

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

DeVoretz, Don J.; Vadean, Florin P.

Working Paper

A model of foreign-born transfers: evidence from Canadian micro data

IZA Discussion Papers, No. 1714

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: DeVoretz, Don J.; Vadean, Florin P. (2005): A model of foreign-born transfers: evidence from Canadian micro data, IZA Discussion Papers, No. 1714, Institute for the Study of Labor (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/33274

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

IZA DP No. 1714

A Model of Foreign-Born Transfers: Evidence from Canadian Micro Data

Don J. DeVoretz Florin P. Vadean

August 2005

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

A Model of Foreign-Born Transfers: Evidence from Canadian Micro Data

Don J. DeVoretz

RIIM, Simon Fraser University and IZA Bonn

Florin P. Vadean

HWWA Hamburg and RIIM, Simon Fraser University

Discussion Paper No. 1714 August 2005

IZA

P.O. Box 7240 53072 Bonn Germany

Phone: +49-228-3894-0 Fax: +49-228-3894-180 Email: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit company supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT

A Model of Foreign-Born Transfers: Evidence from Canadian Micro Data*

This paper models financial transfers outside the household for both the Canadian-born and foreign-born Canadian populations in a traditional expenditure framework. Using survey data we estimate transfer functions as part of a larger expenditure system and calculate Engel elasticities for remittances by both the Canadian and foreign-born populations. We conclude that transfers outside the household are a normal good for recent Asian immigrants and a luxury good for all other immigrants and Canadians. Immigrant transfers upon arrival are greater than Canadian-born transfers indicating a strong entry effect. Assimilation or convergence to the Canadian-born norm over time is however very slow. We also find evidence of negative foreign-born transfers as sending country households remit to Canadian immigrant households. Finally, all foreign-born groups generally consider remittances to charitable organizations a greater necessity than inter-household transfers.

JEL Classification: J63, O15

Keywords: immigration, remittances

Corresponding author:

Florin P. Vadean Hamburg Institute of World Economics (HWWA) Neuer Jungfernstieg 21 D-20347 Hamburg Germany

Email: Florin.Vadean@hwwa.de

* Support from RIIM, Simon Fraser University, Friedrich Naumann Foundation and IZA, Bonn are noted with appreciation. A preliminary version of this paper was presented at Migration and Development-Working with the Diaspora Seminar, ILO Berlin May, 2004.

Introduction

The role of remittances in the traditional economic development literature is substantial but largely focused on the size and potential impact of migrant transfers in the immigrant sending country (Straubhaar and Vadean, 2004). In a more modern setting, remittances have been more explicitly linked to the motivations to remit by the diaspora communities' residents in major immigrant receiving regions (Aescobar, 2004 and Adams, 2004, 1998). This paper expands on this literature by assessing the motivations of Canadian immigrant households to remit within an explicit immigration policy environment. In short, we ask what are the motivations to remit by the large and permanent legal diaspora communities in Canada? By answering this question we will provide a contrasting example to the existing studies which concentrate on the motivations to remit from temporary and perhaps illegal diaspora communities (e.g. Mexicans in the U.S.) or from more permanent refugee communities in Europe.

The foreign-born Canadian resident population studied in this paper is large (5 million), diverse and growing (250,000 per year). In addition, the vast majority of these foreign-born residents are admitted to Canada on a permanent basis (96%) and often accompanied by their immediate families. Finally, Canada's family reunification policy permits sponsorship of parents and grandparents with no explicit waiting period thus potentially blunting the motivation to remit. Under these conditions of a guaranteed permanent residence for the nuclear immigrant household and the prospect of relatively expeditious family reunification as well as quick ascension to citizenship we test the motivation to remit in the Canadian context with a formal expenditure model.

Literature Review

Cox (1987) argues that there exist two main motivations for private income transfers: altruism and exchange. Becker (1974) earlier stated that an income transfer was a benevolent act which promoted well-being and equality across the extended family. In a less altruistic version of the

.

¹ Permanent Canadian immigrants upon admission are permitted to immediately bring with them their spouse and any minor (under age 19) children. In 2001, only 198,640 foreign-born residents were non-permanent out of a total of 5.7 million total foreign-born residents (Statistics Canada 2001)

a total of 5.7 million total foreign-born residents (Statistics Canada, 2001).

There is however a financial constraint on family reunification. Before an immigrant can sponsor a relative, the sponsor must demonstrate financial viability. This is accomplished by demonstrating that the immigrant household's income from non-government transfers exceeds the poverty line (LICO) in the city of residence. This value circa 2005 is approximately \$40,000 in urban Canada and beyond the reach of the vast majority of recent Canadian immigrants.

³ Over 75% of Canada's foreign-born population had ascended to citizenship in 1996 (DeVoretz and Pivnenko, 2004).

exchange model proposed by Bernheim, Shleifer and Summers (1985), transfers are motivated by the prospect of a later exchange for services by extended family members.

Lucas and Stark (1985) more broadly addressed the range of immigrant transfer motives and classified immigrant intentions to remit as those motivated by pure altruism, self-interest and tempered altruism or enlightened self-interest. The pure self-interest motivation includes an aspiration to inherit and a desire to invest in assets at home, especially when the immigrant intends to return to his/her home country. If remittances occur as the result of a beneficial contractual agreement between the migrant and home, they are termed by Lucas and Stark (1985) as acts of "tempered altruism or enlightened self-interest". One example of this case is when remittances are in fact a repayment to the migrant's family for a previous educational investment in the immigrant. Migrants may also transfer part of their income home because of an implied coinsurance contract between the them and the family. Under this system the motivation to remit is to secure the help of the family when the need arises (Stark 1991).

Limited empirical evidence tends to support some of the above hypotheses. Cox and Rank (1992) find that empirical patterns for inter-vivo transfers are more consistent with exchange than altruism.⁴ Cox (1987) reached a similar conclusion. Duraisamy et al. (2000) find a strong positive association between family ties and remittances and argue that this is indirect evidence in support of the altruism hypothesis

Other evidence reports a link between remittances, intention to return home and investment in human and physical capital. Ahlburg et al. (1998) found little evidence to support the assumption that immigrants who plan to return home embody significant human capital. However, they discovered that those who plan to return remit significantly more and also accumulate far more physical capital at home than those who do not plan to return. Brown (1994) finds that more funds are remitted when they are intended for savings and investment rather than when they are used for family consumption.

Shamsuddin and DeVoretz (1998) have analyzed the more general question of wealth accumulation of immigrant and non-immigrant households in Canada. They have found a strong transfer (bequest) motive for the Canadian foreign born and a bias toward home ownership in the investment portfolios.⁵ They note that these two phenomena should act as a substitute for transfers outside the household.

-

⁴ Inter vivo transfers are those between living persons (vs. bequests).

⁵ Diduukh (2002) also notes this possible home ownership-remittance substitution.

This diverse sampling of the modern remittance literature suggests a complex set of motives to remit. For purposes of this paper several points emerge. First, the legal status of resident immigrants (permanent, temporary, illegal) should condition the size of the household transfers. Secondly, family reunification policies or the presence of family members at home or away will affect the flow of remittances. Also, remittances should appear as substitutes for household savings, wealth accumulation and home ownership for the foreign-born household. We will incorporate these features in the model developed below.

Model

This section presents an utility maximization model which describes the conditions under which positive, negative or null financial household transfers arise. Under a multi-period framework (four stage model) changes in household composition (spouse at home or away), family reunification, altered immigrant status (temporary or permanent with or without citizenship) and the possibility of intermittent return migration all will affect the size and direction of transfers. We theorize that household members derive utility from consumption and social relations with other household members, relatives left behind and membership in social/religious groups. Thus, we distinguish between two kinds of transfers: transfers to persons outside the household and charity donations, that denote group membership.

Stage I

In stage I the (i^{th}) household consists of one individual resident in country (B) with a temporary visa (I_t) with no dependents abroad (F(0)) in country (A). The (i^{th}) household's utility function is given as:

$$U_i^B = \left[(Y_i - S_i), T_i, CD_i, F, I_s \right] \tag{1}$$

where:

 U_i^B equals total household utility of the (ith) household resident in country (B);

 $(Y_i - S_i)$ equals home consumption or income (Y_i) minus domestic savings (S_i) by the (i^{th}) household in country (B);

 T_i equals financial transfers to persons household by the (ith) household in country (B);

CD_i equals financial transfers to charity by the (ith) household in country (B);

F equals the number of close relatives resident in country (A);

 I_s equals (ith) immigrant's status: temporary (I_t) permanent (I_p) or citizen (I_c) in country (B);

 $T_i + CD_i$ equals S_i ; i.e. no borrowing.

Now, we will present the case of a temporary immigrant resident in country (B) with zero foreign dependents generating zero transfers to persons (Case A) or positive transfers to persons (Case B).

Stage I, Case A: T=0 (no transfers)

If the one person household resident in country (B) maximizes his utility (U_i^B) with a budget constraint (eq. 2.1) and a leisure constraint (eq. 2.2) we can solve for the equilibrium transfer condition (eq. 3) or

$$U_i^B = [(Y_i - S_i), T_i, CD_i, F(0), I_t]$$
(2)

subject to:

 $Y_i = (W \times w) \text{ and} \tag{2.1}$

$$W = (H_i - L_i) \tag{2.2}$$

where (W) equals number of hours worked, we equals the given wage, $H_i = 24$ and (L_i) equals number of hours of leisure and

⁶ These dependents include a possible spouse or child and of course parents, grandparents or minor siblings.

$$(Y_i - S_i) = \phi(p_i \times x_i) \tag{2.3}$$

or income (Y_i) minus savings (S_i) equals total expenditures $(\phi(p_i \times x_i))$ of the (i^{th}) household.

Now differentiate (2) with respect to first (Y_i-S_i) and then (T_i) and the first order conditions yield

$$\frac{\delta U_i^B}{\delta (Y_i - S_i)} = \frac{\delta U_i^B}{\delta T_i} \tag{2.4}$$

Or household utility is now maximized if the marginal utility of a remitted dollar δT_i equals the marginal utility derived from one more unit of home consumption $\delta(Y_i - S_i)$. Thus, if there is only one member in the household and if the relative price for all consumption goods is cheaper in country (B) then transfers to home country (A) to purchase goods is zero.

In Stage I, with all conditions similar to those outlined above for (Case A) except a change in relative goods prices and the presence of a relative in country (B), positive transfers could be generated.

Stage I, Case B: $T_i > 0$ (positive transfers to persons)

If there is at least one good which is a non-tradable (e.g. housing) which is cheaper in the immigrant's sending country (A) then transfers will be positive. This arises as one dollar is transferred from consumption in country (B) or $\delta(Y_i - S_i)$ to country (A) to restore the equilibrium conditions in eq. 2.4.

Stage II

In Stage II, the head of household ages and becomes married (with or without children). However, the head of household who is resident in country (B) still holds a temporary visa which does not permit reunification with his or her spouse. Under this condition F(>0), i.e. the spouse lives in country (A) and the head of household lives in country (B). Now it is possible to generate either positive or negative transfers.

Stage II, Cases A and B: T>0 or T<0

Thus, if there exists a two member household and if the relative price for at least one non-tradable consumption good in their joint utility function is cheaper in country (B), then remittances are negative (T<0) as money is transferred from country (A) to (B). In the

⁷ We assume that all tradables are competitively traded and prices are equalized.

opposite case where at least one non-tradable consumption good in their joint utility function is cheaper in country (A) then transfers are positive (T>0) from country (B) to (A).

Stage III

Stage III, Case A: certain reunification

In Stage III we permit two possible cases. In (Case A) the head of household in country (B) holds now a permanent visa (I_p). Under this condition and given that his/her dependents initially live in country (A) or F (>0), the spouse and children (or parents) could now migrate to country (B). If reunification occurs then we revert to (Case A) or (Case B) under Stage I if both spouses have identical tastes. If the reunited spouse arrives in country (B) with a different set of tastes than the head of household (i.e. the original immigrant) then the potentially different set of relative prices between countries (A) and (B) could affect the direction of the now reunited household's transfers. For example, if the reunited household member's (spouse 2) consumption bundle includes a non-tradable good only available in country (A), (spouse 2) transfers money to country (A) and the other spouse would not.

Stage III, Case B: uncertain reunification

Stage III is characterized by the spouse's possession of a permanent resident visa which allows reunification and the choice set now becomes even more complicated than that implied by the above paragraph. If the costs of the consumption set for both the spouse and any other dependent(s) resident in country (A) are cheaper than the costs of an identical consumption set in country (B) then the rational action of the household members is to decide to stay separated, if the households members derive no additional utility from living together. Thus, the spouse in country (B) should increase the level of transfers from (B) to (A) up to the net difference in cost of purchasing the desired consumption bundle between countries (A) and (B). In other words eq. 3 will determine if the spouse migrates to country (B) when **LHS** is greater than **RHS** or vice versa.

$$\frac{\delta U}{\delta T} \times \frac{\delta T}{\delta F} > or < \frac{\delta U}{\delta F} \times \frac{\delta F}{\delta T}$$
 (3)

If the **RHS** exceeds the **LHS** than an increase in transfers (δT) reduces the potential number of reunited family members (δF) and in turn raises utility more than the prospect of increasing the number of united family members (and reducing transfers) will raise the household's utility level.

Stage IV: Citizenship⁸

Stage IV, Case A: no dual citizenship and T=0 (no transfers to persons)

We build on the Stage III case by incorporating the implications of the head of household and the spouse converting from a permanent visa status to citizenship status. In (Case A) of Stage IV the head of the foreign-born household and the resident spouse must ascend to citizenship in country (B) or return to his-her country of origin. If both parties choose citizenship and neither country (A) or (B) recognize dual citizenship then remittances tend toward zero if the number of family members (including parents) abroad is zero. This result arises since we argue that citizenship is required in country (A) to either enter the labor market or own real property or access social programs.

Stage IV, Case B: partial dual citizenship and T<0 (transfers received from persons)

Now if we expand on the conditions in (Case A) above and admit the possibility that country (B) recognizes dual citizenship but country (A) does not then one spouse can be bribed to remain in country (B) to ascend to citizenship while the other spouse returns to country (A). If there is a perceived economic value to obtaining citizenship in country (B) then the choice set for consumption goods for the (ith) individual with citizenship in (B) is larger than the spouse without citizenship. In addition, if one of the two spouses has a comparative advantage in working in country (A) then the spouse returns to country A. Now one spouse works in country (A) and one in country (B) and even if all non-tradable market goods have equal prices across countries (A) and (B) remittances will occur. Negative remittances will arise if the non-citizen spouse residing in country (A) sends money from country (A) to (B) to support his spouse while this spouse awaits citizenship ascension. Thus, under partial dual citizenship and given a comparative advantage in earned income across spouses, negative remittances will occur during the waiting period for ascension to citizenship in country (B). These negative remittances will be larger in the presence of children in country (B). 10 After the resident spouse in country (B) becomes a citizen in country (B) reunification may occur as the spouse in country (A) immigrates to country (B) and reverse remittances cease.

In sum, the main argument in this model is that passage of time or aging of the household is associated with predictable changes in the legal, economic and demographic

⁹ This is the case when citizenship confers greater employment possibilities, welfare benefits or a passport with wider acceptability than the original one held by the immigrant.

⁸ Discussion with C. Fu led to this analysis.

¹⁰ If there are dependents in the household, they would also remain in country B since they would gain citizenship automatically when the resident spouse obtains citizenship.

status of the foreign-born Canadian household. In turn, these changes will condition the direction and the amount that households allocate to transfers outside the household.

Later we will specify an expenditure system, which reflects both the model's arguments and the Canadian institutional setting.¹¹

Stage V: Charitable Donations

As we assumed above, households can derive utility not only from relations to relatives, but from membership in social/religious groups as well. Therefore, they could engage in parallel activity with charitable transfers. 12 We argue that households can specialize either in transfers to persons or charitable donations or both. Below we briefly describe the motivations for charitable donations.

Stage V, Case A: no charitable donations (CD=0)

If the household perceives no utility gain from being a member of a social/religious group, no charitable donations will be made, since $\delta U_i / \delta CD_i = 0$.

Stage V, Case B: positive charitable donations (CD>0)

When group membership yields utility, this implies that $\delta U_i/\delta CD_i > 0$. In this case the choice becomes at the margin:

$$\frac{\delta U_i}{\delta CD_i} > or < \frac{\delta U_i}{\delta T_i} \text{ and } \frac{\delta U_i}{\delta CD_i} > or < \frac{\delta U_i}{\delta (Y_i - S_i)}$$
 (4)

If the LHS is greater than the RHS, i.e. the marginal utility charity donations is greater than the marginal utility from transfers to relatives, and simultaneously greater than the marginal utility from household consumption, positive charitable donations will be made. These charitable transfers will continue until $\delta U_i/\delta CD_i = \delta U_i/\delta T_i = \delta U_i/\delta (Y_i - S_i)$.

Data and Descriptive Statistics

The data sets used for this analysis with their respective sample sizes are the 1992 (9,492) and 1996 (10,417) Family Expenditure Surveys (FAMEX), Income Statistics Division, Statistics Canada. Data where collected by means of filling out a detailed questionnaire during one or

8

 $^{^{11}}$ Some of our arguments, namely those surrounding citizenship status will not be tested due to data limitations. 12 The latest assuring the membership status.

several interviews. Thus, income, expenditures and transfers data in the surveys are selfreported.

The focus of this study is to investigate possible differential patterns of private transfers by Canadian-born and foreign-born households. We will use the Canadian-born population as our reference group since presumably they have no immediate attachments abroad. The research period 1992 to 1996 is of interest because it encompasses a dynamic period of expanding Canadian immigration inflows which dramatically shifted to Asian source countries and this switch in source countries may affect the taste for transfers in the immigrant community.¹³

These surveys, while extensive, have certain shortcomings. The 1992 survey includes a variable indicating the immigration year arrival for the foreign-born population, while the 1996 survey does not report this variable. We run the main analysis with pooled data for the 1992 and 1996 surveys. However, when controlling for time spent since immigration we use the 1992 survey only.

We will focus on households over their normal economic life and will limit our sample to those households whose head is older than 25. Only observations with positive and non-zero income, total expenditures and total transfers were kept in the regressions.¹⁴ Observations with negative expenditures for the different expenditure groups were excluded. Other observations with "masked" or "non-stated" responses (i.e. education, region of residence, country of birth etc.) were excluded as well. In addition, the head of household is chosen as the highest income earner. 15 This definition of the household head will allow us to define a foreign-born (Canadian-born) household as one in which the highest earner is foreign-born (Canadian-born). The data from the pooled 1992 and 1996 surveys, given the above screening yields 16,318 surveyed households.

Demographic, Income and Transfer Variables

Data used in this study does not allow us to differentiate between transfers sent inside or outside Canada. However, we can differentiate between transfers made to persons and transfers to charity. An inspection of the actual transfer data indicates that many households specialize in the destination of their transferred funds. Specifically, 11 percent of the households transfer money exclusively to charitable organizations while over 18 percent

¹³ In 1968 75 percent of Canadian immigrants came from Western Europe and North America, by 1992 25 percent came from these sources.

14 About 10 percent of the households did not make any transfers to persons or charity.

transfer money only to persons and the remaining 71 percent of the sample transfer to both individuals and charitable groups. We hypothesize that charitable remittances should respond differently to household income since these donations are tax deductible and do not imply a contractual motive to extended family members.

Table 1: Some Descriptive Data by Population for the 1992 and 1996 surveys (mean values)

Variable

Population Group

variable	Population Group							
	Can	adian	N.Am8	kW.Eu.	S&E E	urop.	Ch.,Asi	an&Oc.
	1992	1996	1992	1996	1992	1996	1992	1996
Woman as HH head	0.43	0.45	0.42	0.46	0.31	0.40	0.31	0.40
Age of HH head	47.85	48.42	55.13	54.79	53.41	54.70	45.86	44.83
Years since immigration	n.a.	n.a.	31.52	n.a.	n.a. 28.89 n.a		13.88	n.a.
Education	2.74	2.93	3.09	3.05	2.39	2.47	3.30	3.51
HH size	2.61	2.54	2.41	2.35	2.75	2.74	3.31	3.49
Home ownership	0.64	0.66	0.68	0.69	0.76	0.75	0.56	0.71
HH income after taxes	38,382	40,012	38,887	41,435	36,905	39,535	40,831	45,156
Income per HH member	14,695	15,769	16,136	17,595	13,425	14,403	12,332	12,953
Net change in assets	2,014	3,839	2,048	4,500	1,581	2,334	2,623	2,877
Transfers to persons	1,177	1,352	1,861	1,855	1,455	1,875	1,402	1,369
Transfers to charity	370	397	645	588	339	407	393	381
Observations	6,893	7,077	545	631	289	343	196	344

Source: Authors' calculations; Family Expenditures Survey 1992 and 1996, Statistics Canada.

Notes: Education levels are 1 = less than 9 years, 2 = some or completed secondary, 3 = some post-secondary, 4 =

Post secondary degree, 5 = University degree; Monetary values in 1992 dollars

Table 1 reports some descriptive statistics for various population groups and the two survey years we included in our analysis: 1992 and 1996. The data allow us to distinguish between Canadian-born and four foreign-born groups: North American and West European, South and East European, China, Asia and Oceania, and Others and Non-Stated. We excluded the last foreign-born group from our analysis, since it was felt to be too heterogeneous.

Table 1 highlights the dramatic shift in Canadian immigration by source country from non-Asian to Asian countries between 1992-1996. Thus, heterogeneity arises in the foreign born population since Asian immigrants are younger, contain more males and have a significantly shorter immigration history in Canada than the remaining foreign-born groups. Also, Asian immigrant heads of households are better educated than the other foreign-born groups. However, Asians live in larger families and thus report a lower income per household member than other immigrant groups. As a consequence Asian immigrants remitted in absolute values the lowest amounts either to other households or charity. In contrast the group with the highest absolute remittances, both to persons and charity, are the North American

¹⁵ We assume that the highest earner is the person who determines the household's expenditure patterns.

and West European immigrant households. They remitted about 35 percent more than the Asian immigrants in 1996, with a 35 percent higher income per household member.

Table 1 reports similarities in the patterns of transfers as a percentage of income per household. For example, regardless of their foreign-born status, households transferred about 1 percent of their income as charitable donations. In contrast, their transfers to persons varied by place of birth. Canadian and Asian immigrant households remitted about 3 percent of their income, while North American and West European and South and East European immigrant households remitted 4.5 percent of their income.

We now turn to a more in depth analysis of the household transfer data in two particular areas which will support out earlier model development and ultimately condition our tests.

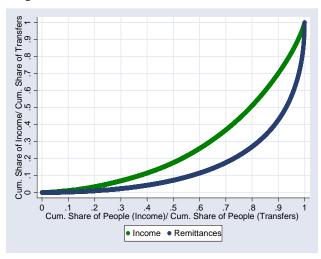


Figure 1: Lorenz curves for Income and Transfers

Source: Authors' calculations; Family Expenditures Survey 1992 and 1996, Statistics Canada.

First, a preliminary analysis of the data indicates that the mean values for remittances are dominated by a limited number of households. Figure 1 plots the cumulative rank against the cumulative share of transfers by all households who made a positive remittance in 1992 and 1996. We can observe that 30 percent of the households remitted 80 percent of all remittances. The remaining 70 percent of the households remitted only 20 percent of the observed transfers in our pooled 1992/1996 sample. The Gini coefficient thus, assumed a high value of 0.66. Households, regardless of their foreign-born status, revealed a near identical distribution pattern which indicated that a few donate most of the observed transfers. We now

-

¹⁶ Anticipating our estimation problems with zero values we omitted them in this Gini calculation which is thus a lower bound estimate of the true degree of inequality.

ask how does this distribution compare with the distribution of household after-tax income, that presumably determines the ability to remit? Figure 1 reports a much more equally distributed size distribution of income (Lorenz curve) with a calculated Gini equal to 0.31 with the highest 30 percent of earners receiving about 60 percent of total population income.

Transfers Received

Our model predicted two polar cases and one intermediate case of immigrant household transfers.¹⁷ To confirm the existence of these cases we report three empirical cases derived from our data set to illustrate these classifications. First, we present the case of the households that have positive remittances to persons outside the household. Next, we present the second case where households receive remittances and then we analyze the more typical case where the households either receive funds, or send funds or do both simultaneously.¹⁸

We screened the data as in the case of transfers remitted, with the single exception that for this analysis we kept all observations with simultaneously non-zero transfers to persons and transfers received (instead of non-zero total transfers remitted). This data filtering yielded 15,559 observations from the pooled 1992 and 1996 surveys.

Table 2: Descriptive Statistics for Transfer Received, pooled 1992 and 1996 surveys

Variable Population

	Canadian			N.Am.&W.Eu.			S&E Europ.			Ch.,Asian&Oc.		
	Tr. rem.	Tr. rec.	Net tr.	Tr. rem.	Tr. rec.	Net tr.	Tr. rem.	Tr. rec.	Net tr.	Tr. rem.	Tr. rec.	Net tr.
% Woman as HH head	0.45	0.47	0.45	0.44	0.44	0.44	0.36	0.38	0.36	0.39	0.38	0.40
Age of HH head	47.74	46.25	47.60	54.76	53.17	54.68	53.76	52.95	53.79	45.16	44.79	45.09
Education	2.86	2.88	2.83	3.09	3.13	3.07	2.44	2.40	2.43	3.45	3.50	3.41
HH size	2.57	2.62	2.57	2.37	2.39	2.36	2.76	2.78	2.77	3.39	3.21	3.35
HH income after taxes	39,694	39,021	38,821	40,748	40,829	40,166	39,120	38,858	38,653	43,787	43,107	42,902
Net change in assets	2,838	2,648	2,736	3,261	3,086	3,134	1,796	2,269	1,741	2,667	2,625	2,443
Transfers remitted	\$1,454			\$2,104			\$1,936			\$1,602		
Transfers received		\$675			\$574			\$534			\$639	
Net transfers			\$850			\$1,565			\$1,540			\$1,158
Observations	12,406	9,949	13,365	1,045	808	1,114	556	347	579	471	265	501

Source: Authors' calculations; Family Expenditures Survey 1992 and 1996, Statistics Canada.

Notes: Net transfers are calculated as transfers to persons minus transfers received. Monetary values in 1992 dollars.

_

¹⁷ One of the cases occur in stage II when the price of a non-tradable is cheaper in the destination country and one household member lives in the origin country and transfers money to purchase this good (e.g. a house) in the destination country. The other case occurs in stage IV under limited dual citizenship where one spouse remains in the destination country to gain citizenship whilst the other spouse works in the origin country and sends funds to country B.

¹⁸ The model permits the possibility of other agents beyond the spouse who live outside the immediate household to transfer funds. For example, parents of either spouse may live abroad and send monies to their grandchildren resident in the destination country. Thus, one adult child in the destination can send money to his parent abroad

Table 2 reports that for all Canadian households, regardless of origin, the average amount of transfers remitted is much greater than the average amount of transfers received. Thus, net transfers are positive. The highest average transfers were reported for North America, West European and South and East European immigrant households. Nonetheless, negative transfers are substantial in all cases with Asian households in particular receiving a substantial amount (CA\$ 639).

Econometric Specification

It is a basic premise of this paper that the act of private transfers is embedded in the household's utility maximization framework (eq.1) and is thus a part of the household's allocation process across a general expenditure system. To reflect this, the chosen demand system used in this paper is the Linear Approximate/ Almost Ideal Demand System (LA/AIDS). Thus, for the (ith) commodity, the model can be specified as follows:

$$w_i = \alpha_i + \sum_i \gamma_{ij} \ln p_j + \beta_i \ln(y/p^*) + \varepsilon_i$$
 (5.1)

where $(w_i = p_i \times q_i / y)$ is the budget share of the (i^{th}) good, (p_j) is the price of the (j^{th}) good, (y) is total expenditure, and (p^*) is a Stone price index $(\ln p^* = \sum w_i \ln p_i)$. To insure that this demand system conforms to the recognized properties of the utility maximization model outlined in (eq. 1) equation (5.1) must satisfy the adding up, homogeneity and symmetry conditions:

a) adding up:
$$\sum_{i=1}^{n} \alpha_{i} = 1; \sum_{i=1}^{n} \beta_{i} = 0; \sum_{i=1}^{n} \gamma_{ij} = 0$$
 (5.1.1)

b) homogeneity:
$$\sum_{i=1}^{n} \gamma_{ij} = 0$$
 (5.1.2)

c) symmetry:
$$\gamma_{ii} = \gamma_{ii}$$
 (5.1.3)

Provided that (5.1.1), (5.1.2), and (5.1.3) hold, equation (5.1) represents a system of demand functions that are homogenous of degree zero in prices and total expenditures and also satisfy the Slutsky symmetry conditions. The LA/AIDS is simple to interpret: in case of constant relative prices and "real" expenditure (y/p^*) the budget shares are constant. This is the natural starting point for the predictions using the model. Changes in relative prices work through the terms (γ_{ij}); each (γ_{ij}) represents 100 times the effect on the (i^{th}) budget share of a

whilst the other spouse's parent can send money to the grandchild resident in the destination country. This creates the case of the simultaneous transmission of funds between countries A and B.

1 percent increase in the (ith) price with (y/p^*) held constant. Changes in real expenditure operate through the (β_i) coefficients; these add to zero and are positive for luxuries and negative for necessities. Using the estimate (β_i) Engel elasticities can be calculated as follows:

$$e_i = 1 + \frac{\beta_i}{w_i^*} \tag{5.2}$$

where (e_i) is the Engel elasticity and (w_i^*) is the mean share of expenditures on the (i^{th}) good for the entire sample; these are greater than one for luxuries, less then one for necessities, and equal to one for normal goods.

A demographically enhanced demand system can be written as follows:

$$w_i = \alpha_i + \sum_{i=1}^n \gamma_{ij} \ln p_j + \beta_i \ln(y/p^*) + \delta_{ik} X_k + \varepsilon_i$$
(5.3)

where (X_k) is a the set of demographic control variables drawn from our model that depict the life-cycle stage of the household.

Finally, we have a demand system which is of particular interest to us since it allows for cohort and assimilation effects:

$$w_{i} = \alpha_{i} + \sum_{i=1}^{n} \gamma_{ij} \ln p_{j} + \beta_{i} \ln(y/p^{*}) + \delta_{ik} X_{k} + \sum_{s} (\phi_{is} + \theta_{is} D) \times R_{s} + \varepsilon_{i}$$

$$(5.4)$$

where (R_s) is a dummy variable that is equal to one if the household belongs to immigrant group (s) and zero otherwise. (D) denotes the duration of the foreign-born household residence (vintage of immigrant). This extended model is designed to match the description of the behavior of immigrants in the sociology literature.¹⁹ There immigrants are assumed to arrive with a set of cultural values and tastes which are different from those of the natives; this is reflected by possible non-zero values for (ϕ_{is}). Over time, via assimilation, the behavior of immigrants may become more similar to that of the natives. In our model this would be the case when the sign of (θ_{is}) is opposite to the sign of (ϕ_{is}). In this case, after ϕ_{is}/θ_{is} years in the host country, the immigration and cultural effects would reach zero. Thus, the set of parameters (ϕ_{is}) can be interpreted first as a general *immigration entry effect*. If (ϕ_{is}) differs significantly across immigrant groups, we interpret this as evidence for country specific *cultural effects* as well. (θ_{is}) can be interpreted as the *assimilation effect* on transfers

over time, but if (θ_{is}) differs significantly across immigrant groups, we shall have found evidence of *cultural effects* on the speed of assimilation.²⁰

Two-stage budgeting and weak separability

We employ a two-stage budgeting process to uniquely characterize how households may make their transfer decisions with respect to other items in the consumption bundle. The household allocates in the first stage total income across aggregate groups of expenditures. In the second stage, group expenditures determined in the first stage are allocated across the expenditure classes contained in the groups. Because expenditure allocation to any good within a group can be written as a function only of the total group expenditure and the prices of goods within that group, the demand for any good belonging to that group must also be expressed as a function of total expenditures on the group and the prices of goods within the group only. In order to satisfy such a condition, certain assumptions must be made. A necessary and sufficient condition to satisfy the second stage of two-stage budgeting is "weak separability".21

Weak separability of an utility function over a given set of commodities implies that the marginal rate of substitution between any two goods within one group of goods is independent of the level of consumption of any other group of goods. Thus, if this condition holds in our sample, then it is correct to specify the demand for these transfers independent from the other groups. The sole connection between the commodity groups is via the income or expenditure effect.

Allen's partial elasticities of substitution are commonly invoked to test for separability. The utility function is weakly separable into the commodity groups (A) and (B) if:

- a) the partial substitution elasticities between different commodities of the group (A) and of the group (B) are identical, i.e. $\sigma_{lm} = \sigma$ for all $l \in A$ and $m \in B$, and
- b) the utility sub-functions are homothetic, i.e. $\sum_{l} \beta_{l} = 0$ and $\sum_{m} \beta_{m} = 0$.

From the relation between substitution elasticities and compensated price elasticities we have $\sigma_{lm} = 1/w_m \times \Theta_{lm}^*$. The compensated price elasticities are calculated $\Theta_{ij}^* = w_j + \gamma_{ij} / w_i w_j$ for $i \neq j$. Thus, we have $\sigma_{lm} = 1 + \gamma_{lm} / w_l w_m$.

See Thomas (1992).
 See Carroll et al. (1994) for this interpretation.
 See Deaton and Muellbauer (1993).

To test if this restrictions are satisfied we apply a likelihood ratio test comparing the system of equations with and without the restriction imposed.

Empirical Results

LA/AIDS is a system of seemingly unrelated equations with identical repressors and cross-equation restrictions, e.g. $\gamma_{ij} = \gamma_{ji}$. For its estimation we thus use Zellner's Seemingly Unrelated Regression (SUR). For the dependent variable the following must hold: $\sum_{i=1}^{n} w_i = 1$.

This restriction implies further restrictions on the right hand side, in particular $\sum_{i=1}^{n} \varepsilon_i = 0$. The residuals are linear dependent and their covariance matrix is singular.²² Green (2003) shows that the solution to the singularity problem is to arbitrarily drop one of the equations and estimate the remainder. The residuals covariance matrix of the system with (n-1) equations is non-singular. The coefficients of the (n^{th}) equation result from the "adding-up" restriction. Furthermore, in the SUR-model, when all equations have the same regressors, the efficient estimator is single-equation ordinary least squares; GLS is the same as OLS. Thus, we use in this analysis SUR and OLS alternatively: SUR in most case, in particular when we impose cross-equation restrictions and OLS for single equation estimations.

Furthermore, structural breaks may occur in the sample since the data set is pooled. To account for this we estimated the system of equations with variables which captured the interaction for the years 1992 and 1996 and the income variable. However, the difference between the coefficients of these interaction variables is quite small, implying that the income elasticity is about the same for 1992 and 1996. Thus, it is reasonable to run the analysis with the pooled sample.²³

Homogeneity and symmetry

One of the tasks of the empirical analysis is to test the restrictions of the demand theory to insure that consumer behavior conforms to utility theory. The homogeneity restriction is first tested by running separate OLS regressions for each commodity group in our study, with and without the restriction imposed. Then, we tested for homogeneity, symmetry and both

.

²² See Hansen (1993).

²³ The system exhibits heteroskedasticity. Tests like White and Breusch-Pagan/ Cook-Weisberg reject the null of homoskedasticity. The source of heteroskedasticity is uncertain moreover, weighting the OLS regressions by the deflated logarithm of expenditure does not eliminate heteroskedasticity.

homogeneity and symmetry by running SUR for the whole system, with and without the restrictions imposed. A likelihood ratio test is used to test the restrictions in the uncontrolled for demographics LA/AIDS model (eq. 5.1).²⁴

The test results for homogeneity and symmetry are presented in Table 3. Since we assumed different expenditure patterns for the four population groups in our study, we ran the tests for each group separately. In fact, different results are generated by the restriction tests. By running separate OLS regressions, the hypothesis of homogeneity cannot be rejected for six out of ten equations in the system for the Canadian-born population, seven out of ten equations for the South and East European immigrant population, and eight out of ten equations for the North American and West European and Asian immigrant population. When running the entire system, the homogeneity restriction cannot be rejected in the case of the Asian immigrant population. Finally, the symmetry restriction is rejected by the chi-squared statistics for all population groups.

Table 3: Homogeneity and Symmetry

Commodity Group	Population							
	Cana	ndian	N.Am.	&W.Eu.	S&E	Eu.	Ch.,A	s.&Oc.
	chi²(1)	p-value	chi ² (1)	p-value	chi ² (1)	p-value	chi ² (1)	p-value
Food	0.04	0.844	0.01	0.933	0.00	0.973	0.64	0.425
Shelter	32.13	0.000	7.16	0.008	1.16	0.281	0.14	0.713
HH op&fur	0.88	0.348	0.06	0.800	3.71	0.054	2.40	0.121
Clothing	1.50	0.221	6.71	0.010	10.53	0.001	0.74	0.390
Transportation	0.54	0.461	1.20	0.274	0.64	0.425	0.26	0.608
Heath&Pers.Care	22.04	0.000	0.80	0.370	0.69	0.408	4.72	0.030
Recreation	0.24	0.625	0.00	0.993	0.09	0.768	0.19	0.666
Tabacco&Alcohol	34.22	0.000	0.54	0.461	0.40	0.527	3.85	0.050
Transf. to pers.	0.00	0.966	0.07	0.797	0.14	0.705	2.51	0.113
Transf. to char.	15.34	0.000	0.01	0.923	4.53	0.033	0.58	0.446
System								_
Homogeneity	100.65	0.000	14.93	0.093	20.25	0.016	14.26	0.113
Symmetry	7676.51	0.000	260.85	0.000	110.91	0.000	102.72	0.000
Homog.&Symmetry	7829.59	0.000	267.43	0.000	131.07	0.000	118.42	0.000

Note: Significant results in bold type.

Weak separability

We test for the existence of a two two-stage budgeting model in our expenditure system as schematically presented in Table 4. In the first model, we argue that households allocate a certain amount of the income for total transfers and subsequently they decide what part of this

²⁴ For the prices used for estimating the system see Appendix A.

amount is remitted to relatives and friends and what part is donated for charity. In the second model, we argue that the households allocate at the first stage total income across two broad groups of expenditures: social capital expenditures (transfers to persons, transfers to charity, shelter, household operations and furnishing) and non-social capital expenditures (food, clothing, transportation, personal and health care, recreation, tobacco and alcohol). Social capital expenditures in this context are argued to be expenditures which enhance social relations of the household members among themselves, with relatives outside the household and/or persons belonging to a social/religious group. By testing for weak separability in the above proposed models, we are actually testing for the existence of substitution between remittance activity and housing ownership.

Table 4: Weak Separability Models

	Model 1	Model 2
	Food	
	Shelter	Food
	HH Operations & Furnishing	Clothing
	Clothing	Transportation
	Transportation	Health & Personal Care
Utility sub-	Health & Personal Care	Recreation
groups	Recreation	Tobacco & Alcohol
•	Tobacco & Alcohol	
		Shelter
	Transfers to Persons	HH Operations & Furnishing
	Transfers to Charity	Transfers to Persons
		Transfers to Charity

We test for weak separability for the four population groups with no demographic controls (eq. 5.1), but we imposed the homogeneity and symmetry restrictions to ensure that consumer behavior conforms to utility theory. The test results for the first model are presented in Table 5. According to the test results, the weak separability hypothesis should not be rejected in the case of Asian immigrant households. This implies that the Asian households, in contrast to the Canadian and other immigrant households, treat the two kinds of transfers as weakly separable from the rest of the expenditures. In other words, they first allocate a certain amount of their net income for remittances and then at a second stage decide what part of this amount they transfers to relatives and what part they donate to charity. This means as well that Asian households treat the two kinds of transfers – and the social relations that they represent: relations to relatives and group relations respectively – as substitutes. A further

²⁵ We assume that housing and expenditures related to housing, e.g. household operations and furnishing have the scope of cultivating the social relations between the household members.

18

-

²⁶ We regard the few other cases for which the test results turned out to be significant as exeptions.

implication of these results is that for Asian households we must run the elasticity estimations of transfers to persons and transfers to charity as a function of total transfers and prices of transfers only.

Table 5: Test of Weak Separability – Model 1 (Transfers)

	Population	Income Group					
	Group	a	all	Top	Y/2	Bottom Y/2	
		chi ² (9)	p-value	chi²(9)	p-value	chi²(9)	p-value
	Canadian	222.89	0.000	175.06	0.000	140.42	0.000
Unrestricted	N.Am. & W. European	28.65	0.001	26.90	0.002	57.10	0.000
Omestricted	S&E European	12.49	0.187	23.75	0.005	14.53	0.105
	Chinese, Asian & Oc.	13.03	0.161	4.28	0.892	19.95	0.018
Restricted for	Canadian	107.92	0.000	50.44	0.000	58.91	0.000
Homogeneity and Symmetry	N.Am. & W. European	16.41	0.059	8.94	0.442	17.74	0.038
	S&E European	17.99	0.035	19.78	0.019	10.81	0.289
	Chinese, Asian & Oc.	11.48	0.244	14.36	0.110	8.48	0.486

Note: Significant results in bold type.

The unreported test results for the second model show that weak separability of social capital expenditures should be rejected for all population and income groups.²⁷

Income elasticities

Given our earlier reported stylized facts, we will estimate Engel elasticities for Canadianborn, and foreign-born residents across income groups under an LA/AIDS system.²⁸ We will estimate **uncontrolled** as well as a **controlled** model to calculate Engel elasticities.

The model includes controls for age, household size, education, house ownership and savings variables to capture our models main socio-economic life-cycle arguments which may influence the household's decision to transfer money outside the household. If our model is correct and demographic arguments condition remittances then significant differences should arise between the controlled and uncontrolled elasticity measures.

Table 6 reports the estimated expenditure elasticities for the pooled 1992 and 1996 surveys for transfers to persons in a controlled and uncontrolled setting with and without imposing restrictions for homogeneity and symmetry. We differentiate further by foreign-birth status and income group to capture any effects owing to the immigrant origins or their position in Canada's income distribution. Given these categories the range of calculated

.

²⁷ Results available upon request.

²⁸ For the Asian group the LA/AIDS includes only Transfers to Persons and Transfers to Charity.

values for the expenditure elasticities indicate that transfers to persons range from a luxury item to a necessity across the sampled households.²⁹

Table 6: Expenditure Elasticities for Transfers to Persons Calculated from LA/AIDS, 1992/1996

	Population	Uncontrolled			Controlled			
	Group		Income G	roup	Income Group			
		all top Y/2 bottom Y/2		all	top Y/2	bottom Y/2		
Unrestricted	Canadian	1.07	1.27	1.19	1.83	1.73	1.82	
	N.Am.&W.Eu.	1.29	1.43	1.67	2.21	2.12	2.16	
Officatificted	S&E European	1.01	1.11	1.09	2.04	1.58	2.24	
	Ch.,As.&Oc.	1.09	1.12	1.09	1.10	1.12	1.10	
Restricted for	Canadian	1.09	1.25	1.20	1.82	1.69	1.80	
Homogeneity and Symmetry	N.Am.&W.Eu.	1.29	1.43	1.66	2.21	2.10	2.15	
	S&E European	0.98	1.06	1.08	2.00	1.54	2.21	
	Ch.,As.&Oc.	1.09	1.12	1.10	1.10	1.12	1.10	

Notes: Elasticity is computed through the formula $e_i = 1 + (\beta_i / w_i^*)$, where (w_i^*) is the actual mean expenditure share and (β_i) is the estimated household income coefficient.

The results indicate significant cultural differences in the remittance activity and imply a different economic relationship with their relatives. The uncontrolled elasticity estimates are above unity for the Canadian-born and North American and West European immigrants and close to unity for South and East European and Asian immigrant households. North Americans and West Europeans seem to treat transfers to relations as a luxury good, while South and East European and Asian immigrants see it more as a normal good. Once controls for age, education, number of persons in the household, house ownership and saving activity are added then the elasticity values regardless of foreign-birth status (except Asian) greatly exceed unity. This indicates that in general in this controlled environment, remittances are treated as a luxury good. The exception are Asian households who still treat remittances as normal good regardless of controls. Expenditure elasticities with the homogeneity and symmetry restrictions mimic those of the unrestricted estimation.

Table 7 focuses on the charitable donations of households by income class. In an uncontrolled setting, across all population and income groups, households treated charitable donations as a necessity. The exception are lower income North American and West European households, whose expenditure elasticity slightly exceeded unity. These results are repeated in a controlled setting (South and East European immigrants are an exception).

20

²⁹ For expenditure elasticities for the entire system see Appendix B. Canadian elasticity estimates as reported by Didukh (2001, 2002) and Geiger (2002) over a wide variety of commodities are in the range reported here with the exception of the Chinese values.

Table 7: Expenditure Elasticities for Transfers to Charity Calculated from LA/AIDS, 1992/1996

	Population	Uncontrolled			Controlled			
	Group		Income Gi	oup	Income Group			
		all	top Y/2	bottom Y/2	all	top Y/2	bottom Y/2	
Unrestricted	Canadian	0.60	0.48	0.47	0.96	0.70	0.94	
	N.Am.&W.Eu.	0.78	0.65	1.03	1.19	0.78	1.26	
Offication	S&E European	0.54	0.97	0.32	1.25	1.09	1.18	
	Ch.,As.&Oc.	0.79	0.76	0.78	0.77	0.74	0.77	
Restricted for	Canadian	0.67	0.56	0.50	0.97	0.72	0.93	
Homogeneity and Symmetry	N.Am.&W.Eu.	0.79	0.66	1.02	1.18	0.77	1.24	
	S&E European	0.56	0.97	0.40	1.28	1.11	1.23	
	Ch.,As.&Oc.	0.79	0.75	0.77	0.77	0.74	0.76	

Notes: Elasticity is computed through the formula $e_i = 1 + (\beta_i / w_i^*)$, where (w_i^*) is the actual mean expenditure share and (β_i) is the estimated household income coefficient.

In sum, since that foreign-born Canadian households remit to persons outside the household a higher amount of their income as their income rises, an *altruistic* behavior appears to hold. Asian households are an exception with their remittance behavior supporting an *implicit family loan agreement*, because the share of income they remit is invariant to income change. On the other hand, most households seem to treat transfers to charity as *gifts*, since these transfers are small and they fall as a share of total expenditures when income rises. The single exception to this behaviour is exhibited by South and East European immigrants, who tend to be more *altruistic* in their relation to social/religious groups.

Demographic Controls

We now turn to the effects of household demographic characteristics on the remitting behavior. Since we earlier argued that remittances are embedded in the life cycle behavior of the household we will attempt to depict the household's remittance experience over its lifetime with a series of simulations. These simulations are depicted in the Figures 2 and 3 and are derived from the reported estimates for transfers to persons and transfers to charity in Appendix C. In short, for each representative household we place the mean values for all the model's variables (except age) and cross multiply by the relevant coefficients. This produces the household's estimated budget transfer share by age for total transfers and its constituent parts. When simulating the absolute amount of transfers, we used estimates derived from the controlled LA/AIDS model with the dependent variable and the independent variables of the basic model multiplied by total expenditures.

Figure 2 reveals several important variations in remittance experiences by age for our various population groups. First, there exists a substantial difference in remittances to persons

as a share of household expenditures between Asian immigrants and all other groups. The share of transfers to persons in total expenditures rises with age for all other groups from about 2.5 to 3.0 percent at age 25 to about 6 percent at age 70. Conversely, the pattern of remittances to persons for Asian immigrants remains relatively flat over the whole life cycle at about 4 percent of total expenditures.

If we now turn to the simulated absolute values transferred we generate patterns which conform to our earlier reported stylized facts. In short, North American and West European immigrant households remit the greatest absolute amounts and Canadian-born households the least, with an almost constant difference (about CA\$ 400) between the two groups across their lifetime.

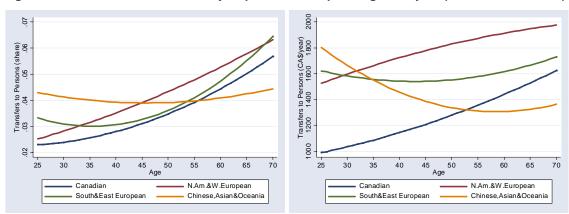


Figure 2: HH Transfers to Persons by Population Group during Life Cycle (share and absolute)

Source: Author's calculations; Family Expenditures Survey (FAMEX) 1992 and 1996, Statistics Canada.

We can further recognize important entry and assimilation affects in remittances' pattern. For the Canadian-born and North American and West European households the remittances' pattern in absolute terms is almost linear and increasing, while for South and East European immigrant households it is convex with a minimum of about 1,500 CA\$/year at age 45 and for Asian immigrant households it is convex with a minimum of about 1,300 CA\$/year at age 60.

Figure 3 depicts the simulated charitable transfers by various households. In general all groups (except Asian) increase there miniscule charitable donations from a half of one percent at age 25 to around 3 percent by age 70. Additionally, charitable donations, both as a share and in absolute values, tend to converge over the life cycle across various population groups with the exception of charitable donations by Asian immigrant households.

Figure 3: An Transfers to Charty by Population Group during Line Cycle (share and absolute)

South&East European Chinese, Asian&Oceania

Group during Line Cycle (share and absolute)

Age NAm.&W.European Chinese, Asian&Oceania

Figure 3: HH Transfers to Charity by Population Group during Life Cycle (share and absolute)

Source: Author's calculations; Family Expenditures Survey (FAMEX) 1992 and 1996, Statistics Canada.

Beside age, our strongest demographic control in the case of transfers to persons is family size. As expected, it influences remittances negatively and is highly significant.³⁰ From the four population groups, the demographic controls worked best for the South and East Europeans. Female immigrants from this group tend to remit more than the male and age and education have a 'U'-shape profile.

Entry and Assimilation Effects

Table 8 reports the results of estimating the augmented share equation with the entry and assimilation effects in 1992.³¹ The reported t-statistics are corrected for heteroskedasticity.³² We found the (ϕ_{is}) coefficient as significant for both transfers to persons and transfers to charity when taking all immigration groups together, indicating a small but significant *immigration effect*. However, when running the estimations by immigrant group, the (ϕ_{is}) coefficient is significant only for charitable transfers. In addition, (ϕ_{is}) differs significantly across immigrant groups, giving evidence for *cultural effects* on remittances *at time of entry*. The (θ_{is}) coefficient is very small across all immigrant groups regardless of type of transfer, but significant only in the case of charitable donations for the all immigrant households taken together and for North American and West Europeans. Furthermore, like (ϕ_{is}) the (θ_{is}) coefficient differs significantly across groups which supports the existence of *cultural effects on the speed of assimilation*.

³⁰ See Appendix C.

³¹ The 1996 survey data do not contain a question on the number of years in Canada so only the 1992 data was employed.

³² The results without adjusting for heteroskedasticity are similar.

Table 8: Entry and Assimilation Effects, 1992

Population		Transf. to Persons Transf. to Charity						
Group	Entry	t-stat	Assimilation	t-stat	Entry	t-stat	Assimilation	t-stat
All foreign born	0.0097	1.82	-0.0001	-0.57	-0.0071	-3.58	0.0002	2.32
N.Am&W.Eu.	0.0064	0.80	-0.0001	-0.50	-0.0112	-2.75	0.0004	2.26
S&E European	-0.0071	-0.74	0.0006	1.41	-0.0030	-1.24	0.0000	-0.05
Ch.,Asian&Oc.	0.0181	1.58	-0.0003	-0.35	-0.0052	-1.69	0.0002	0.84

In sum, foreign born residents after entering Canada remit to persons outside the household more than the Canadian-born reference group with no convergence in remittance behavior overtime. However, charitable donations by the foreign-born are lower at entry, but gradually rise and assimilate to Canadian-born donation levels after 25 to 30 years.

Transfers Received

We now test to see if the transfer model can explain the reported negative transfers. We argued that the relative prices for non-tradables between Canada and the home country and the presence of dependents (spouse and or children) in Canada (country A) and the earning power of the spouse resident in Canada should condition the size of the transfers received. Table 9 reports the findings for this model when we control for these variables.

Contrary to expectations a positive change in income is positively related to the amount of transfers received across all groups. We found gender to significantly influence the amount of transfers received, with female headed foreign-born households receiving more transfers. The presence of family members in the household (significant for Canadian-born and North American and West European households) increases the amount of transfers received as well. Finally, as in the case of remitted transfers, received transfers have a U-shape pattern with respect to age.

At this point we would like to contrast the negative transfer behavior with factors which in influence the joint movement of remittances to and from households. Table 10 reports the variables which condition the size of the net transfers across the Canadian resident households in the pooled 1992 and 1996 sample.

Table 9: Regression Coefficients (OLS) Predicting Log of Transfers Received, 1992/1996

	Canadian	N.Am&W.Eu.	S&E Eu.	Ch.,As.&Oc.
Log income	0.510	0.463	0.724	0.600
	[0.025]***	[0.090]***	[0.157]***	[0.202]***
Female	0.137	0.300	0.232	0.169
	[0.021]***	[0.076]***	[0.124]*	[0.155]
Age	-0.056	-0.063	-0.020	-0.092
	[0.005]***	[0.020]***	[0.040]	[0.042]**

Age - squared (x1,000)	0.473	0.542	0.158	0.906
	[0.054]***	[0.192]***	[0.378]	[0.433]**
Education	0.042	0.078	0.059	0.054
	[0.009]***	[0.031]**	[0.046]	[0.057]
No. Of Persons a Member	0.038	0.120	-0.041	0.011
	[0.010]***	[0.039]***	[0.072]	[0.067]
Net change in A&L (x100,000)	0.327	0.214	0.825	0.432
	[0.078]***	[0.216]	[0.428]*	[0.460]
Constant	4.117	4.071	1.869	4.013
	[0.163]***	[0.639]***	[1.119]*	[1.346]***
Observations	9949	808	347	265
R-squared	0.12	0.15	0.13	0.07
Robust standard errors in brackets	s			

^{*} significant at 10%; ** significant at 5%; *** significant at 1%

Notes: Dependent variable and model only applies to those households which received transfers.

Table 10: Regression Coefficients (OLS) Predicting Log of Net Transfers, 1992/1996

	Canadian	N.Am&W.Eu.	S&É Eu.	Ch.,As.&Oc.
Log income	0.033	0.274	0.111	0.097
	[0.003]***	[0.037]***	[0.057]*	[0.021]***
Female	-0.004	0.017	-0.019	-0.002
	[0.002]	[0.020]	[0.044]	[0.033]
Age (x1,000)	0.013	0.451	0.603	0.490
	[0.004]	[0.046]	[0.097]	[0.083]
Age - squared (x1,000)	0.005	-0.008	-0.005	-0.027
	[0.004]	[0.046]	[0.077]	[0.072]
Education	-0.001	-0.030	-0.010	0.015
	[0.001]	[0.011]***	[0.011]	[0.023]
No. Of Persons a Member	-0.008	-0.085	0.002	-0.041
	[0.001]***	[0.019]***	[0.039]	[0.024]*
Net change in A&L (x100,000)	-0.048	0.076	-0.192	0.202
	[0.017]***	[0.080]	[0.249]	[0.190]
Constant	10.795	7.642	8.778	9.075
	[0.021]***	[0.168]***	[0.200]***	[0.315]***
Observations	13365	1114	579	501
R-squared	0.03	0.12	0.04	0.02

Robust standard errors in brackets

Notes: Net transfers equal to transfers to persons minus transfers received.

The dependent variable in this case is the difference in the flows of transfers in and out of the household for only those households which had at least a transfer flow in one direction in 1992 and 1996. Income positively affects the log of net transfers as the model would predict. In addition, the presence of family members in the household decreases the net transfers as gross flows from outside to the household increase. The strongest regional results appear for foreign-born immigrants from North America and Western Europe.

Conclusions

This study, through the aid a formal expenditure analysis, sought to discover if the nature of the diaspora community and the resident country's immigration program affected the size and

^{*} significant at 10%; ** significant at 5%; *** significant at 1%

direction of disapora transfers outside the foreign-born household. Canada's immigration policy which resulted in a resident stock of permanent immigrants from non-traditional sources led to modest levels of transfers, amounting on average less than 5 percent of overall household expenditures. However, these transfers were highly concentrated with the highest 30 percent of earners remitting 80 percent of all remittances. In fact about 10 percent of the households did not transfer monies to persons outside their household or to charities. Finally, only 25 percent of foreign-born transfers were in the form of charitable donations, while the other 75 percent where in the form of money transfers to persons.

We offered a utility maximizing household model to explain the multiple transfer options that appeared in the Canadian context. These options included zero transfers, net positive transfers and negative transfers, i.e. when Canadian foreign-born households received foreign funds. The model argued that these alternatives were a by product of Canadian immigration policy and the consequence of the presence or absence of a spouse and/or dependents.

Estimating Engel elasticities with an LA/AIDS model in both a naive formulation and with extended demographic controls confirmed in general that with the important exception of Asian sourced immigrants monetary transfers outside the household were considered a luxury good since the estimated elasticity exceeded unity. However, beyond this generalization an array of heterogeneous outcomes appeared. First, Asian immigrants appear to have closer ties to relatives and friends, since remittances appear as a normal good. This may imply an *implicit loan agreement* with the extended family, since they transfer a relative constant share of the income over their lifetime. On the other hand, since for all other households the share of remittances rose with greater total household expenditures, this may indicate more *altruistic* motives for remittances. Moreover, charitable donations are treated as *gifts* by most foreign-born households, since they are small and fell as a share of total expenditures as income rises. The only exception to this case are South and East European immigrants, which seemed to be more altruistic in their relation to their social/religious groups.

We found evidence as well that the transfer activity of the households residing in Canada is sensitive to demographic characteristics. The strongest demographic controls for the share of transfers to persons were age, which yielded a U-shape pattern over time. Also, family size, as expected was negatively related to the share of remittances to persons. In the case of charitable donations however, along with age, house ownership was positively related to the share of money donated. This could imply both, that richer people are more engaged in

charity and that house owners, e.g. non-mover natives and permanent migrants, are much more attached to local their local social/religious groups.

An extended version of the model to capture acculturation effects revealed a small but significant *immigration effect* which initially increased foreign-born transfers to persons and dampened charity donations. We found evidence for a gradual assimilation to Canadian-born household transfer behavior only for charity donations, over a time period of 25 to 30 years. Furthermore, the entry and assimilation effects differ significantly across immigrants groups, which supports the existence of *cultural effects* on entry and speed of assimilation.

Our model predicted further negative transfers, i.e. transfers received from persons outside the household. Contrary to expectations, the amount of transfers received were positively related to income across all population groups. Further, households with females as head received more transfers.

In sum, the permanent immigrant community produced modest levels of transfers which varied substantially across Canada's foreign-born populations.

References

Adams, R.H.(2004) "Remittances, Household Expenditure and Investment in Guatemala" World Bank, Development Research Group, MSN MC3-303.

______,(1998) "Remittances, Investment and Rural Asset Accumulation in Pakistan", Economic Development and Cultural Change, Vol. 47, pp. 155-173.

Aescobar, A. (2004) "Migration and the Diaspora" Proceedings of Migration and Development:-Working with the Diaspora, ILO, Geneva.

Ahlburg, D. and R. Brown (1998) "Migrants' Intentions to Return Home and Capital Transfers: A Study of Tongans and Samoans in Australia", <u>Journal of Development Studies</u>, 35 (2): 125-51.

Bauer, T. and M. Sinning, (2005) "The Savings Behaviour of Temporary and Permanent Migrants in Germany, RWI, Essen.

Brown, Richard P.C. (1994) "Migrants' Remittances, Savings and Investment in the South Pacific", International Labour Review 133(3): 347-67.

Canada, CIC (2002) Facts and Figures 2002: Statistical Overview of the Temporary Resident and Refugee Claimant Population. http://www.cic.gc.ca/english/pub/facts2002-temp/facts-temp-3.html

Carroll, C., B.K. Rhee, and C. Rhee (1994) "Are there Cultural Effects on Saving? Some cross-sectional Evidence", <u>The Quarterly Journal of Economics</u> 35(3) (August): 685-699.

Cox, D. (1987) "Motives for Private Income Transfers", <u>Journal of Political Economy</u> 95(3): 508-546.

Cox, D. and Mark R. Rank, (1992) "Inter-vivo Transfers and Intergenerational Exchange", <u>The Review of Economics and Statistics</u> 72(4): 305-14.

Deaton, A. and J. Muelbauer, (1980) "An Almost Ideal Demand System" <u>American Economic</u> Review 70(3):312-324.

DeVoretz, D. and S. Pivnenko, (2004) "The Economics of Canadian Citizenship" Willi Brandt Working Papers, IMER Malmo University, Malmo Sweden.

Didukh, G. (2002) "Immigrants and the Demand for Housing. Working paper #02-01: RIIM, Vancouver.

Duraisamy, P. and S. Narashimhan. (2000) "Migration, Remittances and Family Ties in Urban Informal Sector", Indian Journal of Labour Economics 43 (1): 111-19.

Lucas, R. and O. Stark, (1985) "Motivations to Remit: Evidence from Botswana", <u>Journal of Political Economy</u> 93(5): 901-918.

Pendakur, K.(2001) "Consumption Poverty in Canada, 1969 to 1998", <u>Canadian Public Policy</u> XXVII(2): 125-149.

Shamsuddin, A. and D. J. DeVoretz, (1998). "Wealth Accumulation of Canadian and Foreign-Born Households in Canada", <u>Review of Income and Wealth</u> 44(4): 515-33.

Stark, O. (1991) "Migration, Remittances and the Family" in *The Migration of Labor*, ed. Oded Stark. Cambridge, Oxford: Basil Blackwell.

Stark, O. (1995) "Altruism and Beyond: An Economic Analysis of Transfers and Exchanges within Families and Groups", Oscar Morgenstern Memorial Lectures.

Cambridge; New York; and Melbourne: Cambridge University Press: pp. 142

Straubhaar, T. and F. Vadean (2005) "International Migrant Remittances and their Role in Development", OECD.

Appendix A: Regional Price Indices

Table A-1 Regional Canadian Price Indices: 1992 and 1996
Year Region Expenditure Group

rear Region		Experiantale Gloup							
	Food	Shelter	HH Operation & Furnishing		Transpor- tation	Personal & Health Care	Recreation, Education & Reading Mat.	Tobacco & Alcoholic Beverages	
1992 Atlantic	98.2	80.4	98.1	96.5	75.9	88.7	101.3	104.5	
1992 Quebec	97.8	72.0	96.7	99.7	90.1	90.7	100.1	101.1	
1992 Ontario	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1992 Prairies	98.6	75.1	92.1	102.8	77.5	92.2	94.6	95.1	
1992 BC	104.7	102.0	99.2	99.8	97.9	88.0	97.1	104.4	
1996 Atlantic	109.7	84.1	106.0	101.3	90.0	101.9	104.5	90.2	
1996 Quebec	102.8	75.5	101.1	97.9	92.8	102.6	97.1	72.7	
1996 Ontario	105.4	108.1	105.4	105.3	112.1	98.7	104.1	73.8	
1996 Prairies	104.0	79.0	95.2	105.2	80.7	94.4	95.7	89.8	
1996 BC	114.3	109.9	102.8	103.4	129.9	92.2	101.3	100.4	

Source: Pendakur (2001), Didukh (2001), and Browning and Thomas (1998,1999)

Note: Base Ontario, 1992.

Te price variables used for eight (out of ten) commodity groups (1. Food, 2. Shelter, 3. Household Operations and Furnishing, 4. Clothing, 5. Transportation, 6. Personal and Health Care, 7. Recreation, Education and Reading Material, 8. Tobacco and Alcoholic Beverages) included in this study are the consumer price indices that vary through time and across five regions (Atlantic Provinces, Quebec, Ontario, Prairies, and British Columbia). For the purposes of this study they are assumed to be fixed within the regions. For the remaining two expenditure groups (9. Transfers to Persons Outside the Household, and 10. Transfers to Charity) we computed prices indices based on the CPIs of the eight commodity groups mentioned before. We argue that the value of one remitted dollar to a person outside the household equals to the forgone consumption of the household for that dollar. Thus, we calculated for each household in our sample the CPIs of Transfers to Persons as sum of the CPIs of the eight expenditure groups presented above, weighted by the respective share of the expenditure group in total expenditures. Charitable donations are tax deductible. Thus, the price for one dollar donated to charity equals the value of forgone consumption minus the tax deduction received for the donation of the one dollar. The CPIs for Transfers to Charity are computed by the following formula $CPI_{chaor,i} = 100 + (CPI_{poh,i} - 100) \times (1 - Taxr_i)$. Where: CPI_{chaor,i} is the CPI of Transfers to Charity for the (ith) household; CPI_{noh,i} is the CPI of Transfers to Persons for the (ith) household; and *Taxr*, stands for the tax rate applicable for the (ith) household.³³

_

³³ The tax rates are computed individually for each household by using a combination of federal and provincial tax rates.

Appendix B

Table B-1: Expenditure Elasticities Calculated from LA/AIDS, Unrestricted (1992/1996)

Population	Expenditure	Uncontrolled			Controlled			
Group	Group	Income Group			Income Group			
		all	top Y/2	bottom Y/2	all	top Y/2	bottom Y/2	
Canadian	Food	0.74	0.67	0.72	0.64	0.59	0.63	
	Shelter	0.68	0.70	0.64	0.64	0.69	0.62	
	HH op&fur	1.02	1.06	0.96	1.02	1.09	0.99	
	Cloth	1.30	1.20	1.30	1.21	1.19	1.25	
	Transport	1.58	1.49	1.89	1.63	1.46	1.87	
	Heath&Pers.Care	0.85	0.77	0.90	0.88	0.76	1.01	
	Recreation	1.41	1.32	1.42	1.29	1.28	1.29	
	Tabacco&Alcohol	0.95	0.88	1.11	0.95	1.02	1.00	
	Transf to pers	1.07	1.27	1.19	1.83	1.73	1.82	
	Transf to char	0.60	0.48	0.47	0.96	0.70	0.94	
N.American &	Food	0.77	0.73	0.69	0.65	0.66	0.57	
W.European	Shelter	0.68	0.70	0.67	0.66	0.66	0.69	
	HH op&fur	1.07	1.16	1.03	1.07	1.18	1.02	
	Cloth	1.31	1.27	1.20	1.14	1.18	1.15	
	Transport	1.44	1.27	1.66	1.46	1.31	1.65	
	Heath&Pers.Care	0.79	0.74	0.77	0.77	0.59	0.87	
	Recreation	1.50	1.46	1.63	1.30	1.32	1.46	
	Tabacco&Alcohol	1.01	0.67	1.15	0.94	0.80	0.98	
	Transf to pers	1.29	1.43	1.67	2.21	2.12	2.16	
	Transf to char	0.78	0.65	1.03	1.19	0.78	1.26	
S&E	Food	0.77	0.69	0.72	0.68	0.63	0.72	
European	Shelter	0.60	0.62	0.53	0.55	0.66	0.45	
	HH op&fur	0.99	0.99	1.01	0.96	1.00	1.02	
	Cloth	1.29	1.25	1.14	1.11	1.21	1.04	
	Transport	1.57	1.52	2.04	1.55	1.44	1.78	
	Heath&Pers.Care	0.95	0.87	0.91	1.03	0.88	1.02	
	Recreation	1.47	1.35	1.40	1.25	1.23	1.21	
	Tabacco&Alcohol	1.22	1.12	1.39	1.18	1.33	1.09	
	Transf to pers	1.01	1.11	1.09	2.04	1.58	2.24	
	Transf to char	0.54	0.97	0.32	1.25	1.09	1.18	
Chinese,	Transf to pers	1.09	1.12	1.09	1.09	1.12	1.09	
Asian & Oc.	Transf to char	0.79	0.76	0.78	0.77	0.74	0.77	

Table B-2: Expenditure Elasticities Calculated from LA/AIDS, Restricted (1992/1996)

Population	Expenditure	Uncontrolled			Controlled			
Group	Group	Income Group			Income Group			
		all	top Y/2	bottom Y/2	all	top Y/2	bottom Y/2	
Canadian	Food	0.77	0.66	0.74	0.63	0.57	0.63	
	Shelter	0.67	0.76	0.63	0.69	0.77	0.66	
	HH op&fur	1.04	1.03	0.97	0.99	1.04	0.96	
	Cloth	1.33	1.18	1.31	1.19	1.14	1.23	
	Transport	1.53	1.53	1.87	1.64	1.53	1.88	
	Heath&Pers.Care	0.85	0.72	0.91	0.85	0.69	0.99	
	Recreation	1.43	1.26	1.44	1.24	1.18	1.25	
	Tabacco&Alcohol	0.91	0.79	1.08	0.90	0.92	0.93	
	Transf to pers	1.09	1.25	1.20	1.82	1.69	1.80	
	Transf to char	0.67	0.56	0.50	0.97	0.72	0.93	
N.American &	Food	0.78	0.72	0.70	0.65	0.65	0.57	
W.European	Shelter	0.67	0.72	0.66	0.67	0.70	0.71	
	HH op&fur	1.08	1.15	1.03	1.07	1.17	1.01	
	Cloth	1.31	1.25	1.20	1.14	1.16	1.15	
	Transport	1.44	1.28	1.67	1.45	1.31	1.63	
	Heath&Pers.Care	0.79	0.72	0.76	0.76	0.58	0.86	
	Recreation	1.50	1.43	1.62	1.29	1.29	1.45	
	Tabacco&Alcohol	1.00	0.68	1.17	0.94	0.81	1.01	
	Transf to pers	1.29	1.43	1.66	2.21	2.10	2.15	
	Transf to char	0.79	0.66	1.02	1.18	0.77	1.24	
S&E	Food	0.77	0.69	0.71	0.69	0.63	0.71	
European	Shelter	0.59	0.63	0.53	0.54	0.66	0.47	
	HH op&fur	1.00	0.99	1.03	0.97	1.00	1.00	
	Cloth	1.28	1.25	1.11	1.11	1.20	1.00	
	Transport	1.59	1.52	2.02	1.56	1.44	1.79	
	Heath&Pers.Care	0.97	0.88	0.94	1.04	0.90	1.03	
	Recreation	1.49	1.35	1.43	1.27	1.23	1.22	
	Tabacco&Alcohol	1.20	1.12	1.35	1.15	1.31	1.05	
	Transf to pers	0.98	1.06	1.08	2.00	1.54	2.21	
	Transf to char	0.56	0.97	0.40	1.28	1.11	1.23	
Chinese,	Transf to pers	1.09	1.12	1.09	1.09	1.12	1.09	
Asian & Oc.	Transf to char	0.79	0.76	0.78	0.77	0.74	0.77	

Appendix C

Table C-1: Regression Equation Coefficients (OLS) Predicting Log of Transfers to Persons, 1992/1996

	Canadian		N.Am.&W.Eu.		S&E Eu	ıropean	Ch.,Asian&Oc.	
							Uncontrolled	
Log of Total Expenditures	2.74e-03	3.15e-02	1.44e-02	6.02e-02	4.26e-04	5.42e-02		
	[1.47e-03]*	[2.11e-03]***		[1.10e-02]***	[8.76e-03]	[1.42e-02]***		
Log of Total Transfers							7.78e-02	9.33e-02
· ·							[1.05e-02]***	[1.02e-02]***
Log of Price for Food	1.04e-01	1.11e-01	3.53e-02	1.01e-01	-2.76e-01	-1.84e-01		
_	[4.47e-02]**	[4.19e-02]***	[1.80e-01]	[1.71e-01]	[4.15e-01]	[3.86e-01]		
Log of Price for Shelter	5.80e-02	2.40e-02	1.10e-01	9.43e-02	3.08e-02	8.13e-02		
_	[1.02e-02]***	[1.00e-02]**	[5.14e-02]**	[4.78e-02]**	[1.41e-01]	[1.37e-01]		
Log of Price for HH op&furn	-7.21e-02	-2.09e-01	2.97e-01	9.96e-02	8.51e-01	5.87e-02		
	[1.26e-01]	[1.17e-01]*	[4.79e-01]	[4.56e-01]	[1.30e+00]	[1.15e+00]		
Log of Price for Clothing	8.18e-02	1.83e-02	2.95e-01	1.15e-01	5.85e-01	1.23e-01		
	[5.65e-02]	[5.30e-02]	[2.17e-01]	[2.15e-01]	[5.89e-01]	[5.55e-01]		
Log of Price for Transportation	-3.38e-02	-7.93e-02	-1.43e-02	-3.95e-02	3.54e-02	4.92e-02		
3		[8.12e-03]***		[3.83e-02]	[7.15e-02]	[6.88e-02]		
Log of Price for Health&Pers. Care	-	2.05e-02	-5.52e-02	-3.11e-02	-2.94e-01	-2.36e-01		
	[2.30e-02]	[2.15e-02]	[8.87e-02]	[8.39e-02]	[2.39e-01]	[2.07e-01]		
Log of Price for Recreation	2.59e-02	1.20e-01	-2.71e-01	-1.34e-01	-7.25e-01	-1.32e-01		
Log of the for Recreation	[8.92e-02]	[8.31e-02]	[3.37e-01]	[3.22e-01]	[9.71e-01]	[8.50e-01]		
Log of Price for Tabacco&Alcohol	1.70e-03	-1.06e-02	4.75e-01	3.30e-02	4.13e-02	-2.66e-02		
Log of Trice for Tabaccoaniconor	[1.20e-02]	[1.14e-02]	[4.47e-02]	[4.40e-02]	[1.24e-01]	[1.17e-01]		
Log of Price for Transf. to Persons			1.40e-01				2.640+00	2.63e+00
Log of Price for Transi. to Persons		2.41e-01		-1.05e-01	3.68e-01	4.54e-01	3.64e+00	
Law of Balancian Tanancia de Obradia	[1.32e-01]	[1.23e-01]**	[5.33e-01]	[4.96e-01]	[6.69e-01]	[6.73e-01]	[2.75e+00]	[2.57e+00]
Log of Price for Transf. to Charity	-3.43e-01	-1.58e-01	-4.74e-01	5.65e-02	-8.94e-01	-9.01e-01	-4.98e+00	-3.55e+00
	[1.96e-01]*	[1.83e-01]	[8.69e-01]	[7.85e-01]	[9.83e-01]	[9.48e-01]	[3.96e+00]	[3.71e+00]
Female		-6.06e-04		3.77e-03		1.41e-02		-2.40e-02
		[1.09e-03]		[5.21e-03]		[8.08e-03]*		[2.66e-02]
Age		-1.44e-03		-7.00e-04		-5.01e-03		-3.57e-04
		[3.16e-04]***		[1.45e-03]		[1.96e-03]**		[6.74e-03]
Age - squared		2.40e-05		1.65e-05		6.34e-05		-5.79e-05
		[3.40e-06]***		[1.52e-05]		[2.07e-05]***		[6.48e-05]
Education		-2.05e-03		-2.26e-02		-2.49e-02		3.00e-02
		[2.74e-03]		[1.40e-02]		[1.28e-02]*		[5.19e-02]
Education -squared		2.13e-04		2.60e-03		3.92e-03		-1.10e-02
		[4.23e-04]		[2.07e-03]		[2.14e-03]*		[8.71e-03]
No. Of Persons a Member		-1.28e-02		-2.10e-02		-1.70e-02		-2.68e-02
		[5.86e-04]***		[2.58e-03]***		[3.62e-03]***		[1.20e-02]**
House Ownership		-1.98e-03		1.23e-03		-5.91e-03		-7.31e-02
		[1.33e-03]		[6.09e-03]		[8.17e-03]		[3.35e-02]**
Net change in A&L		-2.24e-07		-8.70e-08		1.79e-07		-5.59e-07
-		[8.84e-08]**		[2.68e-07]		[3.59e-07]		[7.91e-07]
Constant	5.62e-03	-4.59e-01	-5.45e-01	-1.10e+00	1.31e+00	3.16e+00	6.72e+00	5.10e+00
	[4.01e-01]	[3.77e-01]	[1.64e+00]	[1.55e+00]	[3.50e+00]	[3.50e+00]	[5.68e+00]	[5.35e+00]
Observations	13970	13970	1176	1176	632	632	632	632
R-squared	0.01	0.13	0.02	0.15	0.02	0.18	0.11	0.18
Robust standard errors in brackets		0.10	0.02	0.10	0.02	0.10	0.11	0.10

Robust standard errors in brackets

* significant at 10%; ** significant at 5%; *** significant at 1%

Table C-2: Regression Equation Coefficients (OLS) Predicting Log of Transfers to Charity, 1992/1996

	Canadian		N.Am.&W.Eu.		S&E European		Ch.,Asian&Oc.	
	Uncontrolled	Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled
Log of Total Expenditures	-5.66e-03	-1.00e-03	-4.52e-03	1.98e-03	-7.06e-03	3.80e-03		
	[5.52e-04]***	[7.11e-04]	[2.41e-03]*	[3.40e-03]	[2.98e-03]**	[4.26e-03]		
Log of Total Transfers	-						-7.78e-02	-9.33e-02
							[1.05e-02]***	[1.02e-02]***
Log of Price for Food	1.06e-01	9.14e-02	-4.01e-02	-2.73e-03	5.53e-02	3.65e-02		
	[2.02e-02]***	[1.95e-02]***	[6.64e-02]	[6.47e-02]	[1.53e-01]	[1.50e-01]		
Log of Price for Shelter	5.16e-02	4.21e-02	5.95e-03	5.25e-03	3.48e-03	1.06e-02		
	[4.54e-03]***	[4.29e-03]***	[1.98e-02]	[1.90e-02]	[4.44e-02]	[4.47e-02]		
Log of Price for HH op&furn	-2.60e-01	-2.55e-01	1.80e-01	6.48e-02	3.15e-01	2.45e-01		
	[5.70e-02]***	[5.54e-02]***	[2.10e-01]	[2.08e-01]	[4.76e-01]	[4.40e-01]		
Log of Price for Clothing	-1.68e-02	-2.83e-02	2.07e-01	1.03e-01	4.03e-01	3.21e-01		
	[2.55e-02]	[2.46e-02]	[1.10e-01]*	[1.09e-01]	[2.76e-01]	[2.48e-01]		
Log of Price for Transportation	-3.93e-02	-3.64e-02	-2.57e-02	-8.58e-03	-1.52e-02	-7.14e-03		
	[3.90e-03]***	[3.85e-03]***	[1.46e-02]*	[1.57e-02]	[2.59e-02]	[2.67e-02]		
Log of Price for Health&Pers. Care	5.39e-02	4.95e-02	2.73e-02	3.82e-02	2.60e-02	7.97e-03		
	[1.05e-02]***	[1.02e-02]***	[4.17e-02]	[4.00e-02]	[6.02e-02]	[5.75e-02]		
Log of Price for Recreation	1.71e-01	1.79e-01	-1.22e-01	-6.21e-02	-4.09e-01	-3.55e-01		
_	[4.01e-02]***	[3.89e-02]***	[1.47e-01]	[1.44e-01]	[3.54e-01]	[3.29e-01]		
Log of Price for Tabacco&Alcohol	-1.42e-02	-1.36e-02	4.10e-02	2.48e-02	6.67e-02	5.87e-02		
_	[5.30e-03]***	[5.12e-03]***	[2.34e-02]*	[2.33e-02]	[4.97e-02]	[4.56e-02]		
Log of Price for Transf. to Persons	-2.58e-01	-8.76e-02	6.11e-01	6.57e-01	-5.53e-01	-4.39e-01	-3.64e+00	-2.63e+00
	[6.93e-02]***	[6.61e-02]	[3.11e-01]*	[3.12e-01]**	[3.87e-01]	[3.58e-01]	[2.75e+00]	[2.57e+00]
Log of Price for Transf. to Charity	3.54e-01	1.26e-01	-9.07e-01	-9.83e-01	7.33e-01	5.88e-01	4.98e+00	3.55e+00
	[1.02e-01]***	[9.84e-02]	[4.62e-01]*	[4.61e-01]**	[5.61e-01]	[5.17e-01]	[3.96e+00]	[3.71e+00]
Female		-5.97e-04		3.86e-03		2.17e-03		2.40e-02
		[5.25e-04]		[2.97e-03]		[3.61e-03]		[2.66e-02]
Age		-8.06e-04		-1.54e-03		-2.19e-03		3.57e-04
		[1.42e-04]***		[7.77e-04]**		[8.43e-04]***		[6.74e-03]
Age - squared		1.39e-05		2.01e-05		2.92e-05		5.79e-05
		[1.50e-06]***		[7.99e-06]**		[9.10e-06]***		[6.48e-05]
Education		3.47e-03		-2.68e-02		-3.30e-03		-3.00e-02
		[1.27e-03]***		[8.87e-03]***		[5.70e-03]		[5.19e-02]
Education -squared		-8.56e-05		4.53e-03		1.15e-03		1.10e-02
		[2.03e-04]		[1.34e-03]***		[9.39e-04]		[8.71e-03]
No. Of Persons a Member		1.63e-04		2.32e-04		7.48e-04		2.68e-02
		[2.33e-04]		[1.05e-03]		[9.91e-04]		[1.20e-02]**
House Ownership		2.52e-03		1.05e-02		1.18e-04		7.31e-02
		[6.15e-04]***		[3.07e-03]***		[3.55e-03]		[3.35e-02]**
Net change in A&L		1.39e-07		-5.03e-08		1.51e-07		5.59e-07
		[2.59e-08]***		[8.15e-08]		[8.72e-08]*		[7.91e-07]
Constant	-6.36e-01	-2.95e-01	1.52e-01	8.08e-01	-2.83e+00	-2.13e+00	-5.72E+00	-4.10e+00
	[1.95e-01]***	[1.88e-01]	[9.90e-01]	[1.04e+00]	[1.66e+00]*	[1.49e+00]	[5.68e+00]	[5.35e+00]
Observations	13970	13970	1176	1176	632	632	632	632
R-squared	0.02	0.11	0.02	0.08	0.07	0.17	0.11	0.18
Poblist standard arrors in brackets								

Robust standard errors in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%