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Abstract

The foundation of the New Keynesian Phillips curve is a model of price
setting with nominal rigidities which implies that the dynamics of inflation are
well explained by the evolution of real marginal costs. The objective of this pa-
per is to analyze whether this is a structurally-invariant relationship. To assess
this, we first estimate an unrestricted time-series model for inflation, unit labor
costs, and other variables, and present evidence that their joint dynamics are
well represented by a vector autoregression with drifting coefficients and volatil-
ities, as in Cogley and Sargent (2004). Then, following Sbordone (2002, 2003),
we apply a two-step minimum distance estimator to estimate deep parameters.
Taking as given estimates of the unrestricted VAR, we estimate parameters
of the NKPC by minimizing a quadratic function of the restrictions that the
theoretical model imposes on the reduced form. Our results suggest that it is
possible to reconcile a constant-parameter NKPC with the drifting-parameter
VAR, and therefore we argue that the price-setting model is structurally in-
variant.
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1 Introduction

Much of the modern analysis of inflation is based on the New Keynesian Phillips
curve, a model of price setting with nominal rigidities which implies that the dynamics
of inflation are well explained by the expected evolution of real marginal costs. A large
empirical literature has been devoted to estimating the parameters of this curve, both
as a single equation and in the context of general equilibrium models1. One point of
debate concerns whether the model can account for the persistence in inflation which
is detected in the data. A common view is that this is possible insofar as a large
enough backward-looking component is allowed. However, from a theoretical point
of view this is not too satisfactory, since dependence on past inflation is introduced
as an ad hoc feature.
Here we reconsider estimates of the New Keynesian Phillips curve in light of

recent evidence from reduced form analyses that show significant instability in the
parameters of the inflation process. In particular, Cogley and Sargent (2001, 2004)
use a vector autoregression model with random-walk coefficients to describe inflation-
unemployment dynamics in the U.S. and find strong evidence of coefficient drift. They
interpret this as a reflection of the process by which policymakers learn the true model
of the economy. A related debate has ensued on whether the more muted response of
inflation and output to monetary policy in the 90’s is due to a change in the conduct
of monetary policy or to a change in the size of the shocks; see Bernanke and Mihov
(1998), Stock and Watson (2002), Boivin and Giannoni (2002), and Sims and Zha
(2004), among others.2

The question we ask in this paper is whether the NKPC can be regarded as a
structural model of inflation dynamics in the sense of Lucas (1976), viz. whether
the deep parameters that govern the evolution of inflation are invariant to changes
in monetary policy rules, at least over the range experienced after World War II in
the U.S.3 Among other things, we investigate whether variation in trend inflation
alters estimates of key pricing parameters, how well a constant-parameter version
of the NKPC approximates the evolving law of motion for inflation, how the new
estimates alter the relative importance of forward- and backward-looking elements in
the NKPC, and how the new estimates accord with microeconomic evidence on price
changes.

1Among others: Gali and Gertler (1999), Sbordone (2002, 2003), Kurmann (2002), and Linde’
(2002) for the U.S., Batini et al. (2002) for the U.K., Gagnon and Khan (2003) for Canada,
Gali, Gertler and Lopez-Salido (2000) for the Euro area . For estimates in the context of general
equilibrium models see Smets and Wouters (2002), Christiano et al. (2003), and Edge et al. (2003).

2For example, Sims and Zha argue that there is very little evidence for regime switching in the
conditional mean parameters, but strong evidence for regime switching in structural disturbances.

3Our analysis does not address whether they are invariant to more extreme interventions. We
doubt, for example, that the pricing parameters we estimate from recent U.S. data would well
approximate hyperinflationary regimes.
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To address these questions, we consider an extension of the discrete-time Calvo
(1983) model of staggered price setting, with partial price indexation and strategic
complementarities, and consider the form of its approximate solution in the case of
non-zero steady-state inflation. This formulation allows us to consider the effects that
different policy regimes, which we associate with different levels of trend inflation,
have on the relationship between inflation and marginal costs.
Our approach to estimation follows Sbordone (2002, 2003) by exploiting the cross-

equation restrictions of the extended Calvo pricing model for a reduced form V AR.
The wrinkle is that in this paper the reduced form V AR has drifting parameters, as in
Cogley and Sargent (2004). The estimation is in two steps. In the first, we estimate an
unrestricted time series representation for the variables that drive inflation. This is a
time-varying V AR for inflation, the labor share, GDP growth, and the federal funds
rate (expressed on a discount basis), which is estimated as in Cogley and Sargent
(2004) with U.S. data from 1960:1 to 2003:4. Then we estimate deep parameters by
trying to satisfy the cross-equation restrictions implied by the theoretical model. If
we can reconcile a constant-parameter NKPC with the drifting-parameter VAR, we
say the price-setting model is structurally invariant.
Our estimates point to four conclusions. First, a constant-parameter version of

a generalized Calvo model can indeed be reconciled with a drifting-parameter V AR.
More than that, the model provides an excellent fit to the inflation gap. Second,
although there is some weak evidence of changes in the frequency of price adjustment
over time, the evidence falls short of statistical significance. Third, our estimates of
the backward-looking indexation parameter concentrate on zero, suggesting that a
purely forward-looking version of the model fits best. Finally, our estimates of the
frequency of price adjustment are not too far from those of Bils and Klenow (2004),
so the macro and micro evidence is in accord.
The paper is organized as follows. The next section derives the inflation dynamics

for an extended Calvo model and characterizes the cross-equation restrictions that
form the basis for the estimation. Section 3 describes the empirical methodology in
more detail, section 4 discusses evidence on parameter drift in the V AR, and section
5 estimates and assesses the structural parameters. Section 6 concludes.

2 A Calvo model with positive trend inflation

The typical inflation equation derived from the Calvo model is obtained as a log-
linear approximation to the equilibrium conditions around a steady state with zero
inflation. The model therefore has implications for small fluctuations around the
steady state (it links second moments of inflation and real marginal costs). Because
we want to investigate the behavior of the model across possibly different policy
regimes, and therefore want to allow for shifts in trend inflation, we consider a log-
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linear approximation to the equilibrium conditions around a non-zero level of inflation.
We show below that, unless there is perfect indexation of prices to the past level of
inflation, the Calvo dynamics are more complicated, and the pricing model also has
predictions for the long-run relationship between trend inflation and marginal cost.4

We start with the standard Calvo set-up of monopolistic competition and stag-
gered price setting. We denote by (1− α) the probability of setting price optimally,
with 0 < α < 1, and we allow the fraction α of firms that do not reoptimize to
partially index their price to the inflation level of the previous period. We denote by
( the indexation parameter, with ( � [0, 1]. Finally, we do not allow capital to be re-
allocated instantaneously across firms, and therefore take into account a discrepancy
between individual and aggregate marginal costs.
With these assumptions, the equilibrium condition of the price-setting firms is

0 = Et

∞X
j=0

αjRt,t+j (1)

×
(

jY
k=1

γy,t+k

jY
k=1

πθt+k

j−1Y
k=0

π
−((θ−1)
t+k

Ã
x1+θωt − θ

θ − 1st+j
jY

k=1

π1+θωt+k

j−1Y
k=0

π
−((1+θω)
t+k

!)
.

while the evolution of aggregate prices is described by5

1 =
h
(1− α)x1−θt + απ

((1−θ)
t−1 π

−(1−θ)
t

i 1
1−θ

. (2)

The notation is as follows: Xt is the relative price set by the representative optimizing
firm, and xt = Xt/Pt denotes its relative price; St is the aggregate nominal marginal
cost, and st = St/Pt denotes real marginal cost; Pt is the aggregate price level, and
πt = Pt/Pt−1 is the gross rate of inflation; γyt = Yt/Yt−1 is the gross rate of output
growth, and Rt,t+j is a nominal discount factor between time t and t+ j. In addition
to the parameters α and ( already introduced, θ is the Dixit-Stiglitz elasticity of
substitution among differentiated goods, and ω is the elasticity of marginal cost to
firms’ own output. The parameter ω enters the equilibrium condition (1) because
we assume firm-specific capital: this assumption implies that the marginal cost of
the optimizing firm differs from aggregate marginal cost by a function of its relative
price, weighted by θω.6

Evaluating these two conditions at a steady state with gross inflation rate π, we

4Few studies in the literature analyze the policy issues that arise in the context of the Calvo
model when one allows for trend inflation. See for ex. Bakhshi et al. (2003), Sahuc (2004) and
Ascari (2004).

5We provide the main results in the text, and some derivations in the appendix.
6The coefficient ω is particularly important because it affects whether there are strategic com-

plementarities in pricing (see Woodford 2003).
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get the following relationship between steady-state π and s:¡
1− απ(θ−1)(1−()

¢ 1+θω
1−θ

Ã
1− αRγyπ

1+θ(1−()(1+ω)

1− αRγyπ
θ−((θ−1)

!
= (1− α)

1+θω
1−θ

µ
θ

θ − 1

¶
s. (3)

Here we have defined by R the one-period steady-state discount factor and by γy the
steady-state growth rate of output.7

The extended Calvo equation is an approximate equilibrium condition obtained
by log-linearizing conditions (1) and (2) around a steady-state with inflation π and
then combining the results:

bπt = e(bπt−1 + ζbst + b1Etbπt+1 + b2Et

X∞

j=2
γj−11 bπt+j (4)

+χ (γ2 − γ1) (PR̂t
+ Pγ̂yt) + ut.

PR̂t
≡ Et

X∞

j=0
γj1 bRt+j,t+j+1, (5)

Pγ̂yt ≡ Et

X∞

j=0
γj1bγy,t+j+1.

With standard notation, hat variables denote log-deviations from steady state values;
i.e., for any variable xt, bxt = log(xt/x). We include an error term ut to account
for the fact that this equation is an approximation and to allow for other possible
misspecifications.
The coefficients of (4) are functions of the vector of structural parameters ψ =

[α eβ θ ( ω π]0, where eβ is the steady state value of a modified real discount
factor,8 and

e( ¡ψ¢ =
(

∆
,

ζ
¡
ψ
¢
=

1−αξ1
αξ1

1−γ2
1+θω

∆
,

b1
¡
ψ
¢
=

1−αξ1
αξ1

φ1 + γ2

∆
, (6)

b2
¡
ψ
¢
=

1−αξ1
αξ1

h
θ(1−(γ1)+(γ1

1+θω

i
(γ2 − γ1)

∆
,

χ
¡
ψ
¢
=

1−αξ1
αξ1

1
1+θω

∆
.

7As we explain in appendix A, equation (3) involves some additional conditions on α, (, θ, and
the steady-state values π̄, R̄, and γ̄y that are necessary in order that certain present values converge.
Our estimates always satisfy those conditions.

8The parameter eβ = qγy, where q is the steady state value of qt,t+j , a real discount factor between

period t and t+ j. Since q = Rπ, one can also write eβ = Rπγy.
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Intermediate symbols used here are

ξ1 = π(θ−1)(1−(),

ξ2 = πθ(1−()(1+ω),

γ1 = αeβξ1,
γ2 = αeβξ2, (7)

∆ = 1 + (γ2 −
1− αξ1
αξ1

φ0,

φ0 =
(θ (γ1 − (1 + ω) γ2)− (γ1

1 + θω
,

φ1 =
1

1 + θω
[γ2 (1 + θω) + (γ2 − γ1) (θ (1− (γ1) + (γ1)] .

Compared with the standard Calvo equation, obtained as an approximation around
a point with zero inflation (π = 1), relationship (4) includes, on the right-hand side,
further leads of expected inflation as well as expectations of output growth and the
discount rate far into the future. The standard Calvo equation emerges as a special
case of (4) when π = 1 (zero steady state inflation), or ( = 1 (perfect indexation). In
that case, ξ1 = ξ2 = 1, implying γ1 = γ2 = αeβ and causing the terms in bRt+j,t+j+1

and bγy,t+j to cancel out. The other coefficients collapse to those of the standard Calvo
equation,

e( ¡ψ¢ =
(

1 + (eβ ,
ζ
¡
ψ
¢
=

Ã
1− α

α

1− αeβ
1 + θω

!
1

1 + (eβ ,
b1
¡
ψ
¢
=

eβ
1 + (eβ , (8)

b2
¡
ψ
¢
= 0.

We may draw various implications from a comparison of the coefficients defined
in (6) with those defined in (8). For example, the presence of additional terms in
equation (4) may create an omitted-variable bias in the estimate of the coefficient
of marginal cost in the traditional Calvo equation, should the omitted terms be
correlated with the marginal cost term. We comment more on this comparison later.
Here we want to emphasize the fact that the response of inflation to current

marginal cost does vary with trend inflation. Indeed, none of the coefficients of the
generalized Calvo equation, as defined in (6), are time invariant when trend inflation
varies over time (provided ( 6= 1). But it could still be the case that the underlying
parameters of the Calvo model, α, (, and θ, are stable. These parameters govern
key behavioral attributes involving the frequency of price adjustment, the extent of
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indexation to past inflation, and the elasticity of demand. In the estimation discussed
below, we allow the parameters (6) to vary with trend inflation, and we explore the
time invariance of α, (, and θ. In particular, we evaluate whether it is still possible,
in an environment characterized by a changing level of trend inflation, to fit to the
data a Calvo model in which frequency of price adjustment, degree of indexation, and
elasticity of demand remain constant.

3 Empirical methodology

The previous section shows that, when derived as an approximate equilibrium
condition around a non-zero value for trend inflation, the generalized Calvo model
imposes restrictions on both the steady-state values and cyclical components of in-
flation and real marginal cost. These restrictions are encoded in equation (3) and
(4), respectively. In addition, the NKPC parameters are themselves functions of the
underlying parameters

ψ = [α eβ θ ( ω π]0, (9)

as shown in equation (6). In this section, we explain how to estimate elements of ψ
by exploiting conditions (3), (4), and (6). We are particularly interested in α, (, and
θ.9

Following Sbordone (2002, 2003), we adopt a two-step procedure for estimating
these parameters. First we fit a reduced-form V AR to summarize the dynamic prop-
erties of inflation, real marginal cost, and the other variables that enter the generalized
Calvo equation. Then we estimate α, (, and θ by exploiting the cross-equation restric-
tions that the extended Calvo model implies for the V AR. The chief difference from
Sbordone (2002, 2003) is that we model the reduced form as a time-varying V AR, in
order to allow for the possibility of structural breaks. The breaks are manifested as
changes in trend inflation, among other things, and our working hypothesis is that
they reflect changes in monetary policy.
To illustrate our methodology, we consider first the case where the reduced form

model is a V AR with constant parameters, and then show its extension to the case
of a random coefficients V AR model. Suppose the joint representation of the vector
time series xt =

¡
πt, st, Rt, γyt

¢0
is a V AR(p). Then, defining a vector zt = (xt,

xt−1, ..., xt−p+1)
0, we can write the law of motion of zt in companion form as

zt = µ+Azt−1 + εzt. (10)

From this process, we can express the conditional expectation of the inflation gap as

E (bπt|bzt−1) = e0πAbzt−1, (11)

9As we explain below, ω is calibrated, and eβt and πt are calculated from the reduced-form
estimates.
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where we use the notation ek for a selection vector that picks up variable k in vector
zt (ek is a column vector with 1 in the position corresponding to variable k, and zero
otherwise), and bzt = zt − µz, where µz = (I −A)−1µ.10.
The vector zt also contains all the other variables that drive inflation, so we can

use (10) to compute all the conditional expectations that appear on the right-hand
side of (4). Furthermore, we can obtain the conditional expectation of the inflation
gap according to the model, by projecting the whole right hand side of (4) on ẑt−1;
the resulting expression for the expected inflation gap contains by construction all the
restrictions of the theoretical model. Specifically, from expression (4), one obtains11

E (bπt|bzt−1) = e(e0πbzt−1 + ζe0sAbzt−1 + b1e
0
πA

2
t−1bzt−1 + b2e

0
πγ1(I − γ1A)

−1A3t−1bzt−1
+χ (γ2 − γ1) e

0
R (I − γ1A)

−1Abzt−1 (12)

+χ (γ2 − γ1) e
0
y(I − γ1A)

−1A2bzt−1.
Equating the right-hand sides of (11) and (12), and observing that the equality must
hold for any value of ẑt−1, we obtain a set of nonlinear cross-equation restrictions on
the companion matrix A,

e0πA = e(e0πI + ζe0sA+ b1e
0
πA

2 + b2e
0
πγ1(I − γ1A)

−1A3

+χ (γ2 − γ1) e
0
R (I − γ1A)

−1A (13)

+χ (γ2 − γ1) e
0
y(I − γ1A)

−1A2

The left-hand side of this equation follows from the conditional expectation of inflation
implied by the unrestricted reduced-form model, and it reflects relationships that
we estimate freely from the data. The right-hand side follows from the conditional
expectation implied by the model; it defines a function g(A,ψ) of the deep parameters
ψ and the parameters of the V AR. We then define the difference between the ‘data’
and the ‘model’ as

z1(µ,A, ψ) = e0πA− g(A,ψ). (14)

Furthermore, we use equation (3), which relates the steady-state values of inflation
and marginal cost, to define a second set of moment conditions,

z2(µ,A, ψ) =
¡
1− απ(θ−1)(1−()

¢ 1+θω
1−θ

Ã
1− αRγyπ

1+θ(1−()(1+ω)

1− αRγyπ
θ−((θ−1)

!
−(1− α)

1+θω
1−θ

µ
θ

θ − 1

¶
s,

(15)
where π̄ and s̄ are computed from the mean values of inflation and real marginal
cost, respectively, implied by the VAR. We consolidate the first- and second-moment
conditions by defining z (µ,A, ψ) = (z01 z02)0.
10This implies that bzt = Abzt−1 + εzt.
11See Appendix A. This expression is obtained by calculating all the expectations in (4) as con-

ditional expectations, given bzt−1, under the assumption that E (ut|bzt−1) = 0.
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If the model is true, there exists a ψ that satisfies z (·, ψ) = 0. Accordingly,
we estimate the free elements of ψ by searching for a value that makes z (ψ) as
small as possible, where ‘small’ is defined in terms of an unweighted sum-of-squares
z (·, ψ)0z (·, ψ) . Thus, we estimate ψ by solving an equally-weighted GMM problem,

min
ψ
z (·, ψ)0z (·, ψ) . (16)

In what follows, we implement this estimator with a time-varying V AR. With
drifting parameters, we modify the previous formulas by adding time subscripts to
the companion form,

zt = µt +Atzt−1 + εzt, (17)

and by appropriately redefining the function z as zt(·, ψ) to represent the restrictions
z(µt, At, ψ) at a particular date. After selecting a number of representative dates,
t = t1, ..., tn,

12 we stack the residuals from each date into a long vector

F(·) =
£
z0t1,z

0
t2
, ...,z0tn

¤0
. (18)

Then we estimate the parameters by minimizing the unweighted sum of squares F 0F .
We estimate two versions of the model, one in which we allow ψ to differ across

dates (i.e., in which case the restrictions are zt(·) = z(µt, At, ψt)), and another in
which we hold ψ constant (zt(·) = z(µt, At, ψ)). Our objective is to see whether the
data support the hypothesis that the parameters of the Calvo model are structurally
invariant, i.e., ψt = ψ.
Further details on the second-stage estimator are provided in section 5. Before

illustrating the results, however, we discuss the methodology by which we estimate a
time-varying V AR and report some evidence on parameter drift.

4 A VAR with drifting parameters

This section documents the time drifting nature of the joint process of inflation
and marginal costs. Under the hypothesis of a non-zero level of trend inflation, the
dynamics of inflation depend not only on the evolution of marginal costs, but also
on the evolution of output growth and the discount rate. We therefore estimate a
Bayesian vector autoregression with drifting coefficients and stochastic volatilities for
the log of gross inflation, log marginal cost, output growth, and a discount rate.
The methodology for estimating the reduced form follows Cogley and Sargent

(2004). We begin by writing the V AR as

xt = X 0
tϑt + εxt, (19)

12The problem would be too high-dimensional if we used all the dates.
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where ϑt denotes a vector of time-varying conditional mean parameters.
13 In the

companion-form notation used above, the matrix At refers to the autoregressive pa-
rameters in ϑt, and the vector µt includes the intercepts. As in Cogley and Sargent, ϑt
is assumed to evolve as a driftless random walk subject to reflecting barriers. Apart
from the reflecting barrier, ϑt evolves as

ϑt = ϑt−1 + vt. (20)

The innovation vt is normally distributed, with mean 0 and variance Q. Denoting by
ϑT the history of V AR parameters from date 1 to T ,

ϑT = [ϑ01, ..., ϑ
0
T ]
0
, (21)

the driftless random walk component is represented by a joint prior

f
¡
ϑT , Q

¢
= f

¡
ϑT |Q

¢
f (Q) = f (Q)

T−1Y
s=0

f (ϑs+1|ϑs, Q) . (22)

Associated with this is a marginal prior f(Q) that makes Q an inverse-Wishart vari-
ate.
The reflecting barrier is encoded in an indicator function, I(ϑT ) =

QT
s=1 I(ϑs). The

function I(ϑs) takes a value of 0 when the roots of the associated V AR polynomial
are inside the unit circle, and it is equal to 1 otherwise. This restriction truncates
and renormalizes the random walk prior,

p(ϑT , Q) ∝ I(ϑT )f(ϑT , Q). (23)

This represents a stability condition for the V AR, which rules out explosive repre-
sentations for the variables in question. Explosive representations might be useful
for modeling hyperinflationary economies, but we regard them as implausible for the
post World War II U.S.
To allow for stochastic volatility, we assume that the V AR innovations εxt can be

expressed as
εxt = V

1/2
t ξt

where ξt is a standard normal vector, which we assume to be independent of param-
eters innovation vt, E (ξtvs) = 0, for all t, s. We model Vt as

14

Vt = B−1HtB
−10 , (24)

13xt is a N × 1 vector of endogenous variables (N = 4 in our case), and X 0
t = IN ⊗

£
1 x0t−l

¤
,

with x0t−l denoting lagged values of xt.
14This is a multivariate version of the stochastic volatility model of Jacquier, Polson, and Rossi

(1994).
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where Ht is diagonal and B is lower triangular. The diagonal elements of Ht are
assumed to be independent, univariate stochastic volatilities that evolve as driftless
geometric random walks

lnhit = lnhit−1 + σiηit. (25)

The innovations ηit have a standard normal distribution, are independently dis-
tributed, and are assumed independent of innovations vt and ξt. The random walk
specification for hit is chosen to represent permanent shifts in innovation variance, as
those emphasized in the literature about the reduction in volatility in US economic
time series (see, for example, McConnell and Perez Quiros, 2000).15

We work with a V AR(2) representation, estimated using data from 1960.Q1
through 2003.Q4. Data from 1954.Q1-1959.Q4 were used to initialize the prior. The
posterior distribution for V AR parameters was simulated using Markov Chain Monte
Carlo methods. Appendix B sketches the simulation algorithm; for a more extensive
discussion, see Cogley and Sargent (2004).

4.1 The data

As noted above, the model depends on the joint behavior of four variables: in-
flation, real marginal cost, output growth, and a nominal discount factor. Inflation
is measured from the implicit GDP deflator, recorded in NIPA table 1.3.4. Output
growth is calculated using chain-weighted real GDP, expressed in 2000$, and season-
ally adjusted at an annual rate. This series is recorded in NIPA table 1.3.6. The
nominal discount factor is constructed by expressing the federal funds rate on a dis-
count basis. Federal funds data were downloaded from the Federal Reserve Economic
Database; they are monthly averages of daily figures and were converted to quarterly
values by point-sampling the middle month of each quarter.
That leaves real marginal cost. Under the hypothesis of Cobb-Douglas technology,

real marginal cost, s, is proportional to unit labor cost,

s = wH/(1− a)PY = (1− a)−1ulc, (26)

where 1− a is the output elasticity to hours of work in the production function.16 In
previous work, Sbordone (2002, 2003) used an index number constructed by the BLS
to measure unit labor cost in the non-farm business sector. That is fine for studying
gap relationships, because a change of units does not alter percent differences from a
steady state, but here we also exploit a restriction on s̄, and that requires expressing
s in its natural units.

15The factorization in (24) and the log specification in (25) guarantee that Vt is positive definite,
while the free parameters in B allow for correlation among the V AR innovations εxt. The matrix
B orthogonalizes εxt, but it is not an identification scheme.
16This follows from the fact that the marginal product of labor is proportional to the average

product.
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To construct such a measure, we compute an index of total compensation in the
non-farm business sector from BLS indices of nominal compensation and total hours
of work, then translate the result into dollars. Because we lack the right data for
the non-farm business sector, we perform the translation using data for private sector
labor compensation, which we obtained from table B28 of the Economic Report of the
President (2004). From that table, we calculated total labor compensation in dollars
for 2002;17 the number for that year comes to $4978.61 billion. The BLS compensation
index is then rescaled so that the new compensation series has that value in 2002.
A (log) measure of real unit labor costs ulc is then obtained by subtracting (log of)
nominal GDP from (log of) labor compensation. The correlation of this measure of
ulc with Sbordone’s original measure is 0.9979, so this is almost entirely just a change
in units. The new measure therefore accords very well with the one used in previous
work.
Finally, to transform the real unit labor cost (or labor share) into real marginal

cost, we subtract the log exponent on labor, (1− a) , which we set equal to 0.7. This
also pins down the strategic complementarity parameter ω, for in a model such as
this ω = a/(1−a). Since a is calibrated when constructing a measure of real marginal
cost, ω is no longer free for estimation.

4.2 Calibrating the Priors

Next we describe how the V AR priors are calibrated. As in Cogley and Sargent,
our guiding principle is to make the priors proper but weakly informative, so that
the posterior mainly reflects information in the data. Our settings follow theirs quite
closely. We begin by assuming that hyperparameters and initial states are indepen-
dent across blocks, so that the joint prior can be expressed as the product of marginal
priors. Then we separately calibrate each of the marginal priors.
Our prior for ϑ0 is

p(ϑ0) ∝ I(ϑ0)f(ϑ0) = I(ϑ0)N(ϑ̄, P̄ ), (27)

where the mean and variance of the Gaussian piece are set by estimating a time-
invariant vector autoregression using data from the training sample 1954.Q3-1959.Q4.
We set ϑ̄ equal to the point estimate from those regressions and the variance P̄ to
the asymptotic variance of that estimate.
For the innovation variance Q, we adopt an inverse-Wishart prior,

f(Q) = IW (Q̄−1, T0). (28)

17Column D of table B28 reports private wages and salaries in dollars; to that we add a fraction
from column G, supplements to wages and salaries. That fraction was calculated as the ratio of
private to total wages. This is an attempt to remove government from column G; the assumption is
that the ratio of private to total is the same for wages and salaries as for supplements.
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In order to minimize the weight of the prior, the degree-of-freedom parameter T0 is
set to the minimum for which the prior is proper,

T0 = dim(θt) + 1. (29)

To calibrate the scale matrix Q̄, we assume

Q̄ = γ2P̄ (30)

and set γ2 = 1.25e-04. This makes Q̄ comparable to the value used in Cogley and
Sargent (2004), adjusting for the increased dimension of this model.
The parameters governing stochastic-volatility priors are set as follows. The prior

for hi0 is log-normal,
f(lnhi0) = N(ln h̄i, 10), (31)

where h̄i is the initial estimate of the residual variance of variable i. A variance of 10
on a natural-log scale makes this weakly informative for hi0. The prior for b is also
normal with a large variance,

f(b) = N(0, 10000 · I3). (32)

Finally, the prior for σ2i is inverse gamma with a single degree of freedom,

f(σ2i ) = IG(
.012

2
,
1

2
). (33)

This also puts a heavy weight on sample information, for (33) does not possess finite
moments.

4.3 Evidence on parameter drift

With these priors, the posterior was simulated using the Markov Chain Monte
Carlo algorithm outlined in Appendix B. The variables were ordered as log γyt,
log st, log πt, Rt; exploring the sensitivity of our results to the ordering is left to
future research.

4.3.1 Structure of Drift in ϑt

For a first piece of evidence on drift in ϑt, we inspect the structure of the inno-
vation variance Q. Recall that this matrix governs the pattern and rate of drift in
the conditional mean parameters. Table 1 records the principle components of its
posterior mean.
Cogley and Sargent found that patterns of drift in ϑ were highly structured, with

Q having only a few non-zero principal components, and the same is true here. The
matrix Q is 36 × 36, but the posterior mean has only 4 or 5 significant principal
components. That means many linear combinations of ϑ are approximately time
invariant. In other words, there are stable and unstable subspaces of ϑ.

13



Table 1
Principal components of Q

Variance Cumulative Proportion of tr(Q)
PC 1 0.0554 0.637
PC 2 0.0132 0.789
PC 3 0.0065 0.864
PC 4 0.0057 0.930
PC 5 0.0016 0.947
PC 6 0.0011 0.961
PC 7 0.0010 0.972
PC 8 0.0007 0.980
PC 9 0.0005 0.985

This is also illustrated in figure 1, which portrays partial sums of the principal
component for ∆ϑt|T . It shows rotations of the mean V AR parameters, sorted by
degree of time variation. A few move around a lot, the rest are approximately constant
throughout the sample.
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Figure 1: Principal Components of ϑ

From the eigenvectors associated with the first 5 components no obvious pattern
or simple interpretation of the factors responsible for the variation in ϑ emerges.
Nevertheless, that the drift is structured is an intriguing clue about the source of
time variation, for it suggests that many components of a general equilibrium model
are likely to be invariant. If changes in monetary policy are indeed behind the drifting
components in ϑ, then many other features are likely to be structural. We are curious
whether Calvo-pricing parameters are among the invariant features.
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4.3.2 Trend Inflation and the Persistence of the Inflation Gap

Next we turn to evidence on trend inflation, ln π̄t, and the inflation gap, ln(πt/π̄t).
Trend inflation is estimated as in Cogley and Sargent by calculating a local-to-date t
estimate of mean inflation from the V AR,

lnπ̄t = e0π(I −At|T )
−1µt|T . (34)

The arrays µt|T and At|T denote posterior mean estimates of the intercepts and au-
toregressive parameters, respectively. Figure 2 portrays estimates of trend inflation,
shown as a red line, and compares it with actual inflation and mean inflation. The
latter are recorded in blue and green, respectively, and all are expressed at annual
rates
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Figure 2: Inflation, Mean Inflation, and Trend Inflation

Two features of the graph are relevant for what comes later. The first, of course,
is that trend inflation varies in our sample. We estimate that ln π̄t rose from 2.3
percent in the early 1960s to roughly 4.75 percent in the 1970s, then fell to around
1.65 percent at the end of the sample. A conventional Calvo model explains inflation
gaps, which are usually represented in terms of deviations from a constant mean,18

but if trend inflation varies, as the data suggest, the appropriate measure of inflation
gap is the deviation from its time-varying trend. Accordingly, we aim at modeling a
trend-based inflation gap.
The second feature concerns the degree of inflation gap persistence. How the

inflation gap is measured — whether as deviations from the mean or from a time-
varying trend — matters because that affects the degree of persistence. As the figure

18In general equilibrium, mean inflation is usually pinned down by the target in the central bank’s
policy rule.
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illustrates, the mean-based gap is more persistent than the trend-based measure.
Notice, for example, the long runs at the beginning, middle, and end of the sample
when inflation does not cross the mean. In contrast, inflation crosses the trend line
more often, especially after 1985. One of the puzzles in the literature concerns whether
conventional Calvo models can generate enough persistence to match mean-based
measures of the gap. A backward-looking element is often added to accomplish this.
Figure 2 makes us wonder whether this ‘excess persistence’ reflects an exaggeration of
the persistence of mean-based gaps rather than a deficiency of persistence in forward-
looking models. We comment more on this below.
The figure also suggests that the degree of persistence in the trend-based inflation

gap is not constant over the sample. For example, there are also long runs at the
beginning and the middle of the sample in which inflation does not cross the trend,
while there are many more crossings after 1985. This suggests a decrease in infla-
tion persistence after the Volcker disinflation. Indeed, the first-order autocorrelation
for the trend-based inflation gap is 0.75 prior to 1985 and 0.34 thereafter. Changes
in inflation persistence may also be part of the resolution of the persistence puz-
zle. For instance, the ‘excess persistence’ found in time-invariant models may have
disappeared from the data after the Volcker disinflation.
Figures 3a and 3b provide another measure of inflation persistence, showing the

normalized spectrum of inflation. This is calculated as in Cogley and Sargent (2004)
from a local-to-date t approximation to the spectrum for inflation. The normalized
spectrum is defined as

gππ(ω, t) =
2πfππ(ω, t)R π
−π fππ(ω, t)dω

, (35)

where fππ(ω, t) is the instantaneous power spectrum

fππ(ω, t) = e0π(I −At|Te
−iω)−1

Vt|T
2π
(I −At|Te

iω)−10eπ. (36)

Once again, the arrays At|T and Vt|T represent posterior means, which are calculated
by averaging across the Monte Carlo distribution. In figure 3a, time is plotted on
the x-axis, frequency on the y-axis, and power on the z-axis. Figure 3b reports slices
along the x-axis for three selected years.
With this normalization,19 a white noise process has a constant spectrum equal

to 1 at all frequencies. Relative to this benchmark, excess power at low frequencies
signifies positive autocorrelation or persistence, and deficient power at low frequencies
represents negative autocorrelation or anti-persistence. The spectra shown here all
have more power at low frequencies than a white noise variate, so there is always
positive persistence in the trend-based gap.

19Notice that we adopt a different normalization than in Cogley and Sargent (2004). Their
normalization makes a white noise spectrum equal to 1/2π at all frequencies.
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Figure 3a: Normalized Spectrum for Inflation
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Figure 3b: Normalized Spectrum (selected years)

What varies is the degree of persistence. The rise and fall in low-frequency power
signifies a changing degree of autocorrelation. To help interpret the figures, it is
convenient to compare them with an AR(1) benchmark, for which the normalized
spectrum at zero can be expressed in terms of the autoregressive parameter ρ,

g(0) = (1 + ρ)/(1− ρ). (37)

The normalized spectrum at zero was approximately 6 in the early 1960s, 14 in the late
1970s, and 8 in the 1990s and early 2000s. Those values correspond to autoregressive
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roots of 0.71, 0.87, and 0.78, respectively, or half-lives of 2.43, 5.20, and 3.12 quarters.
Thus, while there is some variation in inflation persistence, it is not too dramatic.20

5 Estimates of deep parameters

Next we turn to the deep parameters ψ = [α, eβ, θ, (, ω, π] that determine the
coefficients of the generalized Calvo equation (4). We estimate deep parameters by
searching for values which reconcile that equation with the reduced-form V AR.
We begin by noting that three elements of ψ are already determined by other

conditions. Trend inflation πt is estimated from the reduced-form V AR parameters.
The value corresponding to the i− th draw from the V AR posterior is 21

πt (i) = exp
³
e0π
£
I −At|T (i)

¤−1
µt|T (i)

´
where µt|T (i) and At|T (i) represent the i−th draw in the V AR posterior sample, and
i = 1, ..., NMC , where NMC is the total number of draws in the Monte Carlo sample.
The discount parameter eβ is also a byproduct of V AR estimation. Recall thateβ is defined as eβ = γyq = γyRπ, where γy is the steady-state gross rate of output

growth and R is the steady-state nominal discount factor. Since the latter are also
estimated from the V AR,

γyt (i) = exp
³
e0y
£
I −At|T (i)

¤−1
µt|T (i)

´
, (38)

Rt (i) = e0R
£
I −At|T (i)

¤−1
µt|T (i) ,

that fixes eβt (i) = γyt (i)Rt (i)πt (i) .
The third parameter that is set in advance is ω, which governs the extent of

strategic complementarity. This is pinned down by the condition ω = a/(1−a), where
1− a is the Cobb-Douglas labor elasticity. We calibrated a = 0.3 when transforming
labor share data into a measure of real marginal cost (see the data description above),
and that fixes ω = 0.429.
That leaves three free parameters, α, (, and θ, which we estimate, for every draw

ϑi, by trying to satisfy the cross-equation restrictions described above. Letting ψi =
[αi, (i, θi], these restrictions are:

z1t
¡
ψi, µt|T (i) , At|T (i)

¢
= e0π[I − b1tAt|T (i)− b2tγ1t(I − γ1tAt|T (i))

−1A2t|T (i)]At|T (i)

−e(te0πI − ζte
0
sAt|T (i)− χt (γ2t − γ1t) e

0
R(I − γ1tAt|T (i))

−1At|T (i)

−χt (γ2t − γ1t) e
0
y(I − γ1tAt|T (i))

−1A2t|T (i) , (39)

20The variation shown here is less pronounced than that reported by Cogley and Sargent, who
studied a VAR involving different variables.
21The V AR is estimated for the log of gross inflation, so the local-to-date-t approximation of the

mean refers to net inflation. We exponentiate to restore the original units.
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z2t
¡
ψi, µt|T (i) , At|T (i)

¢
= (1− απt (i)

(θ−1)(1−())
1+θω
1−θ

Ã
1− αRt (i) γyt (i)πt (i)

1+θ(1−()(1+ω)

1− αRt (i) γyt (i)π (i)
θ−((θ−1)

!

− (1− α)
1+θω
1−θ

µ
θ

θ − 1

¶
s (i)t , (40)

zt

¡
ψi, µt|T (i) , At|T (i)

¢
= [z1t (·)0 ,z2t (·)0]0. (41)

The parameters b1t, b2t, γ1t, γ1t,e(t, ζt, and χt in (39) are defined as in (6) with πt (i) , eβt (i) ,
and ω set in advance as described above. The moment conditions are indexed by t
because they depend on µt|T (i) and At|T (i) , which vary through time. Finally, the
steady-state value for real marginal cost is also calculated from V AR estimates, as
st (i) = exp(e

0
s(I −At|T (i))

−1µt|T (i)).
The moment condition zt (·) has dimension 1 +Np, where N = 4 is the number

of equations in the V AR and p = 2 is the number of lags. A complete set of moment
conditions for all dates in the sample would therefore have dimension T (1 + Np).
Because the sample spans 174 quarters, the complete set of moment conditions would
have more than 1500 elements for estimating 3 parameters. That is both intractable
and unnecessary. Accordingly, we simplify by selecting 5 representative quarters,
1961.Q3, 1978.Q3, 1983.Q3, 1995.Q3, and 2003.Q3, so that the moment conditions
reduce to

F(·) =

⎡⎢⎢⎢⎢⎣
z1961(·)
z1978(·)
z1983(·)
z1995(·)
z2003(·)

⎤⎥⎥⎥⎥⎦ . (42)

Our selection of quarters is motivated as follows. First, we wanted a relatively
small number of dates in order to manage the dimension of the GMM problem. We
also wanted to space the dates apart because V AR estimates of µt and At in adjacent
quarters are highly correlated, which would result in high correlation across time in
the moment conditions zt (·) . Highly correlated moment conditions would contribute
relatively little independent information for estimation and therefore would be close
to redundant.
Second, we wanted to span the variety of monetary experience in the sample.

Thus, we chose 1961 to represent the initial period of low and stable inflation prior
to the Great Inflation. The year 1978 represents the height of the Great Inflation,
when both trend inflation and the degree of persistence were close to their maxima.
The year 1983 represents the end of the Volcker disinflation, which we regard as
a key turning point in postwar US monetary history. This is a point of transition
between the high inflation of the 1970s and the period of stability that followed, and
expectations may have been unsettled at that time. The final two years, 1995 and
2003 are two points from the Greenspan era, a mature low-inflation environment.
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The first was chosen to represent the pre-emptive Greenspan, the second reflects his
more recent wait-and-see approach.
We emphasize that the dates were chosen based on a priori reflection and rea-

soning, before estimating deep parameters. Exploring the sensitivity of our results to
alternative selections would be interesting, provided one does not mine the data too
interactively along the way.
With the function F defined in (42), we estimate the vector of parameters ψ by

minimizing the unweighted sum of squares F 0F . As the notation of (39) and (40)
indicate, we estimate best-fitting values of ψ for every draw in the posterior sample
for the V AR, µt|T (i) and At|T (i). In this way, we obtain a distribution of estimates

ψi = argmin [F(·)0F(·)] , (43)

for i = 1, ..., NMC . where NMC is the number of draws in the Monte Carlo simulation
for the first-stage V AR. This allows us to assess how parameter uncertainty in the
first-stage V AR matters for estimates of deep parameters. We also we estimate best-
fitting values of ψ from the posterior mean of V AR estimates, µt|T and At|T .

22

In what follows, the median estimate of deep parameters from the distribution
(43) is always close to the best-fitting value derived from the posterior V AR mean,
but a distribution of estimates is helpful for appraising uncertainty. In effect, we
induce a probability distribution over ψi by applying a change of variables to the
distribution of V AR parameters. The numerical optimizer that we adopt starts from
the same initial conditions for each draw and contains no random search elements,
so (43) implicitly expresses a deterministic function that uniquely determines the
deep parameters as a function of the V AR parameters. Thus, a change-of-variables
interpretation is valid. It should be noted that the resulting distribution for ψi is not
a Bayesian posterior because it follows from the likelihood function for the reduced-
form model instead of the structural model. It is in fact a transformation of the
posterior for the reduced form parameters ϑ.23

We estimate two versions of the model, one in which the parameters in ψ are held
constant, and another where they are free to differ across dates. In both cases, their
values are constrained to lie in the economically meaningful ranges listed in table 2.24

Furthermore, we verify that the parameters satisfy the conditions for existence of a
steady state (the inequalities (57) in appendix A).

22These are defined as follows: µt|T =
1

NMC

PNMC

i µt|T (i) , and At|T =
1

NMC

PNMC

i At|T (i) .
23For another approach to this problem, see Hong Li (2004).
24We also considered estimates obtained by minimizing a weighted sum of squares F(·)0WF(·).

Using the estimates in (43), we calculate the moment condition errors and their covariance, VF .
The weighting matrix W is the inverse of that matrix, W = V −1F . Because these weighted estimates
do not lead to a gain in precision, based on the median absolute deviation, we report only the
unweighted estimates.
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Table 2

Admissible Range for Estimates

α ( θ
(0, 1) [0, 1] (1,∞)

5.1 NKPC with Constant Parameters

Estimates for the constant-parameter case are reported in table 3. Because the
distributions are non-normal, we focus on the median and median absolute deviation,
respectively, instead of the mean and the standard deviation. All three parameters
are economically sensible, the estimates accord well with microeconomic evidence,
and they are reasonably precise.

Table 3

Estimates when Calvo Parameters are Constant

α ( θ
@V AR mean
Median
Median Absolute Deviation

0.602
0.602
0.048

0
0
0

10.55
9.97
0.90

One especially interesting outcome concerns the indexation parameter, which we
estimate at ( = 0.25 This contrasts with much of the empirical literature based on
time-invariant models in which the indexation parameter is estimated as low as 0.2
and as high as 1, and is statistically significant.26 In those models, an important
backward-looking component is needed to fit inflation persistence, but that is not
the case here. From a purely statistical point of view, a positive coefficient on past
inflation may arise from an omitted-variable problem, since the omitted forward-
looking terms that belong to the model according to (4), but which are omitted from
estimators of standard Calvo models, may be positively correlated with past inflation.
Indeed, that is the case when inflation Granger-causes output growth and nominal
interest rate.

25To be more precise, 84.2 percent of the estimates lie exactly on the lower bound of 0. The mean
estimate is 0.022, and the standard deviation is 0.084. Only 3.3 percent of the estimates lie above
0.2.
26Sbordone (2003) estimates a ( ranging from 0.22 to 0.32, depending on the proxy chosen for

the marginal cost, in single equation estimates; Smets and Wouters (2002) in a general equilibrium
model, esimate a value of approximately 0.6. Giannoni andWoodford (2003) estimate a value close to
1. Other authors, following Gali and Gertler (1999), introduce a role for past inflation assuming the
presence of rule-of-thumb firms, instead of through indexation, and also find a significant coefficient
on lagged inflation.
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More substantially, we believe that allowing for a time-varying trend inflation in
the V AR reduces the persistence of the gap ln(πt/πt), making it easier to match the
data with a purely forward-looking model. In other words, our estimates point to
a story in which the need for a backward-looking term arises because of neglect of
time-variation in lnπt. That neglect creates artificially high inflation persistence in
time-invariant V ARs, and hence a ‘persistence puzzle’ for forward-looking models.
In a drifting-parameter environment, however, the inflation gap is less persistent, and
a purely forward-looking model is preferred.
Another interesting result concerns the fraction of sticky-price firms, which we

estimate at α = 0.602 per quarter. In conjunction with the estimate of ( = 0,
this implies a median duration of prices of 1.36 quarters, or 4.1 months,27 a value
consistent with microeconomic evidence on the frequency of price adjustment. Bils
and Klenow (2004), for example, report a median duration of prices of 4.4 months,
which increases to 5.5 months after removing sales price changes, which are only
temporary reversals. Our estimate from macroeconomic data therefore accords well
with the conclusions they draw from microeconomic data.
In contrast, Calvo specifications estimated from time-invariant V ARs that re-

quire a backward-looking indexation component are grossly inconsistent with their
evidence. When ( > 0, every firm changes price every quarter, some optimally re-
balancing marginal benefit and marginal cost, others mechanically marking up prices
in accordance with the indexation rule. Unless the optimal rebalancing happened to
result in a zero price change or lagged inflation were exactly zero, conditions that
are very unlikely, no firm would fail to adjust its nominal price. In a world such as
that, Bils and Klenow would not have found that 75 percent of prices remain un-
changed each month. We interpret this as additional evidence in support of a purely
forward-looking model.
Finally, the estimate of θ implies a steady state markup of about 11 percent,

which is in line with other estimates in the literature. For example, this is the
same order of magnitude as the markups that Basu (1996) and Basu and Kimball
(1997) estimate using sectoral data. With economy-wide data, in the context of
general equilibrium models, estimates range from around 6 to 23 percent, depending
on the type of frictions in the model. Rotemberg and Woodford (1997) estimate
a steady state markup of 15 percent (θ ≈ 7.8). Amato and Laubach (2003), in an
extended model which include also wage rigidity, estimate a steady-state markup
of 19 percent. Edge et al. (2003) find a slightly higher value, 22.7 percent (θ =
5.41). The estimates in Christiano et al. (2003) span a larger range, varying from
around 6.35 to 20 percent, depending on details of the model specification. All

27For a purely forward-looking Calvo model, the waiting time to the next price change can be
approximated as an exponential random variable (using a continuous approximation), and from that
one can calculate that the median waiting time is -ln(2)/ln(α). Note that the median waiting time
is less than the mean, because an exponential distribution has a long upper tail.
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the cited estimates on economy-wide data are obtained by matching theoretical and
empirical impulse response functions to monetary shocks. Although obtained through
a different estimation strategy, our markup estimate falls within the range found by
others.
The model is overidentified, with 3 free parameters to fit 45 elements in F (·) . To

test the overidentifying restrictions, we compute a J-statistic,

J = F
³bψ, µt|T , At|T

´0
V ar (F)−1F

³bψ, µt|T , At|T

´
, (44)

where bψ = hbα,b(,bθi represent the best-fitting values corresponding to the posterior
mean estimates of the V AR parameters, µt|T and At|T , and V ar (F) is the variance
of F(·), which we estimate from the sample variance of the moment conditions in the
cross section,

V ar (F) = N−1
MC

XNMC

i=1
F(ψi, µt|T (i) , At|T (i))F(ψi, µt|T (i) , At|T (i))

0. (45)

If F(·) were approximately normal, J would be approximately chi-square with 42
degrees of freedom.28 We calculate J = 22.2, which falls far short of the chi-square
critical value. Thus, taken at face value, the model’s overidentifying restrictions are
not rejected. One should take this with a grain of salt, however, because of the non-
normality of the distributions for ψi and F(ψi, ·). In any case, the J-statistic provides
no evidence against the over-identifying restrictions.
A complementary way of evaluating the model involves comparing the expected

inflation gap implied by the NKPC with the expected inflation gap estimated by
the unconstrained V AR, in the spirit of Campbell and Shiller’s (1987) exercise.29

The VAR inflation forecast is given by equation (11), while the NKPC forecast is
implicitly defined by the right-hand-side of equation (12), which defines the model’s
cross-equation restrictions. Thus, the distance between the two forecasts measures
the extent to which the cross-equation restrictions are violated. Figure 4 plots the
two series, showing VAR forecasts in blue and NKPC forecasts in red.
As the figure shows, NKPC forecasts closely track those of the unrestricted VAR.

The correlation between the two series is 0.979, and the deviations are small in
magnitude and represent high-frequency twists and turns. Thus the unrestricted
VAR satisfies the cross-equation restrictions implied by the NKPC.

28There are 45 moment conditions and 3 free parameters.
29We choose to compare inflation forecasts, since eq. (4) doesn’t have a unique solution for

inflation as a function of real marginal costs.
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Figure 4: VAR and NKPC Forecasts of Inflation

5.2 NKPC with Variable Parameters

Next we relax the constraint that α, ( and θ are constant across dates. When we
allow them to vary, we get the estimates recorded in table 4.

Table 4

Estimates when Calvo Parameters are Free to Vary

α ( θ

1961
@V AR mean
Median
Median Absolute Deviation

0.611
0.590
0.093

0
0
0

11.31
11.32
1.47

1978
@V AR mean
Median
Median Absolute Deviation

0.566
0.567
0.053

0
0
0

9.60
10.30
1.18

1983
@V AR mean
Median
Median Absolute Deviation

0.625
0.591
0.065

0
0
0

12.96
11.56
1.97

1995
@V AR mean
Median
Median Absolute Deviation

0.724
0.672
0.117

0
0
0

10.47
10.71
1.87

2003
@V AR mean
Median
Median Absolute Deviation

0.734
0.682
0.124

0
0
0

11.05
10.90
1.90
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Once again, we estimate ( = 0 at all the chosen dates. There is, however, some
variation in the fraction piling up at zero in various years. This amounted to 74
percent in 1961, 57.5 percent in 1978, 91.4 percent in 1983, 95.3 percent in 1995,
and 91 percent in 2003. Thus, support for a purely forward-looking specification is
strongest after the Volcker disinflation.
Similarly, the estimates of θ vary a little bit across years, but not a lot. The median

point estimates range from a low of 10.30 in 1978 to a high of 11.56 in 1983, values
that correspond to mark-ups of 10.8 and 9.5 percent, respectively. These estimates
of θ are slightly higher than the median estimate of 9.99 in the constant-parameter
version, but they are not dramatically higher.
The estimate of α, the fraction of sticky price firms, also varies slightly across

years. Interestingly, this parameter moves in the direction predicted by the New
Keynesian theory. For example, Ball, Mankiw, and Romer (1998) say that prices
should be more flexible when inflation is high and variable, and less flexible when it
is low and stable. Although movements in α are not large (or statistically significant),
that is what we find here. Judging by the median point estimates, prices were most
flexible (α was smallest) in 1978, when inflation was highest and most variable. For
that year, we estimate α = 0.567, which implies a median weighting time of 3.66
months to the next price adjustment, a value somewhat lower than what Bils and
Klenow estimate.30 Prices were least flexible (α was highest) during the Greenspan
era, when inflation was lowest and most stable. For 1995 and 2003, we estimate
α equal to 0.672 and 0.682, respectively, which implies a median price duration of
roughly 5.3 months. This is somewhat higher than Bils and Klenow’s unconditional
estimate, but it accords well with what they find after removing sales price changes
from their sample.
The next figure provides more detail about the time variation in the estimates.

This figures depicts histograms for each of the parameters in various years. The first
five rows portray the time-varying estimates, one row for each of the chosen years,
and the last row shows the constant-parameter estimates discussed above. Each
histogram portrays estimates of α, (, and θ for every draw of the V AR parameters in
the Monte Carlo simulation, that is, 5000 estimates at each date.
There is little evidence here of important time variation in ( or θ. For (, we

observe a pile up at zero in all years, as well as in the constant-parameter histogram.
The amount of mass at zero varies across years, as noted above, but still there is
little evidence of an important indexing or backward-looking component. Similarly,
the histograms for θ appear stable across dates, except perhaps for some hard-to-see
variation in the long upper tail.

30Their data extend back only to 1995, however, so no contradiction is necessarily implied.
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Figure 5 - Histograms for Calvo Parameters

There is slightly more evidence here of changes in α. The histograms for 1995 and
2003 clearly have a different shape than those for 1978 or 1983. Notice, for example,
how they are shifted to the right and more disperse than those in earlier years. On
the other hand, the histograms for various years also overlap a lot, so it is not clear
how strong is the evidence for changes in α.
To dig a bit deeper, we calculated the probability of an increase in α across pairs

of years. Recall that we have a panel of estimates αit, i = 1, ..., NMC , and t =1961,
1978, 1983, 1995, 2003. That is, for each of the 5000 sample paths of V AR estimates
in the Monte Carlo sample, we estimate five α’s, one for each of the chosen years. On
each sample path i, we can check whether α increased between various dates. The
fraction of sample paths on which α increased is the probability we seek.
Those calculations are reported in the next table. Each entry refers to the prob-

ability that α increased from the column date to the row date. For example, the
first row shows the probability of an increase between 1961 and 1978, 1961 and 1983,
and so on. Numbers smaller than 0.05 or larger than 0.95 may be taken as strong
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evidence of shifts in αt, with numbers close to zero indicating a significant fall in αt

and numbers close to 1 a significant increase.

Table 5

Probability of an Increase in αt

1978 1983 1995 2003
1961 0.438 0.532 0.681 0.686
1978 0.625 0.713 0.713
1983 0.663 0.660
1995 0.517

None of the values shown here are strongly significant. Many are not far from 0.5,
which says that α was just as likely to fall as to rise. The most significant movements
are between 1978 and 1995 or 2003, when we find that α increased on approximately
72 percent of the sample paths. This goes in the right direction, but it falls short of
attaining statistical significance at conventional levels. At best, this represents weak
evidence of a change in α. If a change did occur, our estimates detect only a vague
trace of it.
Table 6 reports analogous calculations for θ. Once again, most of the probabilities

are not too far from 0.5, suggesting little evidence of a systematic change.

Table 6

Probability of an Increase in θt
1978 1983 1995 2003

1961 0.335 0.526 0.440 0.458
1978 0.686 0.573 0.587
1983 0.441 0.452
1995 0.517

This result is not surprising. The parameter θ captures the degree of compet-
itiveness and is related to the desired level of mark-up, µ = θ/(θ − 1). Procyclical
variations in θ imply countercyclical variations in the desired mark-up, and vice versa,
and at a theoretical level, both a countercyclical and a procyclical mark-up can be
supported.31 At an empirical level, evidence for the U.S. favors countercyclical mark-
ups (Bils 1987), while evidence for the U.K. favors procyclical mark-ups (Small 1997).

31For example, the model of implicit collusion of Rotemberg and Woodford (1992) implies that
the mark-up is a positive function of the ratio of expected future profits to current output, while
the customer market model of Phelps and Winter (1970) implies the opposite sign.
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It is therefore plausible that variation in trend inflation does not affect the degree of
competitiveness one way or the other.32

Finally, in table 7, we provide an assessment of the probability that (t = 0 in
the various periods. Although the median estimate is always zero, the evidence for a
purely forward-looking specification is strongest after the Volcker disinflation.

Table 7
Probability (t = 0

1961 1978 1983 1995 2003
0.739 0.576 0.914 0.952 0.909

Overall, the estimates do not point strongly toward variation in α, (, and θ. Over
the range of monetary regimes experienced in our sample, the Calvo-pricing parame-
ters appear to be at least approximately invariant to shifts in policy rules. Accordingly,
we say the NKPC is structural for this class of policy interventions.

6 The effect of positive trend inflation

The traditional NKPC is obtained from an approximation around a steady state
with zero inflation. In contrast, we estimate a positive and time-varying level of trend
inflation in our VAR and approximate the local dynamics around that value. In this
section, we address how that alters the properties of the NKPC.
In figure 5, we show the implied coefficients of the Calvo model, computed as in

(6) using the median estimates of α, (, and θ. Dashed lines represent the conven-
tional approximation, which assumes zero trend inflation at all dates, and solid lines
represent our approximation, which estimates π̄t from the VAR.
The shape of the time-varying NKPC parameters is clearly dictated by the dy-

namics of trend inflation. The parameter ζ, which represents the weight on current
marginal cost, varies inversely with π̄, while the three forward-looking coefficients in
(4) vary directly. Thus, as trend inflation rises, the link between current marginal
cost and inflation is weakened, and the influence of forward-looking terms is enhanced.
This shift in price-setting behavior follows from the fact that positive trend inflation
accelerates the rate at which a firm’s relative price is eroded when it lacks an op-
portunity to reoptimize. This makes firms more sensitive to contingencies that may
prevail far in the future if their price remains stuck for some time. Thus, relative to
the conventional approximation, current costs matter less and anticipations matter
more.

32Khan and Moessner (2003) discuss the relation between competitiveness and trend inflation in
the New Keynesian Phillips Curve.
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Figure 5: NKPC Coefficients

Focusing more closely on the forward-looking coefficients, notice that two of the
new terms appearing in (4) — those involving forecasts of output growth and a nominal
discount factor — are multiplied by the coefficient χ(γ2−γ1). Figure 5 shows that this
coefficient is always close to zero,33 so those terms make a negligible contribution to
inflation. In fact, when we omit them from equation (4), NKPC expected inflation is
virtually the same as that for the complete model shown in figure 4. Thus, the terms
PRt and Pγyt are largely a nuisance and can be neglected without doing too much
violence to the theory.
What matters more is how trend inflation alters the coefficients on expected infla-

tion, b1 and b2. Figure 5 shows that b1 flips from slightly below 1 when trend inflation
is zero to around 1.05 or 1.1 for the values of π̄t that we estimate. Similarly, when
trend inflation is zero, b2 is also zero, and multi-step expectations of inflation drop out
of equation (4). Those higher-order expectations enter with coefficients of 0.02-0.04
when trend inflation is positive.
As Ascari and Ropele (2004) demonstrate, this shift is so strong that it threatens

the determinacy of equilibrium. When trend inflation is zero, we have b1 < 1 and
b2 = 0, so we can solve forward to express current inflation in terms of an expected
geometric distributed lead of real marginal cost, as in Sbordone (2002, 2003). With
positive trend inflation, we can express (4) as

Et

£
P (L−1)π̂t

¤
= Et(1− γ1L

−1)
h
ζbst + χ (γ2 − γ1) (PR̂t

+ Pγ̂yt) + ut
i
, (46)

where
P (L−1) = 1− (γ1 + b1)L

−1 + γ1(b1 − b2)L
−2, (47)

33This is because γ2 ' γ1.
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when ( = 0. This polynomial can be factored as

P (L−1) = (1− λ1L
−1)(1− λ2L

−1). (48)

Figure 6 portrays λ1 and λ2 and shows how they vary with trend inflation. The
dashed line also reproduces the value of b1 that occurs when trend inflation is zero.
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Figure 6: Factorization of P (L−1)

For our estimates of b1, b2, and γ1, we find λ1 < 1 but λ2 > 1, which means that a
non-explosive forward solution is not guaranteed for arbitrary driving processes. That
does not necessarily imply that inflation is indeterminate, for a nonexplosive forward
solution could still exist if ŝt+j converged to zero at a faster rate than λj2 diverged.
The rate of mean reversion in ŝt+j is a property of a general equilibrium, however, and
we cannot say much about it in the context of the limited information strategy that
we adopt in this paper. Suffice it to say that positive trend inflation diminishes the
weight on current marginal cost and increases the weight on future marginal cost, so
much so that determinacy of a forward solution is no longer guaranteed. Furthermore,
the threat arises even at the low levels of trend inflation experienced in the postwar
U.S.

7 Conclusion

In this paper, we address whether the Calvo model of inflation dynamics is struc-
tural in the sense of Lucas (1976). In particular, we examine whether its parameters
are invariant to shifts in trend inflation, which we associate with different policy
regimes.
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We first derive the Calvo model as an approximate equilibrium condition around
a non-zero steady-state inflation rate and show that its coefficients are nonlinear
combinations of deep parameters describing market structure, the pricing mechanism,
and trend inflation. We estimate deep parameters by exploiting the cross-equation
restrictions imposed by the model on a reduced form representation of the data.
We model the reduced form as a vector autoregression with time-varying parameters
and stochastic volatility, and then ask whether a Calvo-pricing model with constant
parameters can be fit to that time-varying reduced form.
We find that a constant-parameter version of the NKPC fits very well indeed,

closely tracking the VAR inflation gap. The estimates are precise, economically sen-
sible, and accord well with microeconomic evidence. In addition, when we allow
Calvo-pricing parameters to vary over time, we find little evidence of systematic
movements. Thus, the model appears to be structural for policy interventions that
may generate shifts in trend inflation of the magnitude of those in our sample.
One important insight that follows from our analysis concerns the importance of

backward-looking elements in the model. Our drifting-coefficient V AR suggests that
trend inflation has been historically quite variable. We believe that measures of the
inflation gap that ignore this drift show an artificially high level of persistence, forcing
a role for past inflation in the standard Calvo model. In contrast, we show that no
indexation or backward-looking component is needed to explain inflation once shifts
in trend inflation are properly taken into account. In other words, a purely forward-
looking version of the NKPC fits post WWII U.S. data very well.

A Appendix A: Derivation of the Calvo equation

with trend inflation

The fraction (1− α) of firms that can set prices optimally choose nominal price Xt

(which is not indexed by firms, since each firm that change prices solves the same prob-
lem) to maximize expected discounted future profitsΠt+j = Π(XtΨtj, Pt+j, Yt+j(i), Yt+j)

max
Xt

EtΣjα
j {Rt,t+jΠt+j} (49)

subject to their demand constraint

Yt+j(i) = Yt+j

µ
XtΨtj

Pt+j

¶−θ
. (50)

XtΨtj/Pt+j is the relative price of the firm at t+j; Rt,t+j is a nominal discount factor
between time t and t+ j; and Yt(i) is firms’ i output. The function Ψtj captures the
fact that individual firms prices that are not set optimally evolve according to

Pt(i) = π(t−1Pt−1(i), (51)

31



and it is therefore defined as

Ψtj =

½
1 j = 0,

Πj−1
k=0π

(
t+k j ≥ 1. (52)

The FOCs are

Et

∞X
j=0

αjRt,t+jYt+jP
θ
t+jX

−θ−1
t Ψ1−θ

tj

¡
(1− θ)Xt + θMCt+j,t (i)Ψ

−1
tj

¢
= 0. (53)

where MCt+j is the nominal marginal cost at t+ j of the firm that changes its price
at t. Dividing through by YtP

θ+1
t we can express the equilibrium condition in terms

of the (stationary) growth rate of Y, (γy,t = Yt/Yt−1), stationary gross inflation πt,

and stationary relative prices (xt =
Xt

Pt
). Furthermore, setting st+j,t (i) =

MCt+j,t(i)

Pt+j
,

and using the relation between firm’s marginal cost and average marginal cost

st+j,t (i) = st+jx
−θω
t

jY
k=1

πθωt+k

j−1Y
k=0

π−(θωt+k , (54)

we obtain expression (1) in the text.
In steady state, (1) is

x(1+θω) =
θ

θ − 1s
P∞

j=0

¡
αRγyπ

1+θ(1−()(1+ω)¢jP∞
j=0

¡
αRγyπ

(θ−((θ−1))¢j . (55)

If both αRγyπ
1+θ(1−()(1+ω) and αRγyπ

(θ−((θ−1)) are less than 1, the two infinite sums
converge, and we obtain

x(1+θω) =
θ

θ − 1

Ã
1− αRγyπ

θ−((θ−1)

1− αRγyπ
1+θ(1−()(1+ω)

!
s. (56)

The requirement that the two sums in (55) converge requires that trend inflation
must satisfy34

π <

Ã
1

αRγy

! 1
1+θ(1−()(1+ω)

and π <

Ã
1

αRγy

! 1
θ−((θ−1)

. (57)

Combining (56) with the aggregate price condition (2) evaluated at the steady state,

x =

µ
1− απ(θ−1)(1−()

1− α

¶ 1
1−θ

, (58)

34For any value of π,R, and γy, there exists values of the pricing parameters for which these
inequalities hold. For example, if trend inflation were very high, then α

.
= 0 might be needed to

satisfy these inequalities. But that makes good economic sense, for the higher is trend inflation the
more flexible prices are likely to be. Our estimates always satisfy these bounds.
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we get the relationship between steady state π and s:

¡
1− απ(θ−1)(1−()

¢ 1+θω
1−θ

Ã
1− αRγyπ

1+θ(1−()(1+ω)

1− αRγyπ
θ−((θ−1)

!
= (1− α)

1+θω
1−θ

µ
θ

θ − 1

¶
s. (59)

In the particular case of zero steady-state inflation (π = 1), or perfect indexation
(( = 1), the expression for the aggregate price level reduces to x = 1, hence, by (56),
s = θ−1

θ
.

The log-linearization of the optimal price equation (1) and of the aggregate price
evolution (2) around a steady state with inflation π are respectively

bxt =
1− αeβξ2
1 + θω

Et

∞X
j=0

³
αeβξ2´j (60)

×
ÃbRt,t+j + bst+j + jX

k=1

bγy,t+k + [1 + θ (1 + ω)]

jX
k=1

bπt+k − (θ (1 + ω)

j−1X
k=0

bπt+k!

−1− αeβξ1
1 + θω

Et

∞X
j=0

³
αeβξ1´j

ÃbRt,t+j +

jX
k=1

bγy,t+k + θ

jX
k=1

bπt+k − ((θ − 1)
j−1X
k=0

bπt+k! ,

and bxt = αξ1
1− αξ1

(bπt − (bπt−1), (61)

where the symbols are defined in (7) in the text.
Combining these two equations, simplifying the double sums, and collecting terms,

we obtain

bπt − (bπt−1 =
1− αξ1
αξ1

{ 1− γ2
1 + θω

∞X
j=1

γj2bst+j −µ(θ (1 + ω) γ2
1 + θω

− ( (θ − 1) γ1
1 + θω

¶bπt
+
1 + θ (1 + ω) (1− (γ2)

1 + θω

∞X
j=1

γj2Etbπt+j − [θ (1− (γ1) + (γ1]

1 + θω

∞X
j=1

γj1Etbπt+j
+

1

1 + θω

Ã
(1− γ2)

∞X
j=0

γj2Et
bRt,t+j − (1− γ1)

∞X
j=0

γj1Et
bRt,t+j

!

+
1

1 + θω

∞X
j=1

¡
γj2 − γj1

¢
Etbγy,t+j} (62)

where γ1 and γ2 are also defined in (7) in the text. Finally, we evaluate this expression
at t+1, multiply it by γ2, and subtract its expected value from (62). Collecting terms,
we obtain expression (4) in the text.
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B Appendix B: Simulating the Posterior Density

Collect the drifting parameters into an array

ΘT = [ϑT ,HT ], (63)

and let Ψ denote the static parameters Q, b = vec (B) , and σ = (σ1, ..., σN). The
posterior density,

p(ΘT ,Ψ |XT ), (64)

summarizes beliefs about the evolution of the drifting parameters and static hyperpa-
rameters. This posterior is simulated via the Markov Chain Monte Carlo algorithm
of Cogley and Sargent (2004). They demonstrate that

p(ΘT ,Ψ|XT ) ∝ I(ΘT )f(ΘT ,Ψ|XT ), (65)

where f(ΘT ,Ψ|XT ) is the posterior corresponding to the model that does not impose
the stability constraint which rules out explosive V AR roots. Therefore a sample from
p(ΘT ,Ψ|XT ) can be drawn by simulating f(ΘT ,Ψ|XT ) and discarding realizations
that violate the stability constraint. They also develop a ‘Metropolis within Gibbs’
algorithm for simulating f(ΘT ,Ψ|XT ) that involves cycling through 5 steps.

1. Sample ϑT from f
¡
ϑT |XT ,HT , Q, σ, b

¢
using the forward-filtering, backward-

sampling algorithm of Carter and Kohn (1994). This step relies on the Kalman
filter and a recursion analogous to the Kalman smoother to update conditional
means and variances.

2. SampleQ from f
¡
Q|XT , ϑT , HT , σ, b

¢
. This is a standard inverse-Wishart prob-

lem.

3. Sample HT by cycling through a number of univariate Metropolis chains for
f
¡
hit|h−it,XT , ϑT , σi

¢
, where h−it denotes the rest of the hit vector at dates

other than t. This step exploits the stochastic volatility algorithm of Jacquier,
Polson, and Rossi (1994).

4. Sample σ from f
¡
σ|XT , ϑT ,HT , Q, b

¢
. This is a standard draw from an inverse-

gamma density.

5. Sample b from f
¡
b|XT , ϑT , HT , Q, σ

¢
. This is a Bayesian regression, and it is

also standard.

The sequence of draws from the conditional submodels forms a Markov Chain
that converges to a draw from the joint density, f(ΘT ,Ψ|XT ). The sample from the
unrestricted model can then be transformed into a sample from the restricted model,
p(ΘT ,Ψ|XT ), via rejection sampling. Details of each step and a justification for
rejection sampling can be found in the appendices to Cogley and Sargent (2004).

34



References

[1] Amato, J. and T. Laubach, 2003. Estimation and control of an optimization-
based model with sticky prices and wages, Journal of Economic Dynamics and
Control 27, 1181-1215.

[2] Ascari, G., 2004. Staggered prices and trend inflation: some nuisances, Review
of Economic Dynamics 7, 642-667.

[3] Ascari, G. and T. Ropele, 2004. Monetary policy under low trend inflation,
unpublished.

[4] Ball, L., N.G. Mankiw and D. Romer, 1988. The new Keynesian macroeconomics
and the output-inflation trade-off, Brookings Papers on Economic Activity 1, 1-
65.

[5] Bakhshi, H., P. Burriel-Llombart, H. Khan and B. Rudolf, 2003. Endogenous
price stickiness, trend inflation and the new Keynesian Phillips curve, Bank of
England working paper no. 191.

[6] Basu, S., 1996. Procyclical productivity: increasing returns or cyclical utiliza-
tion?, Quarterly Journal of Economics CXI, 719-751.

[7] Basu, S. and M. Kimball, 1997. Cyclical productivity with unobserved input
variation, NBER working paper no. 5915.

[8] Batini, N., B. Jackson and S. Nickell, 2002. An open-economy new Keynesian
Phillips curve for the UK, forthcoming, Journal of Monetary Economics.

[9] Bernanke, B. and I. Mihov, 1998. Measuring monetary policy, Quarterly Journal
of Economics CXIII, 869-902.

[10] Bils, M., 1987. The cyclical behavior of price and marginal cost, American Eco-
nomic Review 77, 838-855.

[11] Bils, M. and P.J. Klenow, 2004. Some evidence on the importance of sticky
prices, Journal of Political Economy 112, 947-985.

[12] Boivin, J. and M. Giannoni, 2003. Has monetary policy become more effective?
NBER working paper no. 9459.

[13] Calvo, G., 1983. Staggered prices in a utility-maximizing framework, Journal of
Monetary Economics 12, 383-398.

[14] Campbell, J.Y. and R.J. Shiller, 1987. Cointegration and tests of present value
models, Journal of Political Economy 95, 1062-1088.

35



[15] Carter, C.K. and R. Kohn, 1994, On Gibbs sampling for state-space models,
Biometrika 81, 541-553.

[16] Christiano, L., M. Eichenbaum, and C. Evans, 2003. Nominal rigidities and the
dynamic effects of a shock to monetary policy, forthcoming Journal of Political
Economy.

[17] Cogley, T. and T. J. Sargent, 2001. Evolving post-World War II U.S. inflation
dynamics NBER Macroeconomics Annual , vol. 16.

[18] –––- , 2004. Drifts and volatilities: monetary policies and outcomes in the
post WWII U.S., forthcoming Review of Economic Dynamics.

[19] Economic Report of the President 2004. United States Government Printing
Office, Washington DC.

[20] Edge, R.M., T. Laubach, and J.C. Williams, 2003. The response of wages and
prices to technology shocks, Federal Reserve Board Finance and Economics Dis-
cussion Series 2004-65.

[21] Gagnon, E. and H. Khan, 2003. New Phillips curve under alternative production
technologies for Canada, the United States, and the Euro area, forthcoming,
European Economic Review.

[22] Gali, J. and M. Gertler, 1999. Inflation dynamics: A structural econometric
analysis, Journal of Monetary Economics 44, 195-222.

[23] Gali, J., M. Gertler, and J.D. Lopez-Salido, 2000. European inflation dynamics,
European Economic Review 47, 1237-1270.

[24] Giannoni, M. and M. Woodford, 2003. Optimal inflation targeting rules, in B.
Bernanke and M. Woodford, eds. Inflation Targeting, Chicago: University of
Chicago Press.

[25] Jacquier, E., N.G. Polson, and P. Rossi, 1994. Bayesian analysis of stochastic
volatility models, Journal of Business and Economic Statistics 12, 371-418.

[26] Khan, H. and R. Moessner, 2003. Competitiveness, inflation and monetary pol-
icy, manuscript, Bank of England.

[27] Kurmann, A., 2003. Quantifying the uncertainty about a forward-looking new
Keynesian pricing model, forthcoming, Journal of Monetary Economics.

[28] Li, H., 2004. Estimation and testing of Euler equation models with time-varying
reduced-form coefficients, unpublished.

36



[29] Linde’, J. 2003. Estimating new-Keynesian Phillips curves: a full information
maximum likelihood approach, unpublished.

[30] Lucas, R.E., Jr. 1976. Econometric policy evaluation: a critique,” in The Phillips
Curve and Labor Markets, edited by K. Brunner and A. Meltzer, Carnegie-
Rochester Series on Public Policy, vol. 1.

[31] McConnell, M. and G. Perez Quiros, 2000. Output fluctuations in the United
States: what has changed since the early ‘80s? American Economic Review 90,
1464-1476.

[32] Phelps, E.S. and S.G. Winter, 1970. Optimal price policy under atomistic com-
petition, in E.S. Phelps et al., Microeconomic Foundations of Employment and
Inflation Theory, Norton, New York.

[33] Rotemberg, J.J. and M. Woodford, 1992. Oligopolistic pricing and the effect
of aggregate demand on economic Activity, Journal of Political Economy 100,
1153-1207.

[34] Rotemberg, J.J. and M. Woodford, 1997. An Optimization-based econometric
framework for the evaluation of monetary policy, in B. Bernanke and J.J. Rotem-
berg, NBER Macroeconomics Annual, MIT press, Cambridge, pp. 297-346.

[35] Sahuc, J., 2004. Partial indexation, trend inflation, and the hybrid Phillips curve,
unpublished.

[36] Sbordone, A.M., 2002. Price and unit labor costs: a new test of price stickiness,
Journal of Monetary Economics 49, 265-292.

[37] Sbordone, A.M., 2003. A limited information approach to the simultaneous es-
timation of wage and price dynamics, Rutgers University, working paper no.
2003-23.

[38] Sims, C. and T. Zha, 2004. Were there regime switches in U.S. monetary policy?,
unpublished.

[39] Small, I., 1997. The cylicality of mark-ups and profit margins: some evidence for
manufacturing and services, Bank of England working paper no. 72.

[40] Smets, F. and R. Wouters, 2002. Sources of business cycle fluctuations in the
U.S.: a Bayesian DSGE approach, unpublished.

[41] Stock, James H. and Mark W. Watson, 2002, Has the business cycle changed
and why? NBER Macroeconomics Annual 17, 159-218.

37



[42] Woodford, M., 2003. Interest & Prices: Foundations of a Theory of Monetary
Policy, Princeton University Press: Princeton NJ.

38


