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ABSTRACT 

 

Previous empirical research has established that science appears to stimulate the widespread 

diffusion of knowledge. The exact mechanism through which science catalyzes knowledge flow, 

however, remains somewhat ambiguous. This paper investigates whether the observed 

knowledge diffusion associated with science-based innovation genuinely stems from the norm of 

openness and incentives for publication, or whether it arises as an artifact of scientists having 

more dispersed social networks that facilitate the dissemination of tacit knowledge. Our findings 

support the former possibility: We use patent citation patterns to track knowledge flows, and find 

that science-based innovations diffuse more widely even after controlling for the underlying 

social networks of researchers as measured using data on prior collaborations.  

  #0512 
 
 

  

 



 - 3 - 

INTRODUCTION 

Scientists, social scientists and politicians have attributed much of the acceleration in economic 

growth over the past two centuries to the advancement of science (Marx, 1944; Bush, 1945; 

Kuznets, 1959). Despite this widespread belief in the value of science, however, we know 

relatively little about which mechanisms may or may not contribute to this linkage. One 

mechanism that has received a substantial amount of attention is the norm of openness. Whereas 

commercially motivated inventors typically attempt to keep their findings secret in the hopes of 

benefiting as much and as long as possible from the fruits of their labor, both the reward system 

and the values in the community of scientists compel them to disseminate knowledge gained to 

others as quickly as possible (Merton, 1942; Dasgupta and David, 1994). As a result, public 

science presumably benefits society by generating a high level of knowledge spillovers, which in 

turn increase the efficiency of research by minimizing the duplication of effort (Nelson, 1959; 

Arrow 1962) and may also stimulate innovation and economic growth (Marshall, 1922; Romer, 

1986; Aghion and Howitt, 1992).  

Evidence in support of more efficient knowledge diffusion through science has come 

primarily in three forms. On the one hand, a vibrant stream of historical research has sought to 

link the rise of Western nations to the rapid accumulation of knowledge associated with the 

Enlightenment (e.g., Rostow, 1975; Mokyr, 2002). Though an important strand of research, these 

broad historical accounts offer only limited traction for distinguishing an increase in spillovers 

from other potential mechanisms linking science to economic growth (though Bernal, 1939, and 

David, 2004, argue that the norms regarding openness in science arose at almost precisely the 

time of the Enlightenment). A second strand of investigation meanwhile has explored the 

motivations of scientists, finding that these individuals do indeed appear to want to disseminate 
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their discoveries widely to gain recognition. Recent research, for example, has demonstrated that 

this motivating factor exists even for scientists working in profit-maximizing firms (Murray, 

2003; Stern, 2004). And at a more micro level, another group of researchers has examined patent 

and publication data to understand the linkages between scientific research (often identified 

narrowly as that occurring in a university setting) and regional rates of innovation and invention 

(e.g., Jaffe, 1989; Autant-Bernard, 2001). Among these, Sorenson and Fleming (2004) provide 

the most direct and systematic evidence that science promotes the diffusion of knowledge. 

Specifically, they find that patents that reference non-patent prior art (i.e. published materials) – 

whether peer-reviewed or not – receive citations at a higher rate from more distant patents in 

both geographic and technical space.1  

Though consistent with a view that publication dramatically extends the spatial reach of 

spillovers, the evidence to date does not conclusively establish publication as the primary 

mechanism through which science fosters diffusion. An alternative possibility exists: those 

engaged in science and in developing technology related to it might simply have wider ranging 

social networks than traditional inventors. Social scientists have long recognized the importance 

of boundary-spanning individuals in diffusing knowledge (e.g., Allen, 1977; Tushman, 1977), 

and recently, several papers have rigorously demonstrated that technological knowledge diffuses 

primarily through social relations. For example, both Breschi and Lissoni (2004) and Singh 

(2005) find that collaboration networks – social networks formed when researchers work 

together on the same invention – account for much of the variance in citation patterns within and 

across regions. In other words, the underlying patterns of direct and indirect social relations drive 

the observed localization of knowledge flows; spillovers remain largely local because inventors, 
                                                 
1 Consistent evidence also appears in the location choices of German technology start-ups (Audretsch, Lehmann and 
Warning, 2004), where firms exploiting published knowledge exhibit less sensitivity to the location of universities 
than those that require access to tacit knowledge. 
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like most people, primarily interact with others that live and work in close proximity to them. 

But scientists may travel more extensively and maintain more distant networks than other 

individuals. Audretsch and Stephan (1996), for example, report that more than 70% of the links 

between academic scientists and the biotechnology firms with which they work cross regional 

boundaries. We also know that foreign-born individuals account for disproportionately large 

shares of the scientists in the United States as well as other countries (Levin and Stephan, 1998). 

If this mobility translates into more geographically dispersed social networks, then the more 

rapid diffusion of science-based knowledge might simply reflect the more extensive reach of 

scientists’ contacts, rather than the importance of publication to stimulating spillovers. It is 

therefore important to determine whether farther-reaching social networks or publication itself 

accounts for the widespread diffusion of science-based knowledge. 

We extend work by Sorenson and Fleming (2004) to distinguish between these 

competing possibilities, investigating whether differences in the spatial dispersion of social 

networks can account for the greater spatial diffusion of citations to patents referencing 

published materials. In particular, we test whether the likelihood of a patent receiving a citation 

varies as a function of whether or not the focal patent builds on scientific research while 

simultaneously controlling for the social distance between the two (groups of) inventors. Our 

information on the structure of social networks comes from the collaborations of inventors across 

patents (cf. Breschi and Lissoni, 2004; Singh, 2005). Although this approach limits our ability to 

test the importance of social networks (because we only consider the effects of one particular 

type of relation), we nonetheless believe it provides useful information because the technical 

knowledge important to fomenting invention more likely passes through these professional 

collaborations than other, more purely social, relations. 
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Our results strongly affirm the importance of publication – and by extension the norm of 

openness in science – to the diffusion of knowledge. Though we do not observe any potential 

payments for the transmission of this knowledge, and hence cannot say with certainty that this 

increased diffusion involves spillovers, it seems unlikely that scientists can effectively exclude 

others from, and therefore credibly demand payments for, access to their published research. We 

find that publication has the greatest marginal benefit to knowledge diffusion when interpersonal 

ties do not link the source and destination (teams of) inventors. For patents that do not reference 

scientific articles, the likelihood that the knowledge resulting from the source researcher(s) 

diffuses to other inventors increases greatly when a network path – for example, prior 

collaborators, collaborators of prior collaborators, etc. – connects the two parties. On the other 

hand, for patents that do reference scientific articles, having such network relations offers almost 

no additional advantage to the probability of knowledge diffusion. In other words, consistent 

with sociologists’ expectations of the relationship between social network-based and broadcast-

based diffusion, interpersonal social relations and publication appear to act as substitutes in the 

diffusion of knowledge. Science accelerates spillovers by removing the dispersion of knowledge 

from the relatively restricted range of social networks and opening it to all capable of absorbing 

the codified version. 

 

SCIENCE AND SPILLOVERS 

Two types of criteria separate scientific activity from non-scientific activity in the literature.  The 

first, with its locus in the philosophy of science, focuses on the logic of the scientific method 

(e.g. experimental design), as well as how and why that method might produce more accurate 

theories about the nature of the world. Meanwhile, a second set, originating with Merton (1942) 
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and derived primarily from the sociology of science, focuses on science as an institution – 

understanding the career incentives facing scientists and the norms and values promulgated by 

the academic community. Both of the mechanisms that we consider as potential explanations for 

the more rapid diffusion of knowledge developed by scientists relate to science as an institution. 

Though Merton and other sociologists have identified several central norms in the 

scientific community, with regard to the question of spillovers, one in particular seems most 

relevant: the idea of ‘communism’. ‘Communism’ refers to the notion that individual scientists 

do not expect to gain from their discoveries beyond the rewards associated with the credit 

associated with finding them first (Merton, 1942). Other scientists have free access to the ideas 

generated by their predecessors, as long as they acknowledge those prior scientists’ contributions 

(e.g., through a citation).  

One might expect this norm to minimize the incentives for innovation. To the contrary, 

however, scientists receive strong, though mostly indirect, incentives to innovate because the 

community invariably rewards scientists on the basis of the number and the importance of the 

discoveries they have made (Merton, 1957). These rewards come in a variety of forms – 

recognition through citations, prizes, and the naming of species, theories and elements, and 

resources through research grants, endowed chairs, university-funded laboratories and graduate 

students. In essence, these rewards attach a private good (an incentive) to the public good of new 

and valuable information (Dasgupta and David, 1994).2 

                                                 
2 Gustin (1973) questions the importance of these incentives given that a large number of scientists continue to 
publish even late in their careers after it has become clear that their odds of garnering such accolades has diminished 
to essentially zero. The motivations for publishing therefore may well depend more on the internalization of the 
norms of the community than on these incentives. 
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Spillovers through publication 

Taken together, the norm of communism and the incentives surrounding first discovery also 

engender an intense desire among scientists to publish new findings and ideas as quickly as 

possible (Merton, 1942; Dasgupta and David, 1994). Although other forms of communication, 

such as presenting at conferences and seminars, also conform to the norm of communism, 

publication offers a particularly effective means of disseminating one’s discoveries to the 

scientific community. Quick publication also allows scientists to establish and defend their 

claims to primacy on a discovery. Publication thus plays an important dual role. 

A concomitant advantage of this drive to publish is the more rapid diffusion of new 

knowledge. To facilitate the efficient transmission of ideas, scientists have developed highly 

specialized vocabularies and grammars to codify complex information. These languages become 

a type of shorthand for efficiently transmitting information by allowing single words or phrases 

to represent a large number of interconnected ideas (Cowan and Foray, 1997), just as a cookbook 

saves space by indicating, for example, that a cook should ‘julienne’ a beet instead of describing 

the entire process of cutting the vegetable into thin, matchstick like strips. Scientists learn these 

languages, as well as how to implement the processes to which they refer through university 

education and by interacting with others working on similar topics. By embedding a great deal of 

information within these terms, articles can therefore transmit vast quantities of information 

efficiently, allowing journals to broadcast information that once required interpersonal 

communication (Senker, 1995).  

Once the results of a discovery take written form, they can flow far and wide. Publishers 

distribute printed journals both to individuals and libraries around the world where they become 

available to researchers everywhere. Even when journals had to move over the ground through 
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horse-drawn carriages and across the water in ships, news of important discoveries could reach 

every corner of the planet in just a few weeks. And, with the advent of the Internet, we have 

reached the point where the dissemination of codified knowledge to others has become more or 

less instantaneous and costless – with the exception of the costs associated with codifying the 

knowledge in the first place (Brökel, 2005). Moreover, since written records represent archives 

that individuals can access at any time, publication also eliminates the need for individuals to 

meet in time; published knowledge does not die with its discoverer (Cowan and Foray, 1997). 

To the extent that other researchers can access the information embodied in these 

publications, they can potentially benefit by building on these findings without having to expend 

the resources to rediscover them (Bernal, 1939; Nelson, 1959; Arrow, 1962). From the 

perspective of for-profit firms, however, the kind of innovation (basic science) that the scientific 

community rewards, and consequently publishes, might nonetheless differ from the kind of 

innovation (with more commercial application) a firm might optimally desire (Gittelman and 

Kogut, 2003; Murray, 2003).  

Spillovers through networks 

Science might also generate spillovers through at least one other mechanism: wider ranging 

social networks. In addition to journals, the scientific community has also created a wide array of 

organizations to facilitate the flow of communication: conferences, departments, academies, etc. 

These organizations help researchers to form and maintain distant linkages across employers and 

locations, thereby producing social networks capable of transmitting information across 

organizational and regional boundaries. Though trade associations and peer networks may form 

similar connections among non-scientists, relative to scientific organizations, these organizations 
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tend to be small in size (Zuckerman and Sgourev, 2005), and hence offer more limited 

opportunities for forming valuable connections. 

Greater mobility might also extend the networks of scientists to more distant regions. 

Though no research appears to have compared the movement of scientists to other types of 

technical workers that might engage in invention, some evidence suggests that scientists might 

exhibit unusually high levels of geographic mobility. Levin and Stephan (1998), for example, 

report that an uncommonly high proportion of scientists migrated to the United States from other 

countries. Modern science has also developed institutional practices, such as the post-doc, that 

explicitly encourage young researchers to experience and form ties to distant labs (cf. Melin, 

2004). Histories of science, moreover, suggest that these patterns of mobility of individuals 

moving from one institution and region to another have long existed (e.g., Gribbin, 2004). To the 

extent that individuals maintain contact with those with whom they interacted in their prior 

locations, this mobility will foster denser networks of linkages across institutions and regions.  

Though more geographically dispersed social networks could also explain differences in 

the spatial reach of spillovers generated by science, publications and social networks differ 

markedly in their implications both for what type of information could pass through these 

channels and for who could access it. On the one hand, social networks offer greater bandwidth, 

in the sense that they can transport both codifiable (though potentially not yet codified) and tacit 

knowledge (Cowan, David and Foray, 2000; Brökel, 2005). On the other hand, they operate over 

a more circumscribed set of potential recipients: Whereas anyone capable of reading and 

understanding the codified knowledge printed within them can access a publication, only those 

with direct or indirect connections to sources can draw on knowledge traveling through social 
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networks. We exploit this difference in estimating the degree to which each of these factors 

might account for the greater observed range of the diffusion of scientific knowledge. 

 

EMPIRICAL STRATEGY 

Patents provide a window of observation on the diffusion of knowledge through their references 

to other patents and published materials. Patents reference two kinds of ‘prior art’: (i) those 

earlier patents that the new invention extends, and (ii) other materials (e.g., scientific and 

technical publications) containing ideas on which the inventor built. Our empirical strategy 

presumes that references in patents to both other patents and non-patent prior art signify cases 

where an invention builds, to some extent, on the information embodied in these sources.  

Inventors would prefer to minimize these references. As patents confer a property right, 

both references to other patents and citations to prior publications can reduce the scope of a 

patent’s claims and consequently reduce the effectiveness of any future attempt to defend it 

legally. Even in cases where the patent applicant also owns a prior patent on which the new 

invention builds, she may wish to avoid naming that patent as prior art for at least two reasons. 

On the one hand, if the new patent received approval without citing the earlier patent, it might 

effectively extend the term of the assignee’s property right over that earlier invention. On the 

other hand, even if the inventor applied for both patents concurrently, receiving two patents over 

an overlapping domain of intellectual space could provide useful redundancy in enforcing 

property rights. The patent review process, however, mitigates the incentives to not cite; using 

personal expertise and automated searches, patent examiners in the review process insert relevant 

citations, where missing, to applications before granting a patent.3 

                                                 
3 Alcacer and Gittelman (2004) report that a large share of citations result from this review process, suggesting that 
patent examiners provide an important check on inventors’ incentives to not report relevant prior art. 
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Since patent offices release publicly the information reported in the applications of the 

patents they grant, the patent itself almost certainly accelerates the diffusion of the knowledge 

embodied in it. One might then assume that our ability to find a marginal effect to publication 

would depend on a propensity for inventors to keep secret some portion of the underlying 

knowledge and/or on the failure, or inability, of potential inventors to monitor all new patent 

awards. One should note, however, that we do not assume that these non-patent references 

provide other inventors with information on the focal inventions themselves; rather, we believe 

that both patents build on some underlying piece of (potentially published) knowledge. In this 

sense, the disclosure aspect of patents should not greatly influence our analysis as we seek to use 

patents more as a means of tracking bodies of latent knowledge than to follow the diffusion of 

awareness of the focal invention. Publication widens the range of potential inventors aware of 

this underlying information, thereby expanding the pool of individuals capable of building on a 

particular piece of knowledge.  

Figure 1 provides a diagrammatic illustration of this assumption. The squares denote 

patents, while the oval represents a piece of non-patent (potentially published) knowledge. In 

situations where patent 1 extends published work, other inventors can more easily access this 

knowledge. We thus anticipate that publication increases the probability that others build on the 

same knowledge, and hence reference patent 1 (as in the case of patent 2).  

Assuming that the inventor of patent 2 has an awareness of the literature referenced by 

patent 1 might strike some as a rather heroic assumption. To assess the validity of this claim, 

Sorenson and Fleming (2004) surveyed a sample of patent holders. More than half (62%) of the 

patent holders reported an awareness of at least some of the specific references listed on the 
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patents they cited and 71% indicated an awareness of either the cited articles or other similar 

articles. The empirical evidence therefore appears to support this assumption. 

 

INSERT FIGURE 1 ABOUT HERE 

 

DATA AND MEASURES 

Our analysis drew on a sample of utility patents constructed for earlier papers (for details, see 

Fleming and Sorenson, 2004). In relation to the research question considered here, this sample 

has several useful features: It covers a short window of time (May-June 1990) to limit the extent 

to which time-varying heterogeneity in the level of activity across fields influences our findings. 

It includes sufficient information on forward (future) citations to estimate the factors affecting 

diffusion. And, most importantly for this paper, a trained researcher has already assigned to 

categories the 16,728 non-patent references in our sample.  

Our analysis focuses on the effects of two variables. The first of these is a measure of 

whether or not an invention draws on scientific research. The trained researcher classified the 

non-patent references into seven mutually exclusive and exhaustive categories: Scientific Index 

journals, conference proceedings, technical reports, technical corporate publications, non-

technical corporate publications, books and non-index journals. Sorenson and Fleming (2004) 

provide a detailed description of the rules governing this classification system and summary 

statistics concerning these non-patent references. In identifying science-based patents, our 

analysis relies on references to Scientific Index journals (i.e., information on whether or not any 

specific patent cites a publication listed in the Scientific Index, a database of peer-reviewed 
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scientific journals).4 This category includes both the high prestige journals, such as Science and 

Nature, and a multitude of more and less well-known journals. 

Some prior research suggests that patent examiners appear to have much less influence 

on the assignment of non-patent prior art. In a small sample, Tijssen (2001), for example, finds 

that the majority of these references came from the inventors. One might then wonder why patent 

applications include these references (since they limit the scope of the patent, and therefore 

reduce the value of the property right conferred). In a series of interviews with patent holders, 

Sorenson and Fleming (2004) found that inventors had two primary explanations.5 First, many 

viewed the citation of relevant material – whether a patent or a paper – as the “right thing to do.” 

Second, they also believed that these non-patent references might confer legitimacy on their 

applications, and consequently increase the likelihood of them being granted. 

The second central measure is the strength of social connection between two inventors. 

Large-scale, systematic data on interpersonal relations has generally been unavailable for studies 

of information diffusion. In the case of inventors, however, the patent data allow us to track a 

subset of each individual’s overall social network: those relations arising from collaboration on 

inventions. Singh (2005) uses collaboration information for patents registered with the U.S. 

Patent Office (USPTO) to construct a longitudinal database of interpersonal relations among all 

inventors listed on U.S. patents from 1975 to 1996. This database allows him to construct a 

‘social proximity graph’ involving all inventions with more than one inventor, which in turn 

provides a measure of the ‘social distance’ between any two (teams of) inventors. For example, 

                                                 
4 Citations to Scientific Index journals cluster with other types of non-patent references related to scientific research, 
such as conference proceedings, technical reports, technical corporate publications and books (Sorenson and 
Fleming, 2004). Any less restrictive definition of scientific research, therefore, would correlate highly with the one 
we use. We nonetheless consider most appropriate the use of only citations to Scientific Index journals because these 
include some minimum levels of quality and public availability. 
5 Self-citations do not appear to account for these non-patent references; Sorenson and Fleming (2004) report that 
only 3% of inventors also appear as authors on the non-patent references that their patents cite. 
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if two inventors have collaborated on a prior invention, then they would have a path length of 

one on this graph. A collaborator of a collaborator is a path length of two, and so forth.  

In our estimations, we cluster dyads into three groups depending on the path length: A 

short network path indicates that it would take three or fewer steps to link the inventors in a 

patent dyad, while a long network path implies that more than three  (but a finite number of) 

steps exist between the two. We use pairs of inventors that cannot reach each other through the 

collaboration network as the baseline category for estimation. 

 

REGRESSION METHODOLOGY 

To analyze the diffusion of citations in geographic and social space, we estimated the probability 

that a future patent cites a given focal patent as a function of our variables of interest and a 

variety of control variables. Dyads of focal patents and future (potential) citing patents thus 

become the unit of analysis. To avoid the potential problems associated with estimating non-

independent cases, we assembled the data for this analysis using a case-control sample design 

(alternatively one could reduce the effects of network autocorrelation through estimation; e.g., 

Krackhardt, 1988); in other words, we paired a set of future patents that cited our focal patents 

(cases) with a second set that did not (controls). Our sample consists of all 60,999 citations that 

actually exist for our sample of 17,264 patents. In addition, we coupled each of the 17,264 focal 

patents with four future patents that did not cite it (chosen at random from all patents granted 

between July 1990 and June 1996).6  This process produced a data set of 130,055 dyads, but data 

limitations on some of the control variables forced us to restrict our analysis to the 75,278 cases 

                                                 
6 We chose four patents for the ‘control’ group so that the sample would include roughly equal proportions of 
realized and unrealized dyads. To address the fact that focal patents enter the data more than once, we report robust 
standard errors. Though one could potentially ‘match’ the control sample to the case sample on one or more 
dimensions, we chose not to do so because matching precludes one from estimating the effects of any dimension on 
which one matches. 
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where the inventors of the focal patent listed addresses within the United States. The inventors 

for the (potential) citing patent could, however, reside anywhere in the world. Our analysis 

therefore is a study of the global diffusion of knowledge originating in the United States, though 

we see no reason why these results should not generalize to knowledge originating anywhere in 

the world. 

To account properly for the effects of the sampling procedure, our estimations employed 

a rare events logistic regression methodology.7 Logistic regression yields biased estimates when 

the proportion of positive outcomes (citations in this case) in the sample does not match the 

proportion in the population. In particular, our matching algorithm generated a sample with a 

much higher proportion of citations than found in the population as a whole. To adjust for this 

fact, we use the weighted exogenous sampling maximum likelihood (WESML) estimator. This 

procedure modifies the usual maximum likelihood function used for logistic regression by 

weighting each term in the likelihood function by the number of population elements it 

represents (i.e. by the inverse of the sampling probability for the actual and potential citations 

respectively). 

Our analysis also includes several control variables. First and foremost, since we 

conceptualize the process as one of diffusion, we need controls for distance. All patents report 

the home addresses of the inventors on the front page of the patent application. We therefore 

generated a geographic distance measure by matching inventors’ 3-digit zip codes to the latitude 

and longitude of the centers of the areas in which they lived based on information from the U.S. 

                                                 
7 See King and Zeng (2001) for a survey of the state of the art in this methodology. Both Sorenson and Fleming 
(2004) and Singh (2005) have applied (slightly different forms of) rare events logistic regression in the context of 
patent citations. 
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Postal Service.8 We calculated the distance in miles between all patent dyads using spherical 

geometry; taking the natural log of this value accounted for the fact that the relevance of each 

additional mile declines with distance. Since we do not have exact distance information for non-

U.S. locations, we simply set the log (geographic distance) variable to zero for pairs involving 

such observations and instead capture the average effect of knowledge diffusion across national 

borders using a dummy variable foreign. 

Distance also exists in a technological sense. To create a measure of the distance between 

two patents in terms of technological space, we calculated the overlap in subclass assignments 

between each focal patent, i, and each (potential) citing patent, j: 

i

ji
ij s

ss
o

•
−=1

, 

where s is a vector of subclass assignments, with each cell being a binary indicator variable of 

membership in a subclass (i.e. one denoting assignment to the subclass). The measure ranges 

from zero to one, with larger values representing more distant technologies. We also included a 

same class indicator variable for dyads belonging to the same primary technology class. 

In addition to the distance measures, the citation probability models include several additional 

controls. Self-cite signifies dyads where both patents belong to the same assignee. The number of 

prior art citations counts the references on the focal patent to earlier patents. A technology 

activity control captures differences in the average level of activity in different technological 

domains by averaging the typically number of citations received by a patent with the same set of 

subclass assignments as the focal patent (see Fleming, 2001, for a complete description and 

                                                 
8 The USPTO reports 5-digit zip information, but we opted to use cleaned data from CHI, an information provider, 
to reduce measurement error. CHI has telephoned every patent holder to verify inventors’ addresses; however, it 
only maintains this information at the 3-digit level. Where the patent lists more than one inventor, we used the 
location corresponding to the address of the first inventor. Models where we randomly selected a location from the 
listed inventors, however, produced equivalent results. 
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discussion of the logic behind this measure). And fixed effects for the time lag (in years) 

between the cited and (potential) citing patent capture systematic differences in the probability of 

citation that result from having different time lags between the pairs of patents as well as 

systematic cross-year differences in citation probability. The definitions for all of our variables 

appear in Table 1. Table 2 reports summary statistics for these variables, while Table 3 provides 

a correlation matrix. 

 

RESULTS 

Table 4 reports the results from the WESML regressions. As already mentioned, each 

observation in the sample used consists of a focal patent and a (potential) citing patent. The 

dependent variable is the indicator variable citation, which takes a value of one when the focal 

patent receives a citation, and is zero otherwise. Column (1) reports the results from only 

including the dummy Science Index. Consistent with previous research, we find that science-

based patents have a greater probability of being cited. In column (2), we introduce all of our 

control variables except those related to the network path length between inventors. Interestingly, 

we can no longer reject the hypothesis that the coefficient on Science Index does not differ 

statistically from zero, though this conclusion stems entirely from an increase in the standard 

error for the Science Index coefficient (and the result is somewhat fragile – under a wide range of 

specifications the coefficient remains positive and significant).  

Among the control variables, the probability of knowledge flow between two inventing 

teams diminishes with distance, as one would expect. This result holds true both for domestic 

patents (potentially citing patents with inventors located in the U.S.) as well as foreign patents 

(patents arising from inventors located outside the U.S). As one might expect, being located 
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outside the United States has a much larger negative effect on the probability of citation. On 

average, being located outside the U.S. has an equivalent effect to the two inventors being 

separated by 3,800 miles (=exp-5.448/-.661) – in other words a substantially larger effect than the 

distance between Boston and San Diego (~2,600 miles). Knowledge flow also rises with 

technological similarity, both in terms of greater subclass overlap and for patents belonging to 

the same primary technology class. Finally, consistent with previous literature, we find the 

probability of patent citation increases when the focal patent and the (potential) citing patent 

belong to the same assignee. 

In column (3), we now introduce two new variables - short network path and long network path 

– to capture cases where the source and destination inventors belong to the same connected 

component of the collaboration network with a minimum path length of less than or equal to 

three, or of greater than three, respectively. Recall that teams not connected through the 

collaboration network form the baseline category. Consistent with Singh (2005), we find that the 

probability of knowledge diffusion increases with proximity (that is, the estimated coefficients 

follow the ordering: short network path > long network path > 0). Finally, column (4) reports the 

estimates of whether social connections indeed matter less for the diffusion of science-based 

innovations, the argument posited by Sorenson and Fleming (2004) as a possible reason for why 

science-based innovations diffuse more widely. Consistent with their claim, the value of social 

networks to diffusion declines for inventions building on published knowledge, as indicated by 

the negative and significant coefficients for Science Index X short network path and Science 

Index X long network path.  

To understand better the meaning of these coefficients, we calculated the change in the 

relative risk of a citation associated with publication and the existence of a network connection 
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(compared to a focal patent, unconnected in the collaboration network to the potential citing 

patent, building on unpublished knowledge). The results of our calculations appear in Table 5. 

When the focal patent does not build on published knowledge, a social connection between the 

inventor of the focal patent and the inventor of the potentially citing patent increases the 

probability of a citation by 3.5 to 11 times, depending on the closeness of their connection. The 

marginal benefits to these social connections decline markedly, however, when the focal patent 

draws on published knowledge. In fact, given the size of the standard errors, we cannot reject the 

possibility that linkage in the collaboration network confers no advantage to the access of 

published knowledge. 

 

DISCUSSION AND CONCLUSION 

Our paper opened with a call for more detailed investigation of the mechanisms underlying the 

greater dispersion of scientific knowledge. In particular, we sought to distinguish between two 

institutional mechanisms that could explain this phenomenon. On the one hand, the norm of 

openness and the incentives to publish research findings might lead scientists to codify 

knowledge to a greater degree, thereby broadcasting new knowledge to all capable of receiving 

it. On the other hand, the greater mobility of scientists and the existence of organizations to 

promote inter-organizational and –regional ties might engender the development of more 

extensive social relations among scientists, facilitating a more rapid diffusion of knowledge 

through these networks. We exploit a novel data set to account for direct and indirect 

collaboration ties between researchers and find that, even after controlling for these social 

relations, innovations that build on published scientific research appear to diffuse far more 

rapidly than the ones that do not. Moreover, our results suggest that social connections to the 
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inventor provide no marginal benefit to other inventors seeking to build on a prior invention that 

itself draws on publicly available (published) knowledge. 

 Not only do our results point to publication, rather than more extended social networks, 

as the mechanism underlying the more rapid diffusion of knowledge developed by science, but 

also they help to dispel another alternative explanation for the value of science: that the scientific 

method produces higher quality innovations. Much of the literature on the value of science, 

particularly to firms, has either explicitly or implicitly assumed that the process of scientific 

research generates knowledge of greater generality and value; one might therefore expect this 

knowledge to diffuse more widely. This alternative explanation, however, cannot account for 

why social connections would matter greatly to the diffusion of unpublished knowledge but 

matter little at all to the spread of published knowledge. The fact that the two act as substitutes 

suggests that publication and social networks play similar roles in diffusing knowledge. An 

account regarding quality differences between the innovations of science and non-science 

suggests that the effect of building on science should be orthogonal (or perhaps even 

complementary) to social connectedness. 

 To the extent that the codification and publication of knowledge accelerates its flow, 

policymakers should look to additional mechanisms for encouraging this process. The more 

rapid diffusion of knowledge benefits society in at least three ways. Most obviously, the public 

availability of research results reduces the likelihood that multiple firms and/or individuals 

engage in redundant research, thereby increasing the efficiency of R&D investments (Bernal, 

1939; Nelson, 1959; Arrow, 1962). If the process of invention involves the recombination of 

elements into novel configurations, then the widespread dissemination of knowledge might 

further increase the pace of innovation by expanding the number of elements, and hence the 
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combinatorial potential, available to any given inventor (Weitzman, 1998). Finally, the public 

dissemination of knowledge may also increase the efficiency of production based on that 

knowledge. In the absence of such public availability, only a limited number of firms can 

compete on the provision of the goods or services related to the innovation. Diffusion of the 

underlying knowledge enables the entry of additional firms and likely transforms the basis of 

competition from one of access to the knowledge to a regime of the most efficient production 

and effective implementation of the innovation. Policies and institutions therefore that either 

speed the dissemination of knowledge (e.g. Internet-based working paper archives) or increase 

the proportion of knowledge that becomes codified in the public domain (e.g. stipulations 

requiring the publication of government-funded research findings) can improve societal welfare. 

Our results also have implications for our understanding of past research. The fact that 

social networks do not confer an advantage in accessing published knowledge calls into question 

the pervasiveness of ‘tacit’ knowledge found in the literature. The existence of tacit knowledge, 

and the need to access it through face-to-face contact, has been used to interpret a wide range of 

results, such as the importance of personnel movements to knowledge transfer and the tendency 

for firms to agglomerate into industrial clusters. Our results, however, suggest that science 

allows people with the appropriate training to interpret and use published knowledge without 

having to reply upon (localized) social networks for access. Science, in other words, appears to 

facilitate the codification of knowledge. Our findings therefore support the idea that much 

uncodified knowledge may simply remain so because the costs of codification exceed the 

benefits for the holders of it (Nelson and Winter, 1982; Cowan, David and Foray, 2000; Brökel, 

2005). Factors that either reduce the costs of codification (such as the existence of specialized 
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vocabulary) or increase the incentives surrounding dissemination thus can potentially benefit 

society by expanding the stock of codified knowledge.  

These findings nonetheless raise questions as to why private firms would invest in basic 

scientific research. One possibility is that “performance of basic research may be thought of as a 

ticket to admission to an information network” (Rosenberg, 1990, p. 170). Science enables the 

codification of knowledge partially through the specialized languages that scientists develop. 

Understanding one of these languages not only requires training in the relevant field but also 

constant contact with the community as the language evolves to accommodate new discoveries 

that require additional baseline information for efficient codification. On the other hand, our 

results make it clear that firms that publish their findings will see the benefits of these 

discoveries erode faster. One might therefore see our results as more consistent with Stern 

(2004), who contends that firms benefit from doing science not because engaging in science 

improves the innovation process but because highly skilled employees have a preference for 

directing their own research programs and publishing their findings and therefore will accept 

lower wages from firms willing to give them such freedom.  

A similar ambiguity remains on whether of not developing countries and regions should 

stimulate the growth of indigenous scientific communities. On the one hand, developing 

countries and regions may need to invest in training scientists to first become aware of and make 

sense out of the cumulative codified knowledge that exists in the rest of the country and world. 

But such a conclusion appears inconsistent with the absence of a positive macro-level 

relationship between investments in science and economic growth found in many studies 

(Shenhav and Kamens, 1991; Schofer, Ramirez and Meyer, 2000; Fritsch and Slavtchev, 2005). 

As noted above, the public dissemination of information also changes the basis of competition. 
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In this case, even if developing regions contribute to the base of scientific knowledge, their local 

industries may still lack the capabilities and complementary assets necessary to compete with 

firms from more developed regions in the provision of these goods and services.  

In both cases of firm and developing region investments in science, the interpretation of 

results and prescriptions for policy turn critically on the degree to which access to published 

knowledge depends on the absorptive capacity of the potential recipient. Hence, a better 

understanding of whether potential recipients differ in their abilities to access published 

knowledge remains an important, and open, question. Others have made similar arguments, 

suggesting that ‘tacitness’ is best viewed as a dyadic concept concerning the degree of shared 

context between a sender and receiver (Nelson and Winter, 1982; Cowan, David and Foray, 

2000), but existing research has by and large treated the degree of tacitness as a fundamental 

(and typically immutable) property of any particular piece of knowledge. Continued progress on 

these policy issues therefore requires research into whether or not – and what types of – 

investments in science enable access to the stock of codified (published) knowledge. Standing on 

the shoulders of giants may first involve a fair bit of climbing to get there. 
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Table 1: Definition of variables 
 

 

 

Citation The binary dependent variable, which is 1 for actual citations and 0 for the unrelized 
potential citations in the sample

Science index An indicator variable that is 1 and only if the cited patent has at least one citation to a 
scientific journal

Short network path An indicator variable that is 1 if and only if the citing and cited patents are related 
through a chain of collaborative links with length not greater than 3

Long network path An indicator variable that is 1 if and only if the citing and cited patents are related 
through a finite chain of collaborative links that exceeds a length of 3

Log (geographic distance) Ln(distance in miles) between the cited patent and potentially citing patent if both are 
US-based and 0 in case the potentially citing patent is not US-based

Foreign An indicator variable that is 1 if and only if the potentially citing patent is from outside 
the U.S.

Subclass overlap A measure of how close two patents are technologically, as measure by the subclasses 
listed for the patent

Same class An indicator variable that is 1 if and only if the citing and the cited patent share the 
same primary technological class

Self-cite An indicator variable that is 1 if and only if the citing and cited patent belong to the 
same assignee

Number of prior art citations Number of prior art citations made by the cited patent

Technology activity control A control variable for the expected number of citations given the technologies a patent 
involves

Time lag Number of years betwene the application dates of the citing and the cited patent
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Table 2: Summary statistics 

 

 

 
 

 

Observations Mean Standard Deviation Minimum Maximum

Citation 75,297 0.518 0.500 0 1

Science index 75,297 0.226 0.418 0 1

Short network path 72,785 0.073 0.260 0 1

Long network path 72,785 0.216 0.411 0 1

Log (geographic distance) 75,297 3.816 3.228 0.000 8.390

Foreign 75,297 0.339 0.474 0 1

Subclass overlap 75,277 0.444 0.853 0 19

Same class 75,297 0.264 0.441 0 1

Self-cite 75,297 0.121 0.326 0 1

Number of prior art citations 75,287 9.867 8.913 0 110

Technology activity control 75,287 1.257 0.425 0.329 3.025

Time lag 75,278 3.071 1.773 0 6
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Table 3: Correlations matrix 
 

 

 

 

 

 

 
 

Citation Science index Short network 
path

Long network 
path

Log 
(geographic 
distance)

Foreign Subclass 
overlap

Same class Self-cite Number of 
prior art 
citations

Technology 
activity control

Citation 1.000

Science index 0.068 1.000

Short network path 0.268 0.059 1.000

Long network path 0.051 0.091 -0.147 1.000

Log (geographic distance) 0.089 -0.016 -0.179 0.049 1.000

Foreign -0.243 -0.006 -0.186 -0.017 -0.845 1.000

Subclass overlap 0.502 0.010 0.243 -0.010 -0.008 -0.121 1.000

Same class 0.566 0.027 0.187 -0.001 0.027 -0.130 0.434 1.000

Self-cite 0.042 -0.040 0.117 -0.056 -0.011 -0.042 0.048 0.037 1.000

Number of prior art citations 0.064 0.063 0.039 0.006 0.015 -0.034 0.055 0.043 0.020 1.000

Technology activity control 0.187 0.159 -0.003 0.103 0.028 -0.025 -0.020 0.122 -0.064 0.012 1.000

Time lag 0.141 0.013 -0.014 0.106 0.070 -0.064 -0.007 -0.085 -0.006 0.007 0.044
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Table 4: WESML Regression analysis for probability of patent citations 
 

 

(1) (2) (3) (4)
Science index 0.338** 0.377 0.202 1.455**

(0.033) (0.291) (0.280) (0.143)

Science index X Short network path -2.948*
(1.155)

Science index X Long network path -2.556**
(0.588)

Short network path 1.423* 2.442**
(0.634) (0.652)

Long network path 0.440* 1.287**
(0.188) (0.154)

Log (geographic distance) -0.661** -0.572** -0.490**
(0.048) (0.042) (0.034)

Foreign -5.448** -4.995** -4.335**
(0.344) (0.395) (0.296)

Subclass overlap 5.209** 5.207** 5.518**
(0.266) (0.261) (0.239)

Same class 3.978** 3.786** 3.875**
(0.284) (0.299) (0.276)

Self-cite 0.669* 0.731* 0.754*
(0.320) (0.305) (0.316)

Number of prior art citations -0.008 -0.008 -0.003
(0.017) (0.017) (0.015)

Technology activity control 0.264 0.107 0.138
(0.243) (0.234) (0.232)

Fixed effects for time lag Included Included Included Included

Number of Observations 75,278 75,267 72,773 72,773
Robust standard errors in parentheses
* significant at 5%; ** significant at 1%
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Table 5: Relative risks of the probability of a citation 

 

Relative risk of citation Science Index = 1 Science Index = 0

Short path 2.58 11.50

Long path 1.20 3.62

No path 4.28 1.00
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FIGURE I 

MODEL OF KNOWLEDGE FLOWS 
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