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Kinetic Equations modelling Wealth Redistribution:

A comparison of Approaches
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Giuseppe Toscani‡
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Kinetic equations modelling the redistribution of wealth in simple market economies is one of the
major topics in the field of econophysics. We present a unifying approach to the qualitative study
for a large variety of such models, which is based on a moment analysis in the related homogeneous
Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence,
we are able to classify the most important feature of the steady wealth distribution, namely the
fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters.
Our results apply e.g. to the market model with risky investments [S. Cordier, L. Pareschi and G.
Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [B.K.
Chakrabarti, A. Chatterjee and S.S. Manna, Physica A 335, 155 (2004)]. Also, we present results
from numerical experiments that confirm the theoretical predictions.

PACS numbers: 89.65.Gh, 05.20.Dd, 05.10.-a

I. INTRODUCTION

In the rapidly growing field of econophysics, kinetic market models are presently of particular interest, see e.g. the
various contributions in the recent books [6, 11, 33, 34], or the introductory articles [21, 31, 37]. The founding idea,
dating back to the works of Mandelbrot [23], is that the laws of statistical mechanics govern the behavior of a huge
number of interacting individuals just as well as that of colliding particles in a gas container. The classical theory for
homogeneous gases is easily adapted to the new economic framework: molecules and their velocities are replaced by
agents and their wealth, and instead of binary collisions, one considers trades between two individuals.

The model designer’s input is the definition of rules on the microscopic level, i.e., the prescription of how money
is exchanged in trades. Such rules are usually derived from plausible assumptions in an ad hoc manner. The
corresponding output of the model are the macroscopic statistics of the wealth distribution in the society. It is
commonly accepted that the wealth distribution approaches a stationary profile for large times, and that the latter
exhibits a Pareto tail. Such overpopulated tails are a manifestation of the existence of an upper class of very rich
agents, i.e. an indication of an unequal distribution of money. The various articles in [11] provide an overview over
historical and recent studies on the shape of wealth distributions; see also [8] for a collection of relevant references.

A variety of models has been proposed and studied in view of the relation between parameters in the microscopic
rules and the resulting macroscopic statistics. A typical ingredient on the microscopic level is a mechanism for saving,
probably first introduced in [5]. It ensures that agents exchange at most a certain fraction of their wealth in each
trade event; this is in contrast to the original molecular dynamics for gases. Moreover, randomness plays a rôle in
virtually all available models, taking into account that many trades are risky, so that the exact amount of money
changing hands is not known a priori. Depending on the specific choice of the saving mechanism and the stochastic
nature of the trades, the studied systems produce wealth curves with the desired Pareto tail — or not.

In this paper, we analyze and compare a selection of recently developed models. The focus is on the class of models
with risky investments, introduced by Cordier, Pareschi and one of the authors [15], and on variants of the model with
quenched saving propensities, designed by Chakraborti, Chatterjee and Manna [9]. The applied analytical techniques,
however, easily generalize to a broader class of economic games. Some alternative approaches, like the hydrodynamic
limit, are briefly discussed.

∗Electronic address: bduering@anum.tuwien.ac.at
†Electronic address: matthes@asc.tuwien.ac.at
‡URL: www-dimat.unipv.it/toscani; Electronic address: giuseppe.toscani@unipv.it
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Our analysis is heavily based on specific results from the current mathematical literature [15, 17, 18, 24, 25, 28],
where kinetic econophysics has been treated in the framework of Maxwell-type molecules, the Kac equation etc. These
mathematical results are briefly reviewed, before they are applied to the specific models under consideration. In a
separate section, our theoretical predictions are verified in a series of new numerical simulations.

The presented approach differs in several subtle points from the numerous theoretical and numerical studies that
can be found in the recent physics literature on the subject. First, the analysis is entirely based on the spatially
homogeneous Boltzmann equation associated to the microscopic trade rules of the respective model. Thus, we treat
the agents on the market as a continuum, just like molecules in classical gas dynamics. Not only does this approach
constitute the most natural generalization of the classical ideas to econophysics. But moreover, it clarifies that certain
peculiar observations made in ensembles of finitely many agents and in numerical experiments — like the apparent
creation of steady distributions of infinite average wealth, e.g. [8–10] — are genuine finite size effects. Second, we
do not intend to derive explicit formulas for the solutions, nor do we investigate the wealth distribution for the poor
agents. Instead, we provide relations that allow to calculate characteristic features, like the Pareto index of the
steady money distribution, directly from the model parameters. Finally, apart from the shape of the steady states, we
investigate their dynamical stability by estimating the speed of relaxation of transient solutions to stationarity. The
1-Wasserstein metric — briefly reviewed below — is used to estimate the distance between the wealth distribution at
finite times, and the steady state.

II. PRELIMINARIES

A. Wealth distributions

In a closed ensemble of agents (i.e. a market), the wealth distribution P (t; w) refers to the relative density of agents
with wealth w at time t ≥ 0. Debts are excluded in the models considered here, i.e. P (t; w) = 0 for w < 0, but
concentration in w = 0 is allowed. The first moment of P (t; w) yields the average wealth per agent,

M1(t) =

∫ ∞

0

w P (t; w) dw. (1)

In the models under consideration, the density P (t; w) stabilizes at some stationary wealth curve P∞(w) in the large-
time limit t → ∞. The central notion in the theory of wealth distributions is that of the celebrated Pareto index
α ≥ 1. This number describes the size of the rich upper class in the considered ensemble of agents. Roughly, the
smaller α is, the more of the total wealth is concentrated in the hands of a small group of individuals.

The stationary curve P∞(w) satisfies the Pareto law [27] with index α, provided that P∞ decays like an inverse
power function for large w,

P∞(w) ∝ w−(α+1) as w → +∞. (2)

More precisely, P∞ has Pareto index α ∈ [1, +∞) if the moments

Ms :=

∫ ∞

0

ws P∞(w) dw (3)

are finite for all positive s < α, and infinite for s > α. If all Ms are finite (e.g. for a Gamma distribution), then P∞

is said to possess a slim tail.
According to empirical data from ancient Egypt until today [8, 11], the wealth distribution among the population

in a capitalistic country follows the Pareto law, with an index α ranging between 1.5 and 2.5. Slim tails are typical
for societies with a rather uniform distribution of wealth. Intuitively, one may think of socialist countries.

B. Wasserstein distance

Since Monte Carlo simulations produce distributions of point masses instead of smooth curves, a good notion of
distance between measures is important to quantify the convergence of numerical results to the continuous limit. The
Wasserstein distance of two density functions f1(w), f2(w) is given by

W[f1, f2] :=

∫ ∣∣F1(v) − F2(v)
∣∣ dv, (4)
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where the Fi denote the distribution functions,

Fi(v) =

∫ ∞

v

fi(w) dw, (i = 1, 2). (5)

Equivalently, the Wasserstein distance is defined as the infimum of the costs for transportation [35],

W[f1, f2] := inf
π∈Π

∫
|v − w| dπ(v, w). (6)

Here Π is the collection of all measures in the plane R
2 with marginal densities f1 and f2, respectively. The infimum

is in fact a minimum, and is realized by some optimal transport plan πopt. Convergence of densities f(t; w) to a limit
f∞(w) in Wasserstein is equivalent to the weak convergence f(t; w)dw ⇀ f∞(w)dw in the sense of measures, and
convergence of the first moments.

There is an intimate relation of Wasserstein to Fourier metrics [20], defined by

ds[f1, f2] = sup
k

[|k|−s|f̂1(k) − f̂2(k)|] (s > 0). (7)

For s > 1, the two are related [17] by

W[f1, f2] ≤ C(ds[f1, f2])
−(s−1)/s(2s−1). (8)

For further details, see e.g. [4].
Example: Two Dirac distributions have Wasserstein distance W[δx, δy] = |x− y|. More generally, a density f1(v)

and its translate f2(v) = f1(v−z) have Wasserstein distance W[f1, f2] = |z|. Thus, the Wasserstein distance provides
a more sensible notion of “closeness” of densities than e.g. Lp-norms; observe that ‖δx − δy‖L1 = 2 unless x = y.

III. ONE-DIMENSIONAL MODELS — ANALYSIS

Here we consider a class of models in which agents are indistinguishable. Then, an agent’s “state” at any instant
of time t ≥ 0 is completely characterized by his current wealth w ≥ 0. When two agents encounter in a trade, their
pre-trade wealths v, w change into the post-trade wealths v∗, w∗ according to the rule

v∗ = p1v + q1w, w∗ = q2v + p2w. (9)

The interaction coefficients pi and qi are non-negative random variables. While q1 denotes the fraction of the second
agent’s wealth transferred to the first agent, the difference p1 − q2 is the relative gain (or loss) of wealth of the first
agent due to market risks. We assume that pi and qi have fixed laws, which are independent of v and w, and of time.

In one-dimensional models, the wealth distribution P (t; w) of the ensemble is sufficient to describe the momentary
configuration of the system. There is no need to distinguish between the wealth curve and agent density f(t; w) =
P (t; w). The latter satisfies the associated spatially homogeneous Boltzmann equation

∂tf + f = Q+(f, f) (10)

on the real half line, w ≥ 0. The collisional gain operator Q+ acts on test functions ϕ(w) as

Q+(f, f)[ϕ] :=

∫ ∞

0

ϕ(w)Q+

(
f, f

)
(w) dw =

1

2

∫ ∞

0

∫ ∞

0

〈ϕ(v∗) + ϕ(w∗)〉f(v)f(w) dv dw, (11)

with 〈·〉 denoting the expectation with respect to the random coefficients pi and qi in (9). We restrict attention to
models which conserve the average wealth of the society,

M := M1(t) =

∫ ∞

0

w f(t; w) dw = const., (12)

and we assume the value of M to be finite. In terms of the interaction coefficients, this is equivalent to 〈p1 + q2〉 =
〈p2 + q1〉 = 1 .
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A. Pareto tail of the wealth distribution

We introduce the characteristic function

S(s) =
1

2

( 2∑

i=1

〈ps
i + qs

i 〉
)
− 1, (13)

which is convex in s > 0, with S(0) = 1. Also, S(1) = 0 because of the conservation property (12). The results from
[17, 24] imply the following. Unless S(s) ≥ 0 for all s > 0, any solution f(t; w) tends to a steady wealth distribution
P∞(w) = f∞(w), which depends on the initial wealth distribution only through the conserved mean wealth M > 0.
Moreover, exactly one of the following is true:

(PT) if S(α) = 0 for some α > 1, then P∞(w) has a Pareto tail of index α;

(ST) if S(s) < 0 for all s > 1, then P∞(w) has a slim tail;

(DD) if S(α) = 0 for some 0 < α < 1, then P∞(w) = δ0(w), a Dirac Delta at w = 0.

To derive these results, one studies the evolution equation for the moments

Ms(t) :=

∫ ∞

0

ws f(t; w) dw, (14)

which is obtained by integration of (10) against ϕ(w) = ws,

d

dt
Ms = Q+[ϕ] − Ms. (15)

Using an elementary inequality for x, y ≥ 0, s ≥ 1,

xs + ys ≤ (x + y)s ≤ xs + ys + 2s−1(xys−1 + xs−1y) (16)

in (11), one calculates for the right-hand side of (15)

S(s)Ms ≤ Q+[ϕ] − Ms ≤ S(s)Ms + 2s−2
2∑

i=1

〈piq
s−1
i + ps−1

i qi〉MM1−1/s
s . (17)

Solving (15) with (17), one finds that either Ms(t) remains bounded for all times when S(s) < 0, or it diverges like
exp[tS(s)] when S(s) > 0, respectively.

In case (PT), exactly the moments Ms(t) with s > α blow up as t → ∞, giving rise to a Pareto tail of index α. We
emphasize that P (t; w) possesses finite moments of all orders at any finite time. The Pareto tail forms in the limit
t → ∞.

In case (ST), all moments converge to limits Ms(t) → M∗
s , so the tail is slim. One can obtain additional information

on the stationary wealth distribution P∞(w) from the recursion relation for the principal moments,

−S(s)M∗
s =

1

2

s−1∑

k=1

2∑

i=1

(
s

k

)
〈pk

i qs−k
i 〉M∗

kM∗
s−k (s = 2, 3, . . .). (18)

The latter is obtained by integration of (10) against ϕ(w) = ws in the steady state ∂tf = 0.
In case (DD), all moments Ms(t) with s > 1 blow up. The underlying process is a separation of wealth as time

increases: while more and more agents become extremely poor, fewer and fewer agents possess essentially the entire
wealth of the society. In terms of f(t; w), one observes an accumulation in the pauper region 0 ≤ w ≪ 1, while
the density rapidly spreads into the region w ≫ 1. The expanding support of f(t; w) is balanced by a decrease in
magnitude, since the average wealth is fixed. This induces a pointwise convergence f(t; w) → 0 for all w > 0. Such a
condensation of wealth has been observed and described in several contexts [2, 3, 12, 22] before.

An illustration of the solution’s behavior in the (DD) case is provided by the “Winner takes all” dynamics, with
rules

v∗ = v + w, w∗ = 0. (19)

In each trade, the second agent loses all of his wealth to the first agent. The solution for the initial condition
f(0; w) = exp(−w) is explicit,

f(t; w) =
( 2

2 + t

)2

exp
(
−

2

2 + t
w

)
+

t

2 + t
δ0(w). (20)

Note that the average wealth is conserved at all finite times t ≥ 0, but vanishes in the limit.
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B. Angel’s model: strict wealth conservation

The first explicit description of a binary money exchange model dates back to Angel [1] (although the intimate
relation to statistical mechanics was only described about one decade later [16, 22]): in each binary interaction,
winner and loser are randomly chosen, and the loser yields a random fraction of his wealth to the winner. From
here, Chakrabarti and Chakraborti [5] developed the class of strictly conservative exchange models, which preserve
the total wealth in each individual trade,

v∗ + w∗ = v + w. (21)

In its most basic version, the microscopic interaction is determined by one single parameter λ ∈ (0, 1), which is the
global saving propensity. In interactions, each agent keeps the corresponding fraction of his pre-trade wealth, while
the rest (1 − λ)(v + w) is equally shared among the two trade partners,

v∗ = λv +
1

2
(1 − λ)(v + w), w∗ = λw +

1

2
(1 − λ)(v + w). (22)

In result, all agents become equally rich eventually. Indeed, the stochastic variance of f(t; w) satisfies

d

dt

∫ ∞

0

(w − M)2f(t; w) dw = −
1

2
(1 − λ2)

∫ ∞

0

(w − M)2f(t; w) dw. (23)

The steady state f∞(w) = δM (w) is a Dirac Delta concentrated at the mean wealth, and is approached at the
exponential rate (1 − λ2)/2.

More interesting, non-deterministic variants of the model have been proposed, where the amount (1 − λ)(v + w) is
not equally shared, but in a stochastic way:

v∗ = λv + ǫ(1 − λ)(v + w), w∗ = λw + (1 − ǫ)(1 − λ)(v + w), (24)

with a random variable ǫ ∈ (0, 1). Independently of the particular choice of ǫ, the characteristic function

S(s) =
1

2

(
〈[λ + ǫ(1 − λ)]s〉 + 〈[1 − ǫ(1 − λ)]s〉 + [〈ǫs〉 + 〈(1 − ǫ)s〉](1 − λ)s

)
− 1 (25)

is negative for all s > 1, hence case (ST) applies. Though the steady state f∞ is no longer explicit — for approximations
see [14, 30] — one concludes that its tail is slim. In conclusion, no matter how sophisticated the trade mechanism is
chosen, one-dimensional, strictly conservative trades always lead to narrow, “socialistic” distributions of wealth.

C. CPT model: wealth conservation in the mean

Cordier et al. [15] have introduced the CPT model, which breaks with the paradigm of strict conservation. The
idea is that money changes hands for a specific reason: one agent intends to invest his money in some asset, property
etc. in possession of his trade partner. Typically, such investments bear some risk, and either provide the buyer with
some additional wealth, or lead to the loss of wealth in a non-deterministic way. The random effect is chosen such
that

• the total wealth of the trade partners increases or decreases in any individual interaction,

• gains and losses average out in the ensemble such that the mean wealth M is preserved.

An easy realization of this idea [24] consists in coupling the previously discussed rules (22) with some risky investment
that yields an immediate gain or loss proportional to the current wealth of the investing agent,

v∗ =
(1 + λ

2
+ η1

)
v +

1 − λ

2
w, w∗ =

(1 + λ

2
+ η2

)
w +

1 − λ

2
v, (26)

The coefficients η1, η2 ∈ (−λ, +∞) are random parameters. Assuming that they are centered, 〈ηi〉 = 0, the society’s
mean wealth is preserved on the average,

〈v∗ + w∗〉 = (1 + 〈η1〉)v + (1 + 〈η2〉)w = v + w. (27)
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FIG. 1: Regimes for the formation of Pareto tails.

Various specific choices for the ηi have been discussed [24]. The easiest one leading to interesting results is ηi = ±µ,
where each sign comes with probability 1/2. The factor µ ∈ (0, λ) should be understood as the intrinsic risk of the
market: it quantifies the fraction of wealth agents are willing to gamble on. Figure 1 displays the various regimes for
the steady state f∞ in dependence of λ and µ, which follow from numerical evaluation of

S(s) =
1

2

[(1 + λ

2
− µ

)s

+
(1 + λ

2
+ µ

)s]
+

(1 − λ

2

)s

− 1. (28)

In zone II, corresponding to low market risk, the wealth distribution shows again “socialistic” behavior with slim tails.
Increasing the risk, one falls into “capitalistic” zone III, where the wealth distribution displays the desired Pareto
tail. A minimum of saving (λ > 1/2) is necessary for this passage; this is expected since if money is spent too quickly
after earning, agents cannot accumulate enough to become rich. Inside zone III, the Pareto index α decreases from
+∞ at the border with zone II to unity at the border to zone IV. Finally, in zone IV, the steady wealth distribution
is a Delta in zero. Both risk and saving propensity are so high that a marginal number of individuals manages to
monopolize all of the society’s wealth. In the long-time limit, these few agents become infinitely rich, leaving all other
agents truly pauper.

D. Rates of relaxation

In the cases (PT) and (ST), the transient solution f(t; w) converges to the respective limit f∞(w) exponentially
fast in Wasserstein metric,

W[f(t), f∞] ≤ C exp
(
−

(s̄ − 1)S(s̄)

s̄(2s̄ − 1)
t
)
, (29)

where s̄ < 2 can be any number with S(s̄) < 0. In the derivation [24], one first shows that f(t) converges exponentially
fast in Fourier metrics (7) with s = s̄,

ds̄[f(t), f∞] ≤ ds̄[f(0), f∞] exp(−S(s̄)t). (30)

From (30), convergence in (29) follows by the relation (8). To verify (30), rewrite the Boltzmann equation (10) with
kernel (13) in its Fourier representation,

∂tf̂ = Q̂+(f̂ , f̂) − f̂ , Q̂+(f̂ , f̂) =
1

2

2∑

i=1

〈f̂(pik)f̂(qik)〉. (31)

To conclude non-expansivity of Q̂+, it suffices to observe

|k|−s||Q̂+(f̂ , f̂) − Q̂+(f̂∞, f̂∞)| ≤
1

2

2∑

i=1

|k|−s〈|f̂(pik)f̂(qik) − f̂∞(pik)f̂∞(qik)|〉

≤
1

2

2∑

i=1

〈ps
i + qs

i 〉|k
′|−s|f̂(k′) − f̂∞(k′)|

≤ [1 + S(s)]ds[f, f∞].
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Here k′ = pik or k′ = qik, respectively. In case (DD), the transient wealth distributions converge exponentially fast
in Fourier metrics, and weakly in the sense of measures to the Delta. They do not converge in Wasserstein metrics,
since the first moment equals to M > 0 at all finite times, but is zero in the limit.

IV. TWO-DIMENSIONAL MODELS — ANALYSIS

The Chakrabarti-Chatterjee-Manna (CCM) model constitutes another improvement of Angel’s original game. Ar-
guing that agents are not indistinguishable in reality, but have personal trading preferences, Chakrabarti et al. [9]
introduced the concept of quenched saving propensity. Now λ is not a global quantity, but characterizes the agents.
The current “state” of an agent is consequently described by two numbers, his wealth w > 0 and his personal saving
propensity λ ∈ (0, 1). We shall only discuss the case where λ does not change with time. Trade rules which allow the
agents to adapt their saving strategy in time (“annealed saving”) have been investigated [7, 9], but seemingly do not
exhibit genuinely novel effects.

The configuration of the kinetic system is described by the extended density function f(t; λ, w). The wealth distri-
bution P (t; w) is recovered from f(t; λ, w) as marginal,

P (t; w) =

∫ 1

0

f(t; λ, w) dλ, (32)

but is no longer sufficient to characterize the configuration completely. The other marginal yields the time-independent
density of saving propensities,

ρ(λ) =

∫ ∞

0

f(t; λ, w) dw. (33)

Clearly, ρ(λ) is determined by the initial condition f(0; λ, w), and should be considered as defining parameter of the
model. The collision rules are the same as originally (24), but take into account the individual characteristics: two
agents with pre-trade wealth v, w and saving propensities λ, µ, respectively, exchange wealth according to

v∗ = λv + ǫ[(1 − λ)v + (1 − µ)w], (34)

w∗ = µw + (1 − ǫ)[(1 − λ)v + (1 − µ)w]. (35)

Clearly, money is strictly conserved, v∗ + w∗ = v + w, so the mean wealth M is constant in time. The Boltzmann
equation (10) is now posed on a two-dimensional domain, (λ, w) ∈ (0, 1) × (0,∞). The collisional gain operator Q+

satisfies

Q+(f, f)[ϕ](λ) =

∫ ∞

0

dv

∫ ∞

0

dw

∫ 1

0

dµ〈ϕ(v∗)〉f(λ, v)f(µ, w) (36)

after integration against a regular test function ϕ(w). For simplicity, we assume that ǫ is symmetric around 1/2.

A. Pareto tail of the wealth distribution

Due to its two-dimensionality, the CCM model behaves very different from the strictly conservative model (24). In
particular, P∞(w) may possess a Pareto tail. In analogy to S(s) from (13), define the function

Q(r) :=

∫ 1

0

ρ(λ)

(1 − λ)r
dλ, (37)

which determines the properties of the steady wealth distribution P∞(w) as follows [25]:

(PT’) if Q(1) < +∞, and α ∈ [1, +∞) is the infimum of r for which Q(r) = +∞, then P∞(w) has a Pareto tail of
index α;

(ST’) if Q(r) < +∞ for all r ≥ 1, then P∞(w) has a slim tail;

(DD’) if Q(1) = +∞, then P∞(w) = δ0(w).
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To derive these results, it is useful to think of the global wealth distribution P∞(w) as superposition of λ-specific
steady wealth distributions f∞(λ, w)/ρ(λ), i.e., the wealth distributions of all agents with a certain personal saving
propensity λ. The individual λ-specific distributions are conjectured [9, 29] to resemble the wealth distributions
associated to the one-dimensional model (24), but their features are so far unknown. However, they are conveniently
analyzed in terms of the λ-specific moments

M̂∗
s (λ) =

1

ρ(λ)

∫ ∞

0

ws f∞(λ, w) dw. (38)

Integration of the stationary Boltzmann equation

f∞(λ, w) = Q+(f∞, f∞) (39)

against ϕ(w) = ws for a non-negative integer s gives

M̂∗
s (λ) =

1

g(λ)

∫ ∞

0

dv

∫ 1

0

dµ

∫ ∞

0

dw
〈(

[λ + ǫ(1 − λ)]v + ǫ(1 − µ)w
)s〉

f∞(λ, v)f∞(µ, w)

After simplifications,

(1 − λ)φs(λ)M̂∗
s (λ) =

s−1∑

k=0

(
s

k

)
〈ǫs−k[λ + ǫ(1 − λ)]k〉M̂∗

s (λ)

∫ 1

0

(1 − µ)s−kM̂∗
s−k(µ)g(µ)dµ, (40)

where φs(λ) is a polynomial with no roots in [0, 1]. The λ-specific steady wealth distributions have slim tails, and
moments of arbitrary order can be calculated recursively from (40). From

M̂∗
0 (λ) ≡ 1, M̂∗

1 (λ) =
M

Q(1)
(1 − λ)−1, (41)

it follows inductively that

M̂∗
s (λ) = rs(λ)(1 − λ)−s, (42)

and rs(λ) is a continuous, strictly positive function for 0 ≤ λ ≤ 1. By Jensen’s inequality, formula (42) extends from
integers s to all real numbers s ≥ 1. In conclusion, the total momentum

M∗
s =

∫ 1

0

M̂∗
s (λ) dλ ∝

∫ 1

0

ρ(λ)

(1 − λ)s
dλ (43)

is finite exactly if Q(s) is finite.
Remark: Q(1) = +∞ would imply infinite average wealth per agent in the steady wealth distribution by formula

(43). This clearly contradicts the conservation of the mean wealth at finite times. In reality, the first moment vanishes,
and P∞ is a Dirac distribution; see Sect. IVC.

We emphasize this fact since a noticeable number of theoretical and numerical studies has been devoted to the
calculation of P∞ for uniformly distributed λ, i.e. ρ(λ) ≡ 1, where clearly Q(1) = +∞. In the corresponding
experiments [7, 9, 10, 13, 29] with finite ensembles of N agents, an almost perfect Pareto tail P∞(w) = CNw−2 of
index α = 1 has been observed over a wide range wN < w < WN . However, the “true” tail of P∞(w) — for w ≫ WN

— is slim. As the systems size N increases, also WN ∝ N increases and CN ∝ 1/ logN → 0. In fact, one proves [25]
weak convergence of P∞(w) to δ0(w) in the thermodynamic limit N → ∞.

B. Rates of relaxation: Pareto tail

The discussion of relaxation is more involved than in one dimension, and we restrict our attention to the deterministic
CCM model, ǫ ≡ 1/2, in the case (PT’) of Pareto tails of index α > 1. In fact, it is believed [10] that the randomness
introduced by ǫ has little effect on the large-time behavior of the kinetic system.

The stationary state of the deterministic CCM model is characterized by the complete stop of wealth exchange. This
is very different from the steady states for the one-dimensional models, where the macroscopic wealth distribution is
stationary despite the fact that money is exchanged on the microscopic level. Stationarity in (34) and (35) is achieved
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precisely if v(1 − λ) = w(1 − µ) for arbitrary agents with wealth v, w and saving propensities λ, µ, respectively.
Correspondingly, the particle density concentrates in the plane on the curve

K∞ = {(λ, w)|(1 − λ)w = M/Q(1)}, (44)

and the steady wealth distribution is explicitly given by Mohanty’s formula [26],

P∞(w) =
M

w2
ρ
(
1 −

M

w

)
, (45)

with the convention that ρ(λ) = 0 for λ < 0.
The conjectured [8, 13] time scale for relaxation of solutions is t−(α−1),

lim
t→∞

logW[P (t; w), P∞(w)]

− log t
= α − 1. (46)

It has been proven [17] for all α > 1 that the limit in (46) is at most α − 1, i.e. relaxation cannot occur on a faster
time scale. The complete statement (46), however, was made rigorous only for 1 < α < 2 so far [25].

The key tool for the analysis is the equation for the λ-specific mean wealth,

d

dt
M̂1(t; λ) = −

1 − λ

2
M̂1(t; λ) +

∫ 1

0

1 − µ

2
M̂1(t; µ)g(µ) dµ. (47)

Intuitively, the slow algebraic relaxation is explained by the temporal behavior of the richest agents. By (47), the

λ-specific average wealth M̂1(t; λ) grows at most linearly in time,

M̂1(t; λ) ≤ t + M̂1(0; λ). (48)

Thus, the tail of the wealth curve P (t; w) becomes slim for w ≫ t. The cost of transportation in (6) to “fill up” the
fat tail P∞(w) ∝ w−(α+1) is approximately given by

∫ ∞

t

w P∞(w; t) dw ∝

∫ ∞

t

w−α dw ∝ t−(α−1). (49)

That equilibration works no slower than this (at least for 1 < α < 2) follows from a detailed analysis of the relaxation
process. In [25], it has been proven that

∫ 1

0

∣∣∣M̂1(t; λ) −
M

λQ(1)

∣∣∣ ρ(λ) dλ ∝ t−(α−1) (50)

by relating (47) to the radiative transfer equation [19]. Moreover, the λ-specific variance

V̂ (t; λ) = M̂2(t; λ) − M̂1(t; λ)2 (51)

was shown to satisfy

∫ 1

0

(1 − λ)2V̂ (t; λ)g(λ) dλ ∝ t−α (52)

provided 1 < α < 2. Combination of (50) and (52) leads to (46).
Moreover, relaxation may be decomposed into two processes. The first is concentration of agents at the λ-specific

mean wealth M̂1(t; λ); i.e., all agents with the same saving propensity become approximately equally rich. According
to (52), this process happens on a time scale t−α/2. Second, the localized mean values tend towards their respective
terminal values M/λQ(1). Thus, agents of the same saving propensity simultaneously “adjust” their wealth. By (50),
the respective time scale is t−(α−1), which is indeed slower than the first provided α < 2.

C. Rates of relaxation: Dirac delta

Finally, the deterministic CCM model is considered with a density ρ(λ) where ρ(1) > 0, e.g. ρ(λ) ≡ 1. Clearly,
Q(1) = +∞. An analysis of (47) provides [25] for λ < 1 the estimate

c

1 − λ
≤ log t · M̂1(t; λ) ≤

C

1 − λ
(t > Tλ), (53)



10

with 0 < c < C < +∞, and Tλ → +∞ as λ → 1. Convergence of P (t; w) to a Delta in w = 0 is a direct consequence,

since for each 0 ≤ λ < 1, M̂1(t; λ) tends to zero as t → ∞.
Estimate (53) has a direct interpretation. Agents of very high saving propensity λ ≈ 1 drain all wealth out of the

remaining society as follows. At intermediate times t ≫ 1, agents equilibrate in microscopic trades so that the product
(1 − λ)w becomes approximately a global constant m(t). Agents with low saving propensity λ < 1 − m(t)/t indeed
satisfy w ≈ m(t)/(1 − λ). Agents with higher saving propensity, however, are in general far from this (apparent)
equilibrium; their target wealth m(t)/(1−λ) is very large, whereas their actual wealth is bounded by t on the average.
Correspondingly, a “Pareto region” of the shape P (t; w) ≈ ρ(1)m(t)w−2 forms over a range 1 ≪ w ≤ t, whereas the
tail of P (t; w) for w ≫ t is slim. The average wealth per agent contained in the Pareto region amounts to

∫ t

1

w P (t; w) dw ≈ ρ(1)m(t) log t. (54)

By conservation of the average wealth, the global constant m(t) tends to zero logarithmically in t and gives rise to
(53).

V. OTHER APPROACHES

A. Dynamical rescaling

A crucial assumption made for the models considered in detail so far is the conservation (at least in a statistical
sense) of the average wealth per agent, i.e. the first moment of the wealth distribution, over time. Wealth conservation
sounds plausible on a microscopic level, whereas on a macroscopic level, it is arguable that the apparent conservation
is in reality a mixture of two effects. On one hand, wealth is created through the production of goods, interests on
savings etc. On the other hand, (monetary) wealth is lost through inflation.

Kinetic models which take these two effects into account, were proposed by Slanina [32], and were further developed
by Pareschi et al. [28]. In order to incorporate the creation of wealth, the respective trade rules are designed to
“reward” agents for trading activity. In the CPT model (26), this can be achieved by assuming that the market risk
satisfies 〈ηi〉 = ε > 0. In other words, the risky investment is more likely to create additional wealth, than to destroy
existing wealth. This is a genuine motivation for agents to engage in trades! The effect of inflation is modelled by a
time-dependent rescaling f(t; w) g(t; v) of the wealth distribution,

g(t; v) = eεtf(t; w), w = eεtv, (55)

chosen so that the mean wealth of g(t; v) is kept constant. The monetary unit is adapted in a way that people stay
equally wealthy on the average. The Boltzmann equation (10) is respectively modified by an additional drift term,

∂tg = Q+(g, g) − g + ε∂v(v g). (56)

Solutions to this equation have been proven [28] to converge to a steady state g∞, which may or may not have a
Pareto tail. Again, the evolution of moments can be analyzed, and leads to a classification of the tail size in terms of
properties of the ηi.

B. Fokker-Planck equations

Apart from an investigation of moments, the Boltzmann equations (10) or (56) are hard to analyze, even in the
stationary regime. The grazing collision limit provides a method to generate from the kinetic equation a Fokker-Planck
equation, i.e. a parabolic differential equation of second order, which is better accessible.

Consider the CPT model (26) with saving propensity λ = 1 − β2 and market risks βηi,

v∗ = (1 − β2)v + βη1v + β2w, w∗ = (1 − β2)w + βη2w + β2v. (57)

where β > 0 is a small parameter, and η1 and η2 are two equally distributed, centered random variables with σ2 := 〈η2
i 〉.
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Expand of the collisional operator in terms of β,

Q+(f, f)[ϕ] −

∫ ∞

0

ϕ(v)dv

=

∫ ∞

0

dv

∫ ∞

0

dw
(
ϕ′(v)[β2(w − v) + β〈η〉v] +

1

2
ϕ′′(v)[β2(w − v) + βηv]2 + O(β4)

)
f(v)f(w)

= β2

∫ ∞

0

ϕ(v)
(
− ∂v[(M − v)f(v)] +

σ2

2
∂2

v [v2f(v)]
)

dv + O(β4).

Finally, increase the collision frequency by rescaling t t/β2. In the limit β → 0, the Boltzmann equation turns into
the Fokker-Planck equation

∂tf =
σ2

2
∂2

v [v2f ] − ∂v[(M − v)f ], (58)

which possesses an explicit stationary solution,

f∞(v) = Cσ,M exp(−
2M

σ2v
)v−(2+2/σ2). (59)

The solution f∞ constitutes an approximation of the steady state of the respective (kinetic) CPT model for sufficiently
small β > 0 [28]. For instance, in agreement with results on the CPT model, more risky trades (larger σ) induce
fatter Pareto tails (decreasing index α = 1 + 2/σ2).

C. Hydrodynamic limit

In [18], a two-dimensional model is proposed, where the density f(t; x, w) depends both on the wealth w, and on
the propensity to trade 0 < x < 1 (morally, x = 1 − λ). Trade interactions work like in the CPT model (26). In
addition, agents adjust their propensity x in time, in dependence of their current wealth w,

ẋ = Φ(x, w) = (w − χw̄)µ(x). (60)

Here χ is a positive constant and w̄ represent a suitable fixed value of the wealth. The choice of the function
µ(x) = ϑxα(1 − x)β is motivated by recent results on opinion formation.

Assuming that the majority of trades takes place between agents of comparable propensity, the following inhomo-
geneous Boltzmann equation results:

∂tf + Φ(x, w)∂xf =
1

τ
[Q+(f, f) − f ]. (61)

The relaxation time τ is related to the velocity of money circulation [36], and acts analogously to the Knudsen number.
In the regime of fast relaxation τ → 0, hydrodynamic equations are derived from (61), which are the Euler equations

for the economic system. Integration of (61) against test functions ϕ(w) ≡ 1 and ϕ(w) = w, respectively, gives

∂tρ + µ(x)∂x

[
ρ
(
m − χw̄

)]
= 0, (62)

∂t(ρm) + µ(x)∂x

[∫ ∞

0

w2f(t; x, w) dw − χw̄ρm

]
= 0. (63)

The implicitly defined macroscopic variables are the local density ρ(t; x) =
∫

f(t; x, w) dw of agents with propensity
x, and the local mean m(t; x) = ρ(t; x)−1

∫
wf(t; x, w) dw.

Equation (63) contains the second moment of the density, that needs to be expressed in terms of ρ(t; x) and
m(t; x). An appropriate closure is obtained replacing f(t; x, w) by a local equilibrium state Mf (t; x, w). The state Mf

possesses the same local density ρ and momentum m as f , but in addition satisfies the stationary Boltzmann equation
Q+(Mf ) = Mf in w, at each time t and propensity x. Thus, the unknown stationary solution of the CPT model plays
the same rôle as the local Maxwell distribution in the kinetic theory of rarefied gases.

Regardless of the fact that the exact shape of the local equilibrium is unknown, the second moment of Mf (t; x, w)
can be evaluated explicitly by means of the recursion relation (18), leading to

M∗
2 (t; x) = κρ(t; x)m(t; x)2, κ =

2〈p1q1 + p2q2〉

2 − 〈p2
1 + p2

2 + q2
1 + q2

2〉
. (64)
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The characteristics of the underlying kinetic model thus enter into the Euler equations only through the constant
κ > 0. In conclusion, (63) becomes

∂t(ρm) + µ(x)∂x

[
ρm

(
κm − χw̄

)]
= 0. (65)

In analogy to the Euler equations, (62)&(65) form a symmetric hyperbolic system.

VI. NUMERICAL EXPERIMENTS

To verify the analytical results for the relaxation behavior, we have performed a series of kinetic Monte Carlo
simulations for both the CPT and the CCM model. In these rather basic simulations, known as direct simulation
Monte Carlo (DSMC) method or Bird’s scheme, pairs of agents are randomly and non-exclusively selected for binary
collisions, and exchange wealth according to the respective trade rules. One time step corresponds to N/2 such
interactions, with N denoting the number of agents. In all experiments, every agent possesses unit wealth initially.

The state of the kinetic system at time t > 0 is characterized by the N wealth values w1(t), . . . , wN (t) in the CPT
simulations, and additionally by the saving propensities λ1, . . . , λN for CCM. The densities for the current wealth

P (N)(t; w) and the steady state P
(N)
∞ are each a collection of scaled Dirac Deltas at positions wi. The associated

distribution functions are build of a sequence of rectangles,

F (N)(t; w) = #{agents with wealth wi(t) > w}/N,

and respectively for F
(N)
∞ (w).

We monitor the convergence of the wealth distribution P (N)(t; w) to the approximate steady state P
(N)
∞ (w) over

time in terms of the Wasserstein-one-distance. This amounts to computing the area between the two distribution

functions F (N)(t; w) and F
(N)
∞ (w), which is performed as follows. We start with two arrays of length N , one containing

the current wealth values wi(t), and one the steady state data wi(∞). We concatenate these arrays, sort them in
ascending order, and compute the array of differences between consecutive elements. This array represents the widths
of the rectangles. To construct the array of the rectangles’ heights, we concatenate two arrays of length N containing
the entries 1/N and −1/N , respectively, into one, and permute it in the same way as the wealth vector in the step
before. The absolute value of this array’s cumulative sum represents the heights. The Wasserstein-one-distance is
now readily obtained by evaluation of the scalar product of width and height vector.

A. CPT model

We investigate the relaxation behavior of the CPT model (26) when the random variables η1, η2 attain values ±µ
with probability 1/2 each. According to the analytical results, the shape of the steady state can be determined from
Figure 1. We report results for zones II and III. Recall that zone I is forbidden by the constraint |µ| < λ, whereas
parameters in zone IV lead to wealth condensation (without convergence in Wasserstein metrics). For zones II and
III we run simulations for systems consisting of N = 500, N = 5000 and N = 50000 agents, respectively.

The relaxation in the CPT model occurs exponentially fast. Though the system has virtually reached equilibrium
after less than 102 time steps, simulations are performed for 104 time steps. In order to obtain a smooth result, the

wealth distribution is averaged over another 103 time steps. The resulting reference state P
(N)
∞ is used in place of the

(unknown) steady wealth curve.
For zones II and III we have chosen a risk index of µ = 0.1, and a saving propensity of λ ≡ 0.7 for zone II and

λ ≡ 0.95 for zone III, respectively. The non-trivial root of S(s) in (13) is s̄ ≈ 12.91 in the latter case. For each choice
of N and each pair (µ, λ), we averaged over 100 simulations. Figure 2 shows the decay of the Wasserstein-one-distance
of the wealth distribution to the approximate steady state over time. In both zones, we observe exponential decay.
The reason for the residual Wasserstein distance of order 10−2 lies in the statistical nature of this model, which never
reaches equilibrium in finite-size systems, due to persistent thermal fluctuations. Note that before these fluctuations
become dominant, relaxation is extremely rapid. The exponential rate is independent of the number of agents N .

B. CCM model

The CCM model is expected to relax at an algebraic rate (46). As simulations indeed take much longer to reach
equilibrium than in the case of CPT, the numerical experiments are carried out for about 105 time steps, and then



13

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

Time (steps)

W
as

se
rs

te
in

 d
is

ta
nc

e

 

 

N=500
N=5000
N=50000

0 10 20 30
10

−3

10
−2

10
−1

10
0

Time (steps)

W
as

se
rs

te
in

 d
is

ta
nc

e

 

 

N=500
N=5000
N=50000

FIG. 2: CPT model: Decay of the Wasserstein distance to the steady state in zones II (left) and III (right).
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FIG. 3: CCM model: Decay of the averaged Wasserstein distance to the steady states for ε ≡ 1/2 and for ε ∈ (0.4, 0.6)
uniformly distributed.

the wealth distribution is averaged over another 104 time steps. Again, this reference state is used in place of the
(unknown) steady wealth curve. The saving propensities for the agents are assigned at the beginning of each run and

are kept fixed during this simulation. Agents are assigned the propensities λj = 1 − ω
1/2.5
j , where the ωj ∈ (0, 1)

are realizations of a uniformly distributed random variable. Simulations are performed for the deterministic situation
ǫ ≡ 1/2 as well as for uniformly distributed ǫ ∈ (0.4, 0.6). In both situations, computations are carried out for systems
consisting of N = 500, N = 5000 and N = 50000 agents, respectively.

The steady state reached in one simulation is typically non-smooth, and smoothness is only achieved by averaging
over different simulations. However, in contrast to the CPT model, the steady states for CCM do depend on the initial
conditions, namely through the particular realization of the distribution of saving propensities λ1, . . . , λN among the
agents. Consequently, there are two possibilities to calculate the relaxation rates. One can monitor either the
convergence of the wealth distributions in one run to the steady distribution corresponding to that specific realization
of the saving propensities, or the convergence of the transient distributions, obtained from averaging over several
simulations, to the single smooth steady state that results from averaging the simulation-specific steady states.

Figure 3 shows the evolution of the Wasserstein-one-distance of the wealth distributions to the individual steady
states, both in the purely deterministic setting ǫ ≡ 1/2 (left), and for uniformly distributed ǫ ∈ (0.4, 0.6). (The curves
in the figures represent averages of the Wasserstein distances calculated in the individual simulations.) In comparison,
the distance of the simulation-averaged wealth distributions to the single (averaged) steady state is display in Figure 4.
Again, results are shown for ǫ ≡ 1/2 (left), and for uniformly distributed ǫ ∈ (0.4, 0.6), respectively.

Some words are in order to explain the results. The almost perfect exponential — instead of algebraic — decay
displayed in Figure 3 obviously originates from the finite size of the system. The exponential rates decrease as the
system size N increases. In the theoretical limit N → ∞, one expects sub-exponential relaxation as predicted by the
theory. We stress that, in contrast, the exponential decay rate for the CPT model in Figure 2 is independent of the
system size.
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FIG. 4: CCM model: Decay of the Wasserstein distance to the averaged steady state for ε ≡ 1/2 (left) and for ε ∈ (0.4, 0.6)
uniformly distributed (right).
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FIG. 5: “Winner takes all” model: Evolution of the fraction of agents with zero wealth (left) and blow up (right).

C. Winner takes all

Finally, the “Winner takes all” model (19) is simulated. As time evolves, all agents but one become pauper and
give rise to a Dirac Delta at w = 0. We run M = 100 simulations for systems consisting of N = 100, N = 1000 and
N = 10000 agents, respectively. Figure 5 displays the — simulation-averaged — fraction of the population with zero
wealth. This fraction of pauper agents grows linearly until a saturation effect becomes visible. The blow up figure
shows the improving approximation of the theoretically predicted rate for growing system size.

VII. CONCLUSIONS

We have reviewed and compared various approaches to model the dynamics of wealth distribution in simple market
economies. The considered models were based on a kinetic description of the binary trade interactions between the
agents, comparable to collisions between molecules in a homogeneous gas. The macroscopic statistics of the models
display wealth distributions that are in agreement with empirical data.

The main focus has been on the risky market approach (CPT) by Cordier et al [15], and on the model with quenched
saving propensities (CCM) by Chakrabarti et al [9]. Both constitute refinements of the original idea developed by
Angel [1]. For CPT, randomness — related to the unknown outcome of risky investments — plays the pivotal rôle.
In contrast to Angel’s original model, the market risk is defined in a way that breaks the strict conservation of
wealth in microscopic trades and replaces it by conservation in the statistical mean. The founding idea of CCM is
to incorporate individual trading preferences by assigning personal saving propensities to the agents. For suitable
choices of the respective model parameters, both approaches are able to produce realistic Pareto tails in the wealth
distribution. In direct comparison, the CPT model appears more natural, since the dependence of the stationary
wealth distribution on the system parameters is more robust, and the steady state is exponentially attracting in
contrast to algebraic relaxation for CCM.
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An important finding is that one must be careful with numerical simulations when delicate features like Pareto tails
are concerned. The simulated ensembles in kinetic Monte Carlo experiments are necessarily of finite size, and the
qualitative features of finite-size systems differ in essential points from those proven for the continuous limit. Most
remarkably, the finite-size CCM model exhibits non-trivial steady states with (apparent) Pareto tail in situations where
the continuous model produces a Dirac distribution. Also, the typical time scale for relaxation in the deterministic
CCM model changes from exponential convergence (finite size) to algebraic convergence (continuous).

It is arguable which kind of approach — finite size or continuous — provides the better approximation to reality.
However, it is important to notice that the predictions are qualitatively different. This should be kept in mind in the
further development of these (currently over-simplistic) models.
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