
Sauer, Robert M.

Working Paper

Why develop open source software? The role of non-
pecuniary benefits, monetary rewards and open source
licence type

IZA Discussion Papers, No. 3197

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Sauer, Robert M. (2007) : Why develop open source software? The role of non-
pecuniary benefits, monetary rewards and open source licence type, IZA Discussion Papers, No.
3197, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
https://hdl.handle.net/10419/34637

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/34637
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

IZA DP No. 3197

Why Develop Open Source Software?
The Role of Non-Pecuniary Benefits,
Monetary Rewards and Open Source Licence Type

Robert M. Sauer

D
I

S
C

U
S

S
I

O
N

 P
A

P
E

R
 S

E
R

I
E

S

Forschungsinstitut
zur Zukunft der Arbeit
Institute for the Study
of Labor

December 2007

Why Develop Open Source Software?
The Role of Non-Pecuniary Benefits,
Monetary Rewards and Open Source

Licence Type

Robert M. Sauer
University of Southampton

and IZA

Discussion Paper No. 3197
December 2007

IZA

P.O. Box 7240
53072 Bonn

Germany

Phone: +49-228-3894-0
Fax: +49-228-3894-180

E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of the institute. Research
disseminated by IZA may include views on policy, but the institute itself takes no institutional policy
positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center
and a place of communication between science, politics and business. IZA is an independent nonprofit
company supported by Deutsche Post World Net. The center is associated with the University of Bonn
and offers a stimulating research environment through its research networks, research support, and
visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in
all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research
results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion.
Citation of such a paper should account for its provisional character. A revised version may be
available directly from the author.

mailto:iza@iza.org

IZA Discussion Paper No. 3197
December 2007

ABSTRACT

Why Develop Open Source Software?
The Role of Non-Pecuniary Benefits, Monetary Rewards

and Open Source Licence Type*

A review of the basic theory of optimal open-source software contributions points to three key
factors affecting supply: non-pecuniary benefits, future expected monetary returns, and open-
source licence type. This paper argues that existing large-scale software developer surveys
are inadequate for measuring the relative importance of these three factors. Moreover,
previous econometric studies that collect their own unique datasets generally measure the
importance of only one supply factor in isolation. To fill the gap, I specify a dynamic
programming model of joint labour supply and open-source contribution decisions that can
provide empirical estimates of relative importance within a single unified framework.

JEL Classification: C61, C80, J24, J44

Keywords: software, open-source, labour supply, dynamic programming

Corresponding author:

Robert M. Sauer
University of Southampton
School of Social Sciences
Southampton SO17 1BJ
United Kingdom
E-mail: R.M.Sauer@soton.ac.uk

* I thank Julian Morris, Eric Raymond, Corinne Sauer and Margaret Stevens for providing insightful
comments on previous drafts.

mailto:R.M.Sauer@soton.ac.uk

1 Introduction

Over the past decade, there has been a phenomenal increase in the adoption of open

source software by both firms and governments. In 1996, the market share of the

open source operating system Linux, in the global server market, was roughly 6

percent. By the year 2003, Linux’s market share had reached 28 percent. Between

1996 and 2003, Linux overtook its proprietary software competitors Unix and Netware

and substantially closed the gap with the traditional leader in the sector, Microsoft

Windows (see Wheeler (2004)).

The reasons why firms and governments have increased their adoption of open

source software are generally well-understood. In certain computing environments,

the total cost of ownership (TCO) of open source software can be lower than the

TCO of proprietary software. Open source software is also now considered to be

of equivalent or higher quality than many proprietary software alternatives. The

increasing demand for open source software is mainly a function of falling TCO and

improved program functionality (see MacCormack (2003)).1

In stark contrast to the demand side of the software market, the main determi-

nants of the supply of open source software are still unknown. The central puzzle is

that most open source software developers are volunteers that supply their labor for

free, and many developers agree to have their contributions licensed in such a way

that it is difficult for them to directly profit from the resulting software product. Pre-

vious research addressing this puzzle has pointed to non-pecuniary benefits, future

monetary rewards and open source license type as the three key factors influencing

the individual’s decision to voluntarily contribute to open source development (see,

e.g., Lerner and Tirole (2002)). However, there is currently very little empirical evi-

dence on the relative importance of these three supply factors. Obtaining empirical

1Governments may also prefer open source software solutions for "non-pecuniary" reasons. For

example, open source software can in some cases be more easily adapted to meet linguistic and

cultural preferences.

2

measures of relative influence can be practically important for properly predicting fu-

ture open source supply levels and assessing the impact of proposed changes in public

policy towards open source development.

In this paper, the basic theory of open-source supply contributions is outlined and

the relevant econometric evidence is reviewed. It is pointed out that the empirical

literature currently falls short because it generally looks at the role of monetary

rewards and open-source licence type in isolation. There are also no studies, to the

best of my knowledge, that attempt to empirically identify the role of non-pecuniary

benefits in the supply decision. In order to fill this gap in the literature, I propose a

model of joint labour supply and open-source software contribution decisions that can

be used to measure the relative influence of non-pecuniary benefits, future monetary

rewards, and open-source licence type in a single model. The dynamic model could

be easily empirical implemented were panel data to be collected on the decisions of

open-source and proprietary software developers.

The rest of the paper is organized as follows. In the next section, the basic

theory of voluntary contributions to the open-source development process is outlined.

In Section III, the drawbacks of existing large-scale surveys are highlighted, previous

econometric findings from studies that collect their own unique data sets are discussed.

In section IV, the forward-looking model of software-developer employment and open-

source contribution decisions, incorporating all three supply factors in a single model,

is specified. The final section summarizes and concludes.

3

2 The Basic Theory of Voluntary Software Con-

tributions

Consider the case of a software developer that has written a fix for a bug in an existing

software program.2 Assume that the developer was originally motivated to write the

patch for his own personal use of the program. In addition, assume that there is a

very high degree of uncertainty regarding the value of the patch to other software

developers/consumers so that there is no non-zero price at which others are willing to

buy it. Under these conditions, the developer of the patch will be indifferent between

keeping the patch for himself, which yields zero profits, and distributing the patch to

the public for free, which also yields zero profits (assuming zero costs of distribution).

The costs that the developer initially incurs to produce the patch are not relevant in

the decision to release or not release because development costs are sunk.

In the above scenario, the software developer’s indifference between keeping the

patch private, and releasing the patch to the public for free, can be broken by assuming

that there are differential expected future returns between the two options. Raymond

(1999c) maintains that higher future returns are captured when the patch is released

for free because it gives rise to reciprocal giving. That is, distributing the patch to

the public for free will encourage other software developers to do the same with their

own privately produced patches, and many of these patches will turn out to be useful

to others in the community. Hence, releasing the patch for free is the optimal choice

for each developer, and is the equilibrium outcome.

Although Raymond relies rather heavily on a social psychological notion of recip-

rocal giving, this assumption is not at all necessary for breaking the tie between re-

leasing and not releasing. The same equilibrium outcome of voluntary contributions

could arise if one’s reputation as a skilled programmer is enhanced by distributing

the patch for free. That is, by revealing one’s programming code, the developer can

2The following example is adapted from Raymond (1999c).

4

signal his skill level, or stock of programming human capital, to the community of

software developers. This could lead to differentially higher expected future returns

through higher future skill prices.

This labor market signaling function of voluntary contributions is the central no-

tion in the work of Lerner and Tirole (2002). Lerner and Tirole (2002) also note that

the signaling incentive to voluntary contributions suggests that strategic complemen-

tarities may be important. In order to signal one’s skills most effectively, an open

source developer will mostly likely want to participate in open source projects that

also attract many other developers. The marginal benefit of voluntarily contributing

increases with the number of developers involved in the project. Along these lines,

Johnson (2002) models a developer’s decision to invest effort in developing code that

will become a public good, and formally illustrates the effect of a changing contributor

population size.

Although the central focus in Lerner and Tirole (2002) is on the signaling role of

open source participation, and in Raymond (1999c) it is on reciprocal giving, the role

of non-pecuniary benefits is also clearly recognized in previous research. For example,

in Raymond (1999b) the open source community is conceived of as a gift culture in

which a developer’s status in that community depends on the quality of the software

gift that he/she gives to others. Another important source of non-pecuniary benefits

identified by Raymond (1999b) is ego-gratification, or peer recognition. Developers

are likened to craftsman who want others to admire their artistic style of coding.

Non-pecuniary benefits can also come in the form of ideological satisfaction for those

that believe software should be supplied free of charge or that Microsoft abuses its

market position.3

While it seems plausible that higher non-pecuniary benefits and expected future

3There are also developers that receive wages from commercial firms for working on open source

projects. The reasons why commercial firms might want to pay developers to work on open source

projects will be mentioned below.

5

monetary returns can be captured through choosing to voluntarily contribute, it is

somewhat implausible to maintain that there are zero (or negligible) distribution costs

to open source participation. In fact, distributing a patch to the public for free could

be very costly when there is a heavy “regulatory burden” imposed upon submitters.

For example, in some projects developers may be forced to comply with standards

that require one to “clean up the patch, write a ChangeLog entry, and sign the FSF

assignment papers” (Raymond (1999c), p. 7). The advantages derived from ego-

gratification and higher future monetary rewards could be outweighed by the current

and future costs of submission and distribution.

It is interesting to note in this context that Raymond (1999c) characterizes the

Linux project as one with a relatively liberal organizational structure, and hence

a relatively low cost of submission. He sees this as an important reason why Linux

continues to grow and succeed. In contrast, projects with more centralized structures,

like those associated with the Free Software Foundation (FSF), have a higher cost of

submission and are generally not growing as fast. Thus, variation in organizational

structure and associated costs of distribution may be critical parameters in the open

source developer’s optimization problem, and in the eventual market share of an open

source product.

The voluntary contributions optimization model outlined above not only provides

a useful and simple theoretical framework for identifying the main factors that affect

supply at the individual level, but it can also be adapted to help explain the deci-

sion of commercial firms to voluntarily open-up internally developed code. Following

another example in Raymond (1999c), suppose the internally developed software is

an intermediate good in the firm’s production process, e.g., an accounting package.4

As in the individual developer’s decision problem, the firm may choose to keep the

initially developed code closed, or may release the code into the public domain. The

4Raymond argues that approximately 95% of all software development activities are for interme-

diate goods in the production process, such as accounting packages.

6

initial development costs are sunk.

The main expected future benefit to releasing the code into the public domain is

the receipt of programming input from hundreds of additional developers who can im-

prove program functionality. This has been expressed in Raymond (1999a) as “given

enough eye balls, all bugs are shallow.”5 However, while the firm may hope to bene-

fit from the dispersed knowledge of developers in the wider open source community,

there is also a chance that no help will be forthcoming at all. This is because the

desire of developers to participate in an open source project initiated by a commer-

cial firm may be weak. With firm-initiated projects, developers are less likely to reap

non-pecuniary benefits related to ideological satisfaction and/or enhanced status in

the open source community. For example, contributing to improved functionality of

an accounting package for a commercial firm is generally considered to be less "chal-

lenging" than contributing to a mathematical program to be used by researchers.

Developers may also intensely fear that the firm will "hijack" the resulting software

product and eventually close it off from further open source development.

It is for these latter reasons that the form of intellectual property protection, or

the license under which a project is released, can be a critical factor in the developer’s

decision to supply labor to open source development. In some cases, it may be that

the only way a firm (or other project initiator) can induce developers to participate

in an open source project is to put the project under a restrictive license such as the

GNU General Public License (GPL). GPL is a restrictive license because it requires

that the initial code and all modifications remain freely available, that any derivative

work is also licensed as GPL, and that the resulting code not be mixed with closed

source software in any re-distributed works. GPL makes commercialization of the

5Raymond is essentially applying ideas developed in Hayek (1945) to the case of open source

software production. That is, open source developers have different “local” knowledge that can be

effectively tapped to the firm’s benefit through the coordinating institution of open source collabo-

ration.

7

resulting code difficult. Placing the project under GPL, rather than BSD or some

other less restrictive license, can help satisfy ideological preferences, reduce the fear

of hijacking, and induce greater participation from the developer community.6

From the firm’s perspective, opening-up the code, even under a restrictive license

such as GPL, can be advantageous for reasons other than improved program func-

tionality. For example, releasing the code can help spread the risk of development.

If the code remains closed, or internal to the firm, it could be costly to find suitable

replacement programmers after the original in-house developers have left. Releas-

ing the code to the open source community can provide more continuity and fluid

program maintenance, acting as a form of insurance against the deleterious effects

of turnover in the market for developers (Raymond (1999c)). Firms can also ben-

efit from providing complementary support and consulting services for open source

products, from increased operating system standardization which lowers the costs

of providing complementary proprietary software and hardware products, and from

imbedding open source components in proprietary software and hardware bundles

in order to lower licensing fees. As a result of these potential benefits, several large

firms have been known to directly fund open source projects and offer salaries to open

source developers (see Berlecon Research (2002)).

On the cost side of opening-up internally developed code, the firm may suffer

lost profits due to competitors in the industry being able to free-ride and benefit

from the program, without having incurred initial development costs. The extent

of lost profits will likely depend on the generality of the program and the industry’s

market structure. For example, if there is a high degree of competition in the industry

then the costs of releasing the code may be large (see von Hippel (2002), Harhoff et

al. (2003), Henkel (2005) and Maurer and Scotchmer (2005)). On the other hand,

as Lerner and Tirole (2005a) point out, if network effects and switching costs are

6BSD stands for Berkeley Software Distribution (BSD). The BSD license is more conducive to

commercialization of the resulting code.

8

considerable, then there will be little competition, the second-best software package

may have only a tiny market share, and the loss in profits due to releasing the code

will be negligible.7

3 Empirical Findings

Recently, a number of different surveys of open source developers have become avail-

able to researchers. Most notable are the FLOSS (Free/Libre and Open Source Soft-

ware) surveys which tend to over-sample developers from particular geographical re-

gions. In the first subsection, we discuss the limited usefulness of the FLOSS-EU

survey for studying the determinants of open source software supply. In the sec-

ond subsection, we review several econometric studies of the factors that influence a

developer’s decision to participate in the open source development process.

3.1 FLOSS-EU

FLOSS-EU was one of the first developer surveys ever to be conducted. It was ad-

ministered online between February and April 2002. The questionnaire was initially

posted on several open source/free software (OS/FS) websites and was further distrib-

uted by developers themselves. The number of respondents in FLOSS-EU is 2,784.

Tables 1 and 2 present a selected set of descriptive statistics from FLOSS-EU

calculated by Gosh et al. (2002). Table 1 indicates that the respondents are generally

young, male, single, and highly educated. The most common profession is software

engineer, followed by programmer, consultant and university employee. A little more

than 20% of the sample consists of university students.8 Approximately 70% of the

7Firms operating in low transactions costs environment may be able to mitigate free-rider costs

of opening-up the code by forming a consortium (see, e.g., West and Gallagher (2004)).

8Nearly identical percentages of students are found in the developer surveys analyzed by Hertel

et al. (2003) and Lakhani and Wolf (2005).

9

respondents earn less than 3000 Euro/USD a month, and 70% work 10 hours or less a

week developing OS/FS. Since the survey was distributed via the internet, it reached

developers in a number of different countries. For example, 70% were born in an EU

country. Only 10% of the respondents are working, at the time of the survey, in a

country other than the country in which they were born.

More directly relevant to the determinants of open source supply, FLOSS-EU

contains a number of questions related to the motivations of OS/FS developers. The

top panel of Table 2 displays the percentage of respondents choosing a pre-selected

set of reasons for becoming an OS/FS developer. Each respondent was allowed to

choose more than one reason in the list so the percentages can add to more than

100%.

The table shows that 79% of the respondents joined the OS/FS community be-

cause they were interested in learning and developing new skills. The next most

frequent reason, accounting for 49% of respondents, was a desire to share already

existing knowledge and skills. The desire to improve job opportunities, to get a rep-

utation in the OS/FS community, and to make money are relatively less important,

but are not negligible.

The bottom panel of Table 2 displays the distribution of responses to a question on

whether the developers receive monetary and non-monetary rewards for development

of OS/FS. Respondents were allowed to choose more than one answer. The response

frequencies reveal that more than half of the developers earn money from their OS/FS

activities. Among those that earn money, a non-negligible number are directly paid

for administering or developing OS/FS. A relatively high proportion claims to have

secured their job as a result of their OS/FS experience. Table 2 illustrates that

monetary benefits to OS/FS participation are common.

The form of the questions and responses in Table 2 make it difficult to fruitfully

use these data for generalizing about key motivations. Many developers have a desire

to share existing skills, wish to learn new skills (e.g., students), and earn money

10

either directly or indirectly from their open source activities. However, it is not

obvious how one could map these responses into metrics that would enable a researcher

to disentangle the relative importance of non-pecuniary benefits, future monetary

rewards and open source license type. A similar interpretational problem arises with

the responses to other developer surveys that have recently been conducted (see, e.g.,

Boston Consulting Group (2003), Haruvy, Wu and Chakravarty (2003), Lakhani and

von Hippel (2003) and Lakhani and Wolf (2005)).

It is important to note that current developer surveys have additional drawbacks

because they only reach software developers that participate in open source projects.

A control group of software developers that does not participate in open source

projects is completely absent. Another major problem is that current surveys are

only cross-sectional, limiting the ability of researchers to control for unobservable

characteristics that are fixed over time, such as developer ability. A survey that

reached a more diverse set of software developers, that was longitudinal in structure,

and that was designed with the basic economic theory of voluntary contributions in

mind, would greatly help in empirically identifying the relative importance of the

three key factors in the open source supply decision.

3.2 Econometric Studies

One of the most notable econometric studies to date that is related to the supply of

open source software is Hann et al. (2004). The authors in this paper construct an

original longitudinal dataset of 147 contributors to three different Apache projects.

The study aims to measure the increase in developer wages due to the extent of con-

tributions made to Apache projects, as well as the increase in wages due to achieving

a higher rank within the Apache Software Foundation (ASF). If higher wages (skill

prices) in the developer’s regular employment are correlated with a higher volume

of open source contributions, then this is interpreted as a human capital or learning

effect. A higher volume of contributions proxies more open source programming ex-

11

perience and greater knowledge. Any increase in skill prices deriving from a higher

rank in ASF is interpreted by the authors as a signaling or sorting effect. ASF rank

may be an effective means of conveying information about innate productivity levels

that would otherwise be only imperfectly assessed in the market.9

With standard panel data wage regressions that control for unobserved individual

fixed effects - such as developer ability — the authors find that there is little return to

the volume of contributions, but achieving a higher rank in ASF significantly increases

wages by 13-27%, depending on the rank. The conclusion is that the signaling/sorting

effect is much stronger than the human capital/learning effect in open source Apache

projects.

Although Hann et al. (2004), exploit an original, longitudinal data set with de-

tailed information on open source contributions, there are several limitations that

cast doubt on the reliability of their results. As mentioned earlier in the context

of existing developer surveys, the sample only includes open source developers. In-

dividuals who choose not to participate in open source projects convey information

about the experience and signaling value of open source participation yet they are not

accounted for in estimation. For example, the return to ASF rank may be upward

biased if those who do not participate in Apache projects know that they would not

experience wage increases with higher ASF ranks. Non-participants may not need

to signal their productivity to the market for developers. Note that non-participants

may be open source developers that choose to contribute to open source projects

other than Apache as well as developers that do not contribute to any open source

projects.

An additional problem that may bias the results is that ASF rank may reflect

additional dimensions of open source experience beyond the number of lines of con-

9There are five ranks (levels of recognition) in ASF. They are: developer, committer, project

management committee member, ASF member, and ASF board member. Promotion to a higher

rank is awarded upon positive peer review.

12

tributed code. Therefore, the coefficient on rank may be partially absorbing the

returns to open source experience. It should not be strictly interpreted as a return

to signaling/sorting.10 Note that if open source experience, measured as lines-of-code

contributed, does not accurately measure true experience then there may also be a

bias in the coefficient on experience due to measurement error. That is, attenuation

bias is another possibility why low estimated returns to open source experience were

obtained.

On the role of open source license type in open source development activity, Lerner

and Tirole (2005b) examine the determinants of license choice using the SourceForge

database which contains information on approximately 40, 000 open source projects.

Lerner and Tirole (2005b) use the SourceForge database to run probit regressions in

which the dummy dependent variable denotes either all licenses in the project are

highly restrictive (GPL), or in separate specifications, some licenses in the project

are highly restrictive. The independent variables capture project characteristics and

are grouped under the headings, development stage (e.g., pre-alpha, alpha), environ-

ment (e.g., X11, Windows), intended audience (e.g., end-users, developers), natural

language (e.g., French, Spanish), operating system (e.g., POSIX, Microsoft) and topic

(e.g., communications, security).

The probit results indicate that restrictive licenses are more prevalent amongst

projects that are targeted to end-users (e.g., desktop tools and games) as opposed

to other developers or system administrators. This is consistent with the hypothesis

mentioned earlier, in the basic theory of voluntary contributions, that restrictive

licenses can substitute for otherwise low non-pecuniary benefits. Applications of

this type may not have a strong ego-gratification component so that placing the

10Indeed, median lines of code within ASF rank, which is used as an instrument for rank in 2SLS

versions of the regressions, is strongly correlated with ASF rank in first stage regressions. Putting

the likely endogeneity of the instrument aside, the first stage results suggest that rank is another

proxy for open source experience.

13

project under a restrictive license may be the only way to substantially increase

utility and induce participation. Also consistent with the basic theory of voluntary

contributions is the finding that restrictive licenses are significantly less prevalent

among projects geared towards other software developers or projects designed for

operating in commercial environments. These latter projects likely have a higher

ego-gratification component and/or signaling value, and less of a need for a restrictive

license.

Although the Lerner and Tirole (2005a) study yields interesting insights into the

determinants of a project license, it is limited in that it remains at the level of estab-

lishing statistical correlations. Data limitations prevent accounting for unobserved

project characteristics that could confound the relationship between observed project

characteristics and license choice. This makes it doubtful that they have identified

any causal effects. The study also does not address the more interesting question

of how license choice affects open source participation at the individual contributor

level.

This latter question of how license type affects open source supply decisions is di-

rectly addressed in a paper by Fershtman and Gandal (2007). Also using the Source-

Forge database, the authors construct a panel of 71 open source projects observed

nine time times over an eighteen month period (once every two months). They run

linear regressions of output per contributor (measured as lines of code submitted)

on license type, controlling for other project characteristics and unobserved random

project effects. The results show that protecting code under more restrictive licenses

induces more output per contributor. The authors conclude that the significant effect

of license type is consistent with an ideological and/or status/signaling motivation to

open source participation as hypothesized in the basic theory of voluntary contribu-

tions (see also Bonaccorsi and Rossi (2002)).

14

4 The Model

The review of the empirical literature in the previous section highlights how prior

econometric work has focussed on the influence of monetary rewards and type of

open source license in isolation. In addition, there are no econometric studies that

attempt to identify the role of non-pecuniary benefits. In this section, we propose

an econometric framework that can be used to identify the relative importance of

non-pecuniary benefits, monetary rewards and open source license type in a single

model of forward-looking optimal decision-making.

Consider a software developer that chooses among three employment states and

three open source project participation states at the start of each period t. Assume

the decision problem begins at t = τ (age 18) and the terminal period, t = T , is

the year before retirement (age 64). The length of each time period is a year. The

three states in the employment choice set, denoted as K, are unemployment (k = 0),

post-secondary schooling (k = 1) and full-time employment as a software developer

(k = 2). The employment choice variable, deikt, is defined such that deikt = 1 if

developer i chooses employment state k at time t and deikt = 0 otherwise.

The three open source project participation states, denoted as L, are specified as

no open source project participation (l = 0), participation in a project licensed under

BSD or other licenses less restrictive than GPL (l = 1), and participation in a project

in which all licenses are GPL (l = 2).11 The project participation choice variable, dosilt,

is defined such that dosilt = 1 if developer i chooses open source participation state l

at time t and dosilt = 0 otherwise. Because the developer chooses both an employment

state k and a project participation state l in each time period t, the dimension of

the choice set in each period is K ∗ L. However, the choice set is constrained by the
receipt of job offers and open source project offers to be specified below.

11A non-negligible number of open source projects have multiple licenses attached to them (see

Lerner and Tirole (2005)).

15

The objective of the software developer is to choose an employment and project

participation state in each time t to maximize the expected present discounted value

of remaining lifetime utility. Remaining lifetime utility at time t for developer i is

Vit (Sit) = max
{deikt,dosilt}

E

"
TX
t=τ

δτ−tUit (·) |Sit
#

(1)

where Vit is the value function, Uit (·) is the utility flow, δ is the subjective discount
factor and Sit is the state space. Sit consists of all the factors known to the individual

at time t affecting current returns or the probability distribution of future returns.

The maximization problem in (1) can be recast in terms of alternative specific

value functions, V kl
it (Sit), each of which follow Bellman’s equation, i.e.,

Vit(Sit) = max
{k∈K,l∈L}

£
V kl
it (Sit)

¤
where

V kl
it (Sit) = Uit (·) + δE (Vi,t+1(Si,t+1)|deikt, dosilt, Sit) , t < T (2)

= UiT (·) , t = T.

In the terminal period T , there is no future component to the value function and the

individual maximizes current utility flow UiT .

For simplicity, Uit in (2) is assumed to be a linear function of consumption and

open source participation status, i.e.,

Uit (·) = Cit + (γ1 + vi1t) d
os
i1t + (γ2 + vi2t) d

os
i2t (3)

where Cit is current period consumption, γ1 is the non-pecuniary return to par-

ticipating in an open source project not licensed solely under GPL, and γ2 is the

non-pecuniary benefit of participating in an open source project that is licensed only

under GPL. γ1 and γ2 capture utility increases deriving from ego-gratification and

ideological satisfaction that interact with license type. vi1t and vi2t in (3) are sto-

chastic error terms that capture heterogeneity in the appeal of open source projects

within each licensing category.

16

Participation in open source projects is assumed to be constrained by the arrival

of open source project "offers". In each period t, it is assumed that there is a non-

zero probability, denoted by λos1t , that a developer receives an offer to participate in a

project not licensed solely under GPL. With probability λos2t , a developer receives an

offer to participate in a project that is licensed solely under GPL, and with probability

1− λos1t − λos2t , the developer receives no offer and cannot choose to participate in an

open source project for that period. The open source project arrival rates reflect

prior licensing decisions by project initiators and are taken as given by the individual

developer. The arrival rates could be further specified as functions of individual

characteristics and current employment state in order to capture differential search

intensity for projects on the part of developers. It is assumed that only one open

source project offer, if any, arrives in each period t.

Consumption in each period t is determined by a budget constraint that is assumed

to be satisfied in each period and which takes the following form,

Cit = b0d
e
i0t + [b1 + εi1t] d

e
i1t + witd

e
i2t − c (dosi1t + dosi2t) . (4)

b0 is the current period return to being in the unemployment state and is meant to

capture unemployment insurance, welfare benefits, liquidation of previous assets, and

the net consumption value of leisure. b1 is the deterministic component of the current

period return to being a post-secondary school student. b1 reflects in-school labor

market earnings and the net consumption value of schooling less tuition costs and

other related expenses. εi1t is the stochastic component of schooling’s current period

return which captures variability in in-school labor market earnings and other shocks

to preferences for schooling. wit is the wage the individual receives as a full-time

software developer and is also allowed to be stochastic.12 The parameter c is the

12A non-zero choice probability for each of the three employment states can be generated with

only two error terms. Therefore, it is not strictly necessary to specify the returns to unemployment

to be stochastic.

17

consumption cost of open source project participation which is restricted to be the

same regardless of open source license type. The cost of project participation includes

lost leisure time as well as the costs of submission/distribution of open source code.

The wage wit in (4) is further specified to be a function of education, experience,

age, and an unobserved individual effect. That is, wit = wit (xi1t, xi2t, osit, t, αi, εi2t)

where xi1t is accumulated years of post-secondary education, xi2t is accumulated gen-

eral experience as a software developer, and osit is accumulated specific experience

as an open source software developer. The influence of age is captured by t, αi is an

unobserved individual fixed effect, and εi2t is a productivity shock assumed to be i.i.d.

and serially uncorrelated. The wage function can also be augmented with observed

individual characteristics such as race and gender. However, it is generally difficult

to estimate dynamic programming models of labor force dynamics with εi2t allowed

to be serially correlated.

The education and experience terms in wit evolve according to the laws of motion,

xi1,t+1 = xi1t + dei1t

xi2,t+1 = xi2t + dei2t (5)

osi,t+1 = osit + dosi1t + dosi2t

with initial conditions xi1τ = xi2τ = osiτ = 0. Accumulated open source experience

is augmented by one year regardless of open source project license type. However, if

empirically important, it would be easy to allow for two different accumulated open

source experience variables.

In order to minimize the number of distributional assumptions in the model, the

unobserved individual effect, αi is specified to be stochastic with a nonparametric

mass point distribution. That is, αi is assumed to be a linear function of two unob-

served "type" dummies,

αi = θ1A1i + θ2A2i (6)

where A1i is a dummy variable for unobserved type 1 and A2i is a dummy variable for

18

unobserved type 2. A0i is a dummy for unobserved "type" 0. As the base type, A0i

is excluded from (5). In this setup, three type probabilities, which define the discrete

nonparametric distribution of αi, are estimated along with the two non-zero location

points of αi, denoted by θ1 and θ2.

Assuming a standard Mincerian wage function, wit can be written as,

wit = exp(β0k + β1xi1t + β2xi2t − β3x
2
i2t + β4osit + β5t+ θ1A1i + θ2A2i + εi2t). (7)

An additional constraint imposed on the maximization problem is that a developer

must receive a job offer prior to receiving a wage offer determined by (7). That is,

with probability λet the developer receives a wage offer of wit, and with probability

1 − λet there is no wage offer forthcoming in period t. In order to incorporate the

possibility that open source experience could have a signaling payoff as well as a direct

productivity return (as in Hann et. al. (2004)), λet could be specified as a function

of accumulated open source experience at time t, as well as individual characteristics

and previous employment state.

It is important to note that the model in equations (1)-(7) explicitly recognizes

that education, employment and open source participation choices are jointly deter-

mined as well as forward-looking. Moreover, the model makes it clear which parame-

ters are associated with current non-pecuniary benefits to open source participation,

and which parameters are associated with future monetary rewards. In addition, the

influence of open source license type in the decision to participate in an open source

project is made explicit. The relative importance of non-pecuniary benefits, future

monetary rewards and open source license type can be empirically assessed in this

model using the standard techniques of dynamic programming solution and structural

estimation (see e.g., Keane and Wolpin (1994), Keane and Wolpin (1997) and Sauer

(1998)).

19

5 Conclusion

A review of the basic theory of optimal open-source software contributions points to

three key factors affecting the decision to contribute to the open-source development

process. These three factors are non-pecuniary benefits, future expected monetary

returns, and open-source licence type. Unfortunately, the developer surveys that are

available to researchers today are inadequate for studying the relative importance of

these three key factors. Econometric studies that have collected original datasets are

also limited because they generally consider the role of monetary rewards and licence

type in isolation, and do not attempt to measure the influence of non-pecuniary

benefits.

In order to fill the gap in the literature, this paper proposes a dynamic pro-

gramming model of open-source participation decisions that could provide empirical

estimates of the relative importance of non-pecuniary benefits, monetary rewards and

licence type within a single model. The model allows for three employment states

(non-employment, schooling, and employment as a software developer) and three

open-source participation states (no participation, participation in a project not li-

censed under GPL, and participation in a project licensed under GPL). In the model,

developers choose an employment state and a project participation state in each pe-

riod but are constrained by the arrival of employment and project participation offers.

As soon as suitable panel data become available, the model could be estimated using

the standard techniques employed in the literature on the solution and estimation of

dynamic programming models.

In sum, economists’ understanding of the motivations and supply decisions of open

source developers is still at an early stage. Higher quality data and more compre-

hensive empirical models of the type proposed in this paper are needed to advance

our knowledge. A better understanding of the determinants of open source software

supply is becoming increasingly important as businesses and governments more heav-

ily rely on this “non-traditional” software to meet their computing needs. A firmer

20

grasp of the relative importance of non-pecuniary benefits, expected future mone-

tary rewards and open source license type would help predict future changes in open

source software supply as well as help economists more accurately evaluate proposed

changes in public policy that affect the software industry.

21

References

[1] Berlecon Research (2002), “Firms’ Open Source Activities: Motivations and Pol-

icy Implications,” Floss Final Report. International Institute of Infonomics, Uni-

versity of Maastricht, The Netherlands.

[2] Bonaccorsi, A., and Rossi, C. (2003), "Why Open Source can Succeed," Research

Policy, 32, 1243-1258.

[3] Boston Consulting Group (2003), Boston Consulting Group/OSDN Hacker Sur-

vey, Boston: Boston Consulting Group.

[4] Fershtman C., and N. Gandal (2007), "Open Source Motivation and Restrictive

Licensing," International Economics and Economic Policy, 4, 209-225

[5] Ghosh R., R. Glott, B. Kriger, and G. Robles (2002), Free/Libre and Open

Source Software: Survey and Study, University of Maastricht Institute of Info-

nomics and Berlecon Research GmbH, mimeo.

[6] Hann I., J. Roberts, S. Slaughter, and R. Fielding (2004), “An Empirical Analysis

of the Economic Returns to Open Source Participation,” Unpublished working

paper, Carnegie Mellon University.

[7] Harhoff D., J. Henkel, and E. von Hippel (2003), “Profiting from Voluntary In-

formation Spillovers: How Users Benefit by Freely Revealing Their Innovations,”

Research Policy, 32, 1753.

[8] Haruvy E., F. Wu, and S. Chakravarty (2003), “Incentives for Developers’ Con-

tributions and Product Performance Metrics in Open Source Development: An

Empirical Investigation,” unpublished working paper, University of Texas at Dal-

las.

[9] Hayek F.A. (1945), “The Use of Knowledge in Society,” American Economic

Review, 35, 4, 519-530.

22

[10] von Hippel E. (2002), “Open Source Projects as Horizontal Innovation Networks

— By and For Users,” MIT Sloan School of Management Working Paper No.

4366-02.

[11] Henkel, J. (2005), “The Jukebox Mode of Innovation — A Model of Commercial

Open Source Development,” Technische Universitat Munich, mimeo.

[12] Hertel, G., Niedner, S. & Herrmann, S. (2003). Motivation of software developers

in open source projects: An internet-based survey of contributors to the Linux

kernel. Research Policy, 32, 1159-1177.

[13] Johnson, J.P. (2002), "Open Source Software: Private Provision of a Public

Good," Journal of Economics and Management Strategy, 11(4), Winter, 637-

662.

[14] Keane, M.P., and K.I. Wolpin, (1994), "The Solution and Estimation of Discrete

Choice Dynamic Programming Models by Simulation and Interpolation: Monte

Carlo Evidence," Review of Economics and Statistics, 76, 648-672.

[15] Keane, M.P., and K.I. Wolpin, (1997), “The Career Decisions of Young Men,”

Journal of Political Economy, 105, 473-522.

[16] Lakhani K. and E. von Hippel (2003), “How Open Source Software Works: ‘Free‘

User-to-User Assistance,” Research Policy, 32, 923-943.

[17] Lakhani K. and R. Wolf (2005), “Why Hackers Do What They Do: Understand-

ing Motivation and Effort in Free/Open Source Software Projects,” in J. Feller,

B. Fitzgerald, S. Hissam, and K. Lakhani (eds.) Perspectives in Free and Open

Source Software, MIT: Cambridge and London.

[18] Lerner J. and J. Tirole (2002), “Some Simple Economics of Open Source,” Jour-

nal of Industrial Economics, 52, 197-234.

23

[19] Lerner J. and J. Tirole (2005a), “The Economics of Technology Sharing: Open

Source and Beyond,” Journal of Economic Perspectives, forthcoming.

[20] Lerner J. and J. Tirole (2005b): “The Scope of Open Source Licensing,” Journal

of Law, Economics, and Organization, 21, 20-56

[21] MacCormack, A. (2003), "Evaluating Total Cost of Ownership for Software Plat-

forms: Comparing Apples, Oranges and Cucumbers," AEI-Brookings Joint Cen-

ter for Regulatory Studies, mimeo.

[22] Maurer, S.M., and S. Scotchmer (2005), “Open Source Software: The New In-

tellectual Property Paradigm,” NBER Working Paper 12148.

[23] Raymond E. (1999a), “The Cathedral and the Bazaar,” The Cathedral and the

Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary,

Cambridge: O’Reilly, 19-64.

[24] Raymond E. (1999b), “Homesteading the Noosphere,” The Cathedral and the

Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary,

Cambridge: O’Reilly, 65-112.

[25] Raymond E. (1999c), “The Magic Cauldron,” The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental Revolutionary, Cambridge:

O’Reilly, 113-143.

[26] Sauer, R.M. (1998), "Job Mobility and the Market for Lawyers," Journal of

Political Economy, 106, 147-171.

[27] West J. and S. Gallagher (2004), “Key Challenges of Open Innovation: Lessons

from Open Source Software,” San Jose State College of Business, mimeo.

[28] Wheeler, D. (2004), "Why Open Source Software/Free Software (OSS/FS)? Look

at the Numbers!" http:///www.dwheeler.com/oss_fss_why.html (accessed De-

cember 12, 2004).

24

Table 1

Descriptive Statistics
FLOSS-EU
(N=2718)

Mean/Column %
Age 27.1

Male 98.9

Single 41.4

University Degree .70
(BA, MA or PhD)

Profession
Software Engineer 33.3
Programmer 11.2
Consultant 10.4
University 9.3
Other 14.9
Student 20.1

Monthly Income (Euro/USD)
0 7.3
<1000 22.1
1001-3000 40.1
3001-5000 18.6
5001-7500 6.0
>7500 5.0

Weekly Hours Developing OS/FS
<2 22.5
2-5 26.1
6-10 20.0
11-20 14.3
21-40 9.1
>40 7.1

Country of Birth
EU Countries .70
North America .14
Other .16

Immigrant .10

Source: Gosh et. al. (2002)

1

Table 2

Developer Motivations
FLOSS-EU
(N=2718)

Percentage
Reason Joined OS/FS Community?
learn and develop new skills 78.9
share knowledge and skills 49.8
participate in a new form of cooperation 34.5
improve OS/FS products of other developers 33.7
participate in OS/FS scene 30.6
software should be free 30.1
solve problem couldn�t with proprietary software 29.7
improve job opportunities 23.9
get help in realizing idea for a software product 23.8
limit power of large software companies 19.0
get a reputation in OS/FS community 9.1
distribute not marketable software product 8.9
make money 4.4
don�t know 1.9

Receive Monetary and Non-Monetary Rewards from OS/FS?

no, do not earn money from OS/FS 46.3
yes, directly; paid for administering OS/FS 18.4
yes, indirectly; got job because of OS/FS experience 17.5
yes, directly; paid for developing OS/FS 15.7
yes, indirectly; but also develop OS/FS at work 12.8
yes, directly; paid for supporting OS/FS 11.9
yes, indirectly; other reasons 7.8
yes, indirectly; job discription doesn�t include OS/FS Work 5.2
yes, directly; other reasons 4.4

Source: Gosh et. al. (2002)

2

	opensource.pdf
	Tables.pdf

