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Abstract

We develop a panel intensity model, with a time varying latent factor, which

captures the influence of unobserved time effects and allows for correlation across

individuals. The model is designed to analyze individual trading behavior on the

basis of trading activity datasets, which are characterized by four dimensions:

an irregularly-spaced time scale, trading activity types, trading instruments and

investors. Our approach extends the stochastic conditional intensity model of

Bauwens & Hautsch (2006) to panel duration data.

We show how to estimate the model parameters by a simulated maximum

likelihood technique adopting the efficient importance sampling approach of

Richard & Zhang (2005).

We provide an application to a trading activity dataset from an internet

trading platform in the foreign exchange market and we find support for the

presence of behavioral biases and discuss implications for portfolio theory.

JEL classification: G10, F31, C32

Keywords: Trading Activity Datasets, Panel Intensity Models, Latent Factors,

Efficient Importance Sampling, Behavioral Finance



1 Introduction

High-frequency data in finance spurred research in financial econometrics in many di-

rections such as modelling of irregularly spaced and discrete data, market microstruc-

ture analysis as well as volatility measurement with intradaily data. Recently, even

more detailed, so called trading activity datasets, have become available, which con-

tain information on the whole trading history of individual investors in particular

markets. These datasets can be characterized through a panel structure with four di-

mensions: an irregularly-spaced time scale, trading activity types, trading instruments

and investors. The richness of information allows us to examine behavioral aspects of

trading and investment decisions, as well as to study in detail the trading strategies

of investors.

Trading behavior of investors is influenced by a broad set of decision variables. If we

were able to observe this complete information set, we could fully characterize the time

varying correlation structure across individuals based on this observable information.

Individual investment opportunity sets as well as unobservable macroeconomic factors

are just two examples of information which is not observed by the econometrician.

Such unobservable factors induce a certain correlation structure across individuals

which cannot be accounted for by considering only the observable variables. Time

varying latent factors can be used to approximate this unobservable information and

improve the characterization of the correlation structure in the model.

The aim of this paper is to develop an econometric model which can cope with those

characteristics in order to investigate the factors influencing the trading decisions of

investors in multiple assets over time and the dynamics of the trading process within

a panel intensity model framework which we extend by introducing a dynamic latent

factor. This framework allows for a rigorous exploration of financial decision making

theories such as rational expectations and behavioral finance theories.

The proposed model can be viewed on the one hand as an extension of the stochastic

conditional intensity (SCI) model of Bauwens & Hautsch (2006) to panel data and on

the other hand as an augmentation of the class of panel survival models by a latent

factor. The intensity based specification is chosen, since it allows us to account for the

impact of time-varying covariates on the trading process. The latent factor is assumed

to evolve on a pooled arrival process resulting from the aggregation of individual point

processes for each investor and trading instrument. We use a simulated maximum

likelihood (SML) technique to estimate the proposed model by adjusting the efficient

importance sampling method of Richard & Zhang (2005).
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The model is used to analyze the trading behavior of retail investors in the foreign

exchange market based on a trading activity dataset of OANDA FXTrade, which

allows us to trace every action of around 2500 investors in up to 30 currency pairs

over the period from 1st October 2003 to 31st October 2003.

The paper is structured as follows: in Section 2 we provide a theoretical description of

the model, in Section 3 the SML estimation procedure is presented in detail. Section

4 contains the empirical analysis, and Section 5 concludes.

2 Panel Intensity Model

Let t ∈ [0, T ] denote the physical calendar time, n = 1, . . . , N denote the nth investor

and k = 1, . . . , K denote the kth currency pair in which an investor can trade. The ith

action1 of the nth investor in the kth currency pair is denoted by i = 1, . . . , Ik,n and

the corresponding arrival time is denoted by tk,n
i . For all n and all k the sequences

{tk,n
i | 0 ≤ tk,n

i−1 ≤ tk,n
i ≤ T ; i = 1, . . . , Ik,n} represent point processes with corre-

sponding right-continuous counting processes Nk,n(t) = Nk,n([0, t]) =
∑Ik,n

i=1 1l {tk,n
i ≤t}

which count the number of actions in the time interval [0, t]. The corresponding left-

continuous counting process is denoted by N̆k,n(t) = Nk,n([0, t)) =
∑Ik,n

i=1 1l {tk,n
i <t}. Let

{Ω,F,Ft,P} denote the associated joint probability space, where the filtrations of the

individual processes are denoted by F
k,n
t ⊂ Ft. We assume that each individual point

process is orderly (simple), i.e.

P(Nk,n(t + δ) − Nk,n(t) > 1|Fk,n
t ) = o(δ), (1)

where o(·) denotes the little Landau symbol, which ensures that there are no simulta-

neous arrivals and it implies that tk,n
i−1 < tk,n

i (almost surely), for i = 1, . . . , Ik,n. The

inter-event duration between two consecutive actions is denoted by τ k,n
i = tk,n

i − tk,n
i−1.

By uk,n(t) = t − tk,n

N̆k,n(t)
we denote the corresponding backward recurrence time at t.

For each investor and for each currency pair the arrival times {tk,n
i | i = 1, . . . , Ik,n} con-

stitute a pooled process, induced by S sub-processes. The corresponding arrival times

of the sth sub-process is denoted by ts,k,n
i with i = 1, . . . , Is,k,n. Since the pooled pro-

cess is orderly the sub-processes are orderly as well. With N s,k,n(t) =
∑Is,k,n

i=1 1l {ts,k,n
i ≤t}

being the corresponding counting functions we get that Nk,n(t) =
∑S

s=1 N s,k,n(t). In

our application we observe S = 2 sub-processes which are:

1By action we understand any event that changes the investor’s portfolio value. Thus it can be

initiated by the investor at that particular time or be a consequence of an earlier activity of the

investor, e.g. an executed limit order.
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• s = 1: The process which is related to an increase in a given currency pair

exposure, i.e. the process which characterizes whether a position is (further)

opened;

• s = 2: The process which is related to a decrease in a given currency pair

exposure, i.e. the process which characterizes whether a position is (partly)

closed.

The likelihood function of the complete model without a latent factor is given by

L(W ; θ) =
N
∏

n=1

K
∏

k=1





Ik,n
∏

i=1

fk,n(τ k,n
i | F−

t
k,n
i

)





dk
n

, (2)

where fk,n(τ k,n
i | F−

t
k,n
i

) is the conditional density function of the durations. With F−

t
k,n
i

we denote the filtration, which consists of all information up to but excluding time

tk,n
i . W denotes the generic symbol for all relevant data and θ is the generic symbol

for all relevant parameters used in the estimation. By dk
n we denote the dummy which

takes on the value of one if the nth investor is active in currency pair k at least once,

and zero otherwise.

We can write the conditional probability of the duration τ k,n
i between two arbitrary

consecutive actions as the conditional probability that all processes have survived

during the period [tk,n
i−1, t

k,n
i ) times the instantaneous probability for arrival in the next

instant tk,n
i , which is formally given by

P
(

τ k,n
i

∣

∣

∣F
−

t
k,n
i

)

=
S

∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

)(

θs,k,n
(

tk,n
i

∣

∣

∣F
−

t
k,n
i

))d
s,k,n
i

, (3)

where ds,k,n
i is a dummy, which takes on the value of one whenever the correspond-

ing duration ends with an arrival of type s, and zero otherwise. F̄ s,k,n denotes the

“survivor” function of the s-type process given by

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

)

= P

(

ts,k,n

Ns,k,n(tk,n
i−1)+1

/∈ [tk,n
i−1, t

k,n
i ), ts,k,n

Ns,k,n(tk,n
i−1)+1

= tk,n
i

∣

∣

∣
F−

t
k,n
i

)

(4)

and

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

)

=

lim
h→0

P

(

tk,n
i ≤ ts,k,n

Ns,k,n(tk,n
i−1)+1

< tk,n
i + h

∣

∣

∣
ts,k,n

Ns,k,n(tk,n
i−1)+1

/∈ [tk,n
i−1, t

k,n
i ),F−

t
k,n
i

)

h
(5)

3



denotes the corresponding intensity of type s. It follows that

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

)

= exp









−
t
k,n
i

∫

t
k,n
i−1

θs,k,n(u | F−
u )du









= exp
(

−Θs,k,n(tk,n
i−1, t

k,n
i | F−

t
k,n
i

)
)

,

where Θs,k,n(tk,n
i−1, t

k,n
i | F−

t
s,k,n
i

) denotes the s-type integrated intensity between tk,n
i−1

and tk,n
i . Therefore, the likelihood function of the model without a latent factor in

equation (2) can be rewritten as

L(W ; θ) =
N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

) (

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

))d
s,k,n
i

. (6)

Since we believe that investors’ behavior is influenced by unobservable factors, like an

unobservable time effect, we introduce a latent factor denoted by λi. To model the

dynamic behavior of the latent factor, we need to introduce a time scale over which

the latent factor evolves. Therefore, we define the ordered pooled point process as the

sequence of arrival times ti, i = 1, . . . , I for all actions of all investors in all currency

pairs, where simultaneous arrivals at the same time are treated as one arrival only,

i.e. formally,

{ti|ti−1 < ti} =
⋃

n

{

⋃

k

{tk,n
i | tk,n

i−1 < tk,n
i } \

⋂

k

{tk,n
i | tk,n

i−1 < tk,n
i }

}

\

⋂

n

{

⋃

k

{tk,n
i | tk,n

i−1 < tk,n
i } \

⋂

k

{tk,n
i | tk,n

i−1 < tk,n
i }

}

.

The corresponding counting processes are denoted by N(t) =
∑I

i=1 1l {ti≤t} and N̆(t) =
∑I

i=1 1l {ti<t}. Thus, at t ∈ {ti} we have N(t) = N̆(t) + 1, whereas for t /∈ {ti} it holds

that N(t) = N̆(t). This pooled process serves as the time scale on which the latent

factor evolves. In particular, we assume that the duration τ k,n

Nk,n(t)
depends on the

latent factor, i.e. we assume that τ k,n

Nk,n(t)
= τ k,n

Nk,n(t)
(λN̆(t)+1) at t ∈ ⋃

n

⋃

k{t
k,n
i } is a

function of the latent factor. Note, that this definition ensures that at every time t

where an action occurs there is a corresponding value of the latent factor. Since the
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latent factor is unobservable and stochastic we need to integrate it out, which results

in the following likelihood function

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

fk,n(τ k,n
i , λ

N̆(tk,n
i )+1 | F−

t
k,n
i

)dΛ, (7)

where Λ = (λ1, . . . , λI)
′ and the integral is taken over R

I , and where fk,n(τ k,n
i , λ

N̆(tk,n
i )+1 |

F−

t
k,n
i

) is the joint conditional density of the duration τ k,n
i and its corresponding latent

factor λ
N̆(tk,n

i )+1. The likelihood can then be factorized as the product of the density

conditional on the latent factor times the conditional density of the latent factor as

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

(

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

))d
s,k,n
i

ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

)dΛ, (8)

where ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

) is the conditional density of the latent factor and the exact

specification of the intensities and the corresponding integrated intensities is presented

below.

The model described by the likelihood function in equation (8) is formulated in terms

of tk,n
i , which is the pooled (orderly) point process over the S subprocesses of the nth

investor in the kth currency pair. As the latent factor which has to be integrated out

is defined on ti, we also provide a reformulation of the model in equation (8) in terms

of the pooled times ti. Since the pooled process may not be orderly there may be

several pairs (k, n) associated with the arrival time ti. We denote the set of such pairs

by Ci = {(k, n)|ti = tk,n

Nk,n(ti)
}. The likelihood in (8) can then be rewritten as

L(W ; θ) =

∫

RI

I
∏

i=1

∏

Ci

S
∏

s=1

F̄ s,k,n
(

tk,n

Nk,n(ti)−1
, tk,n

Nk,n(ti)

∣

∣

∣
F−

ti
, λi

)

(

θs,k,n
(

tk,n

Nk,n(ti)

∣

∣

∣F
−
ti
, λi

))d
s,k,n

Nk,n(ti) ρ(λi|F−
ti
)dΛ. (9)

As suggested by the model presentation above there are several ways to model the

likelihood function. One can either specify the likelihood function (7) for the durations

of the pooled process tk,n
i directly or one can specify the likelihood function (8) based

on the intensities of the s sub-processes ts,k,n
i which generate the pooled process tk,n

i .

Although in different ways, both approaches ultimately allow to make inference about

the durations τ k,n
i of the pooled process.
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An attractive feature of the intensity based modelling is that it accounts for changes

in the values of time varying covariates during a duration spell in a very intuitive way

since it is set up in continuous time. The duration based approach, which is a discrete

time model can also account for time varying covariates (e.g. Lunde & Timmermann

(2005)), but then the likelihood function has to be additionally adjusted (effectively

this again amounts to adjusting the intensity to reflect the changes in the values of

the covariates). Furthermore, the intensity based approach allows to characterize the

dynamic behavior among the s sub-processes, which is a source of additional informa-

tion, whereas the duration approach considers the pooled process only. One possibility

to model the duration based likelihood (7) is to adopt the stochastic conditional du-

ration (SCD) approach of Bauwens & Veredas (2004), whereas likelihood (8) can be

modelled by augmenting the stochastic conditional intensity (SCI) model of Bauwens

& Hautsch (2006). We rely on the latter strategy and parameterize θs,k,n(t|F−
t , λN̆(t)+1)

generally in the following way:

θs,k,n(t|F−
t , λN̆(t)+1) =

(

bs,k,n(t)Ss,k,n(t)Ψs,k,n(t|F−
t )(λN̆(t)+1)

δs,k,n
)

Ds,k,n(t). (10)

Thereby bs,k,n(t) denotes a (possibly investor, currency pair or state dependent) base-

line intensity, Ss,k,n(t) a deterministic seasonality function, Ψs,k,n(t|F−
t ) the intensity

component capturing the dynamic information processing and δs,k,n is a parameter

which controls for the impact of the latent component on the corresponding intensi-

ties. In our application we need to take into account that after an action which sets

the exposure in a given currency pair to zero, i.e. closes the position completely, there

is no possibility for a subsequent close. Hence, the intensity θ2,k,n(t | F−
t , λN̆(t)+1) is

zero in this case. We model this through the variable

Ds,k,n(t) =

{

1, if s = 1

1 − dk,n
cc (t), if s = 2,

(11)

where dk,n
cc (t) denotes the dummy which takes on the value one, if the previous arrival

time is associated with a complete close of the position in the given currency pair k

for investor n, and zero otherwise. In the following we will parameterize the separate

intensity components in a parsimonious way:

Baseline Intensity

We assume that there are different baseline intensities for the different states, but that

they are identical across currency pairs and investors, i.e. we assume that

bs,k,n(t) = bs(t) for k = 1, . . . , K and n = 1, . . . , N.

6



In our application we use a multivariate Weibull specification of the following form:

bs(t) = exp(ωs)
S

∏

r=1

ur,k,n(t)αs
r−1 for s = 1, . . . , S.

Diurnal Seasonality and Weekend Effects

The seasonality function Ss,k,n(t) incorporates a diurnal seasonality component S̃s,k,n(t)

and a weekend component W̃ s,k,n(t) multiplicatively as

Ss,k,n(t) = S̃s,k,n(t)W̃ s,k,n(t).

In order to capture the deterministic intraday seasonality pattern of the intensity

processes we assume that

S̃s,k,n(t) = S̃(t) for k = 1, . . . , K and n = 1, . . . , N.

where

S̃(t) ≡ S̃(ν, τ,K) ≡ exp

(

ν0τ +
K

∑

k=1

ν2k−1 sin(2π(2k − 1)τ) + ν2k cos(2π(2k)τ)

)

which is an exponentially transformed Fourier flexible form, where τ denotes the

intraday trading time standardized to [0, 1] and ν is a 2K + 1 dimensional parameter

vector.

To model the lower trading activity on weekends in a parsimonious way we specify

W̃ (t) as

W̃ (t) = exp(̟DW (t)),

where ̟ denotes a scalar and DW (t) a weekend dummy, which is one during weekends

and zero otherwise. According to this specification the intensity process is dampened

for ̟ < 0, which is the effect that we expect, and amplified for ̟ > 0.

Dynamics and Explanatory Variables

The dynamic structure and the influence of the explanatory variables is modelled

through Ψs,k,n(t|F−
t ) in the same fashion as suggested by Russell (1999). Let zs,k,n

j

denote the vector of all (time-varying) possibly investor, currency pair and state

dependent covariates, where at least one covariate is updated at time t̃s,k,n
j with

j = 1, . . . Js,k,n. M̆ s,k,n(t) =
∑Js,k,n

j=1 1l {t̃s,k,n
j <t} is the corresponding left continuous

7



counting function of the update times t̃s,k,n
j . Furthermore, let {ťs,k,n

h } denote the pro-

cess resulting from the pooling of the process {ti} and the covariate process {t̃s,k,n
j },

with Hs,k,n(t) =
∑Hs,k,n

h=1 1l {ťs,k,n

h
≤t} denoting the corresponding right continuous count-

ing function. We assume that

Ψs,k,n(t|F−
t ) = exp

(

Ψ̃s,k,n

N̆k,n(t)+1
+

(

zs,k,n

M̆s,k,n(t)

)′

γs,k,n

)

.

Note, that Ψ̃s,k,n
· is indexed by N̆k,n(t)+1, which ensures that Ψ̃s,k,n

· is updated with the

value of Ψ̃s,k,n
i directly after but excluding tk,n

i−1 and stays constant until and including

tk,n
i . The coefficient vector is denoted by γs,k,n. The vector Ψ̃k,n

i = (Ψ̃1,k,n
i , . . . , Ψ̃S,k,n

i )′

is parametrized multivariately as

Ψ̃k,n
i =

S
∑

s=1

(

As,k,nεk,n
i−1 + Bk,nΨ̃k,n

i−1

)

ds,k,n
i−1 ,

where As,k,n is an S×1 parameter vector and Bk,n is an S×S parameter matrix. The

innovation term εk,n
i is given by

εk,n
i =

S
∑

s=1

ds,k,n
i εs,k,n

i ,

where

εs,k,n
i = 1 − Θs,k,n

(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

(12)

or

εs,k,n
i = −0.5772 − ln Θs,k,n

(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

, (13)

where the integrated intensity is computed as

Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i , | F−

t
s,k,n
i

λ
N̆(ts,k,n

i )+1

)

=

Hs,k,n(ts,k,n
i )−1

∑

h=Hs,k,n(ts,k,n
i−1 )

ť
s,k,n

h+1
∫

ť
s,k,n

h

θs,k,n
(

u
∣

∣

∣F
−
u , λN̆(u)+1

)

du. (14)

Note, that the intensity is integrated between ts,k,n
i−1 and ts,k,n

i piecewise, where the

pieces are determined either by an arrival time ti, which includes the arrival times

tk,n
i , or by an arrival time t̃s,k,n

j . The innovation term in equation (12) is defined in

8



that way, since Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

∼ i.i.d. Exp(1) and hence its

mean value is 1. Equation (13) uses that ln Θs,k,n
(

ts,k,n
i−1 , ts,k,n

i | F−

t
s,k,n
i

, λ
N̆(ts,k,n

i )+1

)

fol-

lows an i.i.d. standard extreme value type I distribution with mean −0.5772.

The survivor function F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

in equation (8) is given by

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

= exp
(

−Θs,k,n
(

tk,n
i−1, t

k,n
i | F−

t
k,n
i

, λ
N̆(tk,n

i )+1

))

,

where the integrated intensity is obtained piecewise according to equation (14).

Latent Factor

We assume that the dynamics of the latent factor are defined on the time scale ti.

This means the latent factor changes whenever there is an action of some investor

in some currency pair. Since each intensity θs,k,n and each integrated intensity Θs,k,n

depend at every time t on the current value of the latent factor we induce at every

time t a contemporaneous correlation between all intensities θs,k,n through the latent

factor. The magnitude of this possibly investor, currency pair or state dependent

correlation is determined by the parameters δs,k,n. The latent factor therefore can be

interpreted as an unobservable time effect which affects the decisions (open, close)

of all investors at every time t by influencing the intensities of the corresponding

processes. We can justify the existence of such an unobservable time effect in our

model in several ways: i) (News) effects of news announcements, not modelled due

to data limitations, ii) (Order Flow) buy or sell pressure from the interbank market,

which we do not observe directly since we consider an internet trading platform or

iii) (Herding) similar behavior of traders, due to similar interpretations of any kind of

technical chart patterns.

In our model we assume that the latent factor follows, conditional on F−
ti
, a lognormal

distribution, i.e.

ln λi|F−
ti

i.i.d.∼ N(µi, 1)

where the dynamics is modelled through an AR(1) process

ln λi = a ln λi−1 + ǫi for i = 1, . . . , I,

with ǫi
i.i.d.∼ N(0, 1). Let li denote the log of latent factor at ti, i.e

li ≡ ln λi,

9



and let Li denote the history of the log latent factor up to and including ti, i.e.

Li = {lj}i
j=1.

With this specification, the (log) latent factor depends only on its own past, so we

denote its conditional distribution by p(li|Li−1). From equation (10) it follows that

the influence of the log latent factor on the s type intensity is given by δs,k,n ln λi,

which we can denote by λs,k,n
i . Then we have that

λs,k,n
i = aλs,k,n

i−1 + δs,k,nǫi for i = 1, . . . , I.

Therefore the variance of ǫi is set to unity, so that the conditional variance of λs,k,n
i is

equal to (δs,k,n)2, which eases the interpretation of the parameter.2

In order to summarize and visualize the model specification, data characteristics, and

the different time scales we depict the stylized panel structure in Figure 1.

2Note that this does not preclude that δs,k,n could be negative.
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ť
2,k,n
10

ť
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Figure 1: Stylized Model Structure. The figure represents for s=2 the time scales associated with the arrival
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the pooled arrival processes ť
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3 Estimation of the Panel Intensity Model

We now consider the explicit form and the estimation of the parameters in the like-

lihood function. Let W denote the set of data matrices W k,n for each currency pair

k = 1, . . . , K and investor n = 1, . . . , N where the ith row of W k,n, wk,n
i , consists of

the following data:

wk,n
i = (tk,n

i , d1,k,n
i , . . . , dS,k,n

i ), with i = 1, . . . , Ik,n.

With W k,n
i we denote the history of wk,n

i up to and including tk,n
i , i.e.

W k,n
i = {wk,n

j }i
j=1.

Furthermore, let Z̆k,n
i for k = 1, . . . , K and n = 1, . . . , N denote the set which consists

of the following time-varying covariate data:

Z̆k,n
i =

{

{z1,k,n
j |j = 1, . . . , M̆1,k,n(tk,n

i )}, . . . , {zS,k,n
j |j = 1, . . . , M̆S,k,n(tk,n

i )}
}

.

Recall that the likelihood function of our model is given by

L(W ; θ) =

∫

RI

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, λ
N̆(tk,n

i )+1

)

(

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

, λ
N̆(tk,n

i )+1

))d
s,k,n
i

ρ(λ
N̆(tk,n

i )+1|F−

t
k,n
i

)dΛ

=

∫

R+I

N
∏

n=1

K
∏

k=1

Ik,n
∏

i=1

S
∏

s=1

F̄ s,k,n
(

tk,n
i−1, t

k,n
i

∣

∣

∣F
−

t
k,n
i

, exp(l
N(tk,n

i ))
)

(

θs,k,n
(

tk,n
i

∣

∣

∣
F−

t
k,n
i

, exp(l
N(tk,n

i ))
))d

s,k,n
i

p(l
N(tk,n

i )|LN(tk,n
i )−1)dL

=

∫

R+I

I
∏

i=1

∏

Ci

S
∏

s=1

F̄ s,k,n
(

tk,n

Nk,n(ti)−1
, tk,n

Nk,n(ti)

∣

∣

∣
F−

ti
, li

)

(

θs,k,n
(

tk,n

Nk,n(ti)

∣

∣

∣F
−
ti
, li

))d
s,k,n

Nk,n(ti)
1√
2π

exp

(

−(li − µi)
2

2

)

dL.

where L = ln Λ and the second equality follows from a change of the variable λ to l.

Using the datasets defined above the likelihood function can be rewritten as

L(W ; θ) =

∫

R+I

I
∏

i=1

∏

Ci

gk,n
(

wk,n

Nk,n(ti)
|W k,n

Nk,n(ti)−1
, Li, Z̆

k,n

Nk,n(ti)

)

p(li|Li−1)dL

=

∫

R+I

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, li|W k,n

Nk,n(ti)−1
, Li−1, Z̆

k,n

Nk,n(ti)

)

dL, (15)
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where gk,n denotes the product of the survivor and the intensity functions, p the density

of the conditional normal distribution and ϕk,n denotes the resulting corresponding

joint conditional density. Since this likelihood involves the computation of an I-

dimensional integral, we employ the Efficient Importance Sampling (EIS) technique of

Liesenfeld & Richard (2003), which has been used for estimating stochastic conditional

intensity models by Bauwens & Hautsch (2006). The EIS technique is based on

simulation of the likelihood function (15) which can be rewritten as

L(W ; θ) =

∫

R+I

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, li|W k,n

Nk,n(ti)−1
, Li−1, Z̆

k,n

Nk,n(ti)

)

m(li|Li−1, φi)

I
∏

i=1

∏

Ci

m(li|Li−1, φi)dL,

where m(li|Li−1, φi) is a sequence of auxiliary importance samplers which are used

to draw a trajectory of the latent factor, given some additional parameters φi of the

sampler. The estimation then proceeds by generating R trajectories of the latent

factor and averaging over the draws

LR(W ; θ) =
1

R

R
∑

r=1

∏I

i=1

∏

Ci
ϕk,n

(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

∏I

i=1

∏

Ci
m(l

(r)
i |L(r)

i−1, φi)
, (16)

where the bracketed superscript r indicates the values of the corresponding variable

or set for the r-th repetition. The idea of the EIS approach is to find the values

of the parameters φi for i = 1, . . . , I such that the sampling variance of LR(W ; θ)

is minimized. For ease of illustration denote the numerator in equation (16) by

ϕ(W,L(r)|θ) = g(W |L(r), θ)p(L(r)), where the generic parameter vector θ appears now,

and the denominator by m(L(r)|φ). A more elaborate presentation can be found in

Richard & Zhang (2005). The sampling variance of LR(W ; θ) is given by

V (LR(W ; θ)) =
L(W ; θ)

R

1

L(W ; θ)
V

(

ϕ(W,L(r)|θ)
m(L(r)|φ)

)

=
L(W ; θ)

R

1

L(W ; θ)

∫

R+I

(

ϕ(W,L|θ)
m(L|φ)

− L(W ; θ)

)2

m(L|φ)dL (17)

If we are able to choose φ such that m(L|φ) = ϕ(W,L|θ)
L(W ;θ)

the sampling variance would

be zero. Since this case is very unrealistic the aim is to find φ such that m(L|φ) is

very close to ϕ(W,L|θ) under the restriction that m(L|φ) is analytically integrable.

13



Furthermore m(L|φ) can be decomposed into

m(L|φ) =
k(L, φ)

χ(φ)
(18)

where k(L, φ) and χ(φ) =
∫

R+I k(L, φ)dL can either be interpreted as joint and

marginal density or as kernel and integration constant. Defining d(L; ϕ, θ) as

d(L; φ, θ) = ln

(

ϕ(W,L|θ)
L(W ; θ)m(L|φ)

)

(19)

= ln(ϕ(W,L|θ)) − ln(L(W ; θ)) − ln(m(L, φ)) (20)

= ln(ϕ(W,L|θ)) − ln(L(W ; θ)) + ln(χ(φ)) − ln(k(L, φ)) (21)

and defining h(x) as

h(x) = exp(
√

x) + exp(−
√

x) − 2 (22)

allows to rewrite equation (17) as

V (LR(W ; θ)) =
L(W ; θ)

R

∫

R+I

h
(

d(L; φ, θ)2
)

ϕ(W,L|θ)dL. (23)

This equation defines a nonlinear Generalized Least Squares problem in φ, since h is

monotone and convex on R
+. The power series representation of h is given by

h(x) =
∞

∑

i=1

xi

(2i)!
. (24)

Using the series expansion of order one for h, which is h(x) = x equation (23) simplifies

to

V (LR(W ; θ)) =
L(W ; θ)

R

∫

R+I

d(L; φ, θ)2ϕ(W,L|θ)dL, (25)

and the minimization problem becomes

φ̂(θ) = argmin
φ

∫

R+I

d(L; φ, θ)2ϕ(W,L|θ)dL

= argmin
φ

∫

R+I

d(L; φ, θ)2g(W |L, θ)p(L)dL (26)

The integral in equation (26) is computed by its Monte Carlo proxy given by

1

R

R
∑

r=1

d(L(r); φ, θ)2g(W |L(r), θ)

14



where L(r) denote trajectories of length I sampled from the initial sampler p and φ̂(θ)

is determined based on this approximation. Since the L(r) generate a high variance of

g Richard & Zhang (2005) propose to drop the weight function g from the equation

and compute φ̂(θ) on the basis of the unweighted problem. Therefore the minimization

problem is given by

φ̂(θ) = argmin
φ

R
∑

r=1

d(L(r); φ, θ)2. (27)

Writing d(L(r); φ, θ) explicitly yields

d(L(r); φ, θ)

= ln





∏I

i=1

∏

Ci
ϕk,n

(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

∏I

i=1

∏

Ci
m(l

(r)
i |L(r)

i−1, φi)



 − ln (L(W ; θ))

(28)

Substituting

m(l
(r)
i |L(r)

i−1, φi) =
k(L

(r)
i , φi)

χ(φi, L
(r)
i−1)

(29)

yields

d(L(r); φ, θ) = ln

(

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi, L
(r)
i−1

)

)

− ln

(

I
∏

i=1

∏

Ci

k(L
(r)
i , φi)

)

− ln (L(W ; θ))

= ln

(

I
∏

i=1

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− ln

(

I
∏

i=1

∏

Ci

k(L
(r)
i , φi)

)

− ln (L(W ; θ)) + ln
(

χ
(

φ1, L
(r)
0

))

where χ
(

φI+1, L
(r)
I

)

≡ 1. The thereto related minimization problem (27) can now be

solved sequentially using a backward recursion from I → 1 which yields φ = {φi|i =

I, . . . , 1}. The sequential problem consists then at each i = 1, . . . , I of approximating

ln

(

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)
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by

ln
(

k
(

L
(r)
i , φi

))

.

Thus φ̂i(θ) is obtained through

φ̂i(θ) = argmin
φi

R
∑

r=1

(

ln

(

∏

Ci

ϕk,n
(

wk,n

Nk,n(ti)
, l

(r)
i |W k,n

Nk,n(ti)−1
, L

(r)
i−1, Z̆

k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− φ0,i − ln
(

k
(

L
(r)
i , φi

))

)2

(30)

The additional coefficients φ0,i are scalars which capture corresponding components

of ln (L(W ; θ)), which are still unobservable. As Liesenfeld & Richard (2003) note,

a sensible choice for the class of kernels for the auxiliary samplers m is a parametric

extension to the direct samplers p given by

k (Li, φi) = p(li|Li−1)ζ (li, φi) ,

where ζ is itself a Gaussian density kernel given by

ζ (li, φi) = exp
(

φ1,ili + φ2,il
2
i

)

.

Since a product of normal kernels is a normal kernel as well, we obtain for k (Li, φi)

k(Li, φi) ∝ exp

(

(φ1,i + µi)li +

(

φ2,i −
1

2

)

l2i −
1

2
µ2

i

)

= exp

(

− 1

2π2
i

(li − κi)
2

)

exp

(

κ2
i

2π2
i

− 1

2
µ2

i

)

,

where

π2
i = (1 − 2φ2,i)

−1, and (31)

κi = (φ1,i + µi)π
2
i . (32)

It follows that

χ(φi, Li−1, ) = exp

(

κ2
i

2π2
i

− µ2
i

2

)

. (33)

Under this choice of kernels class, p(li|Li−1) cancels out in the minimization problem

(30), which can then be rewritten as

φ̂i(θ) = argmin
φi

R
∑

r=1

(

ln

(

∏

Ci

gk,n
(

wk,n

Nk,n(ti)
|W k,n

Nk,n(ti)−1
, L

(r)
i , Z̆k,n

Nk,n(ti)

)

χ
(

φi+1, L
(r)
i

)

)

− φ0,i − ln
(

ζ
(

l
(r)
i , φi

))

)2

. (34)
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The implementation of the sequential ML-EIS approach can be summarized in the

following steps:

Step 1. Draw R trajectories {l(r)i }I
i=1 from {N(µi, 1)}I

i=1.

Step 2. For each i with i : I → 1 solve the R-dimensional OLS problem in (34).

Step 3. Calculate the sequences {π2
i }I

i=1 and {κi}I
i=1 from equations (31) and (32)

and draw R trajectories of {l(r)i }I
i=1 from {N(κi, π

2
i )}I

i=1 to compute the likelihood

function given in (16).

4 Empirical Analysis

4.1 Data Description

We analyze an activity dataset of 2120 investors trading on the Internet trading plat-

form OANDA FXTrade for the period from 00:00:00 on the 1st October 2003 until

23:59:59 on the 31st October 2003, which is a total of 31 days3. The investors can

trade in up to 30 currency pairs, including the most active ones such as EUR/USD,

GBP/USD, USD/CHF, EUR/JPY, USD/JPY, etc. Trades can be initiated by market

orders, limit orders, stop-loss or take-profit orders. Additionally, a trader can cancel

an order, modify an existing limit order or change the stop-loss or take-profit limits.

In our analysis we will only consider those actions, which either lead to opening a

new position, changing an existing position, or closing a position. Those are market

orders, executed limit orders, or executed stop-loss and take-profit orders.

Since the traders on OANDA FXTrade are rather heterogeneous with respect to their

trading activity and volume, we classify them into “big”, “moderate” and “small” with

respect to their total trading volume in USD over the whole period, corresponding

to the largest 3%-, middle 3%- and smallest 3%-quantile of the distribution of total

trading volume. Additionally, we require that each trader should have at least 30

transactions during the month, resulting in 36 investors for each category. From each

group we choose 5 investors randomly for which we estimate the model. Table 1

contains descriptive statistics for the traders in each group.

3A detailed description of the dataset is contained in Lechner & Nolte (2005) and Nolte (2006).
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Big Moderate Small

Realized Profit (USD) 38.9T -69.3 0.93

Median Transaction Volume (USD) 325.3T 2800.1 4.1

Maximum Transaction Volume (USD) 1.3M 7768.3 46.4

Total Transaction Volume (USD) 114.5M 405.6T 962.6

Number of Transactions 299.4 240.6 169.8

Number of open 156.0 134.4 103.8

Number of close 143.4 106.2 66.0

Number of full close (thereof) 87.4 63.4 45.4

Table 1: Descriptive statistics for small, moderate and big investors. All figures

are averages over the 5 investors within each group. All currency values have been

converted to USD. M , Million and T , Thousand.

Although we observe large differences with respect to trading volume (total as well

as per trade), the trading activity does not differ so much. The average number of

transactions corresponds to 9.6, 7.7 and 5.5 trades per day on average for the big,

moderate and small investors, respectively.

In addition to the activity data set from OANDA FXTrade we include in our analysis

the bid-ask spreads for each of the 30 currency pairs from the interbank market, which

are provided by Olsen Financial Technologies. As a further descriptive tool to analyze

the deterministic intradaily trading patterns we estimate a Nadaraya-Watson kernel

regression separately for opening and closing trades. To check if there are differences

across traders located in different areas we separate the traders into three groups

– America, Europe, and Asia as follows: traders with accounting currency USD or

CAD (America), traders with accounting currency EUR, CHF or GBP (Europe), and

traders with accounting currency JPY or AUD (Asia).
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Figure 2: Seasonality patterns of trader activity. Traders are assigned to each group according to

their accounting currency: USD and CAD – America, EUR, CHF and GBP – Europe, and JPY

and AUD – Asia. The x-axis denotes time of day in Eastern Standard Time. Each function is

estimated by Nadaraya-Watson kernel regression with 1440 nodes (24 hours × 60 minutes).

It is evident from the figure that the diurnal seasonality pattern is similar across

traders and transaction type (open or close). One general pattern emerges among

all traders: a pronounced peak in activity from 8:30 to 10:00 EST and a minor peak

at around 3:00 – 4:00 EST, which corresponds to 8:00 – 9:00 GMT. The peak at

23:00 EST for the traders with JPY or AUD as an accounting currency coincides with

the after-lunch time in Tokyo (13:00). This pronounced similarity in the seasonality

among all traders led us to use a common seasonality component in the intensity

specification.

4.2 Estimation Results

This section presents the estimation results of our intensity-based model and reports

some model diagnostics. First, we report some properties of the “raw” interevent
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duration data, which we will compare to the properties of the residuals from the

model. In an intensity-based framework, the integrated intensities (see equation (14))

can be considered as generalized residuals which under the correct model specification

should be i.i.d exponentially distributed with mean 1.

In Table 2 we report on the parameter estimates and their standard errors for the

three groups of investors. The number of observations for each model is the number

of pooled events over all currency pairs and investors, i.e., the dimension I of the

latent factor vector. For each investor category (small to big) we have 813, 1181, and

1473 observations, respectively.

We have grouped the estimates into several categories: baseline intensity, latent factor,

seasonality, dynamics and covariates. The covariates correspond to observable vari-

ables in the traders’ information set, which can vary during the interevent durations.

In our specification we include a news dummy, the bid-ask spread on the interbank

market, the current paper profit/loss in the currency pair, and the paper profit/loss in

the portfolio of open positions into both the opening and closing intensity processes.

The news indicator is based on data from Reuters and Money Market Services which

collect survey data on expectations for the development of leading macroeconomic

indicators. The news dummy is constructed as an indicator of surprise, which takes

on the value of 1 when the median survey value was lower than the actual announced

value, and -1 when the median survey value was higher than the announced value.

The bid-ask spread can be regarded as a proxy for market liquidity or uncertainty,

so that a larger spread should invoke less activity in both opening and closing posi-

tions. The variables which measure the paper profit/loss in the given position and

the total portfolio can be used to investigate the disposition effect, as well as to study

whether investment decisions are made based on portfolio considerations or only on

the profit/loss in the single currency position. The disposition effect (Shefrin & Stat-

man (1985)) describes the tendency to hold positions with a paper loss longer than

positions with the symmetric paper profit. The disposition effect is considered as a

behavioral bias and Shapira & Venezia (2001), Dhar & Zhu (2002), and Chen, Kim,

Nofsinger & Rui (2004) among others, show that professional and more sophisticated

investors are less prone to the disposition effect and to behavioral biases in general.

Although most of the empirical evidence is based on single position considerations,

we also investigate it with respect to the paper profit/loss of the total portfolio and

we expect the disposition effect to play a smaller role for big investors in comparison

to small investors.
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Small Investors Moderate Investors Big Investors

Parameter Estimate Std. Estimate Std. Estimate Std.

Baseline Intensity

ωo -3.9185∗∗∗ 0.3481 -2.5985∗∗∗ 0.2736 -2.1907∗∗∗ 0.1261

αo
o 0.5146∗∗∗ 0.0200 0.8436∗∗∗ 0.0266 0.8595∗∗∗ 0.0256

αo
c 0.9862∗∗∗ 0.0324 0.5417∗∗∗ 0.0234 0.4848∗∗∗ 0.0208

ωc -3.1793∗∗∗ 0.4430 -3.1023∗∗∗ 0.3647 -2.4077∗∗∗ 0.1345

αc
o 0.7653∗∗∗ 0.0390 0.9438∗∗∗ 0.0326 0.6862∗∗∗ 0.0238

αc
c 0.7683∗∗∗ 0.0455 0.6635∗∗∗ 0.0340 0.8132∗∗∗ 0.0268

Latent Factor

a -0.0660 0.3540 -0.9711∗∗∗ 0.0110 -0.9277∗∗∗ 0.0052

δo -0.3282∗∗∗ 0.0467 0.3940∗∗∗ 0.0247 0.4602∗∗∗ 0.0244

δc 0.4802∗∗∗ 0.1278 0.0596 0.1853 -0.0938 0.0645

Dynamics

Ao
o 0.1216∗∗∗ 0.0361 0.1042∗∗ 0.0424 0.0292 0.0231

Ao
c -0.0620∗ 0.0354 -0.0034 0.0319 -0.0375∗∗∗ 0.0098

Ac
o 0.0507 0.0403 0.0556 0.0381 0.0837∗ 0.0486

Ac
c 0.1601∗∗∗ 0.0492 0.1119∗∗∗ 0.0203 -0.1151∗∗∗ 0.0309

Bo,o 0.9781∗∗∗ 0.0162 0.8050∗∗∗ 0.0451 -0.2921 0.4183

Bc,c 0.9946∗∗∗ 0.0208 0.9986∗∗∗ 0.0051 -0.9034∗∗∗ 0.0291

Seasonality

ν0 -0.3538 0.2848 0.1945 0.4363 -0.3552∗∗∗ 0.1282

ν1 -0.2373∗∗∗ 0.0584 -0.2223∗∗∗ 0.0711 -0.1799∗∗∗ 0.0424

ν2 -0.1006∗ 0.0575 0.2700∗∗∗ 0.0673 0.0509 0.0383

ν3 0.2415∗∗ 0.1130 0.5578∗∗∗ 0.1665 0.0156 0.0262

ν4 -0.1443∗∗ 0.0686 -0.1293 0.0885 -0.1170∗∗∗ 0.0406

̟ -1.8941∗∗∗ 0.2694 -2.9254∗∗∗ 0.4821 -2.0883∗∗∗ 0.2916

Covariates

γo
news 2.2484∗∗∗ 0.6160 -1.2592 2.7157 -0.3757 1.3417

γo
spread -2.9344 1.9705 -8.4875∗∗∗ 3.1980 -6.8857∗∗∗ 1.9379

γo
P/L 1 -0.0279 0.0252 -0.0849∗∗∗ 0.0288 -0.0584∗∗∗ 0.0109

γo
P/L pf 0.1069 0.0701 0.0094 0.1341 -0.0216 0.0390

γc
news 2.5533∗∗∗ 0.8074 0.5776 0.6199 -0.6108 0.6746

γc
spread -7.7845∗ 4.4347 -9.4089∗∗ 3.8779 -8.5294∗∗∗ 2.1863

γc
P/L 1 0.0894∗∗∗ 0.0167 0.0799∗∗∗ 0.0083 -0.0405∗∗∗ 0.0072

γc
P/L pf 0.0968 0.1089 -0.1098∗∗∗ 0.0233 0.1192∗∗ 0.0585

Table 2: Estimation results. The γ·
· coefficients on the covariates should be interpreted as follows:

superscript “o” for opening intensity, superscript “c” for closing intensity. The subscripts stand for

the corresponding variable, where “news” is the news dummy, “spread” is the bid-ask spread in the

interbank market, “P/L 1” is the paper profit/loss in the corresponding currency pair, and “P/L

pf” is the paper profit/loss in the total portfolio. All other coefficients are detailed in the main

text. Quasi-maximum likelihood standard errors reported.
∗∗∗,∗∗, and ∗ denote significance at the 1%, 5% and 10% level, respectively.
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The coefficients for the baseline intensity for all three groups result in a monotonically

decreasing intensity, which implies that, ceteris paribus, the longer the periods of no

activity, the lower is the instantaneous probability for an open or close trade.

The autoregressive parameter of the latent factor “a” is significant only for the big and

moderate investors. A possible explanation for this fact, is that the set of observable

variables and the dynamics specification is sufficient to capture the heterogeneity and

the true trading dynamics among the small investors, whereas for big and moderate

investors the observable variables alone are inadequate to explain the more complex

correlation structure, so that we additionally require at least an AR(1) process in the

latent factor.This explanation is further supported by the model evaluation analysis

presented below. The autoregressive parameter is negative which corresponds to an

alternating open-close trading pattern.

For the big and moderate investors we observe that the latent factor influences the

opening intensity through the coefficient δo, while the coefficient δc is insignificant.

This can be interpreted in connection with the significance of the covariates coeffi-

cients, since we observe that for the closing intensity process most of the observable

covariates play a significant role, whereas for the opening intensity process only a

few of them have a significant influence. Thus, we can conclude that the observable

covariates capture the dynamics of the closing intensity process sufficiently, whereas

they are inadequate to characterize the dynamics of the opening intensity completely,

which necessitates the existence of the latent factor.

The autoregressive parameters in the matrices A and B vary considerably across

investor groups which also underly the different trading dynamics. The model diag-

nostics which we report later reveals that the dynamics have been captured reasonably

well within each group.

The shape of the seasonality pattern corresponds closely to the one resulting from

the Nadaraya-Watson kernel regression and we refrain from plotting it again. The

weekend dummy is significantly negative for all three groups which is in line with the

lower trading activity during the weekends.

The news indicator is only significant for small investors, which might be caused by

the fact that these investors are less sophisticated than moderate and big ones, so that

they rely instead of on own private experience, possibly generated through their own

trading strategies and their current portfolio state, on common public information

when opening or closing positions.
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This explanation can be underpinned by the observation, that contrary to small in-

vestors the moderate and big investors, have a pronounced aversion to trade when

the spread is large, which is again a sign for more sophisticated and careful trading

strategies.

Additionally, when moderate and big investors have an open position generating prof-

its, the probability of increasing the exposure (further open) declines, since γo
P/L 1 is

significantly negative. The explanation for this effect can be that the investors follow

contrarian strategies, rather than momentum strategies and hence do not buy/sell

when the price rises/falls.

The decision to close a position is influenced much stronger by the observed infor-

mation set. For all investors most explanatory variables (except the news) are highly

significant. The effect of a large spread is much stronger here compared to the same

effect on the opening intensity. Although one could attribute the trading cost in terms

of half the spread to both the opening and the closing trade, it is evident that the

traders are much more sensitive when this cost is actually paid by a closing trade.

The parameter γc
P/L 1 can be interpreted in light of the disposition effect. A positive

sign corresponds to an increasing closing intensity as the profit of the single currency

position grows, and decreasing closing intensity as the loss grows, which exactly de-

scribes the disposition effect. We observe positive signs and similar magnitudes for

this coefficient for the small and moderate investors, while for the big investors we

have an inverse disposition effect of a much smaller magnitude based on the single

position profit/loss. Thus, as expected, one could conclude that larger (and possibly

more sophisticated) investors are less prone to behavioral biases.

Additionally, we have the impact of the total portfolio profit/loss on the opening

and closing intensities, captured in the parameter γc
P/L pf, which is highly significant

for moderate and big investors, but insignificant for small ones. This observation

can again be attributed to the level of sophistication between the three groups of

investors. Whereas big and moderate investors rely on complex trading decisions,

meaning considering both the single position and the portfolio profit/loss, the small

investors base their closing decision only on the single position profit/loss, which is

again a sign for being less sophisticated or narrow framed.

The sign of γc
P/L pf, however, is negative for moderate investors but positive for big ones,

which in combination with γc
P/L 1 for the single position profit/loss paves the way for

an interesting interpretation. γc
P/L pf implies an inverse disposition effect for moderate

investors but a disposition effect for big investors based on the portfolio profit/loss.
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Confessing and assuming that moderate and even big investors are subject to an overall

disposition effect, which may be smaller in magnitude for big ones, we can conclude

that big investors, although taking the single position profit/loss into account, decide

on closing their positions primarily based on portfolio considerations and are being

affected here by the disposition effect. On the contrary, moderate investors take the

portfolio profit/loss into account, but focus primarily on the single position profit/loss

when closing positions, since they are affected there by the disposition effect. To

conclude the argument, small investors ignore the portfolio profit/loss completely and

consider only the single position profit/loss and are of course prone to the disposition

effect as well.

In general, it is important to note that the portfolio profit/loss matters when a de-

cision about closing a single position is made. This finding has implications for the

investigations of behavioral aspects of trading. In particular, focusing only on the

impact of single positions on the trading decisions could be insufficient. Conversely,

in classical portfolio theory (Markowitz (1952), Sharpe (1964), Lintner (1965), and

Elton, Gruber & Brown (2006)), trading decisions are only based on the portfolio of

assets. In a simple mean-variance framework, portfolio weights are adjusted to meet

some mean-variance trade-off for the whole portfolio. While in our analysis, the port-

folio of currency positions plays a role, our findings show that investors tend to view

their single positions in isolation as well when deciding to close a position.

We evaluate the model statistically by means of goodness-of-fit diagnostics, which

are given in Table 3. Although we specified the model ad hoc, without an initial

model selection analysis, the proposed specification fits the underlying data generating

process quite well. The mean and the standard deviation of the generalized residuals

are close to 1 for all three specifications and the QQ-plots in Figure 3 show that

they are nearly exponentially distributed, except for extreme values. To test the i.i.d.

assumption we apply the Ljung-Box test and the Brock, Dechert & Scheinkman (1987)

(BDS) test. We observe, that the Ljung-Box statistics of the generalized residual

series decreased considerably in comparison to those of the raw data series. The same

observation also holds for the BDS test, which is not only a test for uncorrelatedness

but rather a test for i.i.d.ness.

24



Small Investors Moderate Investors Big Investors

Raw Series Resid. Raw Series Resid. Raw Series Resid.

Mean 2448.5 0.9740 979.07 1.0510 944.63 1.0567

Std 3877.0 0.9417 3286.7 1.2103 3386.2 1.0610

LB(20) 277.61 25.938 358.51 32.842 356.74 50.597

LB(50) 456.87 52.781 491.12 71.962 380.99 99.538

BDS(m=2) 9.9766 1.1283 12.202 0.5545 16.965 1.5331

BDS(m=3) 10.105 0.0671 11.073 0.0863 18.046 1.6848

BDS(m=4) 10.816 -0.2172 11.359 1.0605 19.333 2.3731

Table 3: Diagnostics for the raw and the residual series. Both series are pooled series over

sub-processes, currency pairs and investors. LB , Ljung-Box test statistic, BDS(m=embedding

dimension) , Brock-Dechert-Scheinkman test statistic.
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Figure 3: Quantile-Quantile plots of raw and residual series against unit exponential distribution.
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5 Conclusion

In this paper we propose an econometric model for the analysis of trading activity

datasets. Such datasets contain very detailed information about the trading his-

tory of single traders, and provide even more insights into the market microstructure

and investors’ trading behavior which goes beyond the information contained in typ-

ical high-frequency datasets. From an econometric point of view, analyzing activity

datasets is rather challenging, as they can be considered as a panel data with irregu-

larly spaced observations with four dimensions: time, type of trading activity, trading

instruments, and investors. The model developed in the paper, is suited to cope with

this data structure.

A particularity of our approach is the presence of a latent time-varying factor which is

responsible to capture hidden correlation structures, not accounted for by observable

variables. In this aspect, our specification can be seen as an extension to the class of

stochastic conditional intensity models to panel data. Alternatively, our model can

be regarded as an augmentation of the panel duration models by a latent factor. The

intensity-based framework is suitable to capture the impact of time-varying covariates

on the underlying processes.

We show how to adjust the efficient importance sampling algorithm of Richard &

Zhang (2005) in order to estimate the model by a simulated maximum likelihood

technique. As an application the model is estimated for a trading activity dataset

from OANDA FXTrade. Due to the investor heterogeneity, we classify the traders

into three groups according to their trading volume and study them separately. Con-

sidering the behavioral finance aspects, we find that larger, and therefore probably

more sophisticated investors, are less affected by behavioral biases as the disposition

effect. Furthermore, our results have implications for classical portfolio theory, as we

obtain that traders pay close attention to their single positions within the portfolio

when they make an investment decision.
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