ N(0, 1), κk = 1, k = 1, 2, 3

Z = χ2X
2 + φ, φ ∼ N(0, 1),

R = 1{γ1X + γ2ε+ ω > 0}, ω ∼ N(0, 1), γ1 = 1, γ2 = 1

In this data generating process, the instrument is missing non-randomly, E[ε|R =
1, X] 6= E[ε|X]. It is also clear that Assumptions 1-3 are satisfied. Further, the
instrument Z is non-linearly related to X whenever χ2 6= 0.

Table 1 provides simulation results when changing the degree of non-linearity
between Z and X . In particular, the first column sets χ2 = 0, whereas columns
2-4 specify χ2 > 0. Each column computes 6 different estimators for β, using 500
replications from the data generating process with sample sizes of 50,000. All of
the estimators are averages over the replications.

The first row computes the OLS estimator. The next row estimates the mo-
ment based IV estimator, defined in (2), in the benchmark case where the instru-
ment is fully observed, pr(R = 1) = 1. The final four rows focus attention on
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the case with partially observed instrument, pr(R = 1) ∈ (0, 1). In particular,
the third row estimates the moment based IV estimator applied to the sub-sample
with non-missing instrument, defined in (5). And the fourth row computes the IV
estimator proposed by Angrist et al. (2009), defined in (7), based on a full-sample
instrument constructed from a linear projection of the partially observed instru-
ment on the covariates in the sub-sample with non-missing instrument. Finally,
the two last rows estimate the proposed IV estimators, β(W, 1) defined in (8) and
β(IV − NP ) defined in (10), which are robust to non-randomly missing instru-
ments without auxiliary assumptions. To estimate β(W, 1) we partition the scalar
covariate X defined over the range (−1, 1) into 41 equally spaced cells. Next,
we compute βX within each of these cells, before forming β(W, 1) as the simple
average of these βX . To estimate β(IV − NP ), we construct ZNP by using a
fourth order polynomial in X to approximate E[Z|X,R = 1].

As is clear from the results provided in the first row, the OLS estimates are
severely biased upward because of the endogeneity in S, by about 78-95 percent
depending on the specification of χ2. In comparison, it is evident from the second
row that the standard moment based IV estimator perform well in the benchmark
case where the instrument is fully observed; this is true for all specifications of χ2.
The results in the first column confirm that all the IV estimators provide consistent
estimates of β also in the special case where there is a linear relationship between
Z and X , that is, χ2 = 0.

However, the performance of the alternative IV estimators differ substantially
in columns 2-4, in which there is a non-linear relationship between Z and X . The
third row demonstrates that the IV estimator applied to the sub-sample where the
instrument is non-missing exhibit exhibits substantial bias when χ2 6= 0: the esti-
mate of β is 1.14 when χ2 = 0.5 and 1.44 when χ2 = 2. This finding confirms the
result in Proposition 1, stating that Assumptions 1-3 do not ensure that β(IV, 1)
yields consistent estimate of β(IV ) – auxiliary assumptions are required. The
fourth row shows that also the IV estimates based on the full-sample instrument
from the linear projection method are substantially biased when χ2 6= 0. Indeed,
as stated in Lemma 1, it is clear that using β(IV − LP ) is equivalent to using
β(IV, 1). Finally, the last two rows confirm that the two alternative IV estimators
are robust to non-randomly missing instruments without auxiliary assumptions,
with estimates of β very close to the true value of 1.
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7 Conclusion
This paper examines IV estimation in situations where the instrument is observed
from some sub-sample and missing for the remaining sample. In such cases,
which are quite common in empirical research, there are two options. Typically,
researchers simply limit the analysis to the sub-sample where the instrument is
non-missing. The second option is to form an instrument that is defined for the
full sample and pool samples, as suggested by Angrist et al. (2009). We show that
when the instrument is non-randomly missing, the ordinary IV assumptions are
inadequate for standard IV estimators to be consistent – in both cases, strong, aux-
iliary assumptions are necessary. One sufficient auxiliary assumption is that the
conditional expectation function between the instrument and the included exoge-
nous covariates is truly linear. However, in many (quasi)natural experiments the
auxiliary assumptions are unlikely to hold. For example, the relationship between
a binary instrument and the covariates is necessarily non-linear. We therefore in-
troduce alternative IV estimators that are consistent under the ordinary IV assump-
tions. A Monte-Carlo study illustrates the inconsistency in standard IV estimators
when the relationship between the instrument and the covariates is non-linear.
Moreover, it shows that the proposed IV estimators are robust to non-randomly
missing instruments without auxiliary assumptions.

The result that non-linearities in the relationship between a non-randomly
missing instrument and the covariates may matter for the consistency of standard
IV estimators is worrisome, given that linear specifications are generally viewed
as innocent in IV estimation. As discussed above, there are several reasons for this
view. First, consistency of the IV estimator does not require the correct specifica-
tion of the relationship between the endogenous regressor and the instrument in
the first stage. Also, a linear specification of the relationship between the outcome
and the endogenous regressor can be justified even when the outcome is binary or
the endogenous regressor takes on multiple values. However, in situations where
the instrument is only observed for some sub-sample, allowing for a non-linear
relationship between the instrument and the covariates is preferable.
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Table 1: Simulation Results

Degree of Non-Linearity (χ2) 0 0.5 1 2
Sample, Estimator IV Missing Slope Est. (β)

(True value: 1)
1) Full Sample, OLS – 1.9490 1.9011 1.8379 1.7762
2) Full Sample, IV NO 0.9992 0.9997 1.0000 1.0003
3) Non-Missing Sample, IV YES 0.9993 1.1420 1.2648 1.4389
4) Full Sample, Linear Projection IV YES 0.9993 1.1420 1.2648 1.4389
5) Non-Missing Sample, Robust IV YES 0.9941 0.9936 0.9925 0.9838
6) Full Sample, Robust IV YES 0.9993 0.9992 0.9991 0.9989

Notes: Simulation from 500 replications of the data generating process described in Section 6.
See also Section 6 for definitions of the estimators. Estimates are averages of each estimator over
the 500 replications.




