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Generalized projection dynamics in evolutionary
game theory�

Reinoud Joosten & Berend Roorday

October 28, 2008

Abstract

We introduce a new kind of projection dynamics by employing a
ray-projection both locally and globally. By global (local) we mean a
projection of a vector (close to the unit simplex) unto the unit simplex
along a ray through the origin. Using a correspondence between local
and global ray-projection dynamics we prove that every interior evo-
lutionarily stable strategy is an asymptotically stable �xed point. We
also show that every strict equilibrium is an evolutionarily stable state
and an evolutionarily stable equilibrium.
Then, we employ several projections on a wider set of functions

derived from the payo¤ structure. This yields an interesting class of so-
called generalized projection dynamics which contains best-response,
logit, replicator, and Brown-Von-Neumann dynamics among others.
Key words: evolutionary game theory, projection dynamics, orthogo-
nal projection, ray projection, asymptotical and evolutionary stability.
JEL-Codes: A12; C62; C72; C73; D83

1 Introduction

We introduce a class of dynamics to model evolutionary changes in game
theory. We were inspired by rather early literature on price-adjustment
processes as introduced by Samuelson [1941, 1947] and subsequent results
by Arrow & Hurwicz [1958, 1960a,b] and Arrow, Block & Hurwicz [1959].1 A
second source of inspiration was recent work featuring projection dynamics,
e.g., Lahkar & Sandholm [2008], Hofbauer & Sandholm [2008].

In the latter papers it is shown that if a stable game possesses an inte-
rior evolutionarily stable state (ESS, Maynard Smith & Price [1973]), the

�The authors are grateful to Ulrich Witt for his support and advice.
yAddress of both authors: School of Management & Governance, University of

Twente, POB 217, 7500 AE Enschede, The Netherlands. Email of corresponding
author: r.a.m.g.joosten@utwente.nl

1For a surveys on Walrasian processes, see e.g., Uzawa [1961], Negishi [1962].
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projection dynamics converge to it from any starting point. In fact, the
proofs imply that for projection dynamics every interior evolutionarily stable
state is an evolutionarily stable equilibrium (Joosten [1996]), i.e., trajecto-
ries converge to the equilibrium and along any such trajectory the Euclidean
distance to it decreases strictly in time.

In the literature on price-adjustment processes, a similar result was es-
tablished about half a century ago. If the Weak Axiom of Revealed Pref-
erences (WARP, Samuelson [1938]) holds, the price-adjustment process of
Samuelson [1947] given by

�
x =

dx

dt
= f(x) for all x 2 Rn+1+ nf0n+1g;

converges to an economic equilibrium. Here, x denotes a vector of prices
for n + 1 commodities, 0n+1 denotes the n + 1-vector of zeros, and the
(vector) function f : Rn+1+ nf0n+1g ! Rn+1 is an excess demand function.
An excess demand function gives for each commodity the di¤erence between
its demand and supply given a price for each commodity. An equilibrium
is a price vector for which there exists no positive excess demand for any
commodity, i.e., y is an equilibrium i¤ f(y) � 0n+1:

UnderWARP, any trajectory converges to an equilibrium and the Euclid-
ean distance to it decreases strictly over time. This inspired the concept of
the evolutionarily stable equilibrium (ESE ) in Joosten [1996], a notion de-
�ned on the dynamics instead of on the underlying system, guaranteeing
that trajectories converge to the equilibrium as described.

As shown in Joosten [2006], an implication of WARP in economics is
very similar to an implication of ESS in mathematical biology. Hence, al-
ternatives to the many dynamics highlighted in the literature2 may exist
such that each ESS is an asymptotically stable �xed point. Samuelson�s tâ-
tonnement process however, does not induce dynamics on the unit simplex,
it induces dynamics on a sphere with the origin as center, and radius equal
to the length of the starting vector.

Our basic idea is to project a(ny) trajectory of Samuelson�s tâtonnement
process on the unit simplex such that every point of the original is projected
on the unit simplex along the ray through this point and the origin. By the
convergence result of the unrestricted dynamics underWARP mentioned, it
follows that the projected dynamics also converge to an equilibrium. Which
means that for these dynamics applied to a game theoretical model, each
interior ESS is an asymptotically stable �xed point. We show that the ray-
projection dynamics of Samuelson tâtonnement process on the unit simplex
are for every y = �x 2 int Rn+1+ nf0n+1g given by

�
x =

1

�

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
;

2See e.g., Hofbauer [1995,2000], Hofbauer & Sandholm [2008].
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where � =
Pn+1
i=1 yi and x 2 Sn = fz 2 Rn+1jzj � 0 for all j 2 f1; 2; :::; n+1g

and
Pn+1
j=1 zj = 1g:

One might think that the dynamics obtained in that manner, are equiva-
lent to the projection dynamics of Lahkar & Sandholm [2008] on the interior
of the unit simplex, and if not globally then at least locally. By a global
projection, we mean a projection of an arbitrary trajectory unto the unit
simplex. By local projection, we mean that the trajectory is started on the
unit simplex and then continuously be forced back on the unit simplex by
projection, i.e., � = 1 always: This intuition is false, as the mathematical
forms of local and global ray-projection dynamics di¤er crucially from their
orthogonal-projection relatives. The dynamics of Lahkar & Sandholm [2008]
are for x 2 int Sn given (in our notations) by

�
x = f(x)� 1

n+ 1

 
n+1X
i=1

fi(x)

!
i,

where i = (1; :::; 1) 2 Rn+1:
We demonstrate that under the ray-projection dynamics every interior

evolutionarily stable state is an asymptotically stable �xed point. An elegant
geometric interpretation of this fact is the following. It is well-established
that Samuelson�s process moves on a sphere with the origin as its center
and with a �xed radius. Points having equal Euclidean distance to the
equilibrium form a circle on this sphere.3 Connecting this circle to the
origin yields a cone. This cone is intersected by the unit simplex, a subset
of a plane. Hence, the projection of the circle unto the unit simplex is
an ellipse. Since the unrestricted process always moves inwards relative to
the circle around the equilibrium on which the process happens to be, the
process projected unto unit simplex moves inwards relative to the ellipse it
happens to be on.

We also show that the concept of a strict equilibrium uni�es two notions
of evolutionary stability, namely static evolutionary stability as embodied
by the ESS and dynamic evolutionary stability as embodied by ESE.

Our next idea was to generalize the approach with ray-projections by em-
ploying modi�cations of the relative �tness function. Many well-known evo-
lutionary dynamics can be represented as projection dynamics by choosing
appropriate variants of the relative �tness function. These include e.g., the
best-response dynamics of Matsui [1991], the Brown-Von Neumann dynam-
ics (Brown & Von Neumann [1950]) and generalizations implied by Björner-
stedt & Weibull [1996] and Hofbauer [2000], the logit dynamics (Fudenberg
& Levine [1998]), but also the replicator dynamics of Taylor & Jonker [1978].

The next section gives an exposé on ideas leading to our new concept,
the ray-projection dynamics. In Section 3 we generalize both ray-projection

3For all of these objects in R3 a proper higher-dimensional parallel exists.
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and orthogonal-projection dynamics. Well-known dynamics are presented
as special cases of generalized projection dynamics. Section 4 deals with
conditions guaranteeing that the dynamics do not cross the boundary of the
unit simplex. This yields a small list of desiderata for generalized projection
dynamics. Section 5 concludes, all proofs are to be found in the Appendix.

2 Comparing the old and the new

In Joosten [2006] connections were highlighted between models formalizing
evolutionary dynamics and price-adjustment processes. One of the corre-
spondences found was that a condition resulting from the Weak Axiom of
Revealed Preferences (WARP) can be translated almost one-to-one to a
condition resulting from the evolutionarily stable strategy (ESS ). We �rst
discuss the result on price-adjustment dynamics.

2.1 On price-adjustment dynamics

The condition implied by WARP, cf., e.g., Uzawa [1961], is the following

(y � x) � f (x) > 0;

for all x; y 2 P = Rn+1+ nf0n+1g such that y 2 E =
�
z 2 Pgj f(z) � 0n+1

	
;

x =2 E: Here, f : P ! Rn+1 satis�es continuity, homogeneity (of degree
zero in prices), i.e., f (�x) = f (x) for all � > 0; and complementarity,
i.e., x �f (x) = 0 for all x 2 P: Often, since the function f satis�es homogene-
ity of degree zero, analysis is restricted to a normalized subspace of Rn+1;
for instance to the n-dimensional Sn, i.e.,

Sn =

8<:x 2 Rn+1j xj � 0 for all j 2 In+1 and X
j2In+1

xj = 1

9=; ;
where In+1 = f1; :::; n+ 1g:

In economics, x 2 Sn represents a vector of relative prices adding up to
unity; the function f represents a so called generalized excess demand
function. A price vector y 2 Sn satisfying f (y) � 0n+1 is called an equi-
librium or a Walrasian equilibrium. At an equilibrium no commodity
has positive excess demand. Existence of an equilibrium (ray) is readily
shown by using homogeneity in order to restrict analysis to the unit sim-
plex, constructing an adequate continuous function from this unit simplex
unto itself, and then using Brouwer�s �xed point theorem.

The work of Sonnenschein [1972, 1973], Mantel [1974] and Debreu [1974]
shows that any function satisfying continuity, complementarity and desir-
ability4, can be approximated by an excess demand function on an arbi-

4Desirability of all goods means that if the price of a commodity equals zero, then the
supply of that good can not exceed its demand, i.e., xj = 0 implies fj (x) � 0:
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trarily large subset of the interior of the unit simplex resulting from a pure
exchange economy with as many agents as commodities in which each of
the agents has well-behaved preferences and positive initial endowments of
all commodities. If the property of desirability is dropped one obtains a
generalized excess demand function, if one furthermore restricts attention
to the unit simplex, homogeneity of degree zero in prices becomes void. So,
a generalized excess demand function on the unit simplex is characterized
by continuity and complementarity.

A well-known result by Arrow & Hurwicz [1958,1960a,b], Arrow et al.
[1959] is that the tâtonnement process of Samuelson [1947]:

�
x =

dx

dt
= f (x) ; (1)

converges to an equilibrium if (y � x) � f (x) > 0 for all y 2 E; and x =2 E
and if desirability holds. Here, E =

�
x 2 Rn+1j f(x) � 0n+1

	
denotes the

set of (economic) equilibria, and if the condition mentioned holds, it can be
shown that E is convex (cf., Arrow & Hurwicz [1960b]).

The sketch of the proof is simple. Complementarity of f implies

djjxjj2
dt

=
X
i2In+1

2xi
dxi
dt

= 2
X
i2In+1

xifi(x) = 2x � f(x) = 0:

Continuity and desirability of all commodities imply that if the process starts
in the non-negative orthant it remains on the sphere in this orthant having
the origin as its center and containing the starting point. Furthermore, let
y 2 E and let x =2 E satisfy jjxjj = jjyjj, x 6= y; then

jjy � xjj2 > 0; moreover djjy � xjj
2

dt
< 0:

So, under the dynamics the Euclidean distance to y decreases monotonically
in time. The actual proof uses Lyapunov�s second method, and the Euclid-
ean distance can be interpreted as a so-called Lyapunov function. Recall
that by homogeneity of degree zero of f , a ray f�yg�>0 exists satisfying
f (x) = 0n+1 for all x 2 f�yg�>0 :

2.2 Ray-projection of Samuelson�s tatonnement process

Now, we derive the dynamics being the projection of Samuelson�s taton-
nement process on the unit simplex. Note that the trajectory fytgt�0 with
y0 2 P under (1) may be approximated at y 2 fytgt�0 by y +�tf(y): The
projection of y +�tf(y) unto the unit simplex is given by

y +�tf(y)Pn+1
i=1 yi +�t

Pn+1
i=1 fi(y)

:

5
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Here, �t is the length of the time interval elapsed,
Pn+1
i=1 yi+�t

Pn+1
i=1 fi(y)

is a number, whereas y and f(y) are vectors. Then, this implies a move from
x = yPn+1

i=1 yi
2 Sn to y+�tf(y)Pn+1

i=1 yi+�t
Pn+1
i=1 fi(y)

2 Sn and therefore

�x =
y +�tf(y)Pn+1

i=1 yi +�t
Pn+1
i=1 fi(y)

� yPn+1
i=1 yi

y=�x
=

�x+�tf(�x)Pn+1
i=1 �xi +�t

Pn+1
i=1 fi(�x)

� �xPn+1
i=1 �xiPn+1

i=1 �xi=�=
�x+�tf(�x)

�+�t
Pn+1
i=1 fi(�x)

� �x
�

=
�x+�tf(�x)

�+�t
Pn+1
i=1 fi(�x)

� x

=
�x+�tf(�x)� x

�
�+�t

Pn+1
i=1 fi(�x)

�
�+�t

Pn+1
i=1 fi(�x)

f(�x)=f(x)
=

�x+�tf(x)� x
�
�+�t

Pn+1
i=1 fi(x)

�
�+�t

Pn+1
i=1 fi(x)

= �t
f(x)� x

�Pn+1
i=1 fi(x)

�
�+�t

Pn+1
i=1 fi(x)

:

So, this means that

�
x = lim

�t#0

�x

�t
= lim
�t#0

�t

�t

f(x)� x
�Pn+1

i=1 fi(x)
�

�+�t
Pn+1
i=1 fi(x)

=
1

�

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
:

Note that the term 1
� has no in�uence on the direction of the dynamics,

merely on the speed of the dynamics. As � =
Pn+1
i=1 yi; the speed of the

projected dynamics decreases, roughly speaking, the distance of the unre-
stricted trajectory to the origin, increases. Furthermore, if y 2 Sn, then
� = 1: So, if the ray-projection dynamics are local, we may dispense with
this speed parameter. This leads to the following de�nition.

De�nition 1 Let f : P ! Rn+1 satisfying continuity, complementarity,
and (positive) homogeneity of degree zero. Let for all y 2 P, �y = dy

dt = f(y):
Then, the ray-projection dynamics on the unit simplex are for every x =

1Pn+1
i=1 yi

y 2 Sn given by

�
x =

1

�

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
;

where � =
Pn+1
i=1 yi:

6



 #0811 
 
 

 

 

 

 

 

 

 

 

  

y

x

x'

y'

(0,r)

(r,0)(1,0)

(0,r)
f(y)

f(x)

Figure 1: The price-adjustment process induces a trajectory from y to y0

in R2 on the sphere with radius r = jjyjj and the origin as center. The
projection of this trajectory unto S1 is the one from x towards x0: We have
depicted vectors f(x) = f(y):

Remark 1 If � = 1; i.e., x = y 2 Sn; we call the ray-projection dynamics
local, and global otherwise. Local and global ray-projection dynamics can be
transformed one into the other by a transformation of time.

Here, we are not concerned for the behavior of these dynamics on the bound-
ary of the unit simplex, as price-adjustment processes tend to stay away from
the boundary of P.

2.3 On dynamics and equilibria in evolutionary game theory

In evolutionary game theory, for a population5 having n+1 distinguishable
subgroups, x 2 Sn is a vector of population shares for each subgroup, i.e., xi
is the population share of subgroup i 2 In+1: Let F : Sn ! Rn+1 be a �tness
function, i.e., a function attributing to each subgroup in the population its
�tness. The �tness of a subgroup may be interpreted as the subgroup�s po-
tential to reproduce or alternatively the average number of o¤spring. Fitness
of a subgroup depends on the composition of the population, i.e., x 2 Sn:

The relative �tness function f : Sn ! Rn+1 is given by

fi(x) = Fi(x)� x � F (x) for all x 2 Sn and all i 2 In+1:
5We remain faithful to the terminology from mathematical biology.
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So, a relative �tness function (Joosten [1996]) attributes to each subgroup
the di¤erence of its �tness and the population share weighted average �tness
of the population. If the �tness function F is continuous, the same property
follows immediately for the relative �tness function f . Observe furthermore
that for all x 2 Sn; it holds that x � f(x) = 0:

The evolution of the composition of the population is usually represented
by a system of n+ 1 autonomous di¤erential equations:

�
x =

dx

dt
= h (x) :

Here, the function h : Sn ! Rn+1 is connected to the relative �tness function
f in one of the ways proposed, cf., e.g., Nachbar [1990], Friedman [1991],
Swinkels [1993], Joosten [1996], Ritzberger & Weibull [1995]. (Lipschitz)
continuity of h implies existence (and uniqueness) of a solution to the dif-
ferential equation for every starting point x0 2 Sn; di¤erentiability of h
implies both existence and uniqueness (cf., e.g., Perko [1991]). We are we
are reluctant to impose conditions on the function h at this point since many
interesting evolutionary dynamics are neither di¤erentiable, nor continuous.

For sign-compatible dynamics, we have

sign hi (x) = sign fi (x) whenever xi > 0:

i.e., the change in population share of each subgroup with positive popu-
lation share corresponds in sign with its relative �tness; for weakly sign-
compatible dynamics, at least one subgroup with positive relative �tness
grows in population share. A more general alternative than sign compat-
ibility is provided by Friedman [1991], evolutionary dynamics are weakly
compatible if f (x) � h (x) � 0 for all x 2 Sn:

The state y 2 Sn is a saturated equilibrium if f(y) � 0n+1; a �xed
point if h(y) = 0n+1; a �xed point y is (asymptotically) stable if, for
any neighborhood U � Sn of y, there exists an open neighborhood V � U
of y such that any trajectory starting in V remains in U (and converges to
y): A limit point is a point y 2 Sn satisfying limt!1 xt = y for at least
one solution fxtgt�0 to x0 2 Sn and the di¤erential equation above.

At a saturated equilibrium all subgroups with below average �tness have
population share equal to zero. So, rather than �survival of the �ttest�, we
have �extinction of the less �t�. If the �tness function is given by F (x) = Ax
for some square matrix A, every saturated equilibrium corresponds to a Nash
equilibrium of the evolutionary game at hand. The term is due to Hofbauer
& Sigmund [1988], in the sequel we may omit the term �saturated�.

The �xed point y 2 Sn is a generalized evolutionarily stable state
(cf., Joosten [1996]) if and only if there exists an open neighborhood U � Sn
of y satisfying

(y � x) � f(x) > 0 for all x 2 Unfyg: (2)

8
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A geometric interpretation of a generalized evolutionarily stable state (GESS )
is that near such an equilibrium the angle between the vector pointing from
x towards the equilibrium, i.e., (y � x) ; and the vector f(x) is always acute.
The concept of a GESS generalizes the concept of an ESS of Maynard Smith
& Price [1973] in order to deal with arbitrary (relative) �tness functions. For
the more standard �tness functions, the two notions coincide.

Taylor & Jonker [1978] introduced the replicator dynamics into mathe-
matical biology and gave conditions guaranteeing that an ESS is an asymp-
totically stable �xed point of these dynamics. Zeeman [1981] extended this
result and pointed out that the conditions formulated by Taylor and Jonker
[1978] are almost always satis�ed. The most general result on asymptotic
stability regarding the replicator dynamics for the ESS is probably Hofbauer
et al. [1979] as it stipulates an equivalence of the ESS and existence of a
Lyapunov function of which the time derivative is similar to Eq. (2).

Friedman [1991] has an elegant way of coping with evolutionary stability
as he de�nes any asymptotically stable �xed point of given evolutionary dy-
namics as an evolutionary equilibrium. Most approaches however, deal with
conditions on the underlying system in order to come up with a viable evolu-
tionary equilibrium concept, or deal with re�nements of the asymptotically
stable �xed point concept (e.g., Weissing [1990]).

In Joosten [1996] we de�ned an evolutionary equilibrium concept on the
dynamic system, wishing to rule out some asymptotically stable �xed points.
Namely, the ones which induce trajectories starting nearby, but going far
away from the equilibrium before converging to it in the end. The �xed
point y 2 Sn is an evolutionarily stable equilibrium if and only if there
exists an open neighborhood U � Sn of y satisfying

(y � x) � h(x) > 0 for all x 2 Unfyg: (3)

A geometric interpretation of (3) is that su¢ ciently close to the equilibrium
the angle between (y � x) and the vector representing the direction of the
dynamics is always acute. The concept was inspired by the Euclidean dis-
tance approach of early contributions in economics as mentioned, since (3)
implies that the Euclidean distance is a Lyapunov function for U .

2.4 Projection dynamics in evolutionary games

Lahkar & Sandholm [2008] introduced dynamics into evolutionary game the-
ory which converge to an interior evolutionarily stable equilibrium, because
for the dynamics at hand Eq. (2) and (3) are equivalent. The authors quote
Nagurney & Zhang [1996] as a main source of inspiration.

De�nition 2 (Lahkar & Sandholm [2008]) Given relative �tness function
f : Sn ! Rn+1; the orthogonal-projection dynamics are for every x 2 int Sn

9
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given by

�
x = f(x)�

 
1

n+ 1

n+1X
i=1

fi(x)

!
i

Here, i is the n+1-dimensional vector of ones, i.e., i = (1; :::; 1) 2 Rn+1: For
the time being, we are only interested in the behavior of the dynamics of
Lahkar & Sandholm [2008] in the interior of the unit simplex. The de�nition
of orthogonal-projection dynamics takes due care of boundary behavior.

Remark 2 Lahkar & Sandholm [2008] actually de�ne their dynamics on
the �tness function but for (the interior of the unit simplex) we have

�
x = f(x)�

 
1

n+ 1

n+1X
i=1

fi(x)

!
i

= E(x)� (x � E(x)) i�
 

1

n+ 1

n+1X
i=1

Ei(x)� x � E(x)
!
i

= E(x)�
 

1

n+ 1

n+1X
i=1

Ei(x)

!
i:

Below, we present the ray-projection dynamics, corresponding to the local
variant of the de�nition given in the economic framework.

De�nition 3 Let f : Sn ! Rn+1 be a relative �tness function. Then, the
ray-projection dynamics are for every x 2 int Sn given by

�
x = f(x)� x

 
n+1X
i=1

fi(x)

!
:

Lemma 4 Every interior equilibrium is a �xed point of the both types of
projection dynamics and every interior �xed point of both types of projection
dynamics is an equilibrium.

2.5 On stability of interior equilibria

Hofbauer & Sandholm [2008] introduce the class of stable games. A stable
game is a game in which the following property holds:

(y � x) � (F (y)� F (x)) � 0 for all x; y 2 Sn:

Here, F is a �tness function, but it follows easily that in our notations using
the relative �tness function f we get

(y � x) � (f (y)� f (x)) � 0 for all x; y 2 Sn:

10
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x

f(x)

(1,0,0)

x
x
o
r

(0,1,0)

(0,0,1)

Figure 2: The point xo is the orthogonal projection of x + f(x) on the S2;
xr is the ray-projection of x+ f(x) on Sn.

The property which de�nes a stable game is called monotonicity (MON)
elsewhere and is connected to a multitude of important results guaranteeing
uniqueness and dynamic stability of equilibria and �xed points (see Joosten
[2006], Harker & Pang [1990]). MON is a weaker version of strict monotonic-
ity (SMON) which can be written as

(y � x) � (f (y)� f (x)) < 0 for all x; y 2 Sn; x 6= y:

A game in which SMON holds for all states x; y 2 Sn; x 6= y, is called
a strictly stable game by Hofbauer & Sandholm [2008]. It can be shown
that SMON implies that there is a unique saturated equilibrium, and that
MON implies that the set of equilibria is compact and convex.

Joosten [2006] showed that if the relative �tness function is given by
f(x) = Ax � (xAx) i for all x 2 Sn; then strict monotonicity is equivalent
to Haigh�s criterion (Haigh [1975]) which can be written as

�A� < 0 for all � 2 Rn+1 satisfying
n+1X
j=1

�j = 0:

The version where �A� � 0 replaces �A� < 0; is equivalent to MON:
For an interior equilibrium y 2 Sn, (S)MON implies

(y � x) � f(x) � (>)0 for all x 2 Snnfyg:
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So, every interior equilibrium of a strictly stable game is a generalized evo-
lutionarily stable state (GESS, Joosten [1996]) for which the neighborhood
U in Eq. (2) can be expanded to include the entire unit simplex. For every
stable game, every interior equilibrium is a neutrally stable state following
Joosten [2006] and Maynard Smith [1982]. Under the replicator dynamics
every (generalized) evolutionarily stable state is an asymptotically stable
�xed point and every neutrally stable state is stable (cf., e.g., Hofbauer &
Sigmund [1998]).

For the orthogonal-projection dynamics it can be seen that every interior
evolutionarily stable equilibrium is a generalized evolutionarily stable state
and every interior evolutionarily stable state is a generalized evolutionarily
stable state, as for y 2 int Sn we have

(y � x) � h(x) > 0()X
i2In+1

(yi � xi) �

24fi(x)� 1

n+ 1

X
h2In+1

fh (x)

35 > 0()
(y � x) � f(x)�

0@ 1

n+ 1

X
h2In+1

fh (x)

1A X
i2In+1

(yi � xi) > 0()

(y � x) � f(x) > 0:

This means that we have shown the validity of the following.

Proposition 5 (Hofbauer & Sandholm [2008]) Every interior evolution-
arily stable state is an interior evolutionarily stable equilibrium under the
orthogonal-projection dynamics and vice versa.

We now prove a corresponding result for ray-projection dynamics. Our
strategy of proof is the following. From a given relative �tness function we
construct a function on the relevant positive orthant, connect dynamics to
that function and construct a trajectory under the dynamics converging to
an equilibrium corresponding to a full-dimensional expansion of the interior
evolutionarily stable state. Then we project this trajectory unto the unit
simplex using the ray-projection. This projected trajectory converges then
to the projected equilibrium point. The corresponding dynamics on the unit
simplex are the ray-projection dynamics.

Proposition 6 Under the ray-projection dynamics, every interior general-
ized evolutionarily stable state is an asymptotically stable equilibrium.

3 Generalizations of projection dynamics

Here, we pursue the idea of generalizing both projection dynamics presented.
For this purpose we de�ne some g : Sn ! Rn+1: We intend to examine
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dynamics induced by g in two variants:

�
x
r

g =

"
g(x)� x

 
n+1X
i=1

gi(x)

!#
;

�
x
o

g =

"
g(x)�

 
1

n+ 1

n+1X
i=1

gi(x)

!
i

#
:

Here, the superscript r (o) refers to the ray-projection (orthogonal-projection)
dynamics and subscript g refers to the function g: Again, we will only con-
sider points yielding projections in the interior of the unit simplex. However,
in several cases the projected dynamics happen to be well-de�ned on the
boundary of the unit simplex. There are various approaches tackling the
boundary behavior of dynamics (e.g., Friedman [1991], Lahkar & Sandholm
[2008]). In order to be relevant in an evolutionary framework it is of utmost
importance to link the function g to the relative �tness function.

The following result is straightforward, its proof is left to the reader.

Lemma 7 Let g : Sn ! Rn+1:

� If g satis�es
Pn+1
i=1 gi(x) = 0; then the local and global ray-projection

dynamics, and the orthogonal-projection dynamics concur.

� If g is weak compatible with f , i.e., g (x) � f (x) � 0 for all x 2 int Sn;
then the ray-projection dynamics associated with g are weak compati-
ble.

� If g is non-negative, i.e., g : Sn ! Rn+1+ ; then the ray-projection
dynamics remain on the unit simplex.

Note that (trivially) all evolutionary dynamics on the unit simplex are pro-
jected �unto themselves�, hence in that case by the �rst statement of the
lemma, ray-projection and orthogonal projection dynamics concur. For in-
stance, the replicator dynamics of Taylor & Jonker [1978] are given by

�
xi = xifi(x) for all x 2 Sn:

Hence, setting gi(x) = xifi(x) for all x 2 Sn yields the replicator dynamics as
both the ray-projection dynamics and the orthogonal-projection dynamics.
The second statement of the lemma gives an easy-to-check criterion in order
to determine the status of the ensuing ray-projection dynamics. Recall that
evolutionary dynamics should be connected with the relative �tness function
and weak compatibility of Friedman [1991] is one of the ways to accomplish
this. The �nal statement deals with an equally easy-to-check criterion to
guarantee that ray-projection dynamics do not cross the boundary of the
unit simplex (or in the global case, the boundary of P:

13
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We now give several ways to obtain the replicator dynamics as ray-
projection dynamics or orthogonal-projection dynamics, and the correspond-
ing relatives are also of some interest. We continue with a set of examples
of dynamics which can be regarded as projection dynamics.

Example 8 We can have the function driving both projection dynamics de-
pend on the �tness function F : Sn ! Rn+1: For instance, let eg : Sn ! Rn+1
be given by egi (x) = xiFi(x) for all x 2 int Sn, i 2 In+1: Then for all
i 2 In+1 :

� �
x
reg�
i
= xiFi(x)� xi

0@n+1X
j=1

xjFj(x)

1A = xi [Fi(x)� x � F (x)] = xifi(x);

� �
x
oeg�
i
= xiFi(x)�

1

n+ 1

0@n+1X
j=1

xjFj(x)

1A :
So, the generalized ray-projection dynamics connected to the function eg as
de�ned yield the replicator dynamics.
Another way of obtaining similar dynamics is particularly interesting in case
the �tness function is given by F (x) = Ax for a symmetric matrix A: Let
a � min (0;minij aij) : Then, let bg : Sn ! Rn+1 be given by bgi (x) = xifi(x)�
a for all x 2 int Sn, i 2 In+1: Then,

� �
x
obg�
i
= xifi(x)� a�

1

n+ 1

0@n+1X
j=1

[xjfj(x)� a]

1A
= xifi(x) for all i 2 In+1:

The ray-projection dynamics are given by� �
x
rbg�
i
= xifi(x)� a(1� xi(n+ 1)) for all i 2 In+1:

An advantage of this function is that bgi (x) = xifi(x)� a � 0 for all x 2 int
Sn, i 2 In+1: So, the dynamics can not cross on the boundary of Sn. Here,
orthogonal-projection dynamics yield the replicator dynamics.

Example 9 Best-response dynamics (Matsui [1992]) are given by

�
x = BR(x)� x

where BR : Sn ! Sn is given by

BRi(x) =

8<:
xi if maxk2In+1 fk (x) = 0;
1 if i = min

�
h 2 In+1j fh (x) = maxk2In+1 fk (x) > 0

	
;

0 otherwise.
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Clearly, these dynamics are weakly sign-compatible. We introduced two slight
changes to the original, one implying that f(y) � 0n+1 implies h(y) = 0n+1,
and a tie-breaker for the case that multiple best-responses exist. Let

gi(x) =

�
1 if i = min

�
h 2 In+1j fh (x) = maxk2In+1 fk (x) > 0

	
;

0 otherwise.

Let for given x 2 Sn; j� = min
�
h 2 In+1j fh (x) = maxk2In+1 fk (x) > 0

	
and let ek 2 Rn+1 denote the k-th unit vector. Then, we obtain� �

x
r

g

�
i
=

�
0 if x 2 E;
(ej�)i � xi otherwise.

and� �
x
o

g

�
i
=

�
0 if x 2 E;
(ej�)i �

1
n+1 otherwise.

So, every equilibrium is a �xed point of the ray-projection dynamics; both
ray-projection dynamics and orthogonal-projection dynamics are well-de�ned
for the entire unit simplex.

BR-dynamics have a predecessor in the continuous �ctitious-play dynamics
of Rosenmüller [1971], a continuous-time version of �ctitious play (Brown
[1951]). Brown formulated this process in order to compute a solution (i.e.,
a Nash equilibrium) of a zero-sum game. Brown has conceived several other
ideas on dynamics to compute equilibria. The following example deals with
one of them and variations thereof.

Example 10 (Generalized �Brownian motions�) The term including
the quotation marks is due to Hofbauer [2000] after G.W. Brown (not botanist
Robert Brown, the (re)discoverer of Brownian motion). The Brown-von
Neumann dynamics (Brown & Von Neumann [1950]) given by

�
xi = maxf0; fi(x)g � xi

X
j2In+1

maxf0; fj (x)g;

are weakly compatible dynamics on the unit simplex.
It can be seen readily that for gi (x) = maxf0; fi(x)g for all i 2 In+1 we have� �

x
r

g

�
i
= maxf0; fi(x)g � xi

X
j2In+1

maxf0; fj (x)g;

� �
x
o

g

�
i
= maxf0; fi(x)g �

1

n+ 1

X
j2In+1

maxf0; fj (x)g:

The ray-projection dynamics coincide with those of Brown and Von Neu-
mann on the interior of the unit simplex; the alternative orthogonal-projection
dynamics have not studied as far as we know. For both types of dynamics,
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each equilibrium is a �xed point, and each limit point is an equilibrium.
More generally, let z : Rn+1+ ! Rn+1+ be given by z(0) = 0 and z (x) > 0 for
all x > 0: Then, de�ning gz : Sn ! Rn+1 by gzi (x) = z (maxf0; fi(x)g) for
all i 2 In+1; we obtain� �

x
r

gz

�
i
= z (maxf0; fi(x)g)� xi

X
j2In+1

z (maxf0; fj (x)g) and

� �
x
o

gz

�
i
= z (maxf0; fi(x)g)�

1

n+ 1

X
j2In+1

z (maxf0; fj (x)g) :

The orthogonal-projection variant is not studied as far as we know. Note
that if z(x) = x� for � > 0; x � 0; then clearly � = 1 yields the BN-
dynamics. An interesting case is then to let � ! 1; where the dynamics
are very similar to the best-response dynamics.

BN-dynamics converge to a Nash equilibrium, if the relative �tness function
f(x) = Ax � (x �Ax) i is such that for matrix A it holds that aij = �aji
for all i; j 2 In+1. Moreover, BN-dynamics are globally stable under strict
monotonicity (SMON ) of the generalized excess demand function (or relative
�tness function) (cf., Nikaidô [1959]). Hofbauer [2000] treats families of
dynamics including (smoothed) BN-dynamics, BR-dynamics and replicator
dynamics. His convergence results on the ESS complement Nikaidô�s. The
majority of results in Hofbauer [2000] rely on the weak version of Haigh�s
criterion, for the stronger on Hofbauer [1995] already parallels.

Example 11 (Logit type dynamics) Now, let � > 0 and let g� : Rn+1 !
Rn+1 be given by g�i (x) = e�fi(x): Then, we obtain projection dynamics given
by

� �
x
r

g�

�
i
= e�fi(x) � xi

0@n+1X
j=1

e�fj(x)

1A
� �
x
o

g�

�
i
= e�fi(x) �

0@ 1

n+ 1

n+1X
j=1

e�fj(x)

1A :
Clearly, the ray-projection dynamics do not cross the boundary of Sn; as
xi = 0 implies

�
xi = e

�fi(x) � 0: Furthermore, for very large values of � only
best-responses increase in population share under both variants. The former
dynamics are known as the logit dynamics (Fudenberg & Levine [1998]),
where 1

� is interpreted as an error-term. For error terms going to zero, i.e.,
��s going to in�nity, the dynamics become more and more similar to the best
response dynamics, but remain continuous.
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Fudenberg & Levine [1998] actually write

�
xi =

e�Fi(x)Pn+1
j=1 e

�Fj(x)
� xi for all x 2 Sn; i 2 In+1:

However, notice that

� �
x
r

g�

�
i
= e�fi(x) � xi

0@n+1X
j=1

e�fj(x)

1A = � (x)

"
e�Fi(x)Pn+1
j=1 e

�Fj(x)
� xi

#
:

Since, � (x) =
Pn+1
j=1 e

�Fj(x)

e�x�F (x)
does not depend on the subgroup at hand, it fol-

lows that both dynamics have the same direction, but may di¤er in speed.
A glaring shortcoming of the logit dynamics is that an interior equilibrium
need not be a �xed point of the dynamics. In this sense, the orthogonal-
projection dynamics are perhaps more interesting than the ray-projection
variant, as f (y) = 0n+1 implies

�
x
o

g� = 0
n+1:

Logit-type dynamics which happen to be well-de�ned on the boundary of the
unit simplex and which possess the property that an interior equilibrium is
a �xed point of the dynamics are generated by

g�i (x) =
xie

�fi(x)Pn+1
j=1 xje

�fj(x)
for all i 2 In+1;

which yields

� �
x
r

g�

�
i
= xi

 
e�fi(x)Pn+1

j=1 xje
�fj(x)

� 1
!
;

� �
x
o

g�

�
i
=

xie
�fi(x)Pn+1

j=1 xje
�fj(x)

� 1

n+ 1
:

The ray-projection dynamics feature in e.g., Björnerstedt & Weibull [1996],
and in Cabrales & Sobel [1992] in a discrete-time version .

We refer to Hopkins [1999] and Hofbauer [2000] for stability results of the
ESS for the ray-projection variant of the logit dynamics. Sandholm [2007]
provides a microfoundation for these dynamics (see also Fudenberg & Levine
[1998], Hopkins [2002]).

Example 12 (In�ow dynamics) We now formulate classes of dynamics
which we envision as originating from in�ows to the di¤erent subgroups
(from others). The dynamics of Smith [1984] and Sethi [1998] are examples
of a similar idea. Let us start with Sethi-type in�ow dynamics. Let
a = Rn+1++ =

�
x 2 Rn+1jxj > 0

	
and let ga : Rn+1 ! Rn+1 be given by
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gai (x) = aixi
P
j2In+1 xj max f0; fi (x)� fj (x)g :

Then, gi (x) can be interpreted as an in�ow from all other subgroups. It
should be recalled that Sethi [1998] deals with learning, and in that context
subjects observe another member of the population and may switch to the
action that the observed member plays. All subgroups with (relative) �tness
less than subgroup i are assumed to lose a fraction to subgroup i; the higher
the di¤erences in (relative) �tness, the stronger the in�ow to i: No subgroup
with �tness higher than subgroup i loses members to subgroup i. The number
ai is an indicator how easy it is to switch to subgroup i: A relatively low
number indicates that it is di¢ cult to switch to this subgroup. The term
xi can be motivated by probabilistic arguments, that it is easier to observe
(more likely to draw) a member of a large subgroup than a member of a
small subgroup. Sethi [1998] calls such numbers strategy-speci�c barriers to
learning. Then,� �

x
r

ga

�
i
= aixi

X
i2In+1

xj max f0; fi (x)� fj (x)g � xiC(x) and� �
x
o

ga

�
i
= aixi

X
i2In+1

xj max f0; fi (x)� fj (x)g �
1

n+ 1
C(x);

where C(x) =
P
k2In+1 akxk

�P
j2In+1 xj max f0; fk (x)� fj (x)g

�
:

We now de�ne Sethi-Smith-type in�ow dynamics. Let ga : Rn+1 !
Rn+1 be given by gai (x) = ai

P
j2In+1 xj max f0; fi (x)� fj (x)g : Then,� �

x
r

ga

�
i
= ai

X
i2In+1

xj max f0; fi (x)� fj (x)g � xiC(x) and� �
x
o

ga

�
i
= ai

X
i2In+1

xj max f0; fi (x)� fj (x)g �
1

n+ 1
C(x);

where C(x) =
P
k2In+1 ak

�P
j2In+1 xj max f0; fk (x)� fj (x)g

�
:

4 Boundary conditions

The standard way of dealing with Samuelson�s dynamics on the boundary
of P is to de�ne them as being zero for every zero component of the state
variable, see e.g., Arrow & Hurwicz [1958, 1960a,b], Arrow et al. 1959]. In
our notations the extension to include the boundary of P would be given by

�
xi =

�
0 if xi = 0;

fi(x) otherwise:

So, the dynamics extended to the boundary may be discontinuous. For
the ray-projection dynamics this extension to the boundary does not pose

18



 #0811 
 
 

 

 

 

 

 

 

 

 

  

great problems as we may (re)de�ne

�
xi =

(
0 if xi = 0;

fi(x)�
�P

j:xj>0
fj (x)

�
otherwise:

(a)

This de�nition is identical to our previous de�nition for the interior of the
unit simplex. Under (a), a trajectory might in �nite time reach the boundary
of the unit simplex, and then remain on it while the relative �tness of a
subgroup with population share zero becomes positive again.

An alternative is to de�ne the dynamics extended as

�
xi =

8><>:
0 if xi = 0 and fi (x) < 0;

fi(x)� xi

 P
j:xj>0 or
fj(x)�0

fj (x)

!
otherwise:

(b)

This way, the dynamics escape the boundary of Sn as soon as fi (x) > 0:
So, at a limit point y 2 bd Sn; we can never have yi = 0 and fi (y) > 0:

The following small result has interesting implications. Let, ZP = fx 2
Snj f(x) = 0n+1g and FP = fx 2 Snj �x = 0n+1g:

Lemma 13 Let fxtgt�0 be a trajectory under the ray-projection dynamics
and let y = limt!1 xt: If t� exists such that fxtgt�t� � int Sn; then y 2 ZP ;
otherwise, y 2 bd Sn and under (a) y 2 FP; under (b) y 2 E:

Boundary conditions are obviously of high relevance for boundary equilibria,
�xed points and limit points. A re�nement of the saturated equilibrium
concept is the strict saturated equilibrium (cf., Joosten [1996]) which is
a saturated equilibrium satisfying fj(y) = 0 for precisely one j 2 In+1: For
this type of equilibrium we have the following result.

Proposition 14 Every strict saturated equilibrium is an asymptotically sta-
ble �xed point of the ray-projection dynamics.

Let SSAT; ASFP; and LP denote the sets of strict saturated equilibria,
asymptotically stable �xed points, and limit points respectively; let LPint�
denote the set of limit points satisfying there is at least one fxtgt�0 with
y = limt!1 xt satisfying that some t� exists such that fxtgt�t� � int Sn.
Note that in Joosten [1996] it was shown that SSAT � GESS � E; then
the following summarizes results.

Corollary 15 For arbitrary dynamics, SSAT � GESS � E: For the ray-
projection dynamics: LPint� � ZP � E � FP ; (a) implies SSAT �
ESE � ASFP � LP � FP ; (b) implies SSAT � ESE � ASFP �
LP � E � FP:
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4.1 Desiderata for generalized ray-projection dynamics

It is remarkable that several generalizations of the ray-projection dynamics
presented in the examples of the previous section happen to be well-de�ned
on the boundary of the unit simplex, as obviously

�
xi = gi (x) � 0 whenever xi = 0:

However, projection dynamics do not necessarily become non-negative for
boundary states. So, convergence results may depend crucially on how the
boundary dynamics are speci�ed.

For future work the results of the preceding subsection show that it may
be useful to formulate desiderata:

g satis�es continuity and sign compatibility with f; (A)

g satis�es continuity and weak compatibility with f: (B)

Note that (A) implies (B), and that a sign compatible function g need not
yield sign compatible ray-projection dynamics. The proper generalizations
of (a) and (b) for g are immediate, i.e.,

�
xi =

(
0 if xi = 0;

fi(x)�
�P

j:xj>0
fj (x)

�
otherwise:

(a�)

�
xi =

8><>:
0 if xi = 0 and fi (x) < 0;

fi(x)� xi

 P
j:xj>0 or
fj(x)�0

fj (x)

!
otherwise:

(b�)

We have a preference for the combination of (b�) and (A).

5 Conclusions

We introduced new dynamics on the unit simplex, the ray-projection dynam-
ics. These dynamics form a useful alternative to the orthogonal-projection
dynamics of Lahkar & Sandholm [2008]. As the names already indicate, the
orthogonal-projection dynamics project the relative �tness function at every
point of the unit simplex orthogonally unto it, whereas the ray-projection
variant does the same along a ray through the origin.

Under orthogonal-projection dynamics every evolutionarily stable strat-
egy is an evolutionarily stable equilibrium and vice versa (cf., Hofbauer &
Sandholm [2008]). This implies that along every trajectory approaching the
evolutionarily stable strategy under these dynamics the Euclidean distance
to it decreases strictly over time. In this paper, we showed that each strict
equilibrium is both an ESS and an ESE for ray-projection dynamics.
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We have proven a convergence (stability) result with the same �avor for
ray-projection dynamics. We have shown that every interior evolutionarily
stable strategy is an asymptotically stable �xed point of the ray-projection
dynamics. The result is immediate if one is familiar with the early economic
literature on price-adjustment processes, but we provided a new proof for
evolutionary dynamics. For this we transformed a dynamic process on the
unit simplex to a dynamic process in the positive orthant, and then projected
the latter unto the unit simplex again. Similar tools are used in economics
to prove existence of a competitive equilibrium justi�ed by the fact that
excess demand functions are homogeneous of degree zero in prices.

We generalized our approach applying both ray-projection dynamics and
orthogonal-projection dynamics to more general functions connected to the
relative �tness function. It turns out that well-known dynamics in evolution-
ary game theory can be represented as projection dynamics for appropriately
chosen functions. To facilitate future research and applicability of these gen-
eralized projection dynamics a natural set of desiderata was presented.

Tsakas & Voorneveld [2008] show that target projection dynamics (Sand-
holm [2005]), closely related to orthogonal-projection dynamics, can be as-
sociated to rational choice behavior if control costs (as in e.g., Van Damme
[1991]) can be assumed (see also, Hofbauer & Sandholm [2002], Mattson &
Weibull [2002] and Voorneveld [2006]). Further research must reveal which,
if any, generalized ray- or orthogonal-projection dynamics can be motivated
with similar microeconomic foundations.

Further research must reveal to which extent additional convergence re-
sults for price adjustment dynamics of the late �fties and early sixties can be
recovered for evolutionary games while remaining within the class of these
generalized projection dynamics.

6 Appendix

Proof of Lemma 4. Let y 2 E \ int Sn; then f(y) = 0n+1: Hence, y is a
�xed point of both ray-projection and orthogonal-projection dynamics. Con-
versely, let y 2 int Sn be a �xed point of the ray-projection dynamics. Then,
fi(y)� yi

�Pn+1
j=1 fj(y)

�
= 0 for all i 2 In+1: This in turn implies yifi(y) =

y2i

�Pn+1
j=1 fj(y)

�
for all i 2 In+1: Then, summing over all i 2 In+1 and

complementarity of f lead to 0 =
Pn+1
i=1 yifi(y) =

Pn+1
i=1 y

2
i

�Pn+1
j=1 fj(y)

�
:

This can only hold if
Pn+1
j=1 fj(y) = 0; hence f(y) = 0

n+1. For orthogonal-
projection dynamics, the reasoning is similar.

Proof of Proposition 6. Let f : Sn ! Rn+1 be a continuous relative
�tness function. De�ne ef : P! Rn+1 by ef (�x) = f (x) for all � > 0: Then,ef is continuous, homogeneous of degree zero, and satis�es complementarity.

21



 #0811 
 
 

 

 

 

 

 

 

 

 

  

De�ne for all x 2 P :
�
x = ef (x) : (4)

Clearly, this implies that djjxjj2
dt = 2

Pn+1
j=1 xj

�
xj = 2

Pn+1
j=1 xj

efj (x) = 0: Let
fxtgt�0 denote a solution to x0 2 P and Eq. (5). Then, fxtgt�0 remains on
the sphere with the origin as center and with radius r = jjx0jj:

Let y 2 Sn be an interior generalized evolutionarily stable state, i.e., an
open neighborhood U � int Sn containing y exists such that

(y � x) � f (x) > 0 for all x 2 Unfyg:

Let E = fx 2 Pj x = �y; � > 0g : De�ne for z 2 P; �z =
Pn+1
k=1 zk: Then, let

x 2 P satisfy 1
�x
x 2 Unfyg and let y� 2 E such that jjxjj = jjy�jj. Then,

obviously d (x; y�)2 > 0; d (y�; y�)2 = 0 and under the dynamics we have

�
d (x; y�)2 =

�0@n+1X
j=1

(y�j � xj)2
1A = �2

n+1X
j=1

(y�j � xj)
�
xj

= �2
n+1X
j=1

(y�j � xj) efj (x) = �2 n+1X
j=1

�
�y�

y�j
�y�

� �x
xj
�x

�
fj

�
x

�x

�

= �2
n+1X
j=1

�
�y�y � �x

xj
�x

�
fj

�
x

�x

�
= �2�y�

n+1X
j=1

�
y � xj

�x

�
fj

�
x

�x

�
< 0:

This means that the squared (Euclidean) distance is a strict Lyapunov func-

tion for U 0 =
n
x 2 Pj 1

�x
x 2 U

o
: Hence, an open neighborhood U 00 of y�

exists such that every trajectory fxtgt�0 with x0 2 U 00nfy�g such that
jjx0jj = jjy�jj, converges to y�; i.e., limt!1 xt = y�:

The ray-projection fx0tgt�0 of such a trajectory fxtgt�0 with x0 2 U 00nfy�g
such that jjx0jj = jjy�jj, and limt!1 xt = y� is given by x0 = x0Pn+1

j=1 (x0)j
and

�
x0 =

1

�x

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
for every x 2 fxtgt�0 :

Clearly, limt!1 x0t = y: As the factor 1
�x
only in�uences the speed of the

dynamics but not the direction, it follows that any trajectory fxtgt�0with
x0 2 U

000
converges to y under the local ray-projection dynamics given by

�
x = f(x)� x

 
n+1X
i=1

fi(x)

!
: (5)

So, y is an asymptotically stable �xed point of the dynamics given by (6).
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Proof of Lemma 13. Let h : Sn ! Rn+1 be given by h (x) = f (x) ��Pn+1
j=1 fj (x)

�
for all x 2 Sn: Clearly, h is continuous because f is contin-

uous on the unit simplex. Let fxtgt�0 satisfy that some t� exists such that
fxtgt�t� � int Sn and limt!1 xt = y: If y 2 int Sn, then by continuity of h
it follows that h(y) = 0n+1: So, y is an interior �xed point of the dynamics
and our earlier result applies, i.e., y 2 E:
If y 2 bd Sn, then assume yj = 0 and fj(y) > 0: By continuity of h we have
hj(y) > 0, and an open neighborhood U 3 y exists such that hj (x) > 0
for all x 2 U: However, since yj = 0 and xj > 0 for all x 2 fxtgt�t� a

subsequence fxtkgk2N � fxtgt�t� must exist such that
�

(xtk)j = hj (xtk) < 0
for all k 2 N: Since limk!1 xtk = y; fxtkgk2N \ U 6= ?: This yields a
contradiction. Hence, yj = 0 implies fj(y) � 0: Furthermore, for yj > 0

we have hj(y) = 0 = fj (y) � yj
�Pn+1

k=1 fk (y)
�
by continuity which im-

plies fj (y) = yj

�Pn+1
k=1 fk (x)

�
: However, then 0 =

P
j:yj>0

yjfj (y) =P
j:yj>0

y2j

�Pn+1
k=1 fk (x)

�
and therefore

Pn+1
k=1 fk (x) = 0 which in turn im-

plies fj(y) = 0 whenever yj > 0; hence f(y) = 0n+1:

Suppose fxtgt�0
t!1! y and it does not hold that t� exists such that fxtgt�t� �

int Sn: Let T = fk 2 In+1j yk > 0 or [yk = 0 and (xt)k > 0 for all t >
t0 for some t0 � 0]g: If follows from the above that for k 2 T it must hold
that fk(y) = 0: Now, let h 2 In+1nT then yh = (xt)h = 0: If (a) holds, then
�
xh = 0 regardless whether fh (x) > 0 or fh (x) � 0, hence y 2 FP: Under
(b),

�
xh > 0 whenever fh (x) > 0 and therefore fh(y) � 0 and y 2 E:

Proof of Proposition 14. Let y be a strict saturated equilibrium, then
m = maxh6=j fh (y) < 0 and continuity implies that a neighborhood U 3 y
exists such that maxh6=j fh (x) = m

2 for all x 2 U: Complementarity implies
y = ej : Let CS(x) =

P
h2S[fjg fh(x) for ? 6= S � In+1nfjg: Then, clearly

CS(y) � m < 0 for all nonempty S � In+1nfjg and a neighborhood U 0 3 y
exists such that maxh6=j fh (x) = m

2 for all x 2 U: Then, let x 2 U \ U
0

(y � x) � �x = (ej � x) � f(x)� CS0(x)(ej � x) � x � fj(x)� (xj � x � x)m

= �

�P
h6=j xhfh(x)

�
xj

� (xj � x � x)
m

2

� �1� xj
xj

m

2
� (1� xj)

m

2

�
xj �max

h6=j
xh

�
= � (1� xj)

m

2

�
1

xj
+

�
xj �max

h6=j
xh

��
� � (1� xj)

m

2
� 0:

Here, we have a strict inequality whenever xj 6= 1: So, y 2 ESE:
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