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Abstract

This paper examines the prices versus quantities issue, originally raised by Weitzman [§],
in the context of carbon dioxide emissions and with a special focus on electricity genera-
tion. Within a simplified model of the electricity market, in which we explicitly allow for
a monopolistic gas supplier, we employ a game-theoretic approach and ask, from a welfare
perspective, for the superior regulatory regime in response to an expected exercise of market
power. Our analysis studies the optimal regulation in each regime and shows that, in the
presence of market power in the gas market, taxes rather than permits are the regulator’s
welfare-maximizing regime choice.

JEL Classification: H23, L51, L94, Q54, Q58
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1 Introduction

A standard method to correct for an externality, as, for example, air pollution and climate
change resulting from the burning of coal, is to impose a (linear) tax at the rate of marginal
external damages on the use of the entity responsible for the externality. In an idealized deter-
ministic environment with perfect information and no transaction costs, any outcome of a price
regulation via (linear) taxes can also be achieved by a regulation based on quantities, e.g., via
a cap-and-trade scheme. Under a cap-and-trade scheme, the regulator issues a fixed quantity of
permits, each of which allows its holder to generate one predetermined unit of the externality,
and allows to trade these allowances, resulting in a market price for permits. In particular, both
taxes and the market mechanism for tradeable permits are economically efficient since they allow
the externality to be reduced at least cost, i.e., where it is cheapest for the economy.!

The European Emissions Trading Scheme (ETS), introduced by the European Union in 2005 in
order to reduce carbon dioxide emissions, is one example of a cap-and-trade scheme. Basically,
by assigning emission rights and then allowing to trade these rights, the ETS is a restriction
on the annual flow of carbon dioxide emissions, covering different industry sectors as, among
others, electricity generation, the largest covered sector in terms of emissions. Alternatively,
governments could establish a price for carbon by imposing a (linear) tax on emissions. In this
paper we compare (linear) taxes and tradeable permits in the context of carbon dioxide emis-

*I am especially grateful to Martin Hellwig for offering valuable advice on an earlier version of this paper.
Many thanks to Christoph Engel and my colleagues Jos Jansen, Stefan Magen, and Philipp Weinschenk for

helpful comments.

Note that either the tax rate or the equilibrium price of permits will equal each originator’s marginal costs

of reducing the externality.



sions from electricity generation, although in a specific setting.?

Weitzman [8] shows in a seminal paper that, in the presence of uncertainty or asymmetric infor-
mation about abatement costs and/or environmental damages, a quantity control is preferable
to a price control (a linear tax) if and only if the marginal benefit of abatement curve is steeper
than the marginal cost of abatement curve and vice versa.® If in the context of climate change,
as part of the related literature appears to suggest, marginal costs of abatement are steeper
than marginal benefits from reducing a pollutant, then this would be an argument for the use
of carbon taxes rather than permits.*

In a recent article, Newbery [6] investigates the effect of the European ETS on market power
in the gas market and provides another argument for taxes rather than permits. Building on
the observation that there is “existing market power in the gas market”,® he argues that “fixing
the quantity rather than the price of carbon reduces the price elasticity of demand for gas ap-
preciably, amplifying the market power of gas suppliers, and amplifying the impact of gas price
increases on the electricity price.” According to Newbery, ”the amplification of market power
works through the impact on the price of EU Emission Allowances, which, as gas prices rise
and lead to [the more-carbon intensive fuel] coal substituting for [the less-carbon intensive fuel]
gas, raise emissions and hence the price of EU Emission Allowances, which in turn favours gas,
offsetting the normal market demand response to an increase in the price of gas.”

Similar to Newbery [6], it is the aim of our paper to compare (linear) taxes and tradeable per-
mits in the context of carbon dioxide emissions from electricity generation, explicitly taking into
account the effects of market power in the gas market. In contrast to Newbery, however, we
employ a game-theoretic approach and study the optimal regulation in response to an expected
exercise of market power: In each regime, taxes and permits, we search for that level of the
regulatory device which is welfare-optimal given that the gas supplier in turn and from his per-
spective optimally responds in exercising market power, and compare the two in order to find
the regulator’s welfare-superior regime choice. In order to elicit the effects of market power in

For a general discussion, cf. Grubb and Newbery [1]; or K. Neuhoff [5]. For a recent review of the literature
on prices versus quantities, cf. Hepburn [2].

3Intuitively, if marginal costs are approximately constant and marginal benefits are steep, then the smallest
deviation from the tax level corresponding to the optimal quantity (which equates marginal benefits and marginal
costs from abatement) results (in the quantity at which marginal costs equal the tax rate and thus) in a high
deviation from the optimal quantity — specifying a quantity directly is the better alternative. On the other hand,
if marginal benefits are approximately constant and marginal costs are steep, even a high deviation in the tax level
will only result in a small deviation from the optimal quantity — using a tax and letting the originator(s) choose
a quantity close to the optimal level is the better alternative. Note that many subsequent contributions have
modified the assumptions in Weitzman’s uncertainty analysis. One strand of literature, for example, discusses the
prices versus quantities question in a dynamic context where environmental damages are caused by a pollution
stock rather than being a (quadratic) function of the flow of pollution (cf., for example, Newell and Pizer [7]).

4Cf. Neuhoff [5], Section 3.2; or Newbery [6], Section 5: “For most pollutants the marginal abatement cost
schedule is fairly flat and low for modest abatement, but rises rapidly as a higher fraction of emissions is to be
curtailed. The damage contributed by emissions today is effectively the same as those tomorrow, and so the
marginal benefit of abatement is essentially flat at each moment, while the marginal cost of abatement rises
rapidly beyond a certain point, arguing for taxes rather than quotas.”

5In the words of Newbery [6], Section 2.3: “While the international market for coal is reasonably competitive,
the same is not true for gas, particularly in Europe, which is heavily dependent on importing Russian gas from
the monopoly supplier, Gazprom. In addition, gas producers and suppliers in the EU have more market power
than the suppliers of other fuels.” Cf. Grubb and Newbery [1], Section 4.1.



the gas market, we deviate from Weitzman’s analysis in that we presume perfect information
(about abatement costs and environmental damages).

In the following, we develop a simplified model of the electricity market (with elastic electricity
demand), in which we explicitly introduce a gas supplier endowed with market power. Such
exercise of market power has a direct effect on electricity producers, who, in our model, can
reduce emissions (and react to relative price changes between coal, gas and permits or taxes)
merely by substituting coal-based by gas-based production. The regulator, taking into account
the gas supplier’s strategic response to her policy choice, aims at maximizing welfare from elec-
tricity generation. Our notion of welfare excludes the gas supplier’s profits resulting from his

6 our analysis, however, outlines the respective consequences of welfare

monopolistic behaviour;
maximization for the gas supplier’s profits.

In order to examine the effects of market power in the gas market, our game-theoretic anal-
ysis contrasts two different scenarios. In the ”competitive scenario”, the gas price is set at
marginal costs. In the "monopolistic scenario”, the gas supplier chooses his price in order to
maximize profits. Based on the only presumption that coal-based per-unit-of-electricity emis-

7 our analysis comes to the following

sions are above gas-based per-unit-of-electricity emissions,

conclusions (which refer to Proposition 1 to 5 in our analysis, respectively):

1) In the competitive scenario, where the gas price equals marginal gas production costs, we
obtain the expected benchmark result: The regulator’s welfare-maximizing policy in each
regime implies the same welfare level. Taxes and permits are equivalent.

2) In the emission taxes regime, the regulator’s welfare-maximizing tax level choice equals the
marginal welfare costs of emissions, in both the competitive and the monopolistic scenario.
In other words, market power in the gas market has no effect on the optimal tax level; and,
the higher the welfare costs of emissions, the higher is the optimal tax level.

3) In the emission permits regime, market power in the gas market has an effect on the optimal
permits level, and the direction of this effect depends on the magnitude of the difference
between coal-based and gas-based per-unit-of-electricity emissions: The regulator’s welfare-
maximizing permits level choice in the monopolistic scenario is higher than his optimal choice
in the competitive scenario if and only if the difference between coal-based and gas-based
per-unit-of-electricity emissions is sufficiently high.®

4) In the monopolistic scenario, i.e., whenever there is market power in the gas market, taxes
are the regulator’s welfare-maximizing regime choice, except for very specific parameter
constellations, under which taxes and permits guarantee for the same welfare and result in
the same profits for the gas supplier. And, except for these specific parameter constellations,

5) maximizing welfare in the monopolistic scenario of the emission taxes regime implies higher

profits for the gas supplier than maximizing welfare in the permits regime.

SReferring also to the preceding footnote, the reader can think of the European case and the Russian gas
supplier Gazprom (which does not belong to the European Union and could be considered as external in terms
of welfare considerations).

"Cf. Neuhoff [5], Section 1.2: “For example in the electricity sector, burning natural gas instead of coal for
power generation can reduce carbon emissions by about 50% per unit of electricity produced.”

8Note that in the monopolistic scenario, as we will explain, the regulator’s optimal binding (i.e., effectively
restricting the electricity producers) permits level is welfare-superior to a non-binding permits level if and only
if the marginal welfare costs of emissions are sufficiently high. Our result concerning the regulator’s welfare-
maximizing permits level choice refers to this case, i.e., to the optimal binding permits level.



We proceed as follows. Section 2 introduces our simple model. Section 3 outlines the benchmark
result obtained for the competitive scenario. Section 4 and 5 are devoted to the analysis of the
monopolistic taxes and permits regime, respectively. Section 6 compares the two regimes. A
mathematical presentation of all (intermediate) results and corresponding proofs can be found in
Appendix B. Remarks and standard calculations are deferred to Appendix A and C, respectively.

2 Owur Model

Our simplified model of the electricity market consists of an environmental regulator, a gas sup-
plier, and electricity producers. Electricity consumers enter only through their demand E(-),
which is a function of electricity price w € R4, and is derived from their maximization of utility
from electricity consumption U( -), a function of units £ € R consumed, minus corresponding
costs w - E via U'(E) = w.?

For the supply of electricity, each producer can make use of two independent technologies, one
based on the input coal, the other based on the input gas. Electricity producer i’s correspond-
ing production function is denoted by FO (K, G) = FC(;ZLZ(K) + Fgfé)s(G), where K € Ry and
G € R denote the input units of coal and gas, respectively. An electricity producer is assumed
to maximize profits by choosing the input quantities appropriately, taking as given gas price
v € R4+, coal price pg € R4+, the equilibrium price of electricity w*, and, depending on the
regime, either tax level (“carbon price”) p € Ry or the equilibrium price of emission permits
pP*.

Assuming that total emissions from the production of electricity by producer ¢ can be expressed
as a function e(i)( -, +) of the input units K; and G; used, electricity producer i’s profit is given
by H(i)(Ki,Gi) =w- F(i)(Ki,Gi) —prx - Ki — v -G —x- e(i)(Ki,Gi), where z either equals
tax level p (in an emission taxes regime) or the price of permits P (in an emission permits
regime). In an emission taxes regime, letting (K (w,p), G (w,p)) denote electricity producer
i’s profit-maximizing input combination as a function of electricity price w and tax level p, the
equilibrium price of electricity w* equates demand and supply in the market for electricity and
is thus determined by F(w*) = 3, FO (K (w*, p),G}(w*,p)). In an emission permits regime,
letting (K (w, P), G} (w, P)) denote electricity producer ¢’s profit-maximizing input combination
as a function of electricity price w and permits price P, equilibrium prices w* and P* are deter-
mined by E(w*) = 3, FO(K}(w*, P*),Gf(w*, P*)) and Y, e (K} (w*, P*),GI(w*, P*)) = a,
where a € R4 denotes the level of emission allowances.

In our analysis we abstract from the allocation process (which is presumed to be efficient) within
the supply side of the electricity market, and assume that both production and emission func-
tions are the same across (non-strategic and price-taking) producers.!’ This allows us to model
the supply side of the electricity market by introducing one (representative) electricity producer,

whose choice maximizes

meermits) (K Q) :=w - F(K,G) — pg - K —v -G subject to e(K,G) <a

9Note that all functions are specified in more detail later in this section.

10For literature on the theory of environmental regulation in imperfectly competitive markets, cf., for example,
Mansur [4]. In particular, Mansur examines the welfare implications of prices versus quantities when firms have
market power in selling a polluting good (esp. electricity) and the environmental regulator assumes a competitive
product market. For a recent article which reviews the literature on market power in pollution permit markets,
cf. Montero [3].
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in an emission permits regime, - and

1twes)(K,G) i=w- F(K,G) —pg - K —~v-G —p-e(K,G)
in an emission taxes regime, taking as given the price of gas and coal, and the equilibrium price

of electricity determined by E(w) = F(K(w),G(w))

In our model, the gas supplier can supply gas at per-unit costs of ¢y € Ry;. Whereas coal
price px is assumed to be set on competitive markets, we consider two different scenarios
with respect to the gas supplier’s price choice: In the competitive scenario, gas price v equals
marginal /average cost 1; in the monopolistic scenario, the gas supplier chooses v € [1), 00) so as

to maximize profits.

The regulator aims at maximizing welfare from electricity generation. If the coal suppliers gen-
erate zero economic profit, then a measure of welfare, excluding the gas supplier’s profits, can
be defined by the difference between the utility from electricity consumption and the sum of the

factor costs of electricity production and the social costs of emissions:
W=U(E)-px -K—v-G—q eK,G),

where “marginal emission cost” ¢ € R is a measure of the per-unit-of-emissions welfare. The
regulator’s choice is the regime and the level of the regulatory device, i.e., the tax or permits
level. In summary, the sequence of actions in the monopolistic scenario is as illustrated in Figure
1.

Figure 1

Our analysis of the two regimes follows standard backward induction and concentrates on the

following specifications. Electricity demand is assumed to be linear in price, i.e.,
BE(w)=00— 01w
for some constants By, 81 € Ry4. The electricity producer’s production function satisfies
F(K,G) = Fopa(K) + Fyos(G) =2 fr - VK +2- fa - VG

for some constants fx, fg € R4+. And, emissions from the production of electricity depend on

" Essentially, the price equilibrium in the market for permits reduces to a quantity constraint for the electricity
producer. A positive equilibrium permits price corresponds to a binding quantity constraint. Cf. Appendix A.



the respective input used, and are linear in the respective units of electricity produced:
e(K,G)=2-6g -VK+2-6q-VG

for some constants dg, g € R4+. In other words, we assume that there exist two constants ) K,

b € R (representing coal-based and gas-based per-unit-of-electricity emissions, respectively)

such that e(K,G) = oK - Fooat(K) + o - Fyas(G) = ok - 2fk VK + ¢ - 2faV/G, and define

0k = 0 [ and 0¢q = dqfq. If electricity demand is determined by U'(E) = w = ﬂoﬁzE, then
Bo 1

—_ _—— 2
U(B) =3 F 25 B

Our analysis concentrates on the interior input factor area of electricity production and ab-
stracts from the possibility that electricity could in principle be produced by using either gas or
coal but not both. Technically, we restrict the electricity producer’s choice set to the open area
(K,G) € R%r 4 and require each player’s equilibrium strategy to specify an action only (more
precisely: exactly) at those of her/his decision nodes where there exists at least one action that
results (via sequential rationality) in a well-defined outcome of the game and at the same time
maximizes the player’s target (welfare or profit) over all alternatives with a well-defined out-
come; each player’s equilibrium strategy must specify such an action at each of these decision

13

nodes.'? In order to guarantee the existence of an equilibrium in each regime,'® we assume that

marginal emission cost ¢ satisfies _ Bofrv 44
==

where R and D are as defined below. Furthermore, we presume that coal-based per-unit-of-
electricity emissions Sk are higher than gas-based per-unit-of-electricity emissions 6c. Since
frda— fadk = froafa — fadk fx = fxfa(da —0k), this is equivalent to the requirement that

D= fK(SG — fg5K < 0.
The results of our analysis depend, in part, on whether this measure of the difference between

coal-based and gas-based per-unit-of-electricity emissions is (relatively) high or low, more pre-
Q = p1éepK +2fk D
is lower or greater than (or equal to) zero. For notational convenience, we define (on v € R )
R(y) := B1dry — 2fcD,
U () := B1(0%pK + 6%7) + 2D?, and
®(v) == (Bipx + 2f5 )y + 2fEpK,
and abbreviate R := R(¢), ¥ := ¥(¢), and ¢ := ®().

cisely on whether

1211y other words, we require the electricity producer’s equilibrium strategy to specify an action only at those of
his decision nodes where previous decisions (about the gas price and the tax or permits level) allow him to maximize
profits by choosing an input factor combination which is strictly positive in each component. Correspondingly,
we require the gas supplier’s equilibrium strategy to specify a gas price choice only at those of his decision nodes
where the tax or permits level allows him to maximize profits over all alternatives which allow the electricity
producer to maximize his profits within (K,G) € R3,. And, finally, the regulator’s equilibrium (regime and
tax or permits level) choice must maximize welfare over all alternatives that allow the gas supplier to maximize
profits over all alternatives which allow the electricity producer to maximize his profits within (K, G) € R?H_.

13Note that, in the following, the word ‘equilibrium’ often refers to the subgame starting after the regulator’s
regime choice.

14Cf. Appendix B, Lemma 1lc, part f) of both Lemma 2.1 and 2.2, and Lemma 3a and b.



Finally, note that, in principle, an emission permits level can be either binding or not. Whether
or not a permits level will be binding, i.e., effectively restricting the electricity producer’s choice,
depends on both the regulator’s preceding permits level choice and the gas supplier’s price
response. Given a specific permits level choice, it might well be in the gas supplier’s interest to
respond with a gas price resulting in a non-binding permits level. And, taking into account the
gas supplier’s strategic response to her policy choice, it is a priori not clear whether the regulator
would prefer a binding to a non-binding permits level from a welfare perspective. Therefore,

15

our analysis has to keep track of both cases.”® Before we proceed, please remember that a

mathematical derivation of all the following is provided in Appendix B.

3 Analysis of the Competitive Scenario

In the competitive scenario, gas price v equals marginal/average cost ¢. Correspondingly, our
four-stage game formally reduces to three non-trivial stages: First, the regulator chooses the
regime and level of the regulatory device. Afterwards, the electricity producer’s choice of the
two input quantities determines the combination of coal- and gas-based production.
In any equilibrium of the emission taxes regime, the electricity producer’s profit maximization,
taking as given gas price (7 =) ¢ and coal price pg, together with market clearing in the market
for electricity implies that factor inputs K and G equal
o (ﬁwa —pR(v)>2 _ (ﬁowa —pR)2 and G- (ﬂopKfc —pQ)2 _ <5opl<fc: —pcz>2
(v) @ D(v) ) ’
respectively. Given these levels of coal- and gas-based electricity production, welfare, as a func-
tion of tax level p, can be calculated as (a quadratic function of p)

=201V p? +4B1qV - p+ 260[Bo (fRY + [EpK) — 26019(frOKY + da fapk )]
It follows that the regulator’s welfare-maximizing tax level choice is p* := ¢, i.e., the optimal

tax level equals the marginal welfare costs of emissions, resulting in welfare level
BV P — 261 60(frOxY + fadapk) - q+ B3 (fav + fEpk)
B [r®

Lemma 1 in Appendix B confirms that (K*(p*),G*(p*),p*) is the unique equilibrium in the
competitive scenario of the emission taxes regime.

In the emission permits regime, equilibrium factor inputs depend upon whether or not the per-
mits level is binding, i.e., upon whether or not the permits level effectively restricts the electricity
producer’s profit maximization, taking as given gas price v, coal price pg, and the market clear-
ing price of electricity. In any equilibrium of the emission permits regime, factor inputs K and

G equal . Bovfr\? Bovfr \* X Bopx fa\* Boprc fa\~
wi (Gpy) - () ma o= (F0) - (57)

respectively, if the permits level is non-binding, and they equal
K (%&:D + aR(7)>2 B (QﬁoégD + aR)2

Wy (p*) =W (q) :

B

20() 20
and ) )
oo 2800k (=D) +aQ\~ [ 2B00x(—=D)+ aQ
B 20 () - 20 ’

respectively, if the emission permits level is binding. In particular, an emission permits level is

151n particular, as it turns out, the regulator’s decision for or against a binding permits level depends on
Bork fa(=Q)
~ def 02151(??((? it@Q <0
q(Q) = Bork fa@ ifQ>0
2(B1pk+2f%)¥ =

whether or not marginal emission cost g is greater or lower than



binding if and only if it is lower than e(K%, G% ) = 20k (%) + 20¢ (%) =:aj. In the
latter case, welfare, as a function of permits level a, can be calculated as

_ —51® - a® + [4BoS1 (fr Ok + fadapr) — 4B1q¥] - a + 435 D?
15,0 '

It follows that the regulator’s welfare-maximizing permits level choice, if going for the binding

Ww(a) :

permits level alternative, is aj(q) := a1 — %q > 0, resulting in welfare level

(@)1= 5g [ Golicbict + Jadopic) - a¥)? + D8]

If, on the other hand, the emission permits level is (chosen such that it is) non-binding, then

Wy(ag) = W§

the resulting welfare equals that of the taxes regime (i.e., Wy (p)) for tax level p = 0, which is
lower than Wg (¢). In other words, the regulator’s welfare-maximizing permits level choice is
af.. Lemma 2 in Appendix B confirms that (K5 (af), G3(ay), af) is the unique equilibrium in
the competitive scenario of the emission permits regime, and one with a binding permits level.

Comparing the welfare levels of the two equilibria, we obtain the expected benchmark result.

Proposition 1

In the competitive scenario, where gas price v equals the gas supplier’s per-unit cost v, the
gas supplier’s profits are zero, and the regulator’s optimal policy in each regime (tax level q in
the taxes regime and permits level af, in the permits regime) implies the same welfare level:
Wg(q) = WY 4q) (c¢f Lemma Sc in Appendiz B). In particular, both taxes and permits can be
part of an equilibrium of the three-stage game starting with the requlator’s regime choice.

4 Analysis of the Emission Taxes Regime

In the monopolistic scenario of the emission taxes regime, in contrast to the competitive sce-
nario, the gas supplier can optimally react in response to the regulator’s tax level choice, given
his perception about the electricity producer’s corresponding choice of the two input quantities.
In any equilibrium of the emission taxes regime, the electricity producer’s profit maximization,
taking as given gas price v and coal price pg, together with market clearing in the market for
electricity implies that factor inputs K and G equal (K* and G* as defined in Section 3, i.e.,)

s det me—pR(w))Q o def (ﬂopra—pQ>2

respectively. Given these levels of coal- and gas-based electricity production, welfare, as a func-
tion of tax level p, can be calculated as _ Wa(y) - p2 + Wily) - p+ Wo(y)

W, (p) : 26,9 (7) )

where Wy(7) := —261¥(7) < 0, Wi(y) = 461g%(y) > 0, and Wy(7) = 25[Bo (& + f&prc) —
26019(froKxY + dafapr)]. In particular, if gas price v does not depend on tax level p, then
welfare W, (p) is maximized at p = ¢, independent of the specific 7.
Since the gas supplier’s profits, given by (v — %) - G*(7), are maximized at
. )
Y= D)
Bivr +2f%
which is independent of the regulator’s tax level choice p,'% the regulator’s welfare-maximizing
tax level choice is p* := ¢, i.e., the optimal tax level equals the marginal costs of emissions.

+ 9,

16This independence of the optimal gas price from the regulator’s tax level choice results, in particular, from
the property that gas demand G™ and thus the gas supplier’s profit as a function of gas price v and tax level p is
separable in these two parameters, i.e., can be written as the product of two functions, one in v, the other in p.



Note that two ingredients of our model are responsible for the regulator’s welfare-maximizing
tax level choice to equal marginal emission cost g in both the competitive and monopolistic sce-
nario: First, the gas supplier’s optimal price choice in the monopolistic scenario is independent
of the regulator’s tax level choice, as is ¥ in the competitive scenario; and, second, welfare at a
specific gas price is maximized by choosing the tax level equal to g, independent of the specific
(value of the) gas price.

To illustrate the second property, consider welfare W, (p) as composed of utility and costs. The
sum of factor and emission costs, a quadratic function of tax level p, is decreasing in p (as G*,
K*, and electricity demand E* = F(K*,G*) are decreasing in p). For the same reason, also
the utility from electricity consumption, which again is a quadratic function of tax level p, is
decreasing in p. The optimal tax level maximizes the difference between the two, i.e., between
utility and costs. In other words, at g the slopes of the two curves with respect to tax level p
are the same:

\‘\\utility from electricity consumption

N

factor and emission costs

q p
Figure 2

Considering now the effect of a change in gas price ~, we observe the following. The slope of
the utility curve with respect to tax level p and at each specific p is decreasing in the gas price:
The utility effect of an increase in gas price v on the optimal tax level is negative. However,
as outlined above, this effect is exactly neutralized by a corresponding change in (the slope of)
factor and emission costs. Tax level ¢ remains the point where the slopes of the two curves with
respect to tax level p are the same.

If the regulator chooses tax level p* = ¢ and the gas supplier gas price v*, then welfare equals
W2+ WM g+ WM
26, ® ’

~ 2 ~
where Wo' == B3(f + fépr + ﬁ% WM = —2B180(frOx® + fadapr + %)7 and

W, () = W (g) =

WM = B,(¥ + %@). The gas supplier’s corresponding profits are
(Bopk fa —qQ)?
* .G *’ Y =T —

Lemma 1 in Appendix B confirms that (K*(v*, p*), G*(v*, p*),~v*, p*) is the unique equilibrium

in the monopolistic scenario of the emission taxes regime. Proposition 2 summarizes our results.

> 0.

Proposition 2

In the monopolistic scenario of the emission taxes regime, the requlator’s welfare-mazximizing tax
level choice equals marginal emission cost q as in the competitive scenario, resulting in welfare
level WM (q) and profits T(q) for the gas supplier.



5 Analysis of the Emission Permits Regime

Our analysis of the emission permits regime depends upon whether measure ) of the difference
between coal-based and gas-based per-unit-of-electricity emissions is lower than, greater than,
or equal to zero. The following three paragraphs are devoted to these three cases, respectively.

5.1 The Case of a High Difference in Per-Unit-of-Electricity Emissions

Suppose that @ < 0 and consider the monopolistic scenario. As already mentioned earlier, in
the emission permits regime, equilibrium factor inputs depend upon whether or not the per-
mits level is in fact binding, i.e., upon whether or not the permits level effectively restricts the
electricity producer’s profit maximization, taking as given gas price -y, coal price pg, and the
market clearing price of electricity. In particular, in any equilibrium of the emission permits
regime factor inputs K and G equal

o aet ((Borfr . aet [ Boprfa\
i () ana e (REE)

respectively, if the emission permits level is non-binding, and they equal

« det [(2600GD + aR(y) ? « aet (2000k (=D) +aQ ’
= ( 29(7) ) and G = ( 20(y) > ’

respectively, if the emission permits level is binding.

In case of a binding permits level, the gas supplier’s profits are given by (y — ) - G3(v) and
maximized at gas price U

Hoi= —— + ).

Defining Cg(a) := (v — ¢) - Gx(7v5), curve Cp( - ) reflects the gas supplier’s achievable profits
in case of a binding permits level. It is a quadratic function of a, which obtains its minimum
value 0 at some level ag > 0.

In case of a non-binding permits level, the gas supplier’s profits are given by (v — ¢) - G%(7)
and maximized at 7% := v* (cf. Section 4). Defining C(a) := (v* — ¢) - G (v*), curve Ca(-)
reflects the gas supplier’s achievable profits in case of a non-binding permits level. It is a con-
stant function of a, i.e., C4(a) has the same value C4 for every permits level a.

Denoting the two intersections of Cg(-) with C4(-) by ag < ag and a7 > ag, Figure 3 illustrates
the two curves. The precise “values” of variables ag to a7 are provided in Appendix B.

A
G50
_ \\ Cia(a)
Ca™ | //
1 1 1 1 1 B - 1 [ ta | >
‘ ‘ ‘ ‘ ‘ | T T
. - as ay as Qg ar a
Figure 3

If going for the binding permits level alternative, the gas supplier maximizes his profit (v — 1) -
G5 () subject to 25K\/K7:‘j‘ + 20G+/G% > a, ie., subject to the permits level being binding.
Note that the inequality constraint cannot be satisfied for non-negative gas prices if (and only
if) permits level a is greater than or equal to some level a; € (a3, ag). In other words, going
for the binding permits level alternative requires a < as. Furthermore, the inequality constraint
allows to choose 7} if and only if permits level a is lower than some level a4 € (a3, as).

10



If going for the non-binding permits level alternative, the gas supplier maximizes his profit
(v — ) - G%(v) subject to 26K\/K7j‘ + 20G+/G% < a, ie., subject to the permits level being
non-binding. The latter inequality constraint allows to choose v} if and only if permits level a
is greater than or equal to some level az € (0, a3).

Therefore, assuming that the gas supplier has a preference for a binding (in comparison to a
non-binding) permits level (if indifferent with respect to profits), the gas supplier goes for the
binding permits level alternative if and only if a < a3. In other words, if a < ag, then gas price
7 equals v5 and the permits level is binding. If a > a3, then gas price v equals 77, and the
permits level is non-binding.

In the latter case, the gas supplier’s profits are

e (i —¥)Bopxfe)? _ (Borxfc)® 50

®(v4)? 49 - (Bipx + 2fF) ’
and the resulting welfare level, which is independent of a and in the following referred to as
Wi (g), equals that of the taxes regime (i.e., W,«(p)) for tax level p = 0, and is thus lower than

its counterpart W (q) in the taxes regime (where tax level p equals p* = ¢ > 0).

Having analyzed the gas supplier’s decision, we continue with the regulator’s choice of the op-
timal permits level. If the permits level is binding, then welfare, as a function of permits level

a, can be calculated as Va(y) - a2+ Vi(y) - a + Vo(v)
W. = ,
(@) 4B (7)
where Va(7) := =41®(7y) < 0, Vi(7) := 46061 (fxdx + fadapr) — 4619%(y), and Vo(v) == 465 D* > 0.
It follows that the regulator’s welfare-maximizing permits level choice, if going for the binding

permits level alternative, is 2
. . 260(frOxY + fedopk) + HHEV — 4q¥
ap(q) = yas p >0,

ay(q) := min
M ‘I’+(51PK+2f?()ﬁ

and, in particular, higher than his welfare-maximizing permits level choice ay, in the competitive

scenario. We comment on the latter result at the end of this section. The value of emission cost

q at which a},(q) equals a3 is positive and in the following referred to as gs.

If the regulator chooses permits level a3, and the gas supplier gas price 75, and if marginal

emission cost ¢ is greater than or equal to g3 (and thus @}, = a},), then welfare equals
Bi[Bo(frbrt + fadapr) + S4EW — 2qU)? + B3 D2 (@ + %‘D

Wi (aiy) = Wi (q) = ,

2
280 - (¢ + 2 p)

and the gas supplier’s profits are

) 2600x (—D) + Qay > Bi6%Y - (Bofark — qQ)>
I = — . =
5(0) =05 = ¥) 40 (vp)? 6102 ® + (Bipx + 2f2) 0]

If ¢ < g3 (and thus a}; = a3 < aj;), then Wg‘[ (¢) is an upper boundary for the resulting welfare.

Comparing this welfare level to the one resulting from a non-binding permits level, we obtain

(on Q<0) fopk fa(—Q)
' 26,02
Thus, the optimal binding emission permits level a}j, is welfare-superior to any non-binding

Wi S W) < ¢<dQ)

one (i.e., to any permits level above ag) if and only if marginal emission cost ¢ exceeds level
d(Q) (> g¢3): Only if marginal emission cost ¢ is sufficiently high, then the advantages of re-
stricting the electricity producer’s emissions in a binding manner, namely lower emission costs,
outweigh the corresponding changes in factor costs and electricity production (and thus in utility
from electricity consumption).

Lemma 2 in Appendix B confirms that (K5 (v, a3,), G(Vgs, @hr)s Vis @hy) is the unique equilib-
rium in the monopolistic scenario of the emission permits regime whenever Q < 0 and ¢ > G(Q).'”

'”And, Lemma 4 confirms that there are parameter constellations allowing g to satisfy §(Q) < q < G.
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Proposition 3.1 summarizes our results.

Proposition 3.1

Suppose that Q < 0 and consider the monopolistic scenario of the emission permits regime.

a) If marginal emission cost q is greater than ¢(Q), then the regulator’s welfare-maximizing
permits level choice is a’;, resulting in welfare level W (q) and profits T(q) for the gas
supplier. The regulator’s permits level choice is binding and higher than his choice ag, in

the competitive scenario.

b) Ifq < §(Q), then achievable welfare equals W3I(q) (via choosing a non-binding permits level)
and is below that of the taxes regime, WM (q). The difference in achievable welfare between
the two regimes, W™ (q) — Wil(q), increases in marginal emission cost q (cf. Lemma 2.1e

in Appendiz B) and equals WM (q) — WAl (q) at ¢ = G(Q). The gas supplier’s profits are T 4.

According to case a) of Proposition 3.1, the regulator’s welfare-maximizing binding permits level
choice is higher in the monopolistic than in the competitive scenario. In order to understand
why this is the case, consider the different components of welfare, which is defined as the
difference between utility from electricity consumption and factor plus emission costs. As we
have seen, for (v, a) equal to (v, af,) or (v, a},), factor inputs for coal and gas equal Kj(a, )
and G;(a,7), respectively, and electricity demand equals E*(a,v) = F(K*(a,v),G*(a,7)) =
U(y)1280D? + Bra(fxdxy + fadapr)]. If in the monopolistic scenario the permits level were
chosen to be af. (< a},) instead of @}, then the resulting factor inputs for coal and gas would
equal K*(af,vg) < K*(ay,vg) and G*(at,vgs) > G*(ay,,75), respectively, and electricity
demand would equal E*(a,v5) < E*(a},v5). Therefore, by allowing the electricity producer
more emissions in the monopolistic scenario (via choosing aj, instead of af), the regulator is
responsible for higher emission costs (since permits level a}, is binding) and higher factor costs for
coal (pr - K*(ays,vg) > pr - K*(af,v5)). However, the higher emission permits level implies, at
the same time, a higher electricity demand and thus a higher utility from electricity consumption
as well as lower factor costs for gas (v5 - G*(ay,,vg) < 75 - G*(ai,v5)). As Proposition 3.1
states, this second effect overcompensates the higher costs with respect to emissions and coal.

5.2 The Case of a Low Difference in Per-Unit-of-Electricity Emissions

Suppose now that @ > 0, and note that equilibrium factor inputs (as functions of gas price =
and permits level a) do not change: Factor inputs (K, G) equal (K%, G?%) in the non-binding
and (K3, G7%) in the binding case. The role of a higher/lower permits level a in gas demand
G, however, reverses. In particular, curve Cpg(-), which reflects the gas supplier’s achievable
profits in case of a binding permits level, is now increasing in and positive on a > 0, and also
as > agq > az > 0. Figure 4 illustrates the two curves Cp(-) and Cy(-) in case of @ > 0.

If going for the non-binding permits level alternative, the gas supplier maximizes his profit
(v =) - G%(v) subject to 26 K\/Kij'jl + 250\/@ < a. The latter inequality constraint allows for
a non-negative gas price «y if and only if a > a5. And, if a > a5, then the inequality constraint
is equivalent to

> Aa) = = 2f&pr — 200 fadapK

2000k fx —a- (Bivk +2f%)’
which allows to choose gas price v} if and only if permits level a is greater than or equal
to az (§(az) = %), resulting in profit Cy for the gas supplier. If a € (as,az2), then the
gas supplier’s profit is maximized by choosing 4(a), and his corresponding profit is r Ala) ==
(3(a) =) - G*(3(a)) > 0. T4(-) is a concave quadratic function of a, which obtains its maxi-
mum Cy4 at as and equals Cg(aq) at ay.

12
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Figure 4

If going for the binding permits level alternative, the gas supplier maximizes (y—1)-G3(7) sub-
ject to 2(5K\/K7:Z+ 2(5G\/G7j‘4 > a, i.e., subject to the permits level being binding. The inequality
constraint allows for a non-negative gas price - if and only if permits level a is lower than some
level ag > az. And, if a < ag, then the inequality constraint is equivalent to v < 4(a), which
allows to choose gas price v if and only if a is lower than a4 (Y(as4) = 7};), resulting in profit
Cp(a) for the gas supplier. If a € [a41 ap), then the gas supplier’s achievable profit is lower than
(3(a) - ) - Gy (3(a)), which equals Ta(a).

Since I'"4(a) is below Cp(a) on a < a4 and below C4 on a > ag, it follows that the gas supplier
goes for the binding permits level alternative if and only if ¢ < a4. In other words, if a < a4,
then gas price v equals v}; and the permits level is binding. If a € [a4, ag] or a > az, then gas
price v equals 4(a) or v}, respectively, and the permits level is non-binding.

Having analyzed the gas supplier’s decision, we continue with the regulator’s choice of the op-
timal permits level.
If the emission permits level is non-binding and a > as, then the gas supplier’s profits are 'y > 0
and the resulting welfare level, which is independent of a, equals that of the taxes regime for
tax level p = 0 and thus W}!(g). In particular, it is lower than its counterpart W (q) in the
taxes regime (where tax level p equals p* = ¢ > 0).
If the emission permits level is non-binding and a € [ay, ag], then welfare, as a function of per-
mits level a, can be calculated as

WM (q) = Wo(’AYA((I)) _ 263 fx D + B1(Bofapr — 2Qq) - a

2612 (¥(a)) 261Q

It follows that, whenever Gy fapx — 2Qq < 0, the regulator’s welfare-maximizing permits level
choice, if going for the non-binding permits level alternative, is a4. The resulting welfare level
wM (ayq) is in the following denoted by Wﬁ/[(q) If, on the other hand, ¢ is lower than or equal
to ﬁw;%’ then any a > as or any a > a4, respectively, maximizes welfare, resulting in welfare
level W (q) (= WM (ag)).
If the emission permits level is binding, then welfare, as a function of permits level a, equals

W,(a), and the regulator’s welfare-maximizing permits level choice, if going for the binding

permits level alternative, is 1 2f2 -1
dirle) = g 40 (‘I’ - WW) (< as),
515}(
resulting in welfare level W2/ (q) and profits I'5(q) for the gas supplier. Since Q > 0, now the
regulator’s permits level choice is lower than his choice ag, in the competitive scenario.

13



Comparing the different welfare levels, we obtain W% (q) < Wé\/[ (¢) and

Wil S Wi () o g2 a(@) " Sl

Thus, if marginal emission cost ¢ exceeds level ¢(Q), then the regulator’s welfare-maximizing

permits level choice is a};, the emission permits level is binding, and the resulting welfare level
equals WAl(g). If ¢ < ¢(Q), which implies that ¢ < ﬁoé%, then any permits level a > ao
maximizes welfare, is non-binding, and results in welfare level W1 (q). If ¢ = ¢(Q), which also
implies that ¢ < ’6(”;%, then welfare is maximized by choosing either a3, (resulting in a binding
permits level) or any level a > ay (resulting in a non-binding permits level), and the resulting
welfare equals WAl (q) = Wi(q).

Lemma 2 in Appendix B confirms that (K5 (v, a3,), G5(Vs, @hy): Vi: @hy) is the unique equilib-
rium in the monopolistic scenario of the emission permits regime whenever Q > 0 and ¢ > §(Q).'8

Proposition 3.2 summarizes our results.

Proposition 3.2

Suppose Q@ > 0 and consider the monopolistic scenario of the emission permits regime.

a) If marginal emission cost q is greater than ¢(Q), then the regulator’s welfare-mazimizing
permits level choice is a%;, resulting in welfare level W (q) and profits T(q) for the gas
supplier. The requlator’s permits level choice is binding and lower than his choice ay, in the
competitive scenario.

b) If ¢ < §(Q), then achievable welfare equals W3(q) and is below that of the tazes regime,
WM (q). The difference in achievable welfare between the two regimes, WM (q) — Wi (q),
increases in q (cf. Lemma 2.2¢ in Appendiz B) and equals W™ (q) — Wg[(q) at g = ¢(Q).
The gas supplier’s profits equal " 4.

5.3 The Borderline Case (@ =0)

Suppose that @ = 0, and note that equilibrium factor inputs (as functions of v and a) again
equal (K}, G%) in the non-binding and (K}, G}) in the binding case. Since @ = 0, gas demand
G’ is now independent of the regulator’s permits level choice, curve Cp(-) is constant in a and

equals C4, and ag = a1 = as = a4 = as.

If going for the binding permits level alternative, the gas supplier maximizes (v — v) - G5(7)
subject to 26 K\/Kijg + 25@@ > a. The inequality constraint allows for a non-negative gas
price v if and only if a < a5, and allows to choose gas price 75 if and only if a < a4 (= as),
resulting in profit C'4 for the gas supplier.

If going for the non-binding permits level alternative, the gas supplier maximizes (v —1)-G% ()
subject to 20 K\/Kijg + 25(;\/@ < a. The latter inequality constraint is satisfied for all v > 0
if a > a5, and allows for a positive gas price ~ if and only if a > as.

It follows that the gas supplier goes for the binding alternative (via choosing ~v3) if a < as, and
for the non-binding alternative (via choosing v%) if a > as. His profit is 'y = C4 in either case.

As before, if the emission permits level is non-binding, then the resulting welfare level equals that
of the taxes regime for tax level p = 0 and thus Wﬁ/[ (g). If the permits level is binding, then wel-
fare, as a function of permits level a, equals W, (a), and the regulator’s welfare-maximizing per-
mits level choice, if going for the binding alternative, is aj;(q), resulting in welfare level WA (q).

¥ And, Lemma 4 confirms that there are parameter constellations allowing ¢ to satisfy G(Q) < ¢ < q.
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Since Q = 0, a},(q) equals his choice af, in the competitive scenario, and Wé\f (q) > W% (q) for
all ¢ > ¢(0) := 0. Lemma 2 in Appendix B confirms that (K5(v5,al,), G5(0VE ais):VE:ahy) 18
the unique equilibrium in the monopolistic scenario of the emission permits regime if Q = 0.

Proposition 3.3

If, in the monopolistic scenario of the emission permits regime, Q = 0, then the regulator’s
welfare-maximizing permits level choice is ay;, resulting in welfare level Wé‘f(q) and profits
I's(q) =T 4 for the gas supplier. The regulator’s permits level choice is binding and equals his
choice ag, in the competitive scenario.

6 Permits versus Taxes

From Proposition 3.1b and 3.2b we already know that in the monopolistic scenario taxes are
welfare-superior whenever marginal emission cost ¢ is sufficiently low: If ¢ < ¢(Q) (which im-
plies @ # 0), then any non-binding permits level choice provides for at least the same welfare as
the optimal binding permits level, and for less welfare than the optimal tax level. The follow-
ing result, Proposition 4, which is based on Lemma 3a in Appendix B, implies that taxes are
welfare-maximizing for all ¢q. In particular, Proposition 4 compares the resulting welfare in case
of an optimal binding permits level (cf. Proposition 3.1a, 3.2a and 3.3) with the welfare level
achievable in an emission taxes regime, and shows that the gas supplier’s ability to optimally
respond to the regulator’s choice makes it impossible for a binding permits level to result in a
higher welfare level than the regulator’s optimal tax choice.

Proposition 4 (Welfare in the Monopolistic Scenario)

Suppose that, in the monopolistic scenario, marginal emission cost q is greater than ¢(Q). Then
the difference in welfare between the unique equilibrium of the taxes regime and the unique
(and binding permits level) equilibrium of the permits regime, namely W™ (q) — W (q), is non-
negative; the difference is greater than zero if and only if Q # 0, it is increasing in marginal
emission cost q if Q < 0 and decreasing in q if Q > 0.

Combining our findings from Proposition 3.1b and 3.2b for the case ¢ < ¢(Q) and from Propo-
sition 4 covering marginal emission costs greater than ¢(Q), we obtain the following result.

Corollary Whenever Q@ # 0, (K*(v*,p*), G*(v*, p*),v*,p*, " taxes”) is the unique equilibrium
of the four-stage game starting with the requlator’s regime choice. Only if Q@ = 0, then both
(K*(v*,p"), G*(v",p"), 7", p", "tazes”) and (K5(vg, ayy), G5(Vp: @), Vi, aly, "permits”) con-
stitute an equilibrium of the four-stage game starting with the regulator’s regime choice.

In particular, if the difference between coal-based and gas-based per-unit-of-electricity emissions
is high such that @ < 0, then the difference in achievable welfare between the two regimes
increases in the marginal welfare costs of emissions: Taxes are welfare-superior and the higher
marginal emission cost ¢, the greater is this superiority. If the difference between coal-based and
gas-based per-unit-of-electricity emissions is low such that ) > 0, then taxes are welfare-superior
and the difference in achievable welfare between the two regimes increases in low and decreases
in high values of q.

We close our analysis and comparison of the two regimes with an evaluation of the gas supplier’s
profits in Proposition 5, which is based on Lemma 3b in Appendix B. In particular, Proposition

5 compares the respective profits for the gas supplier outlined in Proposition 3.1 to 3.3 across

15



all possible equilibria of the two regimes. The subsequent corollary highlights the main result.

Proposition 5 (The Gas Supplier’s Profits in the Monopolistic Scenario)

If, in the monopolistic scenario, ¢ > q(Q), then the difference in the resulting gas supplier’s prof-
its between the unique equilibrium of the taxes regime and the binding permits level equilibrium,
(K5p(vg.ah), Gs(vs, @) vhs ahy), namely I'(q) —T'g(q), is non-negative; it is greater than zero
if and only if Q@ # 0. If ¢ < ¢(Q) (which implies Q # 0), then the difference in the resulting
gas supplier’s profits between the unique equilibrium of the taxes regime and any non-binding

permits level equilibrium of the permits regime, namely I'(q) — T4, is greater than zero.

Corollary In the monopolistic scenario, whenever Q@ # 0, then the gas supplier’s profits in
the unique equilibrium of the emission taxes regime are higher than his profits would be in any
equilibrium of the emission permits regime. Only if Q = 0, then his profits in the unique equi-
librium of the emission taxes regime and the unique (and binding permits level) equilibrium of

the permits regime are the same.

Summarizing our final results about the monopolistic scenario, taxes are the regulator’s welfare-
maximizing regime choice whenever @) # 0; in addition, maximizing welfare in the emission taxes
regime implies higher profits for the gas supplier than maximizing welfare in the emission per-
mits regime. And even if the difference between coal-based and gas-based per-unit-of-electricity
emissions is such that @) = 0, taxes guarantee for the same welfare and result in the same profits

for the gas supplier as permits.

A Remarks

In order to see that, as suggested in Section 2, the price equilibrium in the market for permits
reduces to a quantity constraint and that a positive equilibrium permits price corresponds to a
binding quantity constraint, suppose that, without loss of generality, there is only one electric-
ity producer (instead of considering several identical producers), whose choice of factor inputs
(K,G) € Ryt maximizes I[I(K,G) :=w-F(K,G)—px-K—v-G—P-e(K,G), taking as given the
equilibrium price for electricity and for permits. Then, the electricity producer’s corresponding
profit-maximizing input combination (K (w, P),G(w, P)) satisfies g—g = g—g = 0, which implies
VEK(w,P) = % and \/G(w, P) = M. Market clearing in the market for electric-
ity requires E(w) = By — fiw = 2fx/K(w, P) 4+ 2fc/G(w, P) = F(K(w, P),G(w, P)), ie.,

w=w*(P):= ﬁopKVHfK‘Sg(I;;”fG‘SGpKP. Defining

Bovfx — P R(v) Borr fa — PQ>2
®(7) ®(7)

(for the latter equalities, cf. Lemma la in Appendix B), market clearing in the market for
permits requires e(K*(P), G*(P)) = a, which implies P = P* := 2ﬂ°(fK5K7;€CEj§;pK)_“¢(V). Note
that P* > 0 if and only if Bovfx Bopk fa

a <20k ,

®(7) ()

and that the latter condition characterizes a binding permits level in Appendix B, Lemma 2.1
to 2.3. Defining w* := w*(P*), we have that factor inputs equal

2800¢D + aR()\* . 2800k (—D) + aQ\ >

) = ()
respectively, i.e., factor inputs equal those of Lemma 2.1b to 2.3b, where the electricity producer’s
choice of factor inputs (K,G) € R, maximizes II®Pits) (K G) < o . F(K,G) —pg - K — -
G subject to e(K,G) < a and the permits level is assumed to be binding.

K*(P) == K(w"(P),P) = ( )2 and G*(P):=G(w*(P),P) = (

+ 26¢

K(w*, P*) = (
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B Lemmata and Proofs

Lemma 1 (Equilibria in the Emission Taxes Regime)
In any equilibrium of the emission taxes regime,
a) factor inputs K and G equal et Bovfic — pR(Y) 2 et (Povicfe —pQ 2
K= |———F———~ and G _ =
®(v) ®(y)
respectively, whenever (p,~y) satisfies Boyfx — pR(7y) > 0 and Gopk fa — pQ > 0.
b) In the monopolistic scenario, gas price 7y equals ot P
-~ Bipk +2f%
(and is, in particular, independent of the requlator’s tax level choice p) whenever p < Boy” Jic

R(v*)
and Boprk fa —pQ > 0.
c) Welfare, whenever (p,~) satisfies Boyfx — pR(y) > 0 and Bopk fa — pQ > 0, can be calcu-

lated as i 21 7
det Wa(y) - p* +Wi(y) - p+ Wo(v)
Wop) = 26:8(7) ’

where Wa(y) = =269 (7), Wa(7) £ 451q¥(y), and Wo(y) = 260[Bo(F7y+1Epx) —2610( e+
daferk)]. It follows that the requlator’s welfare-maximizing tax level choice is p* = q, i.e.,
equals the marginal welfare costs of emissions, independent of the scenario.
Refining our representation of W, (p), we obtain that W (p) - 261®(v)? equals
—(261)*(fx 0k + fadapk)? - p° — 4Bobr (fx Ok + fadapr)Bipky - p
+(260)* (& + fépx) (Bipxy + [y + fépx)
— [261(pk R(7)*> +7Q%) - p* — (4BoBiprV(fx R(Y) + faQ) + 45192 (7)(6x R(v) + 6cQ)) - p
+ 26105 (Ve + i f&) + 4B1aBo® (V) (f Ok + fadapk) |,
where the first quadratic function of p reflects the utility from electricity consumption and

+ 1

the second quadratic function of p reflects the sum of factor and emission costs.
d) Welfare in the monopolistic and competitive scenario equals
() e WAL A W g W act WS- ¢* + W - q + W
2619 1P ’
respectively, where WE := ﬁo(sz/} + f2pk), WE = =26180(frdr + fadapr), WS = p1¥
def def T def
WM = B3 (v + fapk + W) WM = =281 60(f bt + fadapr + ﬁl}fﬁifﬁz)’ and W' =

By(T + L% ). Note that

and  WC(q)

Bipk+2f%
WM. g+ WM We.q+Ww¢
M M 0 d c _ M 0
Wp:O(Q) ° 251(1) an WpZO(Q) N ﬁ1‘1)
equals the resulting welfare in case of no regulation (p = 0), respectively. In the monopolistic
scenario, the gas supplier’s profits are (Bopx fo — qQ)?

Ta) = (7" = 9) - G"(7p") = > 0.

® - (Bipr + 2f%)
Summarizing, (K*(p*), G*(p*),p*) is the unique equilibrium in the competitive scenario, and
(K*(v*, p*), G*(v*, p*),v*, p*) is the unique equilibrium in the monopolistic scenario of the emis-
ston taxes regime.

Proof of Lemma 1

a) The electricity producer’s profit maximization results in (K(w), G(w)) € arg max K.G)ER? ,

I1(tezes) ()¢, @). In particular, (K (w), G(w)) satisfies 6Hg;;85) = 8Hg‘ges> = 0, which implies

K(w ) = “’fKiK‘SKp and \/7 wa 9GP Market clearing requires E(w) = fy — fiw =
2fk VK (w) + 2fc\/G(w) = F(K ,G( ), e, w=w*:= ﬁopK'yﬁfK‘;K(p;Y“fG‘SGpr (and

0l
E(w*) — 2/80(f[2('7+fg;pl()7?{>ﬁ(}yl;(fK5K'Y+fGJGpK) . And \/7 w fK OKP — \/ﬁ and
) — i fe=tor _ /g,

v
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b) The gas supplier’s profits are well-defined and given by
(v = V) (Bopx fa — pQ)?

_ ) -G () =
whenever SBopi fa — pQ > 0 and both p < gogK and v > % (& Bovfx — pR(v) >

0 p< B 0?{: §< ). Considering the first derivative with respect to gas price 7, and, in
particular, noting that [(Bipx + 2f%)7 + 2f2pk]) — (v — ¥)2(Bipk + 2f%) = 0 is equivalent
to v = 7%, the profit curve (considered as a function of 7) obtains its maximum at +*, it is
increasing on v < ~4* and decreasing on v > ~*. If fopk fag — pQ@ > 0 and both p < gof;K

and v* > %, then v* maximizes the gas Sué)pher s profits over all alternatives
. 2
with a well-defined outcome (i.e., over all v > %, v > ). If Bopr fa —pQ > 0,

p < gof;’( ,and v* < %, then the gas supplier’s profits cannot be maximized over

all alternatives with a well-defined outcome (i.e., over all v > % (> ).

c¢) The calculation of W, (p) is standard (cf. Appendix C). Noting that BWW( ) = 0is equivalent
to the tax level being equal to ;VYVV;((;)) = :i%lqgg));%) =q, Wy(p) obtams its maximum at

g. In the competitive scenario, since ¢ < g and (consequently) Gopx fa — q@ > 0, tax level ¢
maximizes Wy (p) over all p with a well-defined outcome (i.e., over all p with Bopr fa—pQ@ > 0

*

and p < M) In the monopolistic Scenario since gas price v* is independent of the

regulator’s tax level choice p, and since g < q = ﬁoszp < ﬁ%{ﬁg* and Bopx fa — qQ > 0,
tax level ¢ maximizes W, (p) over all p with a Well-deﬁned outcome (i.e., over all p with
Bopx fo —pQ > 0 and p < f530).

d) All welfare levels follow immediately from the representation of W, (p), noting that ®(v*) =

) _ B16%
20 and U(y*) =¥ + Bin torT o. -

Lemma 2.1 (Necessary Conditions for Equilibria in the Emission Permits Regime if @ < 0)
Assuming that any indifference of the gas supplier is resolved according to a preference for
a binding (in comparison to a non-binding) emission permits level and that this is common
knowledge, in any equilibrium of the emission permits regime in case of Q@ < 0,

a) factor inputs K and G equal o (ﬁwa)2 wd G o (ﬁopzﬂ’c)i

A a0 ()
respectively, if the emission permits level is non-binding, and
b) factor inputs K and G equal K 260060 + aR(7)\ > 1 e 2600k (=D) + aQ \ 2
B‘( 20(7) ) " B‘( 20() ) |
respectively, if the emission permits level is binding and (v, a) satisfies 2800 D + aR(7y) > 0
and 2600k (—D) + a@Q > 0.
¢) In the monopolistic scenario, if

Ve <a1 _ 2606(=D) _ 2603xD _ 2bpicfc \/ v B

Ry T Q —Q O ipr + 2/%

then the permits level is binding and gas price v equals def v

If a > a3, then gas price v equals def o B 5152 +9-
Bipx + 2fK +
the gas supplier’s profits are . 9
r, % (va — ) (Bopxfe)? _ (Borkfc) 50
D(v3)? 49 - (Bipx +2f%) 7

and the permits level is non-binding.

d) In the competitive scenario, where gas price y equals 1, (it is obvious that) permits level a is
non-binding if a > a1 := 25}(% + 26@% and binding if a € (MR(_D), al) (#0).
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e)

If the emission permits level is non-binding, then (it is obvious that) the welfare levels equal
those of the tazes regime for tazx level p = 0, i.e., WY (q) = Wpczo(q) and Wi (q) = ij\io(q)
in the competitive and monopolistic scenario, respectively (cf. Lemma 1). In particular,
they are below their respective counterparts in the taxes regime (where p = p* =q > 0).

If the emission permits level is binding, then welfare, whenever 26y0cD + aR(y) > 0 and

2600k (—D) +a@Q >0 (& a < ag = %), can be calculated as

e Va(7) - a® + Vi(9) - a+ Vo(v)
W, (a) < ,

/(@) 461 9(y)
where Va(7) £ =318(7), Vi(y) < 46061 (fxbx7 + fodapx) — 46140 (7), and Vo(y) = 453D, It
follows that the regulator’s welfare-maximizing permits level choice, if going for the binding
permits level alternative, is

oo et 260(fi0k + fdepr) —2q¥ 20 (2Bydg(~D)
ac(q) = P =a D q € R , a1

in the competitive and

o caeraer 2B0(fOR Y+ fadapk) + BT — 4qU
ap(q) = min § aj,(q) = Brpr t2f2 yag ¢ € (a-1,a3]
D+ T v

in the monopolistic scenario.
In particular, the regulator’s permits level choice is higher in the monopolistic as compared

to the competitive scenario. And, . 4

ap(q) = as — q

Bipx+2f%
o+ BOY v

v Brd% < Bipx + 27 )
K (g PIPET SRy ) oy
\/‘D Bipk +2f% Brd%

If the requlator goes for the binding permits level alternative, then welfare in the competitive
scenario (v =1,a = af) equals

ef 1
WE(q) = BUd

In the monopolistic scenario (v = v5,a = ay,), if ¢ > g3 (and thus a3, = a3, ), welfare equals

2
. BilBo(Fredkt + fadapi) + G4 — 2qW]? + B DX (@ + A2t )
B q) = ’

2
26,0 - (¢ + 2Ll )

equals az at

Bork fa

QZQBizm' > 0.

[B1(Bo(fKOKxY + fadapk) — q¥)* + B3D*®] .

and the gas supplier’s profits are

L@ (v, — ) . 2000k (=D) + Qaiy” _ Bio%¥ - (Bofopx — 4Q)?

49 (75)° 8163 @ + (Bupic +2f3) 0]
If ¢ < g3 (and thus a}; = a3 < a}; ), welfare is no higher than Wé‘f(q), and the gas supplier’s
profits are [2600k (—D) + Qa3]2
(v =) 4T ()2 =Ta>0.

In the competitive scenario, W5 (q) > W (q). Therefore, the requlator’s welfare-mazimizing

permits level choice is ag., and the emission permits level is binding.

< > . _
In the monopolistic scenario, Wil(q) > Whl(q) & ¢ < d(Q) =4 %Gz(qﬂ) (> q3)-
K

Therefore, if ¢ > §(Q), then the requlator’s welfare-maximizing permits level choice is a}, =
a%;, the emission permits level is binding, and the welfare level equals Wi (q). If ¢ < §(Q),
any permits level above as mazimizes welfare and, in particular, is non-binding, and the
welfare level equals Wi (q). If ¢ = G(Q), then welfare is mazimized by choosing either
ay; = ay, (resulting in a binding permits level) or any level above agz (resulting in a non-

binding permits level), and the welfare level equals W (q) = Wi (q).
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Proof of Lemma 2.1

a)

The electricity producer’s profit maximization results in (K (w), G(w)) € arg max K.G)eR?2

ngges)(K, G), H(tiges)([(, G) = wF(K,G) — pg K — vG. In particular, (K(w),G(w))
(taacea) (taxes)

satisfies —272— = 0 and 87 = 0, which implies K(w) = % and VG ‘”fG
Market clearing requires E(w ) = 0o — fiw = 2fx/K(w) + 2fc/G(w) = F(K G( )),
. 2B80(f v+ f *
le., w=w) '—fﬁ(”z;()w (and E(w}) = w And VE(WY) WAK—w/KA and
w *
G(wh) = AVG = /G
The electricity producer’s profit maximization results in (K (w), G(w)) € arg max K.G)ER? ,
I1(Permits) (K ) subject to e(K,G) < a. In particular, there exists a multiplier A € R,
such that % A5E d¢ and % )\g—g, which implies /K (w) = % and
Gw) = @. Slnce e(K(w), G(w)) = a, we have that 20 xy(w fx —0x \)+2dapK (wfa—
5c)\) = apk~y, which is equivalent to A = 2K¥/xFNeprwlc=apky  Thys, /K (w) =

26K7+25Gp;<
Wik—0rX _ wfK20%—20G0kwfa+adky G(w)  wfe=dagh _ wfc26% —25G5waK+a5GPK and
PK - 20%v+262px ’ - ¥ - 26§<’y+26?;p1(
market clearing requires E(w) = [y — fiw = 2fx/ K(w) + 2fa/G(w) = F(K(w), G(w)),
2
i.e w = wB ﬁO(5K7+6GpK) \I,((,;/f)}(6KV+fG6GpK) (and E(W*B) _ 280D +ﬁld(f\§<&/(§/})(’7+f@6gp[()) It

follows that K(wy) = K5 and G(wg) = GF.
First, note that the gas supplier’s profits in case of a binding permits level are given by
2

(r-v)- Gty = OZDEAOCDIE O]
Considering the first derivative with respect to gas price 7, and, in particular, noting that
[1(6%v4 6%pK) +2D?] — (y—1)2616% = 0 is equivalent to v = 7}, the profit curve (consid-
ered as a function of ) obtains its maximum at 7, it is increasing on v < v3; and decreas-
ing on v > v5. For v = 7}, the profit curve (considered as a function of a) equals Cp(-),

_ 2 )
Cp(a) i= 5% - LOOECDIAE yoting that W(yp) = 20 and @(vp) = @ + 22y,
Curve Cp(-) is a quadratic function of a, it obtains its minimum value 0 at ag S %,

it is decreasing on a < ag and increasing on a > ag.
The gas supplier’s profits in case of a non-binding permits level are given by
. (v =9) - (Borx fa)?
v—9)-Galy) = :
This curve (considered as a function of ) obtains its maximum at ~7%, it is increasing on
v < v} and decreasing on v > % (cf. the proof of Lemma 1b). For v = 773, this curve

o  (Bopk fa)?
(51PK+2fK) (29)2

If going for the binding permits level alternative, profit is maximized by choosing ~y(a) €

arg max. ey, o0) (7 — ) - G(7) subject to 20x /K’ +20G/G% > a, i.e., subject to the per-
mits level being binding (cf. part a) of Lemma 2.1). First, note that going for the binding

(considered as a function of a) is constant in a and equals Cj :

permits level alternative requires a < ag := %, since otherwise the inequality con-
K

straint cannot be satisfied for v > 0: If a > a5, then the inequality constraint is equivalent

to v < 4(a), () 2 2fépx — 260 fcdapri

20800k fx —a- (Bipk +2f%)
the fraction on the right-hand side being lower than zero (since the numerator is positive
and the denominator negative), and if a = a3, then the inequality constraint is equivalent
to —Q < 0, contradicting @ < 0. Note that, in particular, since a5 < ag (cf. Appendix C),
a < az implies that a < ag, which is equivalent to 26pdx(—D) + a@ > 0. If a < as, then

the inequality constraint 2dx ﬂo'(”cf + 250% > a is equivalent to v > §(a). If a < a4 :=

20K ﬁOZBff +26G B;%‘fc = [QﬁO(fK(SKU)‘FfG(SGpK)+2ﬁ0§§\1’]'(q>+ﬁlpﬂK76+22fK\Ij) (< as, cf.
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def 2ﬁotsg( D) 2ﬂ05g(—D
R(vg) Rt 5
supplier’s profit (if going for the binding alternative) is maximized over all alternatives with

a well-defined outcome (i.e., over all v > W, v > 1) by choosing v(a) = 75,

Appendix C), and if a > a_; ) (< ag, cf. Appendix C), then the gas

and his corresponding profit is Cp(a); if a € [a4,a5), then obviously the gas supplier’s
achievable profit cannot be higher than Cp(a). If a < a_j, then the gas supplier’s profit
(if going for the binding alternative) cannot be maximized over all alternatives with a well-
defined outcome (i.e., over all v > W (> ).

If going for the non-binding permits level alternative, profit is maximized by choosing v(a) €
arg Maxy e[y, o0) (7—1%) G’ (7) subject to 20k \/K7§+25G\/@ < a, i.e., subject to the permits
level being non-binding. First, note that the inequality constraint is satisfied for all v > 0 if
a > as. If a < as, then the constraint cannot be satisfied for v > 0 if a < ag ﬁ;’ng (< as,
cf. Appendix C), and the constraint is equivalent to v < 4(a) (> 0) if a > ag. In the
latter case, i.e., a € (ag,as), the interval of available gas prices is bounded from above by
an increasing function of permits level a (cf. Appendix C), that allows the gas supplier
to choose (gas price 1 exactly on a > a1 o 251{% + 25@%, and) gas price v}
exactly on a > as = 20k ﬁo?“*ff + 25(;%0)1251{)0 = %O (fgéng—i—deKw—i— ﬁ@).
Since 0 < a_1 < a9 < a1 < ag < a4 < as < ag (cf. Appendix C), it follows that the
gas supplier’s profit (if going for the non-binding alternative) is maximized by choosing

v(a) = 4(a) on a € (ao, az] and y(a) = v} on a > ag, and his corresponding profit is lower
than C4 on a € (ag,az2) and equals C4 on a > as.

Curve Cp(-) equals C4 at both a3z and a7 := ag + % . 1/ % > ag (cf.
Appendix C). Since a3 € (ag,a4) (cf. Appendix C), C4 lies above Cp( - ) between ag and az,
and Cy lies below C( - ) outside [a3, a7]. In particular, given our assumption concerning the
gas supplier’s preference for a binding permits level (if indifferent with respect to profits),
the gas supplier goes for the binding alternative if a € (a—1,as] and for the non-binding

alternative if a > ag.
It is easy to verify that MR(_D) < ay (cf. Appendix C).

The calculation of W, (a) is standard (cf. Appendix C). Considering the first derivative with

respect to permits level a, and, in particular, noting that aWV( ) — 0 is equivalent to the

permits level being equal to L) ~Vi(v) ~ 2680(fxOxY + chSGpK) —2q%(y)
T 2Ta(9) D(y) ’
W, (a) obtains its maximum at a*(7y), it is increasing on a < a*(y) and decreasing on

a > a*(vy). It is easy to verify that a*(v}3) > a*(¢) > M 0 (cf. Appendix C), that

a*(vg) @ az & q © g3, and that g3 > 0 (cf. Appendix C). Since a*(y};) and agz are both

greater than %&;D) (cf. Appendix C), a*(¢)) > %@, and a*(¢) < ay, and given

our previous results for the two scenarios, we have that the welfare-maximizing permits

level equals min{a*(vj;) = a};,as} in the monopolistic and a*(¢)) = af, in the competitive
scenario. To see that af(q) < aj,(q), note that a*(vg5) < az implies a*(v)) < a*(vj) =
min{a*(v}),as}, and that a*(v}) > az implies a*(¢0) < a1 < ag = min{a*(v5), as}.

All welfare implications follow immediately from the representation of W, (a). The calcula-
tions for the gas supplier’s profits are standard (cf. Appendix C).

The relation between W (¢) and W¢(q) is easy to verify (cf. Appendix C).

The relation between g3 and ¢(Q) and the relationship between W2 (q) and W1 (¢) on the

one hand and ¢ and §(Q) on the other hand are both easy to verify (cf. Appendix C).
O
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Lemma 2.2 (Necessary Conditions for Equilibria in the Emission Permits Regime if ) > 0)
In any equilibrium of the emission permits regime in case of @Q > 0,

a) factor inputs K and G equal K% and G* as specified in Lemma 2.1a, respectively, if the

emission permits level is non-binding, and

b) factor inputs K and G equal K} and G as specified in Lemma 2.1b, respectively, if the

emission permits level is binding and (v, a) satisfies 2600aD + aR(vy) > 0.

¢) In the monopolistic scenario, if a € <a,1 = %, ar 2265 ﬁ;}%*ff + 20¢ ﬁg)zg;f)a)} then
B B B
the permits level is binding and gas price -y equals v oy +. Ifa > ag, then the permits

B16%

level is non-binding, gas price v equals v} o W + 1,
K

are I' 4 as specified in Lemma 2.1c. Ifa € {a4, as ¥ % (fadapkx + frOKY + ﬁ@)],

then the permits level is non-binding, gas price v equals

and the gas supplier’s profits

fa) 2fépx — 260 fadapr
e —
and the gas supplier’s profits are 2600k fx —a- (Bipk + 2f%)

- (@ a—260(fxdxt¥ + fadapr)] - [2B0fxdKx — (Bipk + 2f%) - a]

La(a) := 107 >0

(note that Y(az) = 4 and Y(as) = v5)-

d) In the competitive scenario, where gas price v equals ¥, (it is obvious that) permits level a

is non-binding if a > a1 & 251{% + 25@% and binding if a € (%@,al

e) In the competitive scenario, if the emission permits level is non-binding, then (it is obvious

that) the welfare level equals that of the tazes regime for tax level p = 0, i.e., Wg(q)

W;?:o(q) (cf. Lemma 1). In particular, the welfare level is below its counterpart in the emis-

sion tazes regime (where p = p* = q).

In the monopolistic scenario, if the emission permits level is non-binding and a > ao, then

the welfare level equals that of the tazes regime for tax level p = 0, i.e., W3l (q) = Wlf\io(q)

(cf. Lemma 1). In particular, the welfare level is below its counterpart in the taxes regime
(where p = p* = q). If the emission permits level is non-binding and a € |ay,as], then

welfare can be calculated as - Wo(ﬁ(a)) 262 fx D + B (Bofapr — 2Qq) - a
W) = o e ay) 26:Q
(cf. Lemma Ic). St !

It follows that the requlator’s welfare maximizing permits level choice in the monopolistic

scenario, if going for the non-binding permits level alternative, is aq if ¢ > *BOJ;%, resulting
in welfare level W (q) :== WM (aq) (> WM (az) = Wil (q)). Ifq < B‘”;% orq= ﬂ‘”;%,
then any a > ag or any a > a4, respectively, mazximizes welfare, resulting in welfare Wﬂ/[ (q).

f) If the emission permits level is binding, then welfare, whenever 250D + aR(vy) > 0, equals
W, (a) as specified in Lemma 2.1f. It follows that the regulator’s welfare-maximizing permits

level choice, if going for the binding permits level alternative, is

* def pAY 2ﬂ06G(7D) * def 4v
ac(‘]) = a1 — Kq € <R7a1 and CLM(Q) = G4 — mq S (a_l,a4)
B16%

in the competitive and in the monopolistic scenario, respectively.

In particular, the regulator’s permats level choice is lower in the monopolistic as compared

to the competitive scenario.

If the requlator goes for the binding permits level alternative, then welfare in the competitive

scenario (v = ¥,a = aj) equals WS (q) as specified in Lemma 2.1f. In the monopolistic

scenario (y = vy, a = a3, ), welfare equals WA (q) as specified in Lemma 2.1f, and the gas

supplier’s profits are I'g(q) as specified in Lemma 2.1f.

g) In the competitive scenario, W§ (q) > W§(q). Therefore, the regulator’s welfare-mazimizing

permits level choice is ag., and the emission permits level is binding.
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< > e
h) In the monopolistic scenario, WM (q) > Whl(q) & ¢ < g(Q) < Q(ﬁfopfffgf?)q, << Boé%pK),
K

and W%(q) < WAl(q). Therefore, if ¢ > G(Q), then the regulator’s welfare-mazimizing
permits level choice is ay;, the emission permits level is binding, and the welfare level equals
W(q). If ¢ < 4(Q), any permits level a > as mazimizes welfare and, in particular, is
non-binding, and the welfare level equals Wi (q). If ¢ = §(Q), then welfare is mazimized by
choosing either a}; (resulting in a binding permits level) or any level a > ay (resulting in a
non-binding permits level), and the welfare level equals WM (q) = Wi (q).

Proof of Lemma 2.2

c¢) First, note that the gas supplier’s profits in case of a binding permits level are given by
(v—1)-G5(v) as specified in the proof of Lemma 2.1c. This curve (considered as a function
of ) obtains its maximum at v} and, for v = 75, this curve (considered as a function of
a) equals Cp(-), Cp(a) = ﬁlq(;2 [2606K((2\Ij))2+aQ]2. Curve Cp(-) is a quadratic function of
a, it is increasing and positive on a > 0. The gas supplier’s profits in case of a non-binding

permits level are given by (v — 1) - G% () as specified in the proof of Lemma 2.1c. This

curve (considered as a function of v) obtains its maximum at v} and, for v = ~7%, this curve

) . (Bopk fa)?
Girni2rn) | ey - (CF

(considered as a function of @) is constant in a and equals C 4 o
the proof of Lemma 2.1c.)

Note that, since @ > 0, now 0 < a5 < a4 < ag < a1 < ag and a_1 < a4 (cf. Appendix C).
If going for the non-binding permits level alternative, profit is maximized by choosing v(a) €
arg max. ey o0) (7 — ¥) - G4 (7) subject to 2(5;(\/1(71*4 + 20g+/G% < a, ie., subject to the

permits level being non-binding (cf. part a) of Lemma 2.2). First, note that going for
the non-binding permits level alternative requires a > as & %, since otherwise the
inequality constraint cannot be satisfied for v > 0: If a < a5, then the inequality constraint
. . N def a-2f2px—260fcdcpx

is equivalent to v < Y(a) = SBobr fr —aBrpic 1 2f0)

lower than zero (since the numerator is negative and the denominator positive), and if

the fraction on the right-hand side being

a = as, then the inequality constraint is equivalent to @ < 0, contradicting @ > 0. If

a > as, then the inequality constraint 2§y ﬂo?ff +20¢ ﬁopf{G < a is equivalent to v > §(a).

If a > ay & 26k ﬂozf‘ff + 20 BOIZKf)G then the gas supplier’s profit (if going for the non-
binding alternative) is maximized %y choosing v(a) = 7%, and his corresponding profit is
Ca. If a € (as,a2), then the gas supplier’s profit is maximized by choosing v(a) = 4(a),
and his corresponding profit is (Y(a) — ) - G%(¥(a)) = («‘,(a);u(%((g%az;(fgﬁ = T'a(a) > 0 (cf.
Appendix C). Note that the latter curve is a concave quadratic function of a, which obtains
its maximum Cy at ay and equals Cg(ay) at a4 = DY ’BOZBff 4+ 20¢ quf(’;(f)c

If going for the binding permits level alternative, profit is maximized by choosing ~(a) €
arg Max. ey, o0) (Y—1)-G3(7) subject to 20y VE3+26G1/G% > a, ie., subject to the permits
level being binding. First, note that the inequality constraint is satisfied for all v > 0 if
a < as. If a > as, then the constraint cannot be satisfied for v > 0 if a > ag &t Boda , and the

fa
constraint is equivalent to v < 4(a) (> 0) if a < ag. In the latter case, i.e., a € (a5, agp), the

interval of available gas prices is bounded from above by a decreasing function of permits
level a (cf. Appendix C), that allows the gas supplier to choose (gas price 1 exactly on
a<a ¥ 25;(% + 25G%7 and) gas price 75 exactly on a < as. If a € (a—1,a4),
then the gas supplier’s profit (if going for the binding alternative) is maximized over all
alternatives with a well-defined outcome (i.e., over all v > M, v > 1) by

10Ka

choosing v(a) = v}, and his corresponding profit is Cg(a). If a € [a4, ap), his achievable
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profit is lower than (¥(a) — v) - G5(Y(a)) = (&(a)_w)z[ﬁllﬂ(oﬁé(}zn)()_?DHaQP’ which equals T'4(a)
(cf. Appendix C). If a < a_j, then the gas supplier’s profit (if going for the binding
alternative) cannot be maximized over all alternatives with a well-defined outcome (i.e.,
over al} v > W (> ).

Since I"4(a) is below Cp(a) on a < a4 and below C4 on a > ag, it follows that the gas
supplier goes for the binding permits level alternative if a € (a_1,a4) and for the non-
binding alternative if a > a4.

The calculation of W™ (a) is standard (cf Appendix C).

The calculation of W, (a) is standard (cf. our calculations for Lemma 2.1f). W, (a) obtains
its maximum at a*(vy) as defined in the proof of Lemma 2.1f, and it is easy to verify that
a*(vg) > % >0, a*(¢) > MR(_D) > 0, and a*(¢) > a*(v5) (cf. our calculations
for Lemma 2.1f and note that ¢ < g implies By fapx — ¢@Q > 0). Given our previous results
for the two scenarios, since a*(75) < a4 and a*(¢)) < ai, the welfare-maximizing permits
level is a*(v5) = a}, in the monopolistic and a*(¢)) = af, in the competitive scenario.

All welfare implications follow immediately from the representation of W, (a). The calcula-
tions for the gas supplier’s profits are standard (cf. our calculations for Lemma 2.1f).

The relation W§(q) > W (q) is easy to verify (cf. our calculations for Lemma 2.1g).

To see that VAV%(Q) < W (q), note that, for a = ay and v = §(as) = v}, we have that
K = K3 and G = G75. Therefore, W%(q) WM (ay) = W, (as), where WM (a) and
W, (a) are as defined in part e) and f), respectively. Since a},(¢) = argmax, Wy (a) and
at,(q) € (a_1,a4), W (g) must necessarily be lower than WA (q) < W (ahy(q))-

The relationship between WA!(g) and W4 (q) on the one hand and ¢ and §(Q) on the other

hand is easy to verify (cf. Appendix C). 0

Lemma 2.3 (Necessary Conditions for Equilibria in the Emission Permits Regime if @ = 0)

In any equilibrium of the emission permits regime in case of Q =0,

actor inputs K and G equal K% and G% as specified in Lemma 2.1a, respectively, if the
P q A A 14 ) 14 Y

emission permits level is non-binding, and

actor inputs K and G equal K% and G’ as specified in Lemma 2.1b, respectively, if the

P q B B 14 14 Y
emission permits level is binding and (v, a) satisfies 2000 D + aR(y) > 0.
In the monopolistic scenario, if a > ag X Boda (— a1 = as = a4 = as), then the permits level
fa

is non-binding and gas price 7y equals v} &) m +. Ifa € (a—q o %g)m,ao),

then the permits level is binding and gas price v equals v o 51\1(;2 + 1. In either case, the
K

gas supplier’s profits are I' 4 as specified in Lemma 2.1c.

In the competitive scenario, where gas price v equals 1, (it is obvious that) permits level a is
non-binding if a > a; Cl:ef%KﬁozéfK + 25Gﬂ°p£fc (= ag) and binding if a € (MR(_D), a1
If the emission permits level is non-binding, then (it is obvious that) the welfare levels equal
those of the tazes regime for tax level p = 0, i.e., WY (q) = Wpczo(q) and Wi (q) = sz\io(q)

in the competitive and monopolistic scenario, respectively (cf. Lemma 1). In particular,

they are below their respective counterparts in the tazes regime (where p = p* = q).

If the emission permits level is binding, then welfare, whenever 2306 D + aR(7y) > 0, equals
W, (a) as specified in Lemma 2.1f. It follows that the regulator’s welfare-mazimizing permits
level choice, if going for the binding permits level alternative, is

oy def 20 26806c(—D) « oy def 4v
ac(q) = a1 — Eq € (Raal and ay(q) = as — mq € (a_1,a0 (= aq))
B16%

in the competitive and monopolistic scenario, respectively.
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In particular, the requlator’s permits level choice is the same in the two scenarios.

If the regulator goes for the binding permits level alternative, then welfare in the competitive
scenario (v = v,a = a}) equals Wg(q) as specified in Lemma 2.1f. In the monopolistic
scenario (v = v, a = a};), welfare equals WAL (q) as specified in Lemma 2.1f, and the gas
supplier’s profits equal T s = T'p(q) as specified in Lemma 2.1f.

In the competitive scenario, Wg(q) > Wg(q). Therefore, the regqulator’s welfare-maximizing
permits level choice is ay,, the emission permits level is binding, and welfare equals Wg(q).
In the monopolistic scenario, W (q) > WAL(q). Thus, the requlator’s welfare-mazimizing

permits level choice is a)y;, the emission permits level is binding, and welfare equals Wg[(q).

Proof of Lemma 2.3

)

First, note that the gas supplier’s profits in case of a binding permits level are given by
(v—1)-G5(v) as specified in the proof of Lemma 2.1c. This curve (considered as a function
of ) obtains its maximum at v}; and, for v = ~}, this curve (considered as a function of a)

— 2 N2
is constant in a and equals Cp := ZOB?\I,.
permits level are given by (y — 1) - G% () as specified in the proof of Lemma 2.1c. This

The gas supplier’s profits in case of a non-binding

curve (considered as a function of ) obtains its maximum at v} and, for v = ~7%, this curve
: : : . ~  def )  (Borrfa)® _ A
(considered as a function of @) is constant in a and equals Cy = Grni2) @e? = Cp

(for the latter equality, cf. Appendix C). (Cf. the proof of Lemma 2.1c.)

Since @ = 0, now a_1 < ap = a1 = az = a4 = as (cf. our calculations for Lemma 2.1c).

If going for the binding permits level alternative, profit is maximized by choosing 7y(a) €
arg maX, ey o) (Y—1)- G (7) subject to 20k /K5 +20c+/G% > a (cf. part a) of Lemma 2.3).
First, note that going for the binding permits level alternative requires a < as £ %,
since otherwise the inequality constraint cannot be satisfied for v > 0: If a > as, then the
inequality constraint is equivalent to v < 4(a) & 5 ﬁz i{%‘i Iifé?iffg% L

right-hand side being lower than zero (since the numerator is positive and the denominator

the fraction on the

negative), and if @ = as, then the inequality constraint is equivalent to @ > 0, contradicting

Q = 0. If a < as, then the inequality constraint 265 ’6&’,?,{ §< + 262 Oggfy {G > a is equivalent to

7> Aa). Ifa<a & 251(/8(10)?;3*%{ + 25@%?@% = a5, and if a > a_; (< as), then the gas
B B

supplier’s profit (if going for the binding alternative) is maximized over all alternatives with

a well-defined outcome (i.e., over all v > W, v > 1) by choosing v(a) = 75,

and his corresponding profit is Cg. If a < a_1, then the gas supplier’s profit (if going for the
binding alternative) cannot be maximized over all alternatives with a well-defined outcome
(i.e., over all v > W (> ).

If going for the non-binding permits level alternative, profit is maximized by choosing v(a) €
arg maxy e[y, o0) (7 —1) G (7) subject to 20 \/ITJ’Z—F%G\/G**A < a. The inequality constraint
is satisfied for all v > 0 if a > a5, and the constraint cannot be satisfied for v > 0 if a < as.
Thus, the gas supplier’s profit (if going for the non-binding alternative) is maximized by
choosing y(a) = 4% on a > as, and his corresponding profit is Cy.

It follows that the gas supplier goes for the binding alternative if a € (a—1,a5) and for the
non-binding alternative if a > as.

The calculation of W, (a) is standard (cf. our calculations for Lemma 2.1f). W, (a) obtains
its maximum at a*(vy) as defined in the proof of Lemma 2.1f, and it is easy to verify that
a*(vg) = a*(v) > 2505614%(—D) > 25%3(3/(1*;)[)) (cf. our calculations for Lemma 2.1f). Since
a*(v5) < ap (= as) and a*(¢) < a1, and given our previous results for the two scenarios, the

welfare-maximizing permits level equals a*(v3) = aj, in the monopolistic and a*(v) = aj

25



9)
h)

in the competitive scenario.
All welfare implications follow immediately from the representation of W, (a). Finally, it is
easy to verify that I'g(¢) = T'4 (cf. our notes at the beginning of Appendix C).
The relation W§(q) > W (q) is easy to verify (cf. our calculations for Lemma 2.1g).
The relation W (q) > Wil (g) is easy to verify (cf. our calculations for Lemma 2.1h).
O

Lemma 2 (Equilibria with a Binding Permits Level)

Summarizing Lemma 2.1 to 2.3, (K5(ag), Gglan), af) is the unique equilibrium (and one with

a binding permits level) in the competitive scenario of the emission permits regime. In the mo-

nopolistic scenario, if ¢ < G(Q) (which implies Q # 0), then there does not exist an equilibrium

with a binding permits level. If ¢ > ¢(Q), then (K5(v5,ay), GE(VE, ahy), Vs ahy) 18 the unique

equilibrium with a binding permits level; if ¢ > ¢(Q), it is the unique equilibrium.

Lemma 3 and 4 follow from standard calculations (cf. Appendix C).

Lemma 3 (Differences in Welfare and in the Gas Supplier’s Profits across Regimes)

a)

In the monopolistic scenario, if ¢ > G(Q), then the difference in welfare between the unique
equilibrium of the taxes regime, (K*(v*,p*), G*(v*,p*),v*,p*), and the unique equilibrium
of the permits regime, (K5(vg.a3), G(V5, @) Vi @hy)s 08

Q*[Bopk fa — qQ)?
~(Bipx +2f5)[010% P + (Bipx + 2f5)¥]
In particular, if Q # 0, then this difference is greater than zero, it is increasing in marginal
emission cost q if Q < 0, and it is decreasing in q if Q > 0 (note that Bopk fc — q@ > 0,
which, if Q > 0, follows from q < q).
If ¢ < G(Q) (which implies Q # 0), then the difference in welfare between the unique equilib-
rium of the tazes regime and any equilibrium of the permits regime is W (q) — Wil (q) =

W (q) - W5'(9) = 55

WM (q) — sz‘io(q) > 0 and increases in marginal emission cost q (cf. Lemma 1).
If ¢ > 4(Q) (> g3 if Q < 0), then the difference in the resulting gas supplier’s profits between
the unique equilibrium of the taxes regime, (K*(~*,p*), G*(v*,p*),v*,p*), and the binding
permits level equilibrium, (K5 (vg, ays), G5(V5, @) Vi @hyp)s 45

Q*[Bopx fo — 4@
48 - (Bip +2f2) [B16%® + (rpx + 2f3) )"
In particular, if Q # 0, then this difference is greater than zero; whereas the gas price is
higher in the emission permits regime, the demand for gas is lower: v* < v5 and G* > G.

If ¢ < G(Q) (which implies Q # 0), then the difference in the resulting gas supplier’s profits

between the unique equilibrium of the taxes regime and any non-binding permits level equi-
librium of the permits regime is — Q)2 — 2
I(q)—Ta = [Bopk fa — qQ) (ﬁ02pKfG) >0
49 - (Bipk +2f%)

Here, the gas price is the same in the two regimes (v* = v%), and the demand for gas is
lower in the permits regime if Q <0 (i.e., G* > G% ) and higher if Q > 0 (i.e., G* < G%).

In the competitive scenario, the difference in welfare between the unique equilibrium of

I'(q) —Tg(q) =

the tazes regime, (K*(p*),G*(p*),p"*), and the unique equilibrium of the permits regime,
(Kp(ag), Gplag),af), is W (q) — WE(q) = 0.

Lemma 4
For ¢ sufficiently high (in relative terms), ¢(Q) (and thus also g3 < ¢(Q) in case of Q < 0) is
(well) below the boundary q for marginal emission cost q, i.e., ¢(Q) < WTKw,
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C Calculations

Note that, in some of the subsequent calculations, we use that

Bipx + 2fk Bipx + 2fk 5 <o 2
P - ———V = — —————= (B4 +2D7%) =
ﬂlé%( ﬂl(;%( (61 GpK )

which implies that [,615?({) — (Bipx + 2f§()\11] —Q?,
Brdk Q?
-2 % = — and
Bipx +2J% Bk +27% "

[B16%® + (Bipx +2/2)0]" = Q' +4Vd- (Bipx + 2%)Bi6%.

—[Biprdc + 2fr D]? _ —-Q?
B10% - Bidy]

QfépK

C.1 Calculations for Lemma 1c

Wy(p) = %[ZfK\/ﬁ-f— 2faVG*] - ﬁpfm/FJr 2faVG*)? — [pr K* +~vG"] — q[26xk VEK* + 25V G*]

Bo [260(f&7 + fépr) — 261p(fxdxy + fadapx)]

B ()
1 [280(f&y + fépr) — 261p(fK 0Ky + fadapk))
261 @(v)?
[Bovfx —pR()]? [Bopr fa — p Q)

Cbe 0(7)? 7 ()2

[Bovfrx — p R(v)] [Bopx fa —p Q)
_Qq(;K,OW_ quG.W

2019(7)% - W, (p) = 260[260(firy + fapx) — 261p(fxdky + fadapi)|[Bipxy + 2fy + 2fépK]
— [2B0(f&v + f&pK) — 281p(fK Ok + fadapx))?
—2B1px[Bovfr + (2fc frda — Sk By — 20k f&)p)°
—2B17[Bopx fa + (2fa frbx — SaPipx — 26a fi)p)?
— 45140k [Bov fx + 2fc frdap — SxpPry — 20K pfE]@(7y)
—4B1g0c[Bopx fa + 2fx fadkp — dapBipk — 206D | P(7)
= Wi(y)-p" +Wi(y)-p+ Ws(y) , where
—(261)*(fx k7 + fadepk)?
— 2B1pK (2fc fxda — Ok By — Ox2f&)? — 2B1v(2fa KoK — daPipk — 62fi)
= —261-U(y)-®(y),
Wi(y) = —4B0bi(fxdxy + fadepr)(Bipxy + 2fiy + 2fépK)
+ 48051 (215 + 2fépx ) (fx Ok + fedapK)
—4B0Prpx fry(2fa frda — S iy — Ok 2f&) — ABobrpk fay(2fc frdx — dcPipk — 62 fi)
—4B14(2fc frdadK — 0%y — 01 2f&)®() — 4814(2fa frdxda — & Pipr — 6&2fi) ()
= 4B1g®()[0k (Biy + 28) + 6&(Bipk + 2fk) — 4fc frdaOK]
= 4B1q- @(7)-¥(v) , and
Wo(y) = (260)°(fir + fépr)(Bipry + 2f5y + 2f&pr) — (260)*(fary + fépx)’
—261px (Bovfx)* — 2617(Bopx fa)?
—46190K Boy fr ®(7) — 461906 Popx fa®(v)
= 260[Bipky + 2f& + 2fépK|Bo(ficy + [épK) — 2B0®(7)2B19(fK Ik + dc fapK)
= 260 0(7) - [Bo(ficry + fépr) — 2619(fxdxy + 6G fapx)]-

, Le.

S
S
I

C.2 Calculations for Lemma 2.1c

To see that 0 < a—1 < ap < a1 < a2 < a4 < as < ag, note that the first inequality is obvious, that ap > a—1 is
equivalent to % < % & G0y + % > 0, a true statement, that a; > ao is equivalent to

)

® Boda < 260 (fxdxy + fedapk)

fa ®
& Je|(Bipk + 2fk) + 2fépK] < 2fc(fxdxy + fadcpi)
&S Q<0,
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that as > a1 is equivalent to Bo

s froK 3 > 260(frorY + fadapr)

Bipx +2f% d

friK
+ mq) > 2(frdrY + fadapr)

—(Bipx + 2f5) (frOxt + fabapi) + frdx® >0
—(Bipx + 2fi) fadapx + [0k 2fEpx > 0
—fepk[Bidapx + 2fk(fxdc — fadx)] >0

-Q >0,

frdxY + fadapx +

(fxdxy + fedopr)

t o0 ¢

that a4 > a2 is equivalent to

260 (fK 0K + fadapx) + 25U 5
iy > e+ o g )
@ 4 Prr 2 g Bipr + 2%
B10%
fKOK froK 2 Bipr + 2f%
= ) ) ) vd > (0] 1) ) — =V
(fxdrxy + fedepr)® + 3,62 Bipw + 212 + (fxdxY + fadapk) 5162
Bipk + 2fk } fréx® [ﬁwx +2f }
=S 1 ) - — Vv v—-—3o| >0
(fxdrY + fadapk) 5107, Gipx + 272 5107,
-Q? frdx® Q°
= d 4 . >0
(fxdrY + fa GpK)ﬂlfS%( +ﬂ1pK+2ff( 5162
& —(Bipk +2fk)(fxOxY + fadapr) + fxdx® >0
&S —-Q >0,
that a4 < as is equivalent to 280 (fxdxtb + fadapr) + 2§?££ N, 2800k fic
P 4 P2k g BGipx + 2%
B16%
212 )
o oxfud+ PPN by s (Bup 4 203 (fcdxd + fodapi) + (Bupi + 207 10K w
615}( 616}(
& Oxfr - [(Bipk + 2f) + 2fépk] > (Bipk + 2fk)(fx okt + fadapxk)
& 2feprik fr > (bipx + 2fi) fadapk
& Q<0,
and that as < ag is equivalent to 2800 fxc 28085 D
Bipk +2f2  Bidepx +2fxD
& fx-[Bidepx +2fx D] > (Bipx +2fi) - D
& dafx > D,
a true statement. To see that as € (a2, a4), note that az > ao is equivalent to
—2600x D 2Bopx fa [V Bio% Bo(pr faQ + Ok fK2®)
-Q -Q ®  (Bipr +2f%) (Bipx +2f7)®
& 2k fo(Bipx + 2fk)P o Bk + 20k D(Bipr + 2f%)® < (px faQ + 0k fx2®)Q
' OV @ (Bupk +217) o
A 3162
& 2 +2f2)Py | = ——E 4 26k D )
i fa(Bipk +2fk) \/(I) (Gipx + 272) + 20k DfBipx
< (pr faQ + 6k [x2®)b1dapk + pr faQ2fx D
& icolBipr + 27200, | 2. 0K o6 5D - fxba) < prcfa@?
vx fa(Bipk K & (Bipx +2/2) 1P PoK kdc) < px fa
\\ 3162 2 2
2 2BV = - — K 98,365 —Q* <0
& 2(fipx +2fKk) \/@ Gipx + 272) G120k — Q

& \APU(Bipic +2/2)15% < 26105k — [B10%® — (Bipx +2f2)V] (= Fi5%® + (Bipx + 2f3)V)
& APV (Bipx +2fi)Bi0%k < [Bi0k® + (Bipx + 2fk) V]
& 0<[Bok® — (Bipk + 2f%) V)7,

2 —1
a true statement, and that, in Lemma 2.1f, we show that a3z = a4 — 4V - [CD + %7;2’?’(\1/} - q3 with g3 > 0.
K
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The intersections of C'g(a) with Ca are determined by
@ ) (Bopx fa)®  ¥[2B0ék (—D) + aQ]’

(Bipx +2f)  (22)? $1054(2¥)?

& [2600k(—D) + aQ) = (gfgif)zfifég;?

(Bopr fc)?B16%4(20)? <:+ 0% ,ﬁoprczxxf>

7 D) g =2 ¢ G+ 2720220\~ \ UG t27m) @

/ PB10% 50pKfG2‘I/
2600 D
T ipr + 2/2) + 2600k

o a— 2800k D I 2Bopx fa ¥ PB16%
Q -Q @\ U(Bipx +2fF)
Finally, note that 9¥(a) _ —2fopk faQ > 0.

da  [280fxdx — (Bipk + 2f%)a)?

C.3 Calculations for Lemma 2.1d

Note that %&D) < ay is equivalent to (the true statement)

26806c(—D) < 260(frdxt) + fadapk)
R )

& Oa(—D)[(Bipx + 2fk )0 + 2fépk] < (fxdx + fadapk)[Broxy + 2fa(—D)]
& B fr(—prds — ¥o%) + 2fx (~D)¢(fxde — fadx) <0
< U >0.

C.4 Calculations for Lemma 2.1f

Wy(a) = @[2fm/ﬁ+ 2faVG*] — ﬁ[2f}<\/ﬁ+2fg\/§]2 —[pxK* +7G* | —q-a

B
_ Bo [260D° + Bra(fxdxy + fodepx)] 1 [260D* + Bra(fxdky + fadapx))?

B ¥(v) 2/ U(v)?

[2505GD + [0k By — 2fc(ba fx — Ok fa)] ]
AU (v)?
2608k (=D) + [bcBipx — 2fx Ok fo — 8¢ fx)]a)®
K 4V (7)?

—q-a

N m [ 4B0[260D% + Bralfx bk + fadapi)|[B1 (5% + 6&pic) + 2D°)

—2[2B0D* + Bra(fdxy + fadapr))

— P B1[26006D + [6x 1y — 2fc Dla)?

—YB1(2B06k (—D) + [6crpx — 2fx(—=D)]a]* — q-a-4619(7)* ]
Vs(v) @’ + Vi (7) - a+V5(v)

= 1)) , where
Va(v) = =281(fxdx7 + fadapk)® — prAil6x By — 2faD]? — B1[6cBipk — 2fx (—D))?
= —/-¥(y)- (),
Vi) = 4BoBi(frdr + fadapr)¥(v)

—4-2B30B1(frdc — fadx) (frdxy + fadapr)
—pr4Pofioc(0c fx — 0r fa)[dx Py — 2fc(da fr — Ok fa)]
— 460810k (Ox fo — S fx) 66 Pipk — 2fx (5 fo — S fx)] — a4Br¥(v)?
= 4BBi(fxdxy + fadepr)¥(y) — 4B1q¥(7)* , and
Vo(v) = 4B02BoD’[B1(5% + 0&px) + 2D%) — 2(260)* (fxda — fadx)*D?
—pKB1(260)*6&:D? — 731 (260)* 0% D
= 4BD*[Bi (6% + 0&pK) + 2(fxda — fadx)?]
= 4BD*U(v).
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Note that a*(¢) < a*(vp) is equivalent to

Bolficoxt + fadapic) |® + (Brpx + 2f?<)L2} g {cb + (Bpx +20E) oy
ﬁlfSK ﬁl&K
< Bo(fxdr + fadopr )P + BOfKQ(SK Ud — 2qUd
Bl(SK
2, ¥ 4 2 Bofrdx
& Po(frdxy + fadapr)(Bipk + 2fk) (Bipx + 2fk) < Uo — qUd

oy, 1Bio%
& Bo(frdxy + fadepx)(Bipk + 2f%) — q¥(Bipk + 2f%)
< Bofx Sk [2fépx + (Bipx + 2f%)¥] — qB1 0% P
& Bo(fbrt + fadapr)(Bipk + 2f%) — Bofdx2fépr — Bofx ok (Bipk + 2f%)¥
< q [(Bipx +2f5)V — $167 D]
& Bofepx|Biderk +2fk D] < ¢ @Q°
& BofepxQ < qQ>.
To see that a* () > MR(_D), note that 260d¢D + a* ()R > 0 is equivalent to (the true statement)

2606c(6c fx — Src fa) + [B1dx — 2fc(6c fx — S fa)] -a* (1) > 0
Bo(frdxt) + fadapr) — q¥

B10%

& 20600c(0afr — Ok fa) + [Brdxy — 2fa(dafx — dx fa)] - 2 o >0
& Bolda(dafx — dx fa)® + [B10xy — 2fc(dafr — 0k fa)l(fxdxy + fedapk)]
>qV - [B1dxy — 2fc(bafrx — Ok fa))
& Bofry[Bi(0ky + d&pr) + 2(fxdc — fadk)’] > qU R
I,
Furthermore, note that a*(y3) = as is equivalent to
60(fK5Kw+fG6GpK)+M\I/—2q\IJ _ Bodx(=D) _ Popkfc B10%
d+ 51”;7;2&(\1; (_Q) (_Q) BIPK + 2fK
o (fkéxw + fedapr + ];K;Sé: ) (—Q) +dxD ( 51%;1%]%\1,)
_2q9Q Bio% Bipx + 2/
e o pK fa 7511”( Tyt (@' + 4&52 \II)

where the left-hand side of the latter equality equals
(fOxt + fadapi)(—Bidapk — 2fx D) + Sk D(Biprt) + 2%t + 2f&pi)

froK Bipx + 2f%
+ [ Ju(-q)+ a2 xp}

= (fxdx + fadapr)(—Bidapi) + (fadapr)(—2fx D) 4 6x D(Biprib + 2fépr)
gK;l [fx(—Q) + D(Gipx + 2f%))
= Bipr (0 frdc — Sxfaldn — fxdrda — fdaprdc) + 6x D2fépr — fadapr2fx D

OV b Bisapic — fx2fxD + (Bipx +2f2)D]
615}(
oW

= —Bipk fe(6xv + 0&pK) + 2D fapk (—D) + Aot [—Bipk fadx]

= —fopxV¥ — fapr¥;

thus, a*(y5) = as is equivalent to
£10% ( Bipi + 27 >
2 W) + 2qPQ = — - | P+ ——VU
Bo(—2fcpr¥) +2q¥Q = —Bopx fa Bk + 212 5,52,

i B10% Bipx + 2fk —
< —Popk fa P m (CI) + W‘P) + 260 fapx ¥V = 2q¥Q

v B16% ( Bipx + 2f% )
— 0 PPETEIK ) oy
o B tofz \O T o

Jr

= g3,

& g=

1
2w (—q) rete

and gz > 0 if and only if
U B16% ( Bipx + 2fk )
=K (e PEET AR ) 2y > 0
o Pipk +2f% B10%
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N YN 20
® Pipk +2f% T g4 5“”;76‘*2&\1,
1

- v sk 4p?
® Oipx +2f% (®+%\y>2
B16

o a5 (q, Wﬁ%mw) > A0 - (Bipx +2f7)

& [Bio%® + (Bipx + 2f5)V])? —4UD - (Bipx + 2f7)B16% > 0
= [Bléff‘p — (Bipr + 2f12<)‘1’}2 >0,

a true statement. Next, in order to see that a*(yj) > 2209¢-D) note that 2B06aD + R(vg)a*(vg) > 0 is

(vg)
equivalent to h Bof
v Bo(frdx + fadapr) + 555V — 2q¥
BodD + <616Kw e 2fGD> o+ Oy .
2
& 6D (<I> + M\P) + ((fK&db + fadapr) + e ) ((ﬂlfsfﬂ/} —2feD) + E)
162 B1 Bior 0K
> Lo ([ﬁﬂslﬂb —2fc(0c fx —dx fa)l + E) '
Bo ox

Since 86 (6c fx — 0k fa)[2f2pr + (Bivk + 2F5)0] + (frdx + fadapx)[Bidxd — 2fc(bafx — Ok fa)] = fx¥,
the left hand side of the latter inequality equals

(Bipx + 2f&) I fx .o NG
fxY¥ + 8¢ D 5107 U+ Bron U (B16rth — 2fcD) + 1o U+ (froxy + fG(stK)g
2
= . |:5G(5G.fK - 5Kfc)(ﬂ1pK7—|_22fK) + fxy + L ———R(vp) + (fxdxy + fG(;GpK)i]
B16% B10K 0K

= v I R+ v {&;((safx—6Kfc>(51p"7+22m+fz<w+(fx5xw+fcacpx)i}
B10x B16% 0K

_ fx . [ Fx[81(02pKk + %) + 2frdc(frdc — Ok fo)] ﬁlfﬁcfmq

= v lRa | 55, T B

_ g Jtx R(vb) + U fx {ﬁl(f%pK+25?<¢)+2fK5G(fK5G—5Kfc)_|_I816K14
ﬂl(SK BléK 0K

_ fK * fK *

= Vg ) H Y {ﬂlaK R”B)] '

Thus, 260dcD + R(vp)a™(vp) > 0 is equivalent to B{?K R(vp) + 5{?1( R(vg) > 24+ R(vp) © ¢ < ﬂ"fK, which is

Bo
def Bowa < ZO(J;K
= Bidk

In order to see that az > %, note that as > a1 >
B

satisfied since ¢ < § =

Qﬁotsc( D) > 2505G( D) _ 2ﬂ05(G(—>D)
R+5L R(vp :

If ¢ > g3, then the gas supplier’s profits are
2600k (0x fo — b fx) + Q- air]’

v - ) 2 [Bo(fcdxct) + fodapi) + 4w — 2q 0]
— 45151%(4(2\1’)2 Bodx (0 fa — dafr) +Q q>+(51pK+2fK)ﬁ152

= ! 3 |:2ﬂ05K(6KfG —dcfx) (‘1’ + (Bipx + in)i)

2
1661030 - [@ + (Bipxc +203) 50| 1%

2
+2Q (ﬁO(fK(SK'l/} + fedepk) + Pofx \I/) - 2Q2q\1/}
B1dK

(260 fopr2¥ — 2Q2¢¥)* Bk VY - (Bofapx —q@Q)°
2 2 2 2
1661530 - [B+ (Buprc +2f3) 5k | (0P T (Oiprc - 27ic)Y]

where the latter equality follows from
1\
B10% |:6K(5KfG —dafK) (‘1> + (Bipx + 2f?<)/317
K

= k(0 fo — dafr)Bidk (Bipk + 2fi)0 + OOk fo — 0 fr)Brox2fépK

) +Q ((fK5K¢ + fadapk) + fiK\I/)}
Bi1dk
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+0K (O fa — 6a fx) (Bipx + 2f%)Br6&pr + Ok (6x fa — 0a fx)(Bipx + 2f )18y
+0x(0x fa — 0a fr)(Bipk + 2f12()2D2 + [Bidepr +2fk(fxdc — fG5K)]fK5K1/)ﬁ15§(
+ [B1depr + 2fk (frdc — fadr)] fadapr ok + [Bidepx + 2fk (fxdc — fadx)| [k PioepK
+ [B1dcpx + 2fx (fréc — fadr)]frxdxBioxd + [Bidepk + 2fx (fxdc — fadx)| fxdx2D?
= Ok (0x fa)Bi0k (Bipr)¥ + Ok (6k fo — 6cfK)Bi0k2fépK + 6K (6x fa)(BipK)BidepK
+ 0k (0 fa) (Bipk) ok + 6k Ok fa)(Bipx)2D? + [Bidapr + 2fk (fxdc — fadx)]fadapi Pidsk
= (16 fopx [2fadxk (Ox fa — bafr) + 201650 +26166pxK + 2fx 86 (fxdc — fadx) +2D°]
= 10k fopr 20.
If ¢ < g3, then the gas supplier’s profits are

(V5 — ) 2600k (D) + Qas]® _ (v — ) 2600k (—=D) + Qai(¢3)]* _ P16% ¥ - (Bofark — g3 Q)*

4V (vg)? 4V (vp)?  [816% @ + (Bipx + 2f7) 9]
which equals 4@4((‘%1%;) since
3 2
Bo fapx v Pro% ( Bipk +2fk )
+a(-Q) = +(—Q)elerr | J2 L POk (g4 PPE TSR g ) oy

Bofoprr
2V

v Aol ( Bipxc +2f2 )
20 _ = [P+ ) —2U
Ve Bwrer U7 oz

C.5 Calculations for Lemma 2.1g

Note that W¢ (¢) < W5 (q) is equivalent to (the true statement)

—26061q9(fx Sk + fadapr) + B5 (fky + fépx) < B1lBo(fxdxv + fadapr) — qV]* + B3 D*®
ﬁli’ ﬂ1q¥¢

Bo(fict + fepk)¥ < BiB3(fxdxt + fadapr)® + Pi1g*V° + B3 D°®

Bra® U + 135 (fxdrtp + fadapk)® + B3 D Bty — B3 (fxt + f&px)Br(0EpK + 0%1p) > 0
g’ + 3135 - [(frdxt + fadapi)? + ¥prx D* — (fi + f&pK)(6&6pK + 0%¥)] > 0
61702 > 0.

R R

C.6 Calculations for Lemma 2.1h

. 52
First, note that W3'(q) — WA'(q) = W5 (¢) — Wpo(q) = WE' (q) — [WM(Q) - 55 (\If + 2% <I’) qQ}

Bipk+2f%
( %é) 2 Co+Ci-g+BPavd. ¢
Bipr + 2% Qﬂlq@).(q}_’_%q/),
where C7 and Cy are as defined in the calculations for Lemma 3a . Therefore,
Pk [EQ* + 260pk [6Q® - ¢ + 49 - (Bipx + 2f5) P10k - ¢
20 - (<I> y Dups2l \I’) (Bipr +2f5)B10% .

8167
The positive argument at which this convex quadratic functil(;n of q takes the value zero is given by
fopxcfo (~Q° — Q QT+ A0 (Gipx + 21 )Pi0% )
AUD - (Bipr + 2f%)B10%
Bopx fa [-Q° — Q- [B16%® + (Bipk + 2f%)V] ]
4VO - (Bipk + 2% )P10%
Bopx fa(=Q) [[(Bipx +2f%)¥ — 1% @] + [B105 P + (Bipx +2f%) V] ]
AV® - (Bipk + 2f7)P10%
Bopk fa(—Q) [2(Bipk +2f%)¥]
NI
Finally, g3 < ¢(Q) is equivalent to (the true statement)

1 T Bk <¢ ﬁlpK‘i‘QfIQ(\I,)_\I,
Co W Gmerz) \ 2t 5 2

N B10% ( Bipx +2f5 )_
S G+ \* T g V)2

< Q'+ Q*[B10%® + (Bipx + 2f#) Y]

= W' (@) - W (@)] + 5

M/ N Moy _ -
Wg (q) — Wi (q) =

—Q® — Q[B16%® + (Bipx + 2f%) 7]

< 20 - (Bipx + 2f12()515%(

20 - (Bipr + 2f5)B10%
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&\ 1V (Bipic +273)516% - (165 + (Bipxc +2/%) V] — 4B - (Bupx +2/%)510%
~ Q' = Q*[B165 @ + (Brpx + 2fF)¥] <0

& AV (Bupx +272)50% - [B165%® + (Bipxc +2/%) V] — [165® + (Bipxc +2f7) V)’
~ QA% ® + (Brpx +2fk) V] < 0

& [0k ® + (Bipxc +2f5) V) - {[515?& + (Bupic + 2f7%) ] = [ 40® - (Bupic + 2f3)615% + Q| <0
& (01050 + (Bupic +2f7) V] — /A0 - (Bupic +2f3) P10k + Q7 > 0

& (3165 + (Bupic +2/3) V] — \JAUD - (Bapc +2f2)B10% — [B10%® — (Bipx + 23)¥] > 0

& [Bi0%® + (Bupc +207) V] — (165D — (Bupic +2f7)¥] > /40 - (Biprc +21%)h10%

& 2Abwr +2F)V >\ 10D (Bipic + 23Rk & ABipx +2/F)7T > 4V - (Biprc + 20%) 10k
& (fipx + 2f;2<)\1f > 0105® < (105D — (Gipx + 2f;2()\11 <0

= —@*<o.

C.7 Calculations for Lemma 2.2c

To see that a5 < a4 < a2 < a1 < aop, follow the corresponding calculations for Lemma 2.1c. To see that a_1 < a4,

note that in our calculations for Lemma 2.1f we show that

4V % * 2605G(_D) _ 60]‘.}(
Uy pentaiE g (=a705)) > R(vg) (Ea) <G5
B16%

To see that 4(a) is decreasing in a, cf. our calculations for Lemma 2.1c.
Finally, to see that  (5(a) — ) [260dx (=D) + aQI* _ (3(a) =) - (Bopwcfa)* _ ¢,

40 (3(a))? B ®(3(a))?

where f‘A(a) def [‘P"1*2,30(fK5Kw+fc5GPIZg'2[2BDfK5K*(ﬁlPKJr?f?()‘a]

fied if 4(a) = v, which is equivalent to a = a1. If a # a1, then this equality is equivalent to
2600k (=D) + aQ)* _ (Bopx fc)?

(a),

, note that the first of the two equalities is satis-

40 (¥(a))? 2(5(a))?
& @(9(a))*[2B00k (—D) + aQ)? = (Bopx fa)*4¥ (5(a))?
& ®(%(a))[2800k (—D) + aQ] = (Bopx f&)2¥ (4(a))
& (Bipx + 2f7)[2600k (—D) + aQ] - 4(a) — Bopx fa2B10% - 4(a)
= —2f2pK 2600k (—D) + aQ] + Bopk fo2(br&pK + 2D?)
< [(Bipx +2fk)a — 2800k fx] Q - 4(a) = Q [-2f&pra + 2Bopk fadc]
o 4a) = 2f&px - a — 200 fadapx

T 2600k fx —a- (Bipk +2f3)’

a true statement. The second of the two equalities follows from

. 2f&pk-a—2B80fcdaPr ) ) 2
(9(a) =) - (BOpKfG)2 _ <2505Kf1(*a‘(51pk+2f12<) ) - (Bopx fa)
(I)(’A}/(a)y N oy 2f&pk-a—2Bofcdcpk 2 2
{(ﬁlpK +2fk) 2808k fx —a-(Bipk +2f%) + QprK}

[a - 2f&px — 2B0fadapr — 2800k fx¥ + a- (Bipk + 2f5)Y] - (Bopx fa)? - 2800k fx — a - (Bipk + 2fF)]
[(Bipx + 2% - 2f2pi — 280 fadapx] + 2f2pi 2600k fic — a- (Bipx + 2f2)])?
[© - a — 260 (fréx ¥ + fedepx)] - (Bopx fe)? - 2600k fic —a- (Bipx +2fi)] _ ().
(—260 foprQ)®

C.8 Calculations for Lemma 2.2e

Note that W™ (a) equals

260[Bo(faA(a) + fépx) — 261a(fxdx(a) + fadap)]

2612(5(a))
_ Bo  (Bofi — 261 fxdxq) - H(a) + Bofépr — 261afcdcpx
B (Bipr + 2f12() “A(a) + 2]%171(
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Bo [Bofk — 281 fxérqlla2fépx — 280 fadapx] + [Bofépr — 2B14fcdap] (260 fxdx — a(Bipk + 2[k)]

A (Bipk +2f%)a - 2f&pKx — 200 fadapx] + 2fépK (200 fx ok — a- (Bipk + 2f%)]

_ B fapx [(Bofx — 2610k q)2fa fx — (Bipk + 2f%)Bofa — 2616aq]] a

B [(Bipx +2f2)2f¢pK — (Bipx + 2f%)2f2pK]a — (Bipx + 23%)260 fadapr + 2fE&pK2B0 fr Ok
Bo —200 fadapr[Bofk — 261 [k q] + 2B0fx 0k [Bo fépr — 2B19fcdcpK]

T B [(Bipx + 2002 20k — (Bipre + 202)2 2prcla — (Bipx + 2F2)2B0fadapr + 22px 200 0K
Bo Bifepk [2Q - q — Pofopx]a — 265pK fx faD
B1 —2060 faprx @ '

C.9 Calculations for Lemma 2.2h

Fi h.
irst, note that _ —Bopk fEQ? + 2Bopk faQ® - q +4¥D - (Bipi + 2fi)Pidk - ¢

W5'(a) = Wi'(g) = 2
20 (@ + 2LEIEG) (Bupic +2f2)510%

(cf. our calculations for Lemma 2.1h). The positive argument at which this convex quadratic function of g takes

foprcfo [-Q° +Q QT+ AUD - (Buipx + 2[%)10% |
4D - (Bipr + 2f%)B10%
Bork fo [-Q° + Q[B16%® + (Bipk + 2f%)V] ]
4D - (Bipk + 2f%)B16%
Bopk fa@Q [[B16%® — (Bipk + 2f%)V] + [B10%® + (Bipx + 2fk)V] ]
AVd - (Bipk + 2f%)B1d%
Bopr faQ (2610% @)

T 40D (Bipk +2f2)Bi0% 4(Q)-

Finally, note that §(Q) < Z2L2PK is equivalent to 2Q° < 2(Bipx + 2f%)V < (Bipx + 2f%)¥ — Bi6x® <
(Gipx + Zf?()\ll, a true statement.

the value zero is given by

C.10 Calculations for Lemma 2.3c

BED> _ _ Bipkf&

16T = 12t and thus to (the true statement)
K

Note that Cg = C4 is equivalent to

(Bipx +2f)@D* = VBipi f&

@ (—=D)[(—=D) + fxdc] = px f&Y

® (-D)ox =pr fe¥ (= pxfclfidepk + Pioxv +2D7])

® (~D)dx = pr faldc2fx (=D) + p16icy) + 2D°] (= px falB16icv + 2(=D) fadx] )
® (D) = px fa[B16x) + 2(—D) fc]

(Bipxtp + 2f i + 2f&pi ) (—D) = px fa it + 2(—D) fépx

(Biprt + 2% ) (—=D) = px fa B0k

Bipr(—frdc) + 2fxp(—D) =0

Q=0.

SR R R

C.11 Calculations for Lemma 3a

{261\1@ : (@ + (Bipx + 2f§)&%)} bt —w]
K

&) [(50(fK5K1/1 + fabapk) + Bofx o
B1dK

- B (\11+7ﬂ15?{ @)q:.(chriﬂlpK“L%’%\p)q?

2
) - 2@4 B + 52D’ <<1> + (Buprc + 2ff()l2> ®
616}(

Bipk + 2f% Pro%
@ 21k
+ {2ﬂ1ﬂo(fK6Kw + fadapi) + 2ﬁoﬁlff<5f<m} v (q’ " %W) !
2/ 02 2 2 ;2 ¢ Bipr +2f%
- |:ﬁO(fK¢ + ferx) + ﬁOme} v (q> * W\D)

= Cy-¢*+C1-q+ Co , where
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Ca

C1

Co

Wi () — W™ (q)

2 Brdic , Bipx +2fk
151020 — B, {W+B1pK+2f?<q>}\p {CI>+ s \1/]
G- [4\1@ Bk 2700 + &6%@}2] _ =B [(Bipx + 2RV — Bi0% O]
' Bk (Bipx + 2f%) Br0% (Bipx + 2f%)
—619Q"

<0,

(Bipx + 2f%)B16%
28, (ﬁb(fxaw + fadopc) + LK q/) _—

2
+ (251ﬂ0(fK5K1/J + fadapr) + 26061 fr oK ﬁ) v (‘I’ + %‘P)

_ Bipk +2f;2( ) _ frox® < B B16% )}
B16% v B16% v Bipk +2f% ®

261800 - {—(fKt;K?/J + fadapr) <<I’

G (bt + fobams) (up + 2031550 = (Bup +247)9)
rE + [0k ® - [(Bipx + 2f%)V — B105 D]
( ﬁlp;iﬁgi;fm - 616%@ — (Bupic +2/3) V)l fdopic (Grpxc +207) — Fedic2fép]
K K
—2B061 ¥ B1Y2B0 fapr Q°

and

(—-Q*) forkQ =

(Prpx + 2f12<)51 5%{

B (ﬁo(chsxl/J + fedepk) +

(Bipr +2f5%)B10%

2
2 2 2y U
Biox ) ¢ + ByD {¢+(61pK+2fK)@:| @

2/ 42 2 2 42 d Bipx + 2f% _ Bo

Bi(frdk + fadapi ) ®Pid% (Bipk + 2fx) + Bi(2fkdkt + 2fcdcpr) fxdx VP - (Bipx + 2fk)

+ D*®*B16% (Bipx +2f%) + (fxda — fadk)* (Bipx + 2f%) VP

— (f&¥ + fepr)V® - (Bipk + 2f5)P10% — (fxt + fapr)¥? - (Bipk +2f%)° — fR®*UBio%
Bi(frdxt + fadapr)’®Pi0% (Bipk +2f%) + Bpfidx¥® - (Bipk + 2f%)

+ D*®?B10% (Bipi + 2f%) + (fxd& + f&0%)(Bipk + 2f%)°W® — (fit + fépr)¥? - (Bipx + 2f%)
— 2fk 0Kk fada2fw VO - (Bipx +2fk) — fepxV® - (Bipx +2fk)Bi0k — [fx® UBi16%

Bi(fxdrt) + fadapr) @Bk (Bipk + 2f%) + B fidx¥® - (Bipx + 2fk)

+ D*0%316% (Bipx + 2f%) + frdePipk (Bipx +2f)V® + (fide + fE0%)2f % (Bipx + 2f7) VD
—2fKOr fadc2fxV® - (Bipk + 2fk) — (fikv + fépr)¥® - (Bipk +2f%)? — [x®*UPi0%
Bi(frdrt + fadapi)?®Bidi (Bipk + 2fk) — (fik + fép)¥? - (Bipk +2f%)? — fR®*Upi0%
+ D*®?B10% (Bipx + 2f%) + Pi(vdk + prde) f(Bipk + 2f5)V® + 2f% D (Bipx + 2fx%)V®
Bi(frdxt + fadapi)?®Bidk (Bipk + 2fk) — (fik + fépr)¥? - (Bipk +2f%)? — [x®*UB10%
+D*®*B16% (Bipx + 2f%) + VP (Bipk + 2f) fic[(Brpx + 2f7) + 2f&px]

Bi(frdxt + fadapi)?®Bidik (Bipk + 2fk)

+ (fxdc — fedr)’ P Bidk (Bivk +2fk) — fepxP®- (Bipx +2fk)Bipk — [x® UP10%
Bi(fxdxt + fadap)* @10k (Bipx + 2fk) + [e0k®*B10% PipK

—2fKdcfadx®’Piok ik — fepxV’ - (Bipk + 2f)Bipx — [rBiox® Biow

Bi(fxdxt) + fadapr)>®B10% (Bipx + 2f%)

+ [&65 @B Prpi [(Bipk + 2f7)0 + 2fepk] — 2fxdc fadk ®B10% ik [(Bipx + 2fk )Y + 2fépK]
— B0k ®P1RY (B + 2fi ) + 2fépx] — fépxV - (Bipx + 2fk)Bipk

BLo%® - [feoepi (Bipk + 2f%) — AfrOK fadapi f& + fedipr (Bipkt + 2f&pK)]

— fépx V- (Bipk + 2f#)Bipk

BI0%D fepkV — fapkV® - (Bipk + 2f5)Bipk = i[GBIV [B1o%® — U - (Bipk + 2fk)]
PrfE/Y - (-1)Q% <0 .

ﬂOfK‘II

- Co with

}qf.{qw

_ B - [¢* - (—1)Q* + q - 2B0 fapr Q* + (—1)33 férk Q]

2
(i +203)10%2000 - (@ + L )
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C.12 Calculations for Lemma 3b

T(q) — Tn(q) = (Bopx fa —qQ)*  B1o% ¥ - (Bopx fo — q@Q)*
40 - (Bipk +2f%)  [B16%® + (Bipr + 2f2) 0]
(Bopx fa — qQ)” - [[B16% P + (Bipx + 2f%)V]* — 4VDB:1 6% (Bipx + 2k )]
40 - (Bipk + 2f%) [B10%® + (Bipk + 2f%) 0]

(Bopx f& — aQ)’ - [B105® — (Bipx +2/7%)¥]°
40 - (Bipx + 2/%) [B16% P + (Bipx + 2f3) V]

(Bopx fa —4Q)* - Q"
40 - (Bipx + 2f%) [B10%® + (Bipk + 2f2)¥])°
FniarT < e & B0k ®—(Bipk+2fR)¥ <0 & —Q* <0,
a true statement. With respect to the demand for gas, note that G* > G5 (& VG > @) is equivalent to

foprcfe —aQ _ 206K (=D) [‘I’ + (Bipk + 2f§<)ﬁ] +2Q [Bo(fK5K¢ + fadapr) + %\P} —4Q¥q

With respect to the gas price, note that v* < 75 <

29 . 2)_¥
w (o G 2007
)\

< Popk fadV - {‘I) + (Bipx + 2f12()72:| — 2000k (0 fa — dc fK) {‘P + (Bipx + 2f12<)72} 20

6151( Bldx
=20 B + fodorr) + L] 28 > 9Qa - |2+ (Bipw + 210 5gr | - 1QUae,

B1éx B103,
The right-hand side of the latter inequality equals ¢-4QW-(—1) {d) — B”Z{i;;zf‘%\ll] =q-4QV- (—1)*—%2 =q- 4Q32‘I',
10k B10% B1%

2
and the left-hand side multiplied by 8 igg( equals

B10%pi fa¥® + pi fa ¥ - (Bipk + 2fk) — 0k Ok fo — 6a [k )P 165
— 0k Ok fo — 6afr)® - (Bipk +2f%)¥ — QP - (fxdxy + fadepx)Bidi — QP ik
= prfe¥® - (Bipk +2fk) — Ox (O fo — 6c fr)®* Brdi — QP - (frdx + fadapr)Bidi
= prfa- [V (Bipk +2fk) — 6% ®B10% Prv — 2fcdk Ok fa — 0 fx)PP10%
— B16&prPB10% — 2frdc(frdc — fadx)®Pio%k]
= prfa- [97- (Bipk +2f%) — (B1(0%¢ + 6&pK) + 2(5k fo — Sa fi)?) PB16%]
= prfa- [9? (Bipk +2fk) — UB10% |

52
— pKfG\I/'(BlpK‘FZfIQ() {W_Blpf(li_:;f%
= prfe¥Q’.

3

Thus, G* > G & ;l%pKfc\I/QQ >q- ‘;?52‘1’, which is, if Q # 0, equivalent to Sopk fa > q- Q, a true statement
K K

_ def

(note that ¢ < g = 7’601;{“” < Lfgpf( if Q@ > 0).

2 2
Finally, G* = <50PK2fg*qQ> > (ﬁongfc) =G4 ifQ<0,and G* < G if Q > 0.

C.13 Calculations for Lemma 3¢

61%[51 (Bo(frOrY + fadapk) — q\I/)2 + ﬂgDQq)]

= ﬂ%[ﬁlw - q¢* = 26180 (frdr + fadapr) - q + B (ficth + fapr)]
Bi(fxdxt) + fodapx)® + D*® = (fxp + fepr)V

Bi(fxdxib + fadapk)® + Bipx¥D® = (fx + fapx)(B10epK + B10%)
2fx Ok fadapr + pry D’ = fribdepr + feprdicd

D® = [%0% + [&0% — 2fxdcfadk (= D?).

WE(q) =W ) <

t e o0

C.14 Calculations for Lemma 4

If @ <0, then ¢(Q) < w is equivalent to Az - ¥? + Ay - + Ag > 0, where As := 2k (Bipx + 2f5)B16% > 0
and A1 := f10xpxk fa[frdapk + 2fx (frdc + fadx)] > 0.
If Q > 0, then ¢(Q) < W is equivalent to Bz -1)* + By -1+ Bo > 0, where Ba := 2fr 310% (B1pr +2f%) > 0.
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