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Inter-State Dynamics of Invention Activities, 1930–2000

Abstract

We study the dynamics of the cross-section distribution of patents per capita for the

48 continental U.S. states from 1930 to 2000 using a discrete-state Markov chain.

We test for and find evidence in favor of the (knowledge) convergence hypothesis

as we find that the distribution of patents is converging to a limiting distribution

that is significantly more concentrated than its initial distribution. States in the

extreme are more mobile and are more likely to move to the middle than states

in the middle of the cross-sectional distribution and the rate of convergence to the

limiting distribution is “slow.”
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1 Introduction and Background

Knowledge is assumed to flow instantly between economies in neoclassical growth theory.

If technology gaps exist initially, they will close very quickly. That is, if convergence tests

on knowledge rates (e.g., patenting rates) are conducted, unequivocal evidence in favor

of knowledge convergence would be found (See Caniëls (2000) for a review). Several

papers have studied the temporal and spatial evolution of knowledge rates using U.S.

patent data and have found evidence consistent with knowledge convergence.1 Those

that formally test whether patent activities have converged use a cross-section approach

(β-convergence), a time series approach (stochastic convergence), or a combination of

both.2

Although previous studies have contributed to our understanding of the conver-

gence of patent activities, their econometric methodologies have some shortcomings. For

example, β-convergence tests use cross-section data and Quah (1993b, p.429) points out

that a negative coefficient on initial income levels when cross-section data is used is

“perfectly consistent with the absence of convergence....” Hence, cross-section tests are

“ill-designed to analyze data where some [regions] are converging and others are not.”

(Bernard and Durlauf (1996, p.167)) Time series tests (i.e., unit root tests), on the other

hand, have low power so that they tend to lead to under rejection of the unit root null

hypothesis. That is, they are biased against convergence. One major limitation common

to both cross-section and time-series approaches is that they do not account for cross-

economy relationships. As Quah (1996, p. 147) points out, “estimating individual time

1See, e.g., Schmookler (1966), Sokoloff (1988), Varga (1999), Suarez-Villa (2000), Co (2002), Johnson
and Brown (2002), and Co and Wohar (2004).

2For example, Co (2002) studies the evolution of invention activities in the 48 continental U.S. states
between 1963 and 1997 using “industry” level data, and finds that within any given industry, states
with low initial patent per capita values grow faster than those with high initial per capita values (β-
convergence), implying catch-up by initially lagging states. However, according to Carlino and Mills
(1993), convergence requires both β-convergence and stochastic convergence. Stochastic convergence
suggests that shocks to relative patent per capita are temporary. Using Carlino and Mills (1993)’s
definition of convergence, Co and Wohar (2004) find that part of the U.S. is converging (in the β- and
stochastic sense) using unit root tests.
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series models one for each state, say, to permit differences across Maine and Oklahoma

(e.g., Carlino and Mills (1993)) leaves undetected the co-movements across states.”

In order to overcome the above mentioned shortcomings, Quah (1993a, 1993b)

emphasizes the importance of studying the dynamics of the cross-section distribution of

a relevant economic variable such as income per capita. He argues that the behavior of

the cross-section distribution of a relevant variable over time is more informative and

convergence requires a narrowing cross-sectional distribution. Following Quah’s sugges-

tions, we study the dynamics of the cross-section distribution of patents per capita for the

48 continental U.S. states from 1930 to 2000 applying Bayesian techniques to a discrete

state Markov chain model.3

Figure 1: Cross-Sectional Distribution of Patents per Capita: Deviations from the Mean

1930 1950 1970 1990
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

lo
g 

pa
te

nt
s 

pe
r c

ap
ita

 d
ev

ia
tio

ns

Year

Figure 1 provides a quick overview of the cross-section distribution of log patent

3This paper also contributes to the debate on per capita income convergence since convergence (non-
convergence) of inventive activities among U.S. states will promote the convergence (non-convergence)
of per capita income among these areas.
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per capita deviations for four years (1930, 1950, 1970 and 1990).4 For each year, the

“box” represents the interquartile range while the “dotted” line represents the median

of the data across the 48 states in our sample for that year. The “whiskers” of the

boxplot depict the minimum and maximum observation for that year. It is clear from

this figure that the distribution of log patents per capita, around its mean, is becoming

more concentrated as time progresses. Evidence of this can be seen in the fact that the

interquartile range (the length of the solid “box”) is getting smaller over time.

While this is suggestive of convergence, we employ formal testing strategies to

examine whether invention activities across U.S. states are converging. In this paper we

discuss two forms of convergence. First, we test for σ-convergence.5 That is, we test to

see whether the cross-sectional distribution of log patents is becoming more concentrated

over time. The statistic we use to measure concentration is the standard deviation of

the cross-sectional distribution. Second, we characterize the convergence of the cross-

sectional distribution of log patents to its limiting cross-sectional distribution. This

approach is similar similar to that implemented by Quah (1993a, 1993b) and Johnson

(2000).6 The intuition behind our tests is as follows: Invention activities across U.S.

states are converging, in the σ-convergence sense, if the dispersion of the cross-section

distribution of patents per capita diminishes over time. Thus, evidence of σ-convergence

would indicate that the disparity in innovation activity would be expected to decrease

over time.

Testing for both forms of convergence involves a comparison of the initial and

4A few remarks on the data we use in the analysis. First, we use patents per capita to refer to patents
per 100,000 inhabitants. Second, we take a log transformation of patents per capita since the data show
that the cross-section distribution is fat-tailed. Third, we subtract the average from the logged values in
order to abstract from any trend or cyclical components. We call this transformed variable log patent
per capita deviations hereafter.

5See Durlauf, Johnson and Temple (forthcoming) for an excellent discussion of the statistical and
economical meanings of convergence.

6Quah (1993a, 1993b) uses Markov chains to study the evolution of the log relative income per capita
distribution using data for 118 countries between 1962 and 1985. He finds no evidence of convergence.
On the other hand, Johnson (2000) finds evidence in favor of convergence when he studies the evolution
of the distribution of the log relative income per capita of the 48 continental U.S. states in 1948, 1963,
1978 and 1993.
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limiting cross-sectional distribution of log patent per capita. The limiting distribution is

obtained using a discrete state Markov chain model. We employ Bayesian methods to

estimate a Markov chain model as these methods allow for exact inference on all functions

of the underlying parameters of the model, including the limiting distribution implied

by the Markov chain. We find that the limiting distribution of log patent per capita

deviations has a substantially narrower dispersion than the initial distribution. This

implies that, although knowledge gaps across U.S. states exist, these knowledge gaps are

getting smaller. That is, there is evidence of convergence in patent activities across U.S.

states. However, the rate of convergence to the limiting distribution is “slow.” These

results are quite robust to the length of the transition period and the number of discrete

classifications the data is partitioned into.

We also find that there is some evidence that the cross-sectional distribution of log

patents per capita contain multiple modes. This suggests that there may be “innovation”

clubs. However, consistent with our finding of σ-convergence, we find that the modes are

moving together over time.

Convergence, in the σ-convergence sense, also requires that there be significant

cross-section mobility over short- and long-horizons (See, e.g., Quah (1992)). When we

study the mobility of states in the patents per capita distribution, we find that states

initially at the high (low) end of the patents per capita distribution have a greater prob-

ability of moving down (up) of the cross-section distribution. Thus, there is considerable

evidence of “movement to the middle” in the cross-sectional distribution of patents per

capita.

The rest of the paper proceeds as follows. The next section provides a detailed

discussion of the empirical method used. Data and specifications for Markov chain model

are discussed in Section 3. The results are presented and analyzed in Section 4. Finally,

Section 5 provides some policy implications and concluding comments.
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2 Empirical Methodology

Since the early work of Champernowne (1953) and Prais (1955), discrete state Markov

chain models have been used to model the dynamics of cross-sectional income distribution

and social standing over time. In testing for convergence of the cross-sectional patents

per capita distribution, we are testing whether 1) the cross-sectional distribution of log

patents per capita has attained its stationary state and 2) if not, we then test whether

there is evidence that the cross-sectional distribution is becoming more concentrated

around its mean over time. Closely related to the idea of convergence is mobility. If we

find that the cross-sectional distribution is becoming more concentrated over time we

would like to characterize how states are moving in the cross-sectional distribution. Is

it just the states in the extreme of the distribution that are moving or is the pattern of

mobility common across all initial levels of patents per capita?

The discrete-state Markov chain model described in Champernowne (1953) is a

natural way to answer the questions stated above. In the discrete-state Markov chain

model, the data is divided up into a finite number of mutually exclusive classifications.

According to Champernowne (1953), these classifications should be equal in length except

for, possibly, the first and last classification which can be open sets that cover the tails of

the distribution. The choice of the total number of classifications is somewhat dependent

on the number of cross-section observations in the data. The size of the classifications

should be small enough to allow the cross-sectional distribution to be studied in some

detail but not so small so as to make the number of observations in each classification

too small.7

Let yit be the natural log of patents per capita (in deviation from the mean) for

7Note that we choose to break data into a finite number of discrete absolute classes rather than
using quantiles. In order to test for convergence we compare the limiting cross-sectional distribution
with the initial cross-sectional distribution. If we use quantiles then the cross-sectional distribution, by
definition, is in its stationary state so that the limiting cross-sectional distribution would be identical to
the initial cross-sectional distribution. Thus breaking the data into quantiles is inappropriate for what
we are trying to test for.
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U.S. state i in period t. Let C = {c1, . . . , cM} be the set of classifications that cover the

interval (−∞,∞); the range of possible values that yit can take. For j = 2, . . . ,M − 1

the classification cj is defined as

cj = (clj, cuj], (1)

where clj = cuj−1. For j = 1 and j = M the classification definitions are

c1 =(−∞, c1u]

cM =(cMl,∞)

(2)

respectively. The upper and lower limits for each classification definition are chosen so

that the interval length, ℓj = cuj − clj, is constant for j = 2, . . . ,M − 1.

Let sit ∈ {1, . . . ,M} represent the classification that state i is a member of in

period t. That is, sit = k if and only if yit ∈ ck. Finally, let πjt be the unconditional

probability that sit = j, that is

πjt = Pr [sit = j] ≡ Pr [yit ∈ cj] . (3)

Therefore, the distribution of log patent per capita deviations across states in period t

can be summarized by

πt = (π1t, . . . , πMt)
′
, (4)

which is the unconditional probability that a state is a member of one of the M classifi-

cations.

In order to test for convergence we need to describe the dynamics of πt over time.

We do this by assuming that πt follows a Markov process. That is, we assume that the

probability that a state is a member of classification j in period t, for example, is a

function of what classification it was a member of in previous periods. In particular, we
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assume that the probability distribution, πt, follows a first-order Markov chain.8

The first-order Markov chain assumption implies that

Pr [sit|sit−1, sit−2, . . . , sit−k] = Pr [sit|sit−1] k = 2, 3, . . . . (5)

Therefore, the probability that a state is in classification j in period t is only a function

of what classification it was in the previous period. Let

pjk = Pr [sit = k|sit−1 = j] (6)

be the probability that a state moves from classification j in period t− 1 to classification

k in period t. Then the first-order Markov assumption implies that, for any state i in

our sample,

πkt = Pr [sit = k] =
M

∑

j=1

Pr [sit = k|sit−1 = j] Pr [sit−1 = j] =
M

∑

j=1

pjkπjt−1. (7)

Therefore, the cross-section probability distribution, πt, evolves over time according to

π′

t = π′

t−1P, (8)

where P = [pjk] is the probability transition matrix associated with the Markov chain.

The transition probability matrix, P, has a number of interesting properties. First,

P is row stochastic. That is, each row of P sums to one. This implies that all eigenvalues

of P have modulus less than or equal to 1. Second, at least one eigenvalue is exactly

equal to 1, and the left eigenvector associated with the eigenvalue of 1 is the limiting

distribution of the Markov chain given by (8). Furthermore, if there is only one eigenvalue

8The first-order assumption follows from our definition of the transition period to be 10 years in
length. In this case, we are assuming that the level of patents per capita in a state today is unaffected
by the level of patents per capita in the same state 20 or more years ago.
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of P equal to 1, the limiting distribution is unique (Geweke, Marshall and Zarkin 1986).

Consider the Markov chain given in (8) and let π0 be the initial probability dis-

tribution of log patent per capita deviations. Then, applying (8) t times, we see that the

probability distribution in period t is

π′

t = π′

0P
t. (9)

Then the limiting distribution, π∗ is

π∗′ = lim
t→∞

π′

t = lim
t→∞

π′

0P
t. (10)

The limiting distribution is also referred to as the ergodic distribution or the invariant

distribution and satisfies the following relationship:

π∗′ = π∗′P. (11)

2.1 Exact Inference in the First Order Markov Model

We are interested in estimating the unknown parameters of the first order discrete state

Markov chain model described in (8). In particular, we are interested in estimating π0,

the initial probability distribution of log patents per capita across the states, and P,

the probability transition matrix. All other functions of interest, such as the limiting

distribution and measures of convergence and mobility are just functions of these two

parameter vectors with some of these functions being highly non-linear functions of the

primal parameter vectors.

In order to perform statistical tests of our various hypotheses (defined later) we

need to be able to characterize the distribution of these non-linear functions of interest.

There are a number of ways of estimating (8). While maximum likelihood estimates are

easy to calculate, obtaining the variance of these estimates and the variance of non-linear
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functions of these estimates is difficult (Geweke et al. 1986). In a recent study Buchinsky

and Hunt (1999) used the bootstrap to estimate the variances. A simpler approach is

to use Bayesian methods described in Geweke et al. (1986). Using Bayesian methods we

are able to characterize the full distribution of all functions of interest, including highly

non-linear functions of the primal parameter vector of our model. We are also able to

include any prior information we have available to us.

Let YNT = {{yit}
N
i=1}

T
t=0 represent the data that is observed for N states across T

time periods. Let SNT = {{sit}
N
i=1}

T
t=0 represent the classifications that is observed for

the N states across T periods. The information contained in SNT is all that is needed

from YNT to estimate (8). For each state i, we observe the initial classification that it is

a member of and all subsequent classifications it is a member of for t = 1, . . . , T . The

probability of observing this is

Pr
[

{sit}
T
t=0 | π0, P

]

= πsi0

T
∏

t=1

psit−1sit
, (12)

so that the probability of observing the classification history of all N states is

Pr [SNT | π0, P ] =
N
∏

i=1

πsi0

T
∏

t=1

psit−1sit
. (13)

Let n0
j0 represent the number of states in classification j in the initial period and let

njk represent the total number of times a state is observed transiting from classification

j to classification k. Then n0 = (n0
10, . . . , n

0
M0)

′
and N = [njk] are sufficient statistics so

that the likelihood function (data density) is

p(SNT | π0, P ) ∝
M
∏

j=1

π
n0

j0

0j

M
∏

k=1

p
njk

jk . (14)

Given the form of this kernel, a natural conjugate prior for the parameters θ = (π0, P )′

9



is

(π01, . . . , π0M) ∼ DiM(a0)

(pj1, . . . , pjM) ∼ DiM(A(j)) j = 1, . . . ,M,

(15)

where DiM(a) refers to a multivariate-Beta (Dirichlet) of order M − 1 indexed by the

parameter vector a = (a1, . . . , aM). The multivariate-Beta distribution of order M − 1

has density

p(x|a) =
Γ

(

∑M

j=1 aj

)

∏M

j=1 Γ (aj)

M
∏

j=1

x
(aj−1)
j (16)

where aj > 0 for all j = 1, . . . ,M and x ∈ {x : xj > 0 (j = 1, . . . ,M),
∑M

j=1 xj = 1}.

The prior for the initial cross-sectional distribution, π0, and for each row of P,

P (j), is multivariate-Beta of order M − 1 indexed by the parameter vectors a0 and

A(j) = (Aj1, . . . , AjM) respectively. Thus the prior is a product of (M + 1) independent

multivariate-Beta distributions. The posterior density can easily be shown to be the

product of (M + 1) multivariate-Beta densities with

π0|SNT ∼ DiM(a0 + n0)

(pj1, . . . , pjM)|SNT ∼ DiM(Aj· + Nj·) for j = 1, . . . ,M.

(17)

The parameters indexing the posterior density are a0 + n0 for the component of the

posterior coming from the initial distribution and A+N for the component coming from

the probability transition matrix, P.

Using the method described in Devroye (1986, pp 593-596) it is easy to make

independent and identically distributed (i.i.d.) draws from the posterior distribution

p ((π0, P )|SNT ). Given that we can obtain i.i.d. draws from the posterior, p((π0, P )|SNT ),

it is then simple to exactly characterize the posterior distribution of any (well-defined)

function of interest.

Let θ = (π′

0, vec(P )′)′ and let {θk}K
k=1 be i.i.d. draws from p(θ|SNT ). Then for

10



any function, g(θ) such that

E(g(θ)|SNT ) = g < ∞, and E
(

(g(θ) − g)2|SNT

)

= σ2
g < ∞, (18)

it follows from the strong law of large numbers that

K−1

K
∑

k=1

g(θk) = gK

a.s.
−→ g and

K−1

K
∑

k=1

(g(θ) − gK)2 a.s.
−→ σ2

g .

(19)

Thus we are able to fully characterize the distribution of any (well-behaved) function of

the underlying parameters that we are interested in. Details pertaining to a number of

these functions appear in the next section.

2.2 Functions of Interest

Apart from characterizing the posterior distribution of π0 and P, we are mainly interested

in the following functions. The first function of interest is the limiting distribution implied

by P. The limiting distribution of the first-order discrete state Markov chain satisfies (11)

and is calculated as the left normalized eigenvector associated with the eigenvalue equal

to 1.

Let s0 be the random variable that represents the classification a state is a member

of in the initial period and let s∞ be the random variable that represents the classification

that a state is a member of in the limiting distribution. Then the measure of concentration

that we use is the standard deviation, σ(s), of the cross sectional distribution of s. For

a given discrete probability distribution, π, the standard deviation is

σ(s) =
√

V ar(s) =

√

√

√

√

M
∑

k=1

(k − E(s))2
πk, (20)

11



where

E(s) =
M

∑

k=1

kπk. (21)

Using (20) we find evidence of convergence (whether it be absolute or conditional) if

σ(s∞) < σ(s0). (22)

Thus, a function of interest that is useful for testing for convergence is

g(π0, P ) = σ(s∞) − σ(s0). (23)

Apart from testing for convergence in the cross-sectional distribution, π, we are

also interested in measures of mobility since these measures may shed light on how con-

vergence is achieved. These mobility measures are functions of the transition probability

matrix, P. Shorrocks (1978) and Geweke et al. (1986) describe in detail a number of im-

portant mobility indices for Markov chain models. We report two sets of mobility indices

in this paper.

The first set of mobility indices are aggregate measures of mobility. Shorrocks

(1978) defines

MS =
M − tr(P )

M − 1
, (24)

which measures overall mobility. Aggregate measures of upward and downward mobility

are

MU = (M − 1)−1

M−1
∑

k=1

MpU(k), (25)

and

MD = (M − 1)−1

M
∑

k=2

MpD(k). (26)

Gang, Landon-Lane and Yun (2004) show that Shorrocks’ measure can be decomposed

into its upward and downward components. That is, MS = MU + MD.

12



The second set of indices report the probability of moving up or down the distri-

bution conditional on the current class. These indices are:

MU(j) =
M

∑

k=j+1

pjk (27)

and

MD(j) =

j−1
∑

k=1

pjk. (28)

These two indices describe the probability of moving to a higher (lower) classification in

the next period given the state is in classification j this period.

Finally, we are also interested in the speed of convergence to the limiting distribu-

tion. Geweke et al. (1986) shows that the modulus of the second largest eigenvalue of P

is an upper bound on the rate of convergence to the limiting distribution of the Markov

chain. Let {λ1, . . . , λM} be the set of eigenvalues of P such that |λ1| ≥ |λ2| ≥ . . . ≥ |λM |.

Then, |λ2| is an upper bound to the rate of convergence of πt to π∗ and

h =
− log 2

log |λ2|
(29)

is the half-life of the Markov chain.

13



3 Data and Specifications for Modeling

3.1 Data

We use utility patent count data from 1930 to 2000.9 According to the U.S. Patent and

Trademark Office (USPTO), utility patents are patents “issued for the invention of a

new and useful process, machine, manufacture, or composition of matter, or a new and

useful improvement thereof...” Patents are granted to inventors (who can then assign or

license the patent) and the data are tabulated using the reported state residence of the

inventors. In cases where there are multiple inventors, the residence of the first-named

inventor is used by the USPTO to allocate each patent’s geographic origin.

The patent count data are adjusted using state population. Ideally, total patents

need to be adjusted by the number of R&D scientists and engineers in the state; however,

the geographical distribution of the number of doctoral scientists and engineers by state

is not available annually and, as far as we know, available data series (at the state level)

started only in the late 1970s. The use of patent per 100,000 inhabitants is appropriate:

Co (2002) reports that the correlations between state patents per 1,000 R&D scientist and

engineer and state patents per 100,000 inhabitants for periods when data are available

are around 0.70.

Figure 2 depicts the patents per capita data for each state. Each line represents

the natural log of patents per capita for a state. Though the data do not have apparent

linear time trend, there is a distinctive non-linear pattern. For example, during the 1940’s

and again during the late 1970’s there appears to be a significant drop in patents per

9Patent counts prior to 1963 include utility, design and plant patents. Data from 1930 to 1962 are
from the U.S. Patent and Trademark Office, Technology Assessment and Forecast, Seventh Report. U.S.
Department of Commerce, Arlington, VA: U.S. Dept. of Commerce, Patent and Trademark Office, Office
of Technology Assessment and Forecast, March 1977. Data from 1963 to 1998 are from the U.S. Patent
and Trademark Office, Information Product Division, Patenting Trends in the U.S., 1998, State/Country
Report- All Years, 1963-1998. CD-Rom issued July 2000. Data for 1999 and 2000 are from the U.S.
Patent and Trademark Office, Patent Counts by Country/State and Year, Utility Patents, January 1,
1963 - December 31, 2001.
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capita across all states in the sample.10

Figure 2: Log Patents per Capita: By Region
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The national sample mean of patents per capita for each period is depicted in

Figure 3. It is clear from this figure that there is a cycle component in the patent

data. To focus on the cross-sectional distribution we abstract from trends and/or cyclical

components in the data by subtracting from each period the national sample mean patents

per capita. The resulting patents per capita in deviations from mean form is depicted in

Figure 4. These are the data we use in the subsequent empirical analysis.

10This analysis does not attempt to explain what causes this aggregate behavior but rather we attempt
to characterize the dynamics of the patent activities around the aggregate behavior. See, e.g., Kortum
and Lerner (1998) for a recent study of the aggregate behavior of patenting.
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Figure 3: Mean Log Patents per Capita
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Figure 4: Log Patents per Capita Deviations: By Region
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3.2 Definition of Patent Classifications and Transition Period

We use log patent per capita deviations, depicted in Figure 4. By definition, the mean

of the data is 0 for each period. For this paper we divide the data in 9 mutually exclusive

classifications. The classification definitions are described in Table 1. The middle 7

classifications have a common length with the middle classification, classification number

5, containing the value 0. Therefore, for example, π2,1930 is the unconditional probability

that the value of the log patent per capita deviations is between -1.3 and -0.93 from the

mean of the distribution in 1930. The classifications used divide the interval [−1.3, 1.3]

into seven equally spaced intervals. The first and last interval cover all observations lower

than -1.3 and higher than 1.3 respectively. This interval is chosen because approximately

90% of all observations (across states and across time) fall between -1.3 and 1.3.

Table 1: Classification Definitions

Classification Number Lower Bound Upper Bound
1 -5 -1.3
2 -1.3 -0.92857
3 -0.92857 -0.55714
4 -0.55714 -0.18571
5 -0.18571 0.18572
6 0.18572 0.55715
7 0.55715 0.92857
8 0.92857 1.3
9 1.3 5

The transition period is also an important component of the model definition. The

shorter the transition period the less time a state has to change its patent classification.

For short transition periods we would not expect to observe too many transitions of

more than one classification. In this case we would expect to see a lot of 0’s off the main

and first diagonals in the data transition matrix, N . A longer transition period would

allow states to adjust their policies and incentives and thus we would expect to see more
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transitions. However, the longer the transition period the less the number of transition

periods we would observe.

The choice of the transition length needs to take into account several lags: first, it

takes time for policy makers to change and adopt new R&D policies (policy lag); second,

inventors may respond to policies with some lag (response lag); third, there may be delays

between the conduct of R&D and the filing of patents (application lag); fourth, review

of the patent application by the USPTO suggests a lag in the granting of patents (grant

lag).

Policy lag (at the state level) does not play a crucial role in our choice of the

transition length. This is because for the majority of the time period covered, U.S. science

and technology (S&T) policy is mostly conducted at the federal level. For example,

the first initiative to form S&T advisory bodies for state governors only started in the

1960s (See, e.g., Carnegie Commission on Science, Technology and Government (1992)

for details.) It is reasonable to suppose that the policy lag (at the federal level) is related

to the political cycle.11

If there is no response lag from inventors, and since there appears to be no signif-

icant lag between R&D and the filing of patents (See, e.g. Hall, Griliches and Hausman

(1986)), the transition length should at the minimum allow for a two-year grant lag.

Popp, Juhl and Johnson (2003) find a mean (median) lag of 28 months (23 months) from

application to grant using U.S. patents granted between 1976 and 1996.

Taking all the above into account, we believe that a 10-year transition period is

appropriate. This give us observations on 7 ten-year transitions. As a robustness test we

11We should note that the time it takes for legislations to pass Congress and be signed by the President
varies substantially; it partly depends on a legislation’s comprehensiveness and controversy surrounding it
(from the authors’ conversation with a legal expert). For example, days after his re-election in November
1944 President Franklin Roosevelt asked his de facto science advisor, Vannevar Bush, to explore how
lessons learned from the organization of science and engineering during the Second World War can be
used in peacetime. Bush issued his report in July 1945; by the end of July, Senator Magnuson introduced
legislation to implement the recommendations contained in the Bush report. Debates to reconcile this
legislation with an earlier legislation introduced in February 1944 by Senator Kilgore ensued between
1945 and 1950. The National Science Foundation was finally created in May 1950. See National Science
Board (2000) for details.
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also conduct similar analysis for 1, 5, 20 and 35-year transition periods. For the most

part, the qualitative nature of the results are similar to those we report below.

3.3 Prior Distributions

We define natural conjugate priors for the parameters π0 and P . In fact we define M +1

independent prior distributions for π0 and the M rows of P. Each prior has the same

form. The general form of the prior for π0 is

p(π0) = DiM−1(π0|a0), (30)

and the general form of the prior for the jth row of P, Pj·, is

p(Pj·) = DiM−1(Pj·|Aj·), (31)

where a random vector, x = (x1, . . . , xM) ∼ DiM−1(x|α) if

x ∈ {x : 0 < xi < 1 and
M

∑

i=1

xi = 1}

α = (α1, . . . , αM), αi > 0 i = 1, 2, . . . ,M and

p(x) =
Γ

(

∑M

i=1 αi

)

∏M

i=1 Γ(αi)
xα1−1

1 . . . xαM−1
M .

(32)

Bernado and Smith (1994, pp 134-135) show that the mean and variance of each

element of x is

E(xi) =
αi

∑M

k=1 αk

V ar(xi) =
E(xi)(1 − E(xi))

1 +
∑M

k=1 αk

.

(33)
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The prior in this context has two important uses. First, it allows us to explicitly

state our prior beliefs about the parameters of the model. Second, it allows us to “fill

in” zero elements of the data transition matrix, N . In our application, with classification

definitions given in Table 1, we do not observe any transition from classification 1 to

classification 9 in any single period. Hence, the data transition matrix, N , has a zero

in the 9th column of the 1st row. In the definition of the Dirichlet distribution of order

M−1 given in (32) we see that the parameter vector that indexes the distribution cannot

contain any zero elements. The posterior distribution, given in (17), is the product of

M + 1 Dirichlet distribution where the posterior of the jth row of P, P (j), is indexed by

A(j) +N (j), the sum of the jth rows of A and N . Thus, as long as the prior parameter,

A(j), does not contain any 0’s, the posterior parameter will not contain any zero elements.

The prior parameter vectors used in this analysis are chosen to produce the prior

moments reported in Table 2. This prior is chosen to represent a large degree of prior

uncertainty about the true values of π0 and P. The prior for the initial distribution,

π0 is symmetric around the middle classification with the highest prior probability being

placed on a state being in classification 5, the classification containing 0. The lowest prior

probability is placed on the extreme classifications, 1 and 9, and the probability declines

exponentially from the middle to the extreme classifications. However, the prior standard

deviation is quite large for each parameter of π0 reflecting our prior uncertainty towards

the true values for π0. The prior for P is symmetric around the main diagonal. That is,

our prior is that the most likely event is that a state will stay in its current classification.

The prior means also reflect our prior belief that the probability of moving from the

current classification to another classification is lower the larger the move. Again, the

prior standard deviations are quite large, reflecting our prior uncertainty over the true

values of P. This prior specification is designed to have minimal impact on the posterior

distribution so that the results are determined by the data.
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Table 2: Prior Moments

Classification
1 2 3 4 5 6 7 8 9

π0 0.018 0.039 0.083 0.175 0.370 0.175 0.083 0.039 0.018
(0.105) (0.151) (0.215) (0.297) (0.377) (0.297) (0.215) (0.151) (0.105)

0.528 0.250 0.118 0.056 0.026 0.012 0.006 0.003 0.001
(0.415) (0.360) (0.268) (0.191) (0.133) (0.092) (0.063) (0.044) (0.030)
0.200 0.423 0.200 0.094 0.045 0.021 0.010 0.005 0.002

(0.320) (0.396) (0.320) (0.234) (0.165) (0.115) (0.080) (0.055) (0.038)
0.086 0.183 0.387 0.183 0.086 0.041 0.019 0.009 0.004

(0.222) (0.305) (0.384) (0.305) (0.222) (0.156) (0.108) (0.075) (0.052)
0.039 0.083 0.177 0.374 0.177 0.083 0.039 0.019 0.009

(0.152) (0.216) (0.299) (0.379) (0.299) (0.216) (0.152) (0.106) (0.073)
P 0.018 0.039 0.083 0.175 0.370 0.175 0.083 0.039 0.018

(0.105) (0.151) (0.215) (0.297) (0.377) (0.297) (0.215) (0.151) (0.105)
0.009 0.019 0.039 0.083 0.177 0.374 0.177 0.083 0.039

(0.073) (0.106) (0.152) (0.216) (0.299) (0.379) (0.299) (0.216) (0.152)
0.004 0.009 0.019 0.041 0.086 0.183 0.387 0.183 0.086

(0.052) (0.075) (0.108) (0.156) (0.222) (0.305) (0.384) (0.305) (0.222)
0.002 0.005 0.010 0.021 0.045 0.094 0.200 0.423 0.200

(0.038) (0.055) (0.080) (0.115) (0.165) (0.234) (0.320) (0.396) (0.320)
0.001 0.003 0.006 0.012 0.026 0.056 0.118 0.250 0.528

(0.030) (0.044) (0.063) (0.092) (0.133) (0.191) (0.268) (0.360) (0.415)

Note: Numbers reported are prior means and, in parentheses, prior standard deviations.

4 Results

Using a transition period of ten years we divided the 48 states in our sample into the

nine classifications given in Table 1. The length of all but the first and last classification

is equal to 0.3714 in the log scale. These classifications are quite large and so there needs

to be an appropriate amount of time to allow a state to transition from its current level

of patents per capita. Thus we looked at patents per capita data for the states in our

sample for the years 1930, 1940, 1950, 1960, 1970, 1980, 1990, and 2000. This gives us a

total of seven transitions.

Before estimating the first-order Markov chain model in (8), we perform a number

of diagnostic tests. We use Bayesian model comparison methods to perform exact model
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comparison tests. These tests are performed using the posterior odds ratio. Consider

two competing models, Ψ1 and Ψ2. Then, conditional on the model and the observed

sample, the posterior distribution can be written as

p(θ|SNT , Ψi) ∝ p(θ|Ψi)p(SNT |θ, Ψi), (34)

for each model Ψi. The marginal likelihood is then defined as

p(Ψi|SNT ) =

∫

Θ

p(θ|SNT , Ψi)dθ, (35)

and can be interpreted as the probability of the model conditional on the data. It can

also be shown to represent the cumulative out-of-sample prediction performance of model

Ψi on the observed data, SNT .

Models are then compared via the Bayes factor, which is defined as

BFij =
p(Ψi|SNT )

p(Ψj|SNT )
. (36)

A model, Ψi is “superior” to another model, Ψj, if the Bayes factor in favor of model Ψi

over model Ψj, BFij is greater than 1. In this case, model Ψi is more likely than model

Ψj conditional on the observed data. That is, p(Ψi|SNT ) > p(Ψj|SNT ). In what follows

we actually report the log Bayes factor, log(BFij), rather than the Bayes Factor. In this

case, model i is superior to model j if log(BFij) > 0.

4.1 Diagnostic Tests

We perform a number of diagnostic tests on our Markov chain model given in (8). Implicit

in this formulation is that the transition probability matrix, P, is stable across the whole

sample. An alternative model would be that there was a structural break and that the
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model is

π′

t = π′

t−1P, (37)

where

P =















P1 t ≤ s

P2 t > s

.

Another way to write this model is

π′

t =















π′

0P1 t ≤ s

π′

0P
s
1 P t−s

2 t > s

. (38)

Thus, to test whether there is a structural break at period s we would estimate

(38) under the restriction that P1 = P2 (the no break case) and without any restriction

on P1 and P2. The method of estimating (38) is a very simple extension to the method

of estimating (8) described in Section 2.1.

Table 3 contains the log Bayes factors in favor of the structural break model

over the no-structural break model for each period of the sample. As there is an exact

analytical expression for the log marginal likelihood for the Markov chain model, the log

Bayes factors are not reported with any standard errors. The log Bayes factor is strongly

in favor of the no break model for all periods. Thus, there is no evidence of instability

of P in the Markov chain over the sample period.

Another important assumption of (8) is the assumption of the non-stationarity

of the Markov chain. That is, (8) assumes that the limiting distribution, π∗ is different

to π0. This test of whether the data is in its limiting distribution is fundamental to

testing for evidence of convergence. The stationary model is (8) with the restriction that

π0 = π∗. Table 3 contains the log Bayes factor in favor of the stationary finite state

Markov chain model over the non-stationary (no-break) Markov chain model. The log

Bayes factor in favor of the stationary model over the non-stationary model is -8.78 which
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Table 3: Diagnostic Tests for Markov Chain Model

Test log Bayes factor Std. error

Break in 1940 -281.392 –
Break in 1950 -317.857 –
Break in 1960 -326.764 –
Break in 1970 -331.013 –
Break in 1980 -321.259 –
Break in 1990 -286.657 –

Stationary Model -8.78 (0.13)

Note: In all cases the model in the denominator of the Bayes
factor is the non-stationary first-order Markov chain model given
in (8).

implies that the stationary Markov-chain model is inferior to the non-stationary Markov

chain model. The standard error reported in Table 3 is the numerical standard error

made in calculating the log marginal likelihood of the stationary model.12 Therefore,

there is evidence to suggest that the cross-sectional distribution of patents per capita

across the states of the U.S. is not in its limiting or stationary state. The results in this

section leads us to estimate (8) in order to fully characterize the convergence (divergence)

properties of the patents per capita data.

4.2 Testing for σ-Convergence in State Patent Data

To test for σ-convergence we estimate (8) and use the estimates to characterize the

posterior distribution of the initial cross-sectional distribution of patents, π1930, and the

limiting distribution π∗, implied by the estimated transition probability matrix, P, for

our sample.

12Unlike the non-stationary first order Markov chain model given in (8), the posterior distribution of
the stationary first-order Markov chain model is not a known distribution so we cannot make i.i.d. draws
from this posterior. Draws from the posterior distribution of the stationary first-order Markov chain
model are made using Markov Chain Monte Carlo methods. The marginal likelihood is then numerically
approximated using the method of Gelfand and Dey (1994).
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The observed cross-sectional distribution for 1930 and the observed data transition

matrix for our sample can be found in Table 4. We see that most of the observed

transitions are from one classification to an adjacent classification. There are very few

movements of two or more classifications. This observed data is then combined with

the priors defined in Table 2. The prior has the effect of filling in the 0’s in the data

transition matrix with positive, albeit small, values.

Table 4: Summary of Data: Patents (1930-2000)

Classification
1 2 3 4 5 6 7 8 9

n0
1930 4 5 4 4 11 5 6 7 2

10 4 0 0 0 0 0 0 0
0 15 9 2 0 0 0 0 0
0 4 22 15 0 0 0 0 0
0 2 9 35 14 2 0 0 0

N 0 0 3 16 28 10 0 0 1
0 0 0 2 9 30 6 1 0
0 0 0 0 0 13 29 2 1
0 0 0 0 0 0 9 10 4
0 0 0 0 0 0 3 4 12

The data combined with the priors are used to estimate the model. Posterior

moments of π1930, the initial distribution, P, the probability transition matrix, and π∗,

the invariant or limiting distribution implied by P are reported in Table 5.

It is clear that the limiting distribution is different from the initial distribution.

There appears to have been a “shift left” of the distribution of patents. The probability

of being a member of classifications 3 and 4 are significantly higher in the limiting dis-

tribution (at 0.144 and 0.258, respectively) than in the initial distribution (at 0.083 and

0.085, respectively). Also, the probability of being a member of one of the two extreme

classifications is lower in the limiting distribution, π∗, than in the initial distribution, π0.
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Table 5: Posterior Moments of Markov chain model of Patents

Classification
1 2 3 4 5 6 7 8 9

π1930 0.082 0.103 0.083 0.085 0.230 0.105 0.125 0.145 0.041
(0.039) (0.043) (0.040) (0.039) (0.060) (0.044) (0.047) (0.050) (0.028)

0.706 0.287 0.004 0.002 0.001 0.000 0.000 0.000 0.000
(0.117) (0.116) (0.016) (0.010) (0.008) (0.003) (0.003) (0.002) (0.001)
0.004 0.572 0.344 0.078 0.001 0.000 0.000 0.000 0.000

(0.013) (0.094) (0.090) (0.051) (0.005) (0.004) (0.003) (0.002) (0.001)
0.001 0.099 0.535 0.362 0.001 0.001 0.000 0.000 0.000

(0.006) (0.046) (0.077) (0.074) (0.005) (0.004) (0.002) (0.001) (0.001)
0.000 0.033 0.145 0.562 0.226 0.033 0.000 0.000 0.000

(0.002) (0.023) (0.044) (0.062) (0.053) (0.023) (0.003) (0.002) (0.001)
P 0.000 0.000 0.052 0.275 0.482 0.172 0.001 0.000 0.017

(0.002) (0.003) (0.029) (0.058) (0.065) (0.049) (0.004) (0.002) (0.017)
0.000 0.000 0.001 0.043 0.187 0.622 0.125 0.021 0.001

(0.002) (0.002) (0.004) (0.029) (0.055) (0.068) (0.046) (0.020) (0.003)
0.000 0.000 0.000 0.001 0.001 0.287 0.641 0.046 0.023

(0.001) (0.002) (0.002) (0.003) (0.005) (0.066) (0.071) (0.031) (0.022)
0.000 0.000 0.000 0.001 0.001 0.002 0.387 0.435 0.174

(0.001) (0.002) (0.003) (0.004) (0.007) (0.009) (0.099) (0.100) (0.076)
0.000 0.000 0.000 0.000 0.001 0.001 0.156 0.211 0.631

(0.001) (0.001) (0.002) (0.005) (0.005) (0.008) (0.080) (0.090) (0.108)

π∗ 0.003 0.058 0.144 0.258 0.178 0.188 0.111 0.028 0.032
(0.007) (0.031) (0.047) (0.056) (0.039) (0.053) (0.049) (0.018) (0.023

Note: Numbers reported are posterior mean and posterior standard deviation (in parentheses) using
10,000 draws from the posterior distribution.

This is most evident in classification 1 where the probability of membership drops from

0.082 to 0.003. There is also evidence of movement towards to center of the distribution

at the upper end of the distribution. The probability of being a member of classification

8 and 9 falls from 0.186 in π1930 to 0.060 in π∗.

To formally test for σ-convergence we compare the measure of concentration for

the limiting distribution to that of the initial distribution. The definition of our measure

of concentration is given in (20) and is equal to the standard deviation of the distribution.

The results of this analysis can be found in Table 6. In this table we report posterior
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moments for the concentration measure of the initial distribution, σ(s1930), the concen-

tration measure of the limiting distribution, σ(s∞), and the difference in concentration

measures, σ(s∞) − σ(s1930).

Table 6: Posterior Measures of Concentration

Statistic Mean Standard Error 95 % HPD

σ(s1930) 2.257 0.1630 [1.934, 2.576]
σ(s∞) 1.613 0.1512 [1.331, 1.923]

σ(s∞) − σ(s1930) -0.644 0.2230 [-1.069, -0.192]

The 95% highest posterior density (HPD) region for the difference in concentra-

tion measures is the interval [-1.069, -0.192]. This does not contain 0 so that there is

considerable evidence that the concentration measure is lower for the limiting distribution

than for the initial distribution. The posterior probability that the standard deviation of

the limiting cross-sectional distribution is lower than the standard deviation of the initial

cross-sectional distribution of log patents per capita is 0.998.13 We take these results as

strong evidence that the cross-sectional distribution is becoming more concentrated over

time. Thus, we conclude that there is significant evidence of convergence in patents per

capita across the states in our sample.

Figure 5 depicts the 95% highest posterior density regions for the initial and

limiting cross-sectional distribution of log patent per capita deviations. The vertical

lines for each classification represents the length of the HPD while the horizontal line

represents the posterior mean. While there is a fair amount of uncertainty in the posterior

estimates there does appear to be multiple modes in both the initial and limiting cross-

sectional distribution. In 1930 there clearly appears to be a mode situated in the fifth

patent classification. There also appears, albeit with somewhat less certainty, modes

situated at the second and eighth patent class as well. Thus there is some evidence that

13This posterior probability measure is calculated by counting the number of times σ(s∞) < σ(s1930)
for each of the i.i.d draws from the posterior distribution. A total of 10,000 i.i.d draws is made in total.
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there are “innovation” clubs present in 1930.

Figure 5: Initial and Limiting Distribution of log Patents
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When we look at the limiting distribution we also see some evidence of multiple

modes. Although the limiting distribution has become more concentrated over time, it

appears to have two modes in classes 4 and 6. This bimodality is suggestive of some form

of convergence clubs perhaps associated with the presence of inputs to innovation in the

states. For example, a smaller proportion of states belonging in class 4 (1 out of 12 states)

and a larger proportion of states belonging in class 6 (4 out of 12 states) have higher

R&D intensities than the U.S. rate of 2.45% in 2000. In addition, a smaller proportion of

states belonging in class 4 (2 out of 12 states) and a larger proportion of states belonging

in class 6 (6 out of 12 states) have more doctoral scientists per 100,000 inhabitants

compared with the U.S. rate of 186 in 2001. Similar observations can be made using

other input indicators such as the number of doctoral engineers, the number of science

and engineering (S&E) doctorates awarded, and the number of S&E postdoctorates and
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S&E graduate students in doctorate-granting institutions.14 We should note, however,

that these modes are much closer together compared to modes observed in the initial

period. Thus, this reinforces our previous result that the cross-sectional distribution has

become more concentrated.

Posterior moments of the measures of mobility can be found in Tables 7 and 8.

These report overall measures of mobility and measures of mobility for each individual

classification. Table 7 reports overall measures of mobility and measures of speed of con-

vergence to the limiting distribution. The measure proposed by Shorrocks (1978), MS,

is the inverse of the harmonic mean of the expected length of stay in each classification.

The estimated value of this measure is 0.477 which equates to an average length of stay,

over all classifications, of 2.09 ten-year periods. This overall measure of mobility is also

decomposed into its upward and downward components, MU and MD. We see that

there is no significant difference between the upward and downward components. This

should not be surprising as we are using data that is in deviations from the mean. We

would not expect there to be any shift in the location of the distribution and so would

not expect to see a significant difference in the upward and downward mobility measures

overall.

Table 7: Measures of Overall Mobility for the Markov Chain

MS MU MD |λ2| half-life (h)

0.477 0.240 0.236 0.894 6.525
(0.032) (0.026) (0.024) (0.023) (1.714)

Note: The numbers in parentheses are standard errors.

While we do not expect to see a difference in the overall upward and downward

mobility measures we would expect differences in upward and downward mobility for the

individual measures. Table 8 contains these individual mobility measures with MU(j)

14Use footnote 9 for the source of these observations.
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(MD(j)) representing the probability of moving up (down) the cross-sectional distribu-

tion conditional on being in classification j. We find that for classifications 5 through 8,

conditional on moving, there is a significantly greater probability that a state will move

to a lower classification than to a higher classification and that the probability of moving

down is higher the further away a state is from the middle of the distribution.15 For clas-

sifications 2 through 4, however, the opposite is true. There is a greater probability to

move to a higher classification than to move to a lower classification with the probability

of moving to a higher classification being greater the further a state is away from the

the middle of the distribution. Therefore, we are seeing movements to the middle of the

distribution rather than movements to the extremes of the distribution. Furthermore,

this movement is from all parts of the cross-sectional distribution and not just from the

extremes of the distribution.

Table 8: Measures of Mobility for the Markov Chain

Classification
1 2 3 4 5 6 7 8 9

MU (j) 0.294 0.423 0.364 0.259 0.190 0.147 0.070 0.174 —
(0.117) (0.094) (0.074) (0.056) (0.051) (0.050) (0.038) (0.076)

MD(j) — 0.004 0.101 0.178 0.328 0.231 0.289 0.391 0.369
(0.013) (0.047) (0.048) (0.061) (0.060) (0.066) (0.099) (0.108)

Note: Numbers in parentheses are posterior standard deviations obtained from using 10,000 draws
from the posterior distribution.

Finally, the modulus of the second largest eigenvalue is reported in Table 7. The

posterior mean of |λ2| is 0.894. As this is significantly different from 1, we conclude that

the limiting distribution we characterized above is unique. The posterior mean of the

half-life, h, is estimated to be 6.525. This equates to a half-life of about 65 years so

15For example, if a state is initially in the 8th patent classification, the probability of moving to a
lower class is 0.391 with a standard error of 0.099 while the probability of moving to a higher class is
only 0.174 with a standard error of 0.076.
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that we conclude that the speed of convergence of the cross-sectional distribution to the

unique limiting distribution is “slow.”

Therefore, we find that the cross-sectional distribution of log patents per capita

deviations is converging slowing to a unique limiting distribution that is significantly

more concentrated than the initial cross-sectional distribution in 1930. The mobility

present in the data reflects a movement to the middle of the cross-sectional distribution

with the greatest mobility at the extremes.

4.3 Robustness of Our Results

The results reported above were for a Markov chain with nine states with a transition

period of ten years. Nine classifications was chosen so that the class lengths were short

enough to allow for us to observe states making transitions between patent classifications.

The time period was chosen to be ten years so that we could allow enough time for

any change in state policy to affect the innovation activity. While we believe that this

paramaterization of the model is an appropriate one, Table 9 reports the 95% HPD for

σ(s∞)− σ(s1930) for other combinations of classification numbers and transition periods.

In this experiment, the interval [−1.3, 1.3] was broken up into 3, 5, 7, 9, and 11 equal

length intervals leading to 5, 7, 9, 11 ,and 13 patent classifications respectively. A

discrete state Markov chain with a transition period of 5, 10 and 20 years respectively

were estimated using analogous priors to the one reported in Section 3.3 above.

It is clear from these results that when the time period is long enough and the

patent classification is fine enough there is strong evidence of σ-convergence in the data.

In all but two cases, five year transition with five and seven classifications respectively,

the 90% or higher HPD for σ(s∞)−σ(s1930) does not include 0. Clearly when the length

of the classification is large, five years is not long enough to observe many transitions.

The transition probability matrix, P, is then essentially diagonal. We believe that this

is not a failing of the model but rather a failure to define the appropriate transition
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Table 9: σ(s∞) − σ(s1930) : 95% Highest Posterior Density Regions

Time Period
Number of bins 5 years 10 years 20 years

5 [-0.295, 0.108] [-0.405, 0.031]a [-0.475, 0.023]b

7 [-0.523, 0.107] [-0.692, -0.021] [-0.956, -0.258]
9 [-0.887, -0.023] [-1.069, -0.192] [-1.293, -0.276]
11 [-1.198, -0.090] [-1.395, -0.268] [-1.709, -0.488]
13 [-1.559, -0.220] [-1.870, -0.464] [-2.193, -0.616]

Decile [-1.066, -0.069] [-1.265, -0.167] [-1.444, -0.368]

a90 % HPD does not include 0
b92 % HPD does include 0

period for the patent classifications that are used. We conclude that the results reported

in Section 4 are therefore robust to the number of patent classifications and transition

periods as long as the transition period is long enough to allow states to change their

patent classification.

The approach we have followed in defining the patent classifications was to define

classifications of equal length. The interval the the middle classifications were define over,

[−1.3, 1.3] was chosen that that 90% of the observations in 1930 fell in the middle seven

classifications in the case where we defined nine patent classifications. The consequence

of this approach is the have an initial distribution that has “thin” tails in the sense that

the most observations fall in the middle classifications. An alternative approach would

have been to define classifications so that the probability that a randomly chosen state in

1930 is in any one classification is equal across classifications. In Table 9 the row labeled

decile contains the 95% HPD for σ(s∞) − σ(s1930) where the patent classifications are

defined based on the population deciles in 1930. The classification definitions then remain

unchanged throughout the other time periods. The results show that the 95% HPD for

σ(s∞)−σ(s1930) does not include 0 for a 5, 10 or 20 year transition. Therefore, our result

of σ-convergence in patents across U.S. states is robust to defining the classifications to

be equal in length or equal in probability in the initial period.
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Finally, in this paper we study the log patent distribution. We subtract the

national mean of log patents for each year and then define the patent classifications over

the log patents deviation from mean distribution. We do this to abstract away from the

cyclical nature of the patent series.

Our test of σ-convergence involves testing whether the standard deviation of the

limiting cross-sectional distribution is significantly lower than the standard deviation

of the initial cross-sectional distribution. For a continuous random variable, it does

not matter whether you calculate the standard deviation of the data in log levels or in

deviations from log mean. However we use in this paper the standard deviation of a

discrete random variable to test for σ-convergence. In defining patent classifications over

the cross-sectional distributions of log patent deviations we are effectively normalizing

the data each year relative to the national mean. Therefore the classification definitions,

in relation to the log levels, are different than they would be if we defined equal length

classifications over the log level patent data. In order to check whether our results are

affected by subtracting the national mean of log patent series we constructed a discrete

state Markov chain with nine classifications whose length were equal in terms of the log

level patent distribution. The 95% HPD for σ(s∞)−σ(s1930) using this classification was

[−0.800,−0.010]. Thus, our result is not affected by subtracting the mean from the log

patent distribution. We also tested whether taking logs had an effect on the result. The

95% HPD for σ(s∞) − σ(s1930) is [−1.199,−0.106] for a nine classification discrete state

Markov chain defined over the patent distribution in levels. Therefore taking logs does

not appear to have an effect on the basic result that the cross-sectional distribution of

patents in becoming more concentrated over time.
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5 Implications and Concluding Comments

We have studied the dynamics of the cross-section distribution of patents per capita

for the 48 continental U.S. states from 1930 to 2000 applying Bayesian techniques to a

discrete Markov chain model. Empirical findings show that invention activities across

states are converging, in a σ-convergence sense, albeit at a slow rate. A necessary but not

sufficient condition for σ-convergence is mobility in states’ standing in the cross-section

patents per capita distribution. Indeed, we find that some initially invention-lagging

areas catch up and some invention-leading areas lose their initial leads. For example, in

1930 North Carolina and Arizona are invention-lagging states. North Carolina belonged

in class 2 while Arizona belonged in class 4. By 2000, North Carolina has moved up to

class 5 while Arizona has moved up to class 6. Invention-leading states like Illinois and

Michigan moved down from class 8 in 1930 to class 6 in 2000. A sufficient condition for

convergence is for the limiting distribution of log patent per capita deviations to have

a substantially narrower dispersion than the distribution in 1930. We find that there is

evidence that the cross-sectional distribution has indeed become more concentrated over

time.

The finding of slow convergence is consistent with the empirical observation that

knowledge spillover is spatially-mediated.16 That is, although knowledge diffuses across

space, the effectiveness of knowledge externalities tend to dissipate with distance; hence,

inventions would tend to cluster spatially. This clustering tendency contributes to the

slow rate of convergence. The slow rate of convergence is also partly because technology

initiatives at the state level is a fairly recent phenomenon. For example, S&T advisory

bodies for state governors only started in the 1960s; state cooperative technology pro-

grams (such as technology development and technology financing) that complement fed-

eral, private and academic R&D investments only started in the late 1970s (See, Coburn

16See, e.g., Jaffe, Trajtenberg and Henderson (1993), Feldman (1994), and Audretsch and Feldman
(1996).

34



and Berglund (1995) and Carnegie Commission on Science, Technology and Government

(1992)).

The observed slow rate of invention convergence is a challenge to state policy

makers to pursue more aggressive policies related to knowledge creation. This is because

large differences still characterize states’ knowledge creating capabilities. For example,

in 2000, total R&D as a share of gross state product is between 0.32% (Wyoming)

and 5.81% (Michigan), with a mean of 2.07% and a standard deviation of 1.46%. The

number of doctoral scientists and engineers per 100,000 inhabitants in 1999 is between

111.30 (Florida) and 566.46 (Delaware), with a mean of 224.31 and a standard deviation

of 102.25.17

One way to close these gaps is for state governments to increase their direct

contribution to university R&D. According to the most recent estimate, in 1965, U.S.

state governments funded only 0.90% of total U.S. R&D, mostly going to universities; this

increased to only 1.18% in 1995 (See, National Science Foundation (1999)). Interestingly,

in 1953 (earliest available data), state and local governments funded 14.7% of academic

R&D; this has dropped to 7.3% in 2000 (See, National Science Board (2002)). Clearly,

states (some more than others) need to reconsider their role as a source of funding for

university R&D especially in light of strong evidence that industry also benefit from

university R&D (See, e.g., Jaffe (1989) and Jaffe and Trajtenberg (2002)).

A states’ role in technology development is not limited to direct monetary support

to R&D. A number of studies have shown that a skilled workforce and a dependable

infrastructure are attributes firms value when making R&D (and production) location

decisions. Increasing support to education and infrastructure development would also

contribute to the narrowing of knowledge gaps.

17These are tabulated from the National Science Foundation’s Science and Engineering State Profiles:
2000-2001, 1999-2000 available at http://www.nsf.gov/sbe/srs/sepro/start.htm.
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