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[...] a central bank seeking to maximize its probability of achieving its goals

is driven, I believe, to a risk-management approach to policy. By this I mean

that policymakers need to consider not only the most likely future path for the

economy but also the distribution of possible outcomes about that path.

Alan Greenspan, 2003.

1 Introduction

Understanding the uncertainty associated with a forecast is as important as the forecast

itself. When predictions are made over several periods, such uncertainty is encapsulated by

the joint predictive density of the path forecast. There are many questions of interest that can

be answered with the marginal distribution of the forecasts at each individual horizon. These

are the questions that have received the bulk of attention in the literature and are coded into

most commercial econometric packages. For example, mean-squared forecast errors (MSFE)

that are reported for each forecast horizon individually; two standard-error band plots that

are based on the marginal distribution of each individual forecast error; and fan charts that

are constructed from the percentiles of marginal predictive densities.

The basic message of this paper is that many questions of interest require knowledge of

the joint predictive density, not the collection of marginal predictive densities alone. The

joint distribution and the covariance matrix of the path forecast thus play a prominent role

in our discussion. They can be obtained either by simulation methods, see e.g. Garratt,

Pesaran and Shin (2003), or analytically for a variety of cases as Section 4 will show.

Information about the range of possible paths the predicted variable may follow is con-
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tained in a simultaneous confidence region. Thus, a 95% confidence multi-dimensional ellipse

based on the joint distribution of the forecast path is an accurate representation of this un-

certainty, but it is impossible to display in two-dimensional space. A first contribution of our

paper is to introduce several methods to improve the communication of such joint uncertainty

to the end-user based on Scheffé’s (1953) S-method of simultaneous inference. In particular,

Section 2 shows how to construct simultaneous confidence bands (which we will call Scheffé

bands); conditional confidence bands for the uncertainty associated with individual forecast

horizons; and fan charts based on the quantiles of the joint predictive density. These results

parallel similar developments for impulse response functions in Jordà (2008).

Another commonly used method to evaluate the predictive properties of forecasts in a

system of variables is to experiment and report forecasts where, for example, one variable fol-

lows an alternative path of interest. For example, monetary authorities often report two-year

inflation and GDP forecasts under a variety of assumptions about interest rate paths (see,

e.g. the Bank of England’s Inflation Reports available from their website). The joint predic-

tive density is the natural vehicle with which to provide formal support to these experiments

and Section 3 discusses several simple metrics with which to measure the degree of coherence

between the experiments and the historical experience, and the degree of exogeneity of a

subspace of the system to these alternative experiments.

The small sample properties of the methods we propose are investigated via Monte Carlo

simulations in Section 5. Specifically, we simulate data from the VAR process discussed

in Stock and Watson’s (2001) review article and show that using different estimation meth-

ods, different forecasting horizons, and different metrics of performance, traditional marginal
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bands provide very poor and unreliable coverage — a problem that is successfully addressed

with the methods that we introduce. Section 6 displays our methods in action with a fore-

casting exercise of the most recent monetary episode of interest rate hikes experienced in the

U.S., beginning June, 2003. Finally, directions for further research are outlined in Section 7,

which summarizes the main results of the paper and draws some conclusions.

2 Measuring Path Forecast Uncertainty

This section considers the problem of providing a measure of uncertainty around the forecast

path of the jth variable in the k-dimensional vector yt. An elementary ingredient of this

problem requires the joint density of the system’s forecasts 1 to H periods into the future.

For clarity, we present our derivations with an approximate multivariate Gaussian joint

distribution and then derive the theoretically optimal simultaneous confidence region from

which a rectangular approximation can be obtained with Scheffé’s (1953) S-method. The

purpose of this rectangular approximation is so that uncertainty for the path forecast can be

displayed in two-dimensional space. These approximations can be created for any quantile

of the joint distribution to produce fan charts with approximately correct coverage at each

probability level.

Section 4 and the appendix contain large sample Gaussian approximation results obtained

for rather general data generating processes (DGPs) that could include infinite-dimensional

and heterogeneous processes with various mixing and stability conditions. These derivations

are provided to assist the reader with some basic results that have simple closed-form ana-

lytic expressions. However, we wish to highlight that the procedures we derive from Scheffé’s
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(1953) S-method apply, largely unchanged, when the covariance matrix of the path forecast

is obtained with simulation techniques such as the bootstrap, or as a way to summarize the

multivariate posterior density of the path forecast obtained with Bayesian simulation tech-

niques instead. Investigation of the properties of these alternative computational methods

is beyond the scope of this paper, however, we trust the reader will be able to adapt our

procedures to suit his favorite approach.

2.1 Simultaneous Confidence Regions for Path Forecasts

Let byT (h) be the forecast for yT+h , and let bYT (H) and YT,H be the forecast and actual

paths for h = 1, ...,H, so that

bYT (H)
kH×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
byT (1)
...

byT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; YT,HkH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT+1

...

yT+H

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with, say, large-sample approximate distribution

√
T
³bYT (H)− YT,H´ d→ N (0;ΞH) . (1)

An example of the specific analytic form of ΞH is provided in the section 4 when the DGP

is a VAR and for forecasts generated by either the standard iterative method or by direct

estimation (e.g. Jordà, 2005; Marcellino, Stock and Watson, 2006). Other relevant references

for specific results on ΞH are Clements and Hendry (1993) and Lütkepohl (2005).

Define the selector matrix Sj ≡ (IH ⊗ ej) where ej is a 1× k vector of zeros with a 1 in

the jth column. Then based on (1), the asymptotic distribution for the path forecast of the
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jth variable in yt is readily seen to be

√
T
³bYj,T (H)− Yj,T,H´ d→ N

¡
0;Ξj,H

¢
, (2)

where bYj,T (H) = Sj bYT (H); Yj,T,H = SjYT,H ; and Ξj,H = SjΞHS0j .
The conventional way of reporting forecast uncertainty consists of displaying two standard-

error marginal bands constructed from the square roots of the diagonal entries of Ξj,H . The

confidence region described by these bands is therefore equivalent to testing a joint null hy-

pothesis with the collection of t-statistics associated with the individual elements of the joint

null. It is easy to see that such an approach ignores the simultaneous nature of the problem

as well as any correlation that may exist among the forecasts across horizons, thus providing

incorrect probability coverage.

In general, let g(.) : RH → RM be a first order differentiable function where H ≥ M

and with an H ×M invertible Jacobian denoted G(.). The decision problem associated with

this transformation of the forecast path can be summarized by the null hypothesis H0 :

E [g(Yj,T,H)] = g0 for any j = 1, ..., k; sample T ; and forecast horizon H and where g0 is an

M×1 vector. Well-known principles based on the Gaussian approximation in expression (2),

the Wald principle, and the Delta-method (or more generally, classical Minimum Distance,

see, e.g. Ferguson, 1958), suggest that tests of this generic joint null hypothesis can be

evaluated with the statistic

WH = T
³
g(bYj,T (H))− g0´0 ³ bG0j,T,HΞj,H bGj,T,H´−1 ³g(bYj,T (H))− g0´ d→ χ2H (3)

where bGj,T,H denotes the Jacobian evaluated at bYj,T (H) and as usual, Ξj,H can be replaced
by its finite-sample estimate. From expression (3), a traditional null of joint significance can
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be evaluated by setting g(bYj,T (H)) ≡ bYj,T (H); and g0 ≡ 0H×1 so that a confidence region at
an α-significance level is represented by the values of Yj,T,H that satisfy

Pr
£
WH ≤ c2α(H)

¤
= 1− α

where c2α(H) is the critical value of a random variable distributed χ2H at a 100(1 − α)%

confidence level. This confidence region is a multi-dimensional ellipsoid that, in general,

cannot be displayed graphically and thus makes communication of forecast uncertainty to

the end-user of the forecast difficult. However, for H = 2, this region can be displayed in

two-dimensional space as is done in figure 1.

The top panel of figure 1 displays the 95% confidence region associated with one- and two-

period ahead forecasts from an AR(1) model with known autoregressive coefficient ρ = 0.75

and error variance σ2 = 1. Overlaid on this ellipse is the traditional two standard-error

box. The figure makes clear why this box provides inappropriate probability coverage: it

contains/excludes forecast paths with less/more than 5% chance of being observed. Further,

the top panel of figure 2 illustrates that the correlation across horizons increases with the

forecast horizon — the correlation between the two- and three-period ahead forecast errors is

larger than that between the one- and two-period forecast errors. The larger the correlation

between forecast errors, the larger the size distortion of two-standard-error rectangular in-

tervals. Moreover, adding an MA component with a positive coefficient to the AR(1) model,

further distorts the probability coverage, as the bottom panel of figure 2 shows. These two

examples are of singular practical relevance since medium-horizon forecasts are of interest

for policy making and a positive MA component is statistically significant for several macro-

economic time series (see e.g., Marcellino et al., 2006).
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2.2 Scheffé Confidence Bands for Forecast Paths

In order to reconcile the inherent difficulty of displaying multi-dimensional ellipsoids with the

inadequate probability coverage provided by the more easily displayed marginal error bands,

we propose constructing simultaneous rectangular regions with Scheffé’s (1953) S-method

of simultaneous inference (see also Lehmann and Romano, 2005) and use Holm’s (1979)

step-down procedure to obtain appropriate refinements. Briefly, the S-method exploits the

Cauchy-Schwarz inequality to transform the Wald statistic in expression (3) from L2-metric

into L1-metric and thus facilitate construction of a rectangular confidence interval.

We begin by noticing that the covariance matrix of bYj,T (H) is positive-definite and sym-
metric and hence admits a Cholesky decomposition T−1Ξj,H = PP 0, where P is a lower

triangular matrix. The passage of time provides a natural and unique ordering principle so

that P is obtained unambiguously — the result of projecting the hth forecast on to the path

of the previous h− 1 horizons. Notice then that

Pr

·
T
³bYj,T (H)− Yj,T,H´0 Ξj,H ³bYj,T (H)− Yj,T,H´ ≤ c2α(H)¸ = 1− α

Pr

·³bYj,T (H)− Yj,T,H´0 (PP 0)−1 ³bYj,T (H)− Yj,T,H´ ≤ c2α(H)¸ = 1− α

Pr
hbVj,T (H)0 bVj,T (H) ≤ c2α(H)i = 1− α

Pr

"
HX
h=1

bvj,T (h)2 ≤ c2α(H)
#
= 1− α (4)

where bVj,T (H) = P−1bYj,T (H) and bvj,T (h) d→ N (0, 1) are independent across h, by construc-

tion.

Consider now the problem of formulating the rectangular confidence region for the average
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path forecast

Pr

"¯̄̄̄
¯
HX
h=1

bvj,T (h)
h

¯̄̄̄
¯ ≤ δα

#
= 1− α.

A direct consequence of Bowden’s (1970) lemma is that

max

⎧⎨⎩
¯̄̄PH

h=1
bvj,T (h)
h

¯̄̄
qPH

h=1
1
h2

: |h| <∞
⎫⎬⎭ =

vuut HX
h=1

bvj,T (h)2
which can be applied directly to the bottom line of expression (4) to obtain

Pr

"¯̄̄̄
¯
HX
h=1

bvj,T (h)
h

¯̄̄̄
¯ ≤

r
c2α(H)

H

#
= 1− α, (5)

which in turn implies that δα =
q

c2α(H)
H . Expression (5) and bVj,T (H) = P−1 bYj,T (H) suggest

that a simultaneous confidence region for the path forecast bYj,T (H) could then be constructed
as

bYj,T (H)± Prc2α(H)
H

iH (6)

where iH is an H × 1 vector of ones.

Notice that the width of the bands constructed according to (6) would depend on the

number of horizons the researcher chooses to display. This is a somewhat undesirable feature

that we resolve by complementing Scheffé’s S-method with a Holm’s (1979) type step-down

sequential procedure (see, e.g. Lehmann and Romano, 2005) where instead, we recommend

that Scheffé bands (as we name our proposed confidence bands) be constructed as

bYj,T (H)± P "rc2α(h)
h

#
h=1,...,H

(7)

where the last term (in brackets) is an H × 1 vector whose hth entry is
q

c2α(h)
h . Hence, for

H = 1, Scheffé and marginal bands are identical since
q

c2α(1)
1 = zα/2. This refinement on
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Scheffé’s (1953) S-method provides for a more intuitive construction of confidence bands with

better probability coverage rates, as our Monte Carlo experiments in Section 5 will show.

Geometric intuition further clarifies how the method works. In a traditional marginal

band, its boundaries represent the largest shift away from the original forecasts such that the

resulting region has a pre-specified probability coverage. Thus, the boundary of the marginal

band comes from the appropriately variance-scaled critical values of the standard normal

density of a region with symmetric 100(1− α)% coverage, specifically, byj,T (h)± zα/2bΞ1/2j,(h,h).
Instead, consider now a simultaneous variance-scaled shift in all the elements of the path

forecast: What would the appropriate critical value be? It is easier to answer this question

with the orthogonal coordinate system bVj,T (H) first, to isolate the answer from the issue of

correlation in the forecasts. From expression (4) and denoting this shift δα, then δα must

meet the condition

Pr
£
δ2α +

H...+ δ2α = c
2
α

¤
= 1− α

which implies that δα =
q

c2α
H . In two dimensions, figure 1 displays the diagonals intersecting

the origin of both ellipses, for the original (top panel) and the orthogonalized (bottom panel)

path forecasts. The slopes of these diagonals reflect the relative variance of each forecast,

thus in the bottom panel the orthogonalization ensures the variances are the same and the

diagonal is the 45 degree line representing ±δα for all values of α. The Cholesky factor P

therefore provides the appropriate scaling for δα since it scales the orthogonal system by the

individual variances of its elements and accounts for their correlation.

The literature has previously recognized the problem of simultaneity so one could consider

constructing, for example, confidence intervals with Bonferroni’s procedure. This procedure
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proposes the construction of a
¡
1− α

H

¢
confidence interval for each yj,T (h), h = 1, ...,H so

that the union of these individual confidence intervals generates a region that includes Yj,T,H

with at least (1− α) probability. Specifically, the Bonferroni confidence region (BCR) is

bYj,T (H)± zα/2H × diag(Ξj,H)1/2,
where zα/2H denotes the critical value of a standard normal random variable at an α/2H

significance level and diag(Ξj,H)1/2 is an H × 1 vector with the square roots of the diag-

onal entries of Ξj,H . Notice that zα/2H → ∞ as H → ∞ and therefore, the BCR can be

significantly more conservative than our simultaneous confidence region, specially when the

correlation between forecasts across horizons is low. The region tends to be overly conserv-

ative for low values of h, and not sufficiently inclusive for long-range forecasts, a feature we

demonstrate in our simulation study of Section 5.

The orthogonalization in expression (4) suggests another measure of uncertainty comple-

mentary to Scheffé’s bands. Notice that T−1Ξj,H = PP 0 = QDQ0 where Q is lower triangular

with ones in the main diagonal and D is a diagonal matrix. Hence, expression (4) can be

rewritten as

WH =
³bYj,T (H)− Yj,T,H´0 ¡QDQ0¢−1 ³bYj,T (H)− Yj,T,H´

= eVj,T (H)0D−1 eVj,T (H)
=

HX
h=1

evj,T (h)2
dhh

=
HX
h=1

t2h|h−1,...,1 → χ2H

where eVj,T (H) = Q−1 ³bYj,T (H)− Yj,T,H´ is the unstandarized version of bVj,T (H); and dhh is
the hth diagonal entry ofD, which is the variance of evj,T (h). In other words, the Wald statistic
WH of the joint null on Yj,T,H is equivalent to the sum of the squares of the conditional t-
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statistics of the individual nulls of significance of the path forecast. Therefore, a 100(1−α)%

confidence region for the hth forecast that sterilizes the uncertainty from the preceding 1 to

h− 1 forecasts, can be easily constructed with the bands

bYj,T (H)± zα/2 × diag(D)1/2
where zα/2 refers to the critical value of a standard normal random variable at an α/2

significance level and diag(D) is the H × 1 vector of diagonal terms of D.

3 Other Methods to Evaluate a Forecasting Exercise

Scheffé confidence bands, whether reported for a given 100(1 − α)% confidence level or

reported in the form of a fan chart for a collection of different confidence levels, are a natural

way for the professional forecaster to communicate the accuracy of the forecasting exercise.

However, when the exercise involves more than one predicted variable, it is often of interest

for the end-user to have a means to evaluate the local internal consistency of forecasts across

variables. For example, the Bank of England’s quarterly Inflation Report (available from

their web-site) provides GDP and inflation, two-year ahead projections based on “market

interest rate expectations” and projections based on “constant nominal interest rate” paths.

Alternatively, it is not difficult to envision a policy maker’s interest in examining inflation

forecasts based on an array of different assumptions on the future path of crude oil prices, for

example. Obviously such checks are not meant to uncover the nature of structural relations

between variables, nor provide guidance about the effects of specific policy interventions,

both of which, from a statistical point of view, fall into the broad theme of the treatment

evaluation literature (see, e.g. Cameron and Trivedi, 2005 for numerous references) and are
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not discussed here.

Rather, the objective is to investigate the properties of the forecast exercise in a local

neighborhood. Accordingly, for a given k-dimensional vector of path forecasts, it will be of

interest: (1) to derive how forecasts for a k0-dimensional subset of variables vary if the path

forecasts of the remaining k1 variables in the system (i.e. k = k0 + k1; 1 ≤ k1 < k) are

set to follow paths different from those originally predicted; (2) to evaluate whether the k1

alternative paths considered deviate substantially from the observed historical record; and

(3) to examine how sensitive the k0 variables are to variations in these alternative scenarios.

Mechanically speaking, an approximate answer to question (1) can be easily derived from

the multivariate Gaussian large-sample approximation to the joint predictive density and the

linear projection properties of the multivariate normal distribution. Specifically, define the

selector matrices S0 = IH ⊗ E0; and S1 = IH ⊗ E1 where E0 and E1 are k0 × k and k1 × k

matrices formed from the rows of Ik corresponding to the indices in k0 and k1 respectively.

Let eY 1T (H) denote the alternative paths considered for the k1 variables and let eY 0T (H) denote
the paths of the k0 variables given eY 1T (H), that is

eY 0T (H) = S0bYT (H) + S0ΞHS01 ¡S1ΞHS01¢−1 ³eY 1T (H)− S1 bYT (H)´
with covariance matrix

Ξ0H = S0ΞHS
0
0 − S0ΞHS01

¡
S1ΞHS

0
1

¢−1
S1ΞHS0

In practice, the approximate nature of the predictive density of bYT (H) indicates that the
accuracy of these calculations depends on several factors such as the value of H relative to
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the estimation sample T, possible nonlinearities in the data, and the distance between eY 1T (H)
and S1bYT (H), among the more important factors.

The last observation suggests that it is useful to properly evaluate the distance between

eY 1T (H) and S1bYT (H) and this can be easily accomplished with the Wald score

W1 = T (S1bYT (H)− eY 1T (H))0 ¡S1ΞHS01¢−1 (S1bYT (H)− eY 1T (H))
This score will have an approximate chi-square distribution with k1H degrees of freedom

under the same assumptions that would allow one to obtain the approximate predictive

density of bYT (H). Thus, one minus the p-value of this score provides and easy to communicate
distance metric in probability units between the predicted paths S1bYT (H) and the alternative
scenarios eY 1T (H). The bigger this probability distance, the more the alternative scenarios
strain the forecasting exercise toward regions in which the model has received little to no

training by sample and the more one has to rely on basic linearity assumptions being true.

Similarly, it is of interest to evaluate which path forecasts from the k0 variables are most

sensitive to the alternative scenarios of the k1 variables. This sensitivity can be evaluated

with the Wald score

W0 = T
³
S0bYT (H)− eY 0T (H)´0 ¡S0ΞHS00¢−1 ³S0bYT (H)− eY 0T (H)´

Under the same conditions as before, this Wald score will have an approximate chi-square

distribution with k0H degrees of freedom. Thus, p-values of this score below conventional

significance values (say 0.05 for 95% confidence levels) indicate that the k0 forecast paths are

not exogenous to variations in the forecast paths of the k1 variables and hence care should
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be taken that the W1 score is kept sufficiently low. Consequently, it seems prudent for any

forecasting report to include both W0 and W1 scores when experimenting with alternative

scenarios.

4 Asymptotic Distribution of the Forecast Path

This section characterizes the asymptotic distribution of the path forecast under the as-

sumption that the DGP is possibly of infinite order while the forecasts are generated by

finite-order VARs or finite-order direct forecasts. This DGP is sufficiently general to repre-

sent a large class of problems of practical interest, and VARs and direct forecasts are the two

most commonly used forecasting strategies. Formal presentation of assumptions, corollaries

and proofs are reserved for the appendix. Here we sketch the main ideas.

Suppose the k-dimensional vector of weakly stationary variables yt has a possibly infinite

VAR representation given by

yt =m+
∞X
j=1

Ajyt−j + ut

whose statistical properties are collected in assumptions 1 and 2 in the appendix. Given this

DGP, one can either estimate a VAR(p), such as

yt = m+

pX
j=1

Ajyt−j +wt (8)

wt =
∞X

j=p+1

Ajyt−j + ut

from which forecasts can be constructed with standard available formulas (see, e.g. Hamilton,
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1994). Alternatively, forecasts could be constructed with a sequence of direct forecasts given

by

yt+h = mh +

p−1X
j=0

Ahjyt−j + vt+h (9)

vt+h =
∞X
j=p

Ahjyt−j + ut+h +
h−1X
j=1

Φjut+h−j for h = 1, ...,H

where Ah1 = Φh for h ≥ 1; Ahj = Φh−1Aj + A
h−1
j+1 for h ≥ 1;A0j+1 = 0;Φ0 = Ik; and j ≥ 1.

Let Γ (j) ≡ E
³
yty

0
t+j

´
with Γ (−j) = Γ (j)0 and define: Xt,p =

¡
1,y0t−1, ...,y0t−p

¢0
; bΓ1−p,h
kp+1×k

=

(T − p− h)−1PT
t=pXt,py

0
t+h; and bΓp

k(p+1)×k(p+1)
= (T − p− h)−1PT

t=pXt,pX
0
t,p. Then, the

least-squares estimate of the VAR(p) in expression (8) is given by the formula

bA (p)
k×kp+1

=
³ bm, bA1, ..., bAp´ = bΓ01−p,0bΓ−1p , (10)

whereas the coefficients of the mean-squared error linear predictor of yt+h based on yt, ...,yt−p+1

is given by the least-squares formula

bA (p, h)
k×kp+1

=
³ bmh, bAh1 , ..., bAhp´ = bΓ01−p,hbΓ−1p ; h = 1, ...,H. (11)

Then, corollary 1 in the appendix shows that the parameter estimates in expressions (10)

and (11) are consistent and asymptotically Gaussian.

Next, denote with yT (h) the forecast of the vector yT+h assuming the coefficients of the

infinite order process (16) were known, that is

yT (h) =m+
∞X
j=1

AjyT (h− j)
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where yT (h− j) = yT+h−j for h−j ≤ 0. Denote byT (h) the forecast that relies on coefficients
estimated from a sample of size T and based on a finite order VAR or direct forecasts,

respectively

byT (h) = bm+

pX
j=1

bAjbyT (h− j)
byT (h) = bmh +

p−1X
j=0

bAhjyT−j
where byT (h− j) = yT+h−j for h − j ≤ 0. To economize in notation, we do not introduce

a subscript that identifies how the forecast path was constructed as it should be obvious in

the context of the derivations we provide. Then, define the forecast path for h = 1, ...,H by

stacking each of the quantities byT (h) , yT (h) , and yT+h as follows

bYT (H)
kH×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
byT (1)
...

byT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ;YT (H)kH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT (1)

...

yT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; YT,HkH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT+1

...

yT+H

⎤⎥⎥⎥⎥⎥⎥⎦ .

Our interest is in finding the asymptotic distribution for bYT (H)−YT,H = hbYT (H)− YT (H)i
+ [YT (H)− YT,H ] .

It should be clear that [YT (H)− YT,H ] does not depend on the estimation method and

hence its mean-squared error can be easily verified to be

ΩH
kH×kH

≡ E £(YT (H)− YT,H) (YT (H)− YT,H)0¤ = Φ (IH ⊗ Σu)Φ0. (12)
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where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 ... 0

Φ1 Ik ... 0

...
... ...

...

Φh−1 Φh−2 ... Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, since the parameter estimates are based on a sample of size T and hence ut

for t = p + h, ..., T while the term YT (H) − YT,H only involves ut for T + 1, ..., T + H,

then it should be clear that to derive the asymptotic distribution of
hbYT (H)− YT (H)i ,

the asymptotic covariance of the forecast path will simply be the sum of the asymptotic

covariance for this term and the mean-squared error in expression (12) but the covariance

between these terms will be zero.

Corollary 1(a) and 1(b) in the appendix and the observation that bYT (H) is simply a
function of estimated parameters and predetermined variables is all we need to conclude

that

s
T − p−H

p
vec

³bYT (H)− YT (H)´ d→ N (0,ΨH) (13)

ΨH ≡
∂vec

³bYT (H)´
∂vec

³bA´ ΣA
∂vec

³bYT (H)´
∂vec

³bA´0
where ΣA is the covariance matrix for vec

³bA´ ; with bA = bA (p) for estimates from a VAR(p) ;
and for estimates from local projections
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bA =

⎡⎢⎢⎢⎢⎢⎢⎣
bA (p, 1)
...

bA (p,H)

⎤⎥⎥⎥⎥⎥⎥⎦ . (14)

Therefore, corollaries 2 and 3 in the appendix contain the analytic formulas that show thats
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗Σu)Φ0

were the specific analytic expression of ΨH depends on whether a VAR(p) or direct forecasts

are used. The appendix contains the specific formulae in each case.

5 Small Sample Monte Carlo Experiments

This section compares the probability coverage of traditional marginal error bands, bands

constructed with the Bonferroni procedure and Scheffé bands with a small-scale simulation

study. In setting up the data generating process (DGP) for the simulations, our objective

was to choose a forecasting exercise that would be representative of situations researchers

will likely encounter in practice. In addition and to avoid the arbitrary nature of parameter

choices and model specifications common to Monte Carlo experiments, we borrowed a well-

known empirical specification directly from the literature.

Stock and Watson’s (2001) well-cited review article on vector autoregressions (VARs)

seems like an appropriate choice then. The specification discussed therein examines a three-

variable system (inflation, measured by the chain-weighted GDP price index; unemployment,
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measured by the civilian unemployment rate; and the average federal funds rate) that is

observed quarterly over a sample beginning the first quarter of 1960 and that we extend to

the first quarter of 2007 (188 observations). Their VAR is estimated with four lags.

The DGP for our experiments is therefore constructed from this VAR specification as

follows. First, we estimate a VAR(4) on the sample of data just described except for the last

12 observations (3 years worth), which we save to do some out-of-sample exercises later on

(reported in figure 3). We collect the least-squares parameter estimates of the conditional

means and the residual covariance matrix to generate the simulated samples of data of size

T = 100, 400 (these are always initialized using the first four observations from the data for

consistency across runs). The smaller sample of 100 observations is approximately half of

the available estimation sample and given the number of parameters to be estimated, a good

representation of a relatively small sample with few degrees of freedom. The larger sample of

400 observations is approximately twice the size of the sample available for estimation and

hence, considerably closer to the theoretical asymptotic ideal. We constructed 1,000 Monte

Carlo replications of each sample size in this fashion.

In order to be as faithful as possible in replicating a typical practical environment, at

each replication the VAR’s lag length is determined empirically (rather than chosen to be its

true value of four) with the information criterion AICC — a correction to the traditional AIC,

specially designed for VARs by Hurvich and Tsai (1993).1 Next, each replication involves

estimating a VAR and direct forecasts by least-squares and hence generating appropriate

forecast error variances for forecast paths of varying length (specifically for H = 1, 4, 8, and

1 Hurvich and Tsai (1993) show that AICc has better small sample properties than AIC, SIC and other
common information criteria.
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12 or one quarter and one, two and three years ahead) that include forecast error uncertainty

as well as estimation error uncertainty as the previous section shows. Thus, each replication

produces two sets of estimates (VAR and direct forecasts) with which we construct traditional

marginal bands, Bonferroni bands and Scheffé bands; one and two standard deviations in

width (the traditional choices in the literature), which correspond approximately with 68%

and 95% probability coverage, respectively. These bands and forecasts are computed for each

of the three variables (inflation, the unemployment rate and the federal funds rate) in the

system and they are reported separately.

In order to assess the empirical coverage of these three sets of bands, we then generated

1,000 draws from the known model and multivariate distribution of the residuals in the DGP

and hence constructed 1,000 paths conditional on the last four observations in the data (since

the DGP is a VAR(4)). These conditioning observations are used to homogenize the analysis

in all the Monte Carlo runs and thus facilitate comparability.

The empirical coverage of each set of bands is then evaluated with two metrics. The first

metric looks at the proportion of paths that fall completely within the bands. For example,

a 12-period ahead forecast path in which, say, only one forecast out of the 12 fell outside

the bands, would be considered “not covered.” This type of metric controls the family-wise

error rate (FWER) as defined in, for example, Lehmann and Romano (2005).

The second metric constructs the value of the Wald statistic associated with the bands

and with each of the 1,000 predicted paths. Hence we compute the proportion of predicted

paths with Wald scores lower than those for the bands. Using the previous example of a 12-

period forecast path that had one element outside the bands, such a path would be counted
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as “covered” as long as its Wald score was lower than that for the bands. In other words,

this metric controls the size of the joint test directly rather than the FWER. Such metric is

related to control of the false discovery rate as defined in Benjamini and Hochberg (1995).

The results of these experiments are reported in tables 1 (for VAR-based forecasts ) and

2 (for direct forecasts) for forecast horizons H = 1, 4, 8, and 12; for each of the three variables

in the VAR (with mnemonics P for inflation, UN for the unemployment rate; and FF for the

federal funds rate). In addition, figure 3 displays what the three types of bands (marginal,

Bonferroni and Scheffé) look like for an out-of-sample, two-year ahead path forecast from

the VAR estimated with the actual data.

Before commenting on the results in the tables, it is useful to comment on figure 3 first.

For one-period ahead forecasts, all three bands attain the same value. However, as the

forecast horizon increases, Bonferroni and Scheffé bands fan out wider than marginal bands,

the former more conservatively than the latter although after three periods Scheffé bands

fan wider than Bonferroni bands.

From Tables 1 and 2, for one-period ahead forecasts (where the three methods coincide),

coverage rates are very close to nominal values even in small samples. However, as the

forecasting horizon increases, several important results emerge. The most evident is the

severely distorted coverage provided by marginal bands. In terms of FWER metric, the

empirical coverage is in the neighborhood of 15% for nominal coverage 68%. These distortions

are even more dramatic in terms of the simultaneous Wald metric, with empirical coverage

below 1% for H = 12 and nominal coverage 68%. At higher coverage levels (95%) the

distortions are less dramatic although still considerable (for H = 12, the FWER empirical
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coverage is around the mid-seventies although Wald coverage can sometimes be in the low

20’s%). Bonferroni’s procedure generates bands that are generally more conservative in terms

of FWER control across all forecast horizons and nominal coverage levels and with empirical

coverage close to 95% confidence levels even with H = 12. However, there are considerable

distortions in terms of simultaneous Wald coverage, with empirical levels around 40% for

68% nominal coverage and H = 12.

Scheffé bands are designed from a rectangular approximation to the Wald statistic and

hence provide the most accurate match between empirical and nominal coverage rates, at all

horizons, and at all confidence levels; yet the bands have small distortions in FWER metric,

usually within 10% of the corresponding nominal values, thus providing the best overall

balance between these two metrics and empirical coverage of all three methods (marginal,

Bonferroni and Scheffé). Finally, we did not observe significant differences in performance

between forecasts generated from VARs or from direct forecasts.

As a complement to these results, we experimented with a simple AR(1) model whose

autoregressive coefficient (ρ) was allowed to vary between 0.5 and 0.9. We did not consider

smaller values because at longer horizons the forecasts quickly revert to their unconditional

mean. For example, if ρ = 0.5 notice that ρ12 = 0.000244. Further, we isolated the effects

of parameter uncertainty, model misspecification, and other sources of model uncertainty to

focus exclusively on forecasting uncertainty generated from the arrival of shocks. Insofar as

the leading root of higher order processes often provides a good summary of its dynamic

properties, we felt that this small-scale set of experiments elucidates for practitioners vari-

ations in band coverage as a function of the persistence of the process considered. These
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results are reported in table 3 and use 1,000 Monte Carlo replications.

The simulations generally replicate the findings of the VAR examples considered above.

As one would expect, the more persistence, the more correlation among the elements of the

forecast path and the worse the coverage of the marginal bands (which are only approximately

correct when this correlation is zero). The same is true for Bonferroni bands although the

distortions are less severe (and at 95% confidence levels, often behave quite reasonably).

Predictably, the same situations that make marginal bands fail (high correlation among

elements of the forecast path), are the situations were correcting for this correlation pays-off.

Hence Scheffé bands tend to do considerably better the higher the value of ρ.

No Monte Carlo exercise is ever exhaustive of all the situations practitioners may en-

counter in practice. However, the results from our simulations clearly indicate that tradi-

tional marginal bands provide particularly poor coverage, the worse the more persistence in

the data. If interest is in controlling the FWER, Bonferroni bands work relatively well in

some cases but may provide poor coverage in terms of simultaneous Wald scores. In contrast,

Scheffé bands manage to strike a nice balance between FWER and simultaneous Wald con-

trol and their coverage is relatively robust to all sorts of coverage levels and forecast horizon

choices. In addition, they seem specially appropriate if one is interested in constructing fan

charts that accurately represent all depicted nominal coverage levels since either marginal or

Bonferroni bands can be quite a ways off when different nominal levels are considered.

6 A Macroeconomic Forecasting Exercise

On June 30, 2004, the Federal Open Market Committee (FOMC) raised the federal funds

rate (the U.S. key monetary policy rate) from 1% to 1.25% — a level it had not reached since
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interest rates were last changed from 1.5% to 1.25% on November 6, 2002. For more than

a year before the June 30, 2004 change, the Federal Reserve had kept the federal funds rate

fixed at 1%. This section examines forecasts of the U.S. economy on the eve of the first in a

series of interest rate increases that would culminate two years later, on June 29, 2006, with

the federal funds rate at 5.25%.

Our out-of-sample forecast exercise examines U.S. real GDP growth (in yearly percentage

terms, and seasonally adjusted); inflation (measured by the personal consumption expendi-

tures deflator, in yearly percentage terms, and seasonally adjusted); the federal funds rate;

and the 10 year Treasury Bond rate. All data are measured quarterly (with the federal funds

rate and the 10 year T-Bond rate averaged over the quarter) from 1953:II to 2006:II and

were the last two years are reserved for evaluation purposes only. With these data, we then

construct two-year (eight-quarters) ahead forecasts by direct forecasts. The lag length of the

projections was automatically selected to be six by AICC .

Figure 4 displays these forecasts along with the actual realizations of these economic

variables, conditional and marginal 95% confidence bands, and 95% Scheffé bands. Several

results deserve comment. First, the 95% Scheffé bands are more conservative and tend to fan

out as the forecast horizon increases but, over the two-year period examined, they tend to

be relatively close to the traditional 95% marginal bands (specially for U.S. GDP). Second,

the 95% conditional bands are considerably narrower in all cases but they are meant to

capture the uncertainty generated by that period’s shock, not the overall uncertainty of the

path. Third, our simple exercise results in projections for output and inflation that are more

optimistic than the actual data later displayed. As a consequence, our forecast for the federal
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funds rate is more aggressive (after two years we would have predicted the rate to be at 5.5%

instead of 5.25%) although the general pattern of interest rate increases is very similar. Not

surprisingly, the 10 year T-Bond rate is also predicted to be higher than it actually was

although consistent with a higher inflation premium.

At this point, a forecast report may include other experiments that allow the reader to

assess the internal coherence of the exercise. As an illustration, we experimented with the

alternative scenario that consists in choosing a more benign inflation path (perhaps because

the end of major military operations in Iraq portended more stability in oil markets would

be forthcoming or other factors that may be difficult to quantify within the model). Along

these lines, we experimented with a path of inflation that tracks the lower 95% conditional

confidence band so that inflation is predicted to be at 3.4% (rather than at 3.8%) after

two years. Of course, this is a completely arbitrary choice in that it is not based on any

information coming from the data. This is precisely the objective: to stress the forecasting

exercise locally along a direction that differs from that originally predicted but that does not

stray too far from it.

The results of this experiment are reported in figure 5. We remark that this alternative

path is very conservative: the Wald distance between the alternative and the original inflation

forecast path is 29% in probability units, suggesting that such an experiment is well within

the experience observed in the historical sample. In all cases, the exogeneity metric indicates

that the paths of output, the federal funds rate and the 10-year T-Bond rate are not exogenous

to variations in the path of inflation, as might have been expected a priori.

Interestingly, the forecasts obtained by conditioning on this alternative path for inflation
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are remarkably close to the actual data later observed. In particular, the path of predicted

increases in the federal funds rate is virtually identical to the actual path observed, whereas

the path of the 10 year T-Bond rate is mostly within the 95% conditional bands. The most

significant difference was a slight drop in output after one year to a 3% growth rate that

in the conditional exercise was predicted to be closer to 3.5%, but otherwise both paths

seem to reconnect at the end of the two year predictive horizon. Obviously, we are not

speculating that this alternative scenario reflected the Federal Reserve’s view on inflation at

the time — ours is not a statement about actual behavior. Rather, it serves to illustrate how

staff forecasters could have formally presented small-scale alternative assumptions about the

paths of some of the variables in the forecasting exercise and their effect on the predictions

made about the paths of other variables in the system.

7 Conclusions

Error bands around forecasts summarize the uncertainty the professional forecaster has about

his predictions and are an elementary tool of communication. When forecasts are generated

over a sequence of increasingly distant horizons — a path forecast — this paper shows that

error bands should be derived from the joint predictive density. The common practice of

building error bands from the marginal distribution of each point forecast does not provide

appropriate probability coverage; is a misleading representation of the set of possible paths

the predicted variable may take; and should therefore be abandoned.

This paper provides a satisfactory solution to the problem of graphically summarizing

the range of possible values a variable can take over time, given a finite sample of data and

a statistical model. This solution is based on an application of Scheffé’s (1953) S-method of
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simultaneous inference; the realization that the Cholesky decomposition orthogonalizes the

forecast path’s covariance matrix by projecting each forecast on to its immediate past; and

by applying a refinement based on Holm’s (1973) step-down testing procedure.

The result is a set of bands (that we call Scheffé bands) which balance the family-wise error

rate (the probability that one or more elements of the path will lie outside the bands) with

a measure of the false discovery rate based on the simultaneous Wald score (the probability

that, jointly, the elements of the path are “close” in probability distance units even if one

or more elements of the path are not strictly within the bands). Monte Carlo experiments

demonstrate that Scheffé bands provide approximately correct probability coverage under

either of these measures whereas marginal bands or bands based on Bonferroni’s procedure

fail in one or both metrics, sometimes quite substantially.

When path forecasts are reported for more than one variable, another way to evaluate the

properties of the forecasting exercise is to examine its internal consistency. The approximate

joint predictive density can be quite useful in this respect, even when forecasts are produced

from a variety of different methods. Thus, the coherence of the forecasting exercise can be

analyzed by examining alternative scenarios — a common feature in many forecast reports. To

ensure that the alternative scenarios do not stress the model over regions where the sample

provides no training, we provide a simple Wald score that measures the probability distance

to their conditional mean path. In addition, the Wald score can be used to measure the

sensitivity of each variable in the system to the proposed scenarios, thus providing another

metric to assess the results of the experiments with alternative scenarios.

The basic statistical principles discussed in this paper suggest a number of intriguing
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research directions. In a sequel to this paper, we investigate ways in which predictive ability

measures and statistics can be extended to path forecasts. It is well known that, relative to

simple specifications, more elaborate models tend to predict well in the short-run and poorly

in the long-run. Instead, we are interested in assessing a model’s performance with respect

to its ability to predict general dynamic patterns even at the cost of imprecision in specific

point forecasts. Hence, we are developing alternative measures to the commonly used MSFE

that integrate the correlation patterns in a path forecast, as well as tests of predictive ability

along the lines of Giacomini and White (2006) based on multivariate Wald scores.

8 Appendix

We begin by stating our assumptions on the DGP described in section 4 to which the reader

is referred for any doubts about the notation.

Assumption 1: Suppose the k-dimensional vector of weakly stationary variables, yt has

a Wold representation given by

yt = μ+
∞X
j=0

Φ0jut−j , (15)

where the moving-average coefficient matrices Φj are of dimension k×k, and we assume

that:

(i) E (ut) = 0; and ut are i.i.d. and Gaussian

(ii) E (utu0t) = Σu <∞.

(iii)
P∞
j=0 ||Φj || <∞ where ||Φj ||2 = tr

³
Φ0jΦj

´
is the equivalent of the Euclidean L2 norm

for matrices and Φ0 = Ik.

28



(iv) det {Φ (z)} 6= 0 for |z| ≤ 1 where Φ (z) =P∞
j=0Φjz

j .

Then the process in (15) can also be written as an infinite VAR process (see, e.g. Ander-

son, 1994),

yt =m+
∞X
j=1

Ajyt−j + ut (16)

such that,

(v)
P∞
j=1 ||Aj || <∞.

(vi) A (z) = Ik −
P∞
j=1Ajz

j = Φ (z)−1 .

(vii) det {A (z)} 6= 0 for |z| ≤ 1.

Assumption 1 includes the class of stationary vector autoregressive moving average,

VARMA(p, q) processes as a special case. Lewis and Reinsel (1985) derive conditions under

which a finite order VAR will provide consistent and asymptotically normal estimates of the

p original autoregressive coefficient matrices Aj in expression (16). We will use this result

momentarily and extend it for local projections when deriving the asymptotic distribution

of the forecast path. The i.i.d. assumption could be relaxed to allow for heteroskedasticity

so that the consistency and asymptotic normality results in Lewis and Reinsel (1985) are

derived with appropriate laws of large numbers and central limit theorems for martingale

difference sequences (m.d.s.) under more general mixing conditions. We refer the reader to

Gonçalves and Kilian (2007) and references therein for a discussion of these issues. The

most significant implication of allowing for these alternative, more flexible assumptions is

that a robust covariance estimator along the lines of White (1980) is advised. For now, we

29



prefer to trade-off some sophistication for clarity to illustrate the more important points we

discuss below. Similarly, the assumption of Gaussian errors could be relaxed, but then the

distribution of the forecast errors would no longer be Normal and should be obtained by

means of simulation methods, see e.g. Garratt et al. (2003).

Assumption 2: If {yt} satisfies conditions (i)-(vii) in assumption 1 and:

(i) E |uitujturtult| <∞ for 1≤ i, j, r, l ≤ k.

(ii) p is chosen as a function of T such that

p3

T
→ 0 as T, p→∞.

(iii) p is chosen as a function of T such that

p1/2
∞X

j=p+1

||Aj ||→ 0 as T, p→∞.

Then, a summary of results shown by Lewis and Reinsel (1985), Lütkepohl and Poskitt

(1991) and Jordà and Kozicki (2007) are contained in the following corollary.

Corollary 1 Given assumptions 1 and 2, the VAR(p) and pth order local projections are
consistent and asymptotically normal, specifically:

(a) bAj p→ Aj ; bAhj p→ Ahj and bAh1 p→ Φh.

(b)
q

T−p−h
p vec

³ bA (p)−A (p)´ d→ N (0,Σa) where Σa = Γ−1p ⊗ Σu

(c)
q
T−p−h

p vec
³ bA (p, h)−A (p, h)´ d→ N (0,Σα) where Σα = Γ

−1
p ⊗Ωh and Ωh = Φ (Ih ⊗ Σu)Φ0
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where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 ... 0

Φ1 Ik ... 0

...
... ...

...

Φh−1 Φh−2 ... Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) Let bu (p)t ≡ yt − bm−Pp

j=1
bAjyt−j so that bΣu (p) = (T − p)−1PT

t=1 bu (p)t bu (p)0t then
√
T
³bΣu (p)− Σu´ → N (0,ΩΣ) where ΩΣ is the covariance matrix of the residual

covariance matrix.

Several results deserve comment. Technically speaking, condition (ii) in assumption 2

is required for asymptotic normality but not for consistency, where the weaker condition

p2/T → 0, T, p→∞ is sufficient. Results (a)-(c) show that estimators of truncated models

are consistent and asymptotically normal. Result (d) is useful if one prefers to rotate the

vector of endogenous variables yt when providing structural interpretations for the forecast

exercise. Here though, we abstain of such interpretation and provide the result only for

completeness.

We find it convenient to momentarily alter the order of our derivations and begin by

examining forecasts from direct forecasts first, since these are linear functions of parameter

estimates and hence can be obtained in a straightforward manner.

First notice that bYT (H) = bAXT,p and hence
∂vec

³bYT (H)´
∂vec

³bA´ =
∂vec

³bAXt,p´
∂vec

³bA´ =
¡
X 0
T,p ⊗ IkH

¢
kH×k2Hp+kH

, (17)

which combined with corollary 1(c) results in

31



s
T − p−H

p

³
vec

³bA−A´´ d→ N (0,ΣA) (18)

ΣA
k2Hp+kH×k2Hp+kH

= Γ−1p ⊗ ΩH ; ΩH
kH×kH

= Φ (IH ⊗ Σu)Φ0

Putting together expressions (12), (13), (17) and (18), we arrive at the following corollary.

Corollary 2 Under assumptions 1 and 2 and expressions (13), (12), (17) and (18), the
asymptotic distribution of the forecast path generated with the local projections approach
described in assumption 1 iss

T − p−H
p

vec
³bYT (H)− YT,H´ d→ N (0;ΞH) (19)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗Σu)Φ0
ΨH = (X 0

T,p ⊗ IkH)
£
Γ−1p ⊗ ΩH

¤
(XT,p ⊗ IkH)

In practice, all population moments can be substituted by their conventional sample

counterparts.

We now return to the more involved derivation of the asymptotic distribution of the

forecast path when the forecasts are generated by the VAR(p) in expression (8). For this

purpose, we find it easier to work with each element of the vector bYT (H) individually, so
that we begin by examining the derivation of

s
T − p−H

p
vec (byT (h)− yT (h)) d→ N (0;Ψh,h)

Ψh,h =
∂vec (byT (h))
∂vec

³ bA (p)´Σa∂vec (byT (h))∂vec
³ bA (p)´

where we remind the reader that from corollary 1(b), Σa = Γ−1p ⊗Σu. In general, notice that
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Ψi,j =
∂vec (byT (i))
∂vec

³ bA (p)´Σa∂vec (byT (j))∂vec
³ bA (p)´

which is all we need to construct all the elements in the asymptotic covariance matrix of

bYT (H) , namely ΨH . An expression for byT (h) generated from the VAR(p) in expression (8)

can be obtained as

byT (h) = SBhXT,p
where B simply stacks the VAR(p) coefficients in companion form and S is a selector matrix,

both of which are

B
kp+1×kp+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ... 0 0

m A1 A2 ... Ap−1 Ap

0 Ik 0 ... 0 0

0 0 Ik ... 0 0

...
...

... ...
...

...

0 0 0 ... Ik 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S
k×kp+1

= ( 0
k×1
, Ik
k×k
, 0k
k×k
, ..., 0k

k×k
).

Therefore, notice that

∂vec (byT (h))
∂vec

³ bA (p)´ = ∂vec
¡
SBhXt,p

¢
∂vec

³ bA (p)´ =
h−1X
i=0

X 0
T,p(B

0)h−1−i ⊗Πi, Πi = SB
iS0.

The following corollary characterizes the asymptotic distribution of VAR(p) generated fore-

casts paths.
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Corollary 3 Under assumptions 1 and 2, the asymptotic distribution of the forecast pathbYT (H) generated from the VAR(p) in expression (8) is given bys
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH) (20)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0

Ψi,j =
p

T − p−H
i−1X
k=0

j−1X
s=0

E(X 0
T,p(B

0)i−1−kΓ−1p B
j−1−sXT,p)⊗ΠkΣuΠ0s

=
p

T − p−H
i−1X
k=0

j−1X
s=0

tr((B0)i−1−kΓ−1p B
j−1−sΓp)ΠkΣuΠ0s

In practice all moment matrices can be substituted by their sample counterparts as usual.
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Table 1. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Stock and Watson’s 
(2001) VAR(4). Forecasts Obtained with VARs 

Forecast Horizon: 1 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  67.5  67.5  67.5  67.5 67.5 67.5 93.8 93.8 93.8  93.8  93.8 93.8
  UN  69.5  69.5  69.5  69.5 69.5 69.5 95.8 95.8 95.8  95.8  95.8 95.8
  FF  68.4  68.4  68.4  68.4 68.4 68.4 94.6 94.6 94.6  94.6  94.6 94.6
T=400  P  66.9  66.9  66.9  66.9 66.9 66.9 93.6 93.6 93.6  93.6  93.6 93.6
  UN  69.7  69.7  69.7  69.7 69.7 69.7 96.0 96.0 96.0  96.0  96.0 96.0
  FF  67.8  67.8  67.8  67.8 67.8 67.8 94.2 94.2 94.2  94.2  94.2 94.2
Forecast Horizon: 4 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  32.8  78.7  58.4  20.5 70.2 67.1 85.6 95.9 92.8  80.3  95.0 95.4
  UN  43.6  82.4  63.8  15.3 60.8 67.5 88.1 96.5 93.8  72.0  90.8 94.1
  FF  37.0  79.7  61.0  15.8 65.3 68.0 86.4 95.8 93.7  76.1  92.5 94.6
T=400  P  29.8  76.7  56.7  21.5 73.0 67.0 83.9 95.5 92.4  82.9  96.8 96.6
  UN  43.8  83.2  64.2  15.4 62.2 68.6 88.7 97.2 94.2  73.0  91.9 95.1
  FF  36.3  79.5  60.8  15.3 65.8 68.3 86.4 96.1 93.4  76.4  92.9 94.9
Forecast Horizon: 8 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  16.7  81.8  56.2  1.5 50.4 63.1 78.7 95.8 91.8  43.9  86.6 93.7
  UN  27.9  84.9  63.2  2.1 58.6 65.7 82.0 96.6 93.7  52.0  91.3 95.6
  FF  24.4  84.0  63.0  1.9 50.8 66.1 80.9 96.3 93.6  44.0  87.4 95.4
T=400  P  13.5  79.9  54.5  1.4 52.5 65.4 77.0 95.7 91.8  45.7  90.6 96.4
  UN  27.6  85.8  63.8  1.9 60.2 67.8 82.8 97.2 94.2  53.0  93.4 96.9
  FF  23.5  84.7  62.9  1.8 50.3 68.1 81.4 96.7 93.8  43.1  89.2 96.9
Forecast Horizon: 12 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  12.4  84.2  57.2  0.2 37.3 61.7 74.2 96.2 91.9  21.5  77.5 92.8
  UN  19.1  85.7  62.1  0.4 66.3 66.1 77.0 96.4 92.3  46.6  93.7 96.1
  FF  15.7  85.0  62.4  0.1 39.9 64.9 76.2 96.4 93.1  22.2  81.3 95.4
T=400  P  9.1  83.3  55.5  0.1 37.0 65.8 72.5 96.6 92.2  19.9  81.4 96.0
  UN  18.2  86.4  63.1  0.2 71.2 69.4 77.2 97.0 93.3  49.7  96.8 97.7
  FF  14.8  85.9  62.5  0.1 40.0 68.4 77.2 97.5 93.6  21.3  84.7 97.7
Notes:  1,000 samples generated on which a VAR is fitted and whose order is selected automatically by AICC. Each 
estimated VAR on these 1,000 samples generates a forecast error variance (which includes estimation uncertainty) for 
the forecast path and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Hence 1,000 
forecast paths from the true DGP are generated and then compared with each set of 1,000 bands to determine the 
appropriate coverage rates. FWER stands for “family‐wise error rate” and simply computes the proportion of paths 
strictly inside the bands. WALD instead is the proportion of forecast paths whose joint Wald statistic relative to the 
forecast, attains a value that is lower than that implied by the Wald statistic for the bands.  
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Table 2. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Stock and Watson’s 
(2001) VAR(4). Forecasts Obtained by Direct Forecasts 

Forecast Horizon: 1 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  67.5  67.5  67.5  67.5 67.5 67.5 93.8 93.8 93.8  93.8  93.8 93.8
  UN  69.5  69.5  69.5  69.5 69.5 69.5 95.8 95.8 95.8  95.8  95.8 95.8
  FF  68.4  68.4  68.4  68.4 68.4 68.4 94.6 94.6 94.6  94.6  94.6 94.6
T=400  P  66.9  66.9  66.9  66.9 66.9 66.9 93.6 93.6 93.6  93.6  93.6 93.6
  UN  69.8  69.8  69.8  69.8 69.8 69.8 96.0 96.0 96.0  96.0  96.0 96.0
  FF  67.9  67.9  67.9  67.9 67.9 67.9 94.2 94.2 94.2  94.2  94.2 94.2
Forecast Horizon: 4 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  30.5  76.4  55.9  24.9 76.3 68.0 83.8 95.0 91.7  85.4  97.1 96.4
  UN  41.7  80.7  63.1  16.7 63.6 68.7 86.9 95.7 93.6  74.5  92.0 94.8
  FF  34.6  77.2  59.4  18.0 69.2 69.0 84.4 94.7 93.0  79.3  94.2 95.5
T=400  P  29.5  76.3  56.2  22.1 74.0 67.1 83.6 95.3 92.2  83.8  97.1 96.7
  UN  43.3  82.8  64.1  15.6 62.7 68.8 88.4 97.0 94.2  73.6  92.1 95.3
  FF  35.9  79.0  60.5  15.6 66.5 68.4 86.1 95.9 93.7  76.9  93.2 95.1
Forecast Horizon: 8 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  13.5  78.6  52.9  3.1 65.1 68.2 75.3 94.4 90.0  58.6  93.9 96.0
  UN  25.1  81.2  61.2  3.9 69.7 68.9 78.7 95.2 92.7  63.4  95.1 96.6
  FF  21.1  80.6  60.7  3.3 64.0 70.6 77.3 94.7 92.5  57.4  93.5 96.9
T=400  P  12.8  79.2  53.9  1.6 56.2 66.6 76.3 95.3 91.6  49.2  92.3 96.7
  UN  26.8  84.9  63.5  2.3 62.9 68.5 81.9 96.9 94.1  55.9  94.3 97.2
  FF  22.7  83.8  62.6  2.0 53.2 68.8 80.5 96.4 93.6  45.8  90.6 97.2
Forecast Horizon: 12 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  9.3  80.4  52.8  0.7 58.6 69.6 69.3 94.8 89.4  39.4  90.7 95.9
  UN  16.6  82.2  55.7  2.3 83.3 71.2 72.9 94.8 87.3  68.7  97.7 97.1
  FF  12.8  81.1  58.7  0.5 65.0 72.8 71.4 94.6 91.3  45.0  93.7 97.5
T=400  P  8.3  82.2  54.7  0.2 42.5 67.7 71.0 96.2 91.9  24.0  85.5 96.6
  UN  17.3  85.3  62.0  0.3 76.2 70.6 75.9 96.6 92.3  56.0  97.7 97.9
  FF  14.0  85.0  62.0  0.1 45.1 70.2 76.0 97.0 93.4  24.9  87.8 98.1
Notes:  1,000 samples generated on which local projections are fitted and whose order is selected automatically by AICC. 
From each of these 1,000 samples, one obtains the forecast error variance (which includes estimation uncertainty) for the 
forecast path and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Hence 1,000 forecast 
paths from the true DGP are generated and then compared with each set of 1,000 bands to determine the appropriate 
coverage rates. FWER stands for “family‐wise error rate” and simply computes the proportion of paths strictly inside the 
bands. WALD instead is the proportion of forecast paths whose joint Wald statistic relative to the forecast, attains a value 
that is lower than that implied by the Wald statistic for the bands. 
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Table 3. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Simple AR(1) Model 

Nominal Coverage Level: 68% 
  Horizon = 1  Horizon = 4 
FWER       
Marg.  68  67.5 67.8  68.5 68.2 27.3 28.3 28.1  34.2 33.2
Bonf.  68  67.5 67.8  68.5 68.2 73.8 77.3 75  79 77.8
Schef.  68  67.5 67.8 68.5 68.2 53 54.3 55.9 62.3 60.6 
WALD       
Marg.  68  67.5 67.8  68.5 68.2 26.3 24.7 20.5  20.6 15.5
Bonf.  68  67.5 67.8  68.5 68.2 83 79 72.6  69.1 61.8
Schef.  68  67.5 67.8 68.5 68.2 67.4 69.2 65.7  68.2 66.6

Nominal Coverage Level: 68% 
  Horizon = 8  Horizon = 12 
FWER       
Marg.  6.8  8.9  9.9  15.4 22.4 1.8 3.6 3.8  6.6 11.6
Bonf.  76.8  76  76.1  79.5 82.8 74.6 75.2 79.4  80.5 85.3
Schef.  42.3  49.6 52.3 59.8 59.3 33.3 42.2 53.4 59.5 59.5 
WALD       
Marg.  8.2  6.2  3.1  2.2 1 3.3 1.7 0.4  0.3 0.1
Bonf.  93  85.4 71.9  62.7 50.7 98 90.6 78  56.1 37.1
Schef.  69.4  68.4 65.9  68.3 69.2 69.2 67.2 69.6  68.5 69.9
 

Nominal Coverage Level: 95% 
  Horizon = 1  Horizon = 4 
FWER       
Marg.  94.7  94.8 95.3  96.2 94.4 82.6 85.9 84.1  86.7 84.2
Bonf.  94.7  94.8 95.3  96.2 94.4 95.2 95.5 95.9  96.6 95.5
Schef.  94.7  94.8 95.3 96.2 94.4 90.4 93.3 93.8 95.2 92.9 
WALD       
Marg.  94.7  94.8 95.3  96.2 94.4 91 87.7 83.3  80.2 74.9
Bonf.  94.7  94.8 95.3  96.2 94.4 99.3 97.9 96.8  96.5 93.1
Schef.  94.7  94.8 95.3 96.2 94.4 98.1 97.2 97  97.5 95.3

Nominal Coverage Level: 95% 
  Horizon = 8  Horizon = 12 
FWER       
Marg.  72.6  70.5 71.2  75 79.4 57.8 59.1 64  69.9 75.7
Bonf.  95.7  95.3 96  92.4 97.6 95.4 95.6 95.3  96.8 97.2
Schef.  87.7  91.7 92.2 95.9 95.2 80.2 87.5 92.2 92.3 93.9 
WALD       
Marg.  89.1  80.3 65.4  56.3 43.7 89.1 72.9 55.8  34.5 18.7
Bonf.  99.9  99.6 97.8  92.4 90 100 99.8 98.8  93.2 81
Schef.  98.6  98.4 97.8  95.9 97.2 99.6 98.4 98.3  97.3 97.3
Notes:  Theoretical values of the forecast error variance (excluding parameter estimation uncertainty) are used to 
construct three sets of bands (marginal, Bonferroni, and Scheffé). Then 1,000 Monte Carlo replications from the DGP are 
generated. FWER stands for “family‐wise error rate” and computes the proportion of paths inside the bands. WALD 
computes the Wald statistic for each path relative to its forecast and computes the proportion whose value is lower than 
the Wald statistic implied by the bands. 
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Figure 1 – 95% Scheffe bounds for AR(1) Forecast Path over Two Horizons 
 
Panel 1 – Standard confidence bands, confidence ellipse, and Scheffé Bounds 
 

 

 
 
Panel 2 – 95% Confidence Circle for Orthogonalized Forecast Path 
 

 
 

Notes: AR Coefficient = 0.75, Error Variance = 1 
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Figure 2 – Correlation pairs between  1,2,3,and 4step ahead forecast errors, 
AR(1) and ARMA(1,1) 
 
Panel 1 – AR model 

 
 
Panel 2 – ARMA(1,1) model, AR parameter = 0.75 

 
Notes: Panel 1 displays the correlation between forecast error pairs in an AR(1) 
model as a function of the AR parameter. Panel 2 displays the correlation between 
forecast error pairs of an ARMA(1,1) model as a function of the MA parameter with 
the AR parameter fixed at 0.75. 
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Figure 3. Stock and Watson (2001) OutofSample Forecasts, 8periods Ahead 
 

 
 
 
 
 
 
 
Notes: Out‐of‐sample forecasts for the Stock and Watson (2001) VAR.  Estimation 
sample 1960:I‐2004:IV. Prediction sample 2005:I‐2007:I. Predictions based on 
VAR(4). P stands for inflation (measured by the chain‐weighted GDP price index), 
UN stands for unemployment (measured by the civilian unemployment rate), and FF 
stands for federal funds rate (average over the quarter).   
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Figure 4. 95% Marginal, Scheffé and Conditional Error Bands and Forecast 
 

 
Notes: Estimation sample: 1953:II – 2004:II; out‐of‐sample forecast period: 2004:II 
– 2006:II 
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Figure 5. Forecasts Conditional on Alternative Inflation Path 
 

 
 
Notes: Estimation sample: 1953:II – 2004:II; out‐of‐sample forecast period: 2004:II 
– 2006:II Conditional bands shown for original forecast and for forecasts conditional 
on alternative inflation path 
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