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1 Introduction

It has long been argued that, in order to accurately assess and manage market risk, it is important

to construct (and consequently evaluate) predictive conditional densities of asset prices, based on

actual and historical market information (see, e.g., Diebold, Gunther and Tay, 1998). In many

respects, such an approach offers various clear advantages over the often used approach of focusing

on conditional second moments, as is customarily done when constructing synthetic measures of

risk (see, e.g., Andersen, Bollerslev, Christoffersen and Diebold, 2005). One interesting class of

assets for which predictive conditional densities are relevant is that based on the use of volatility.

Indeed, from the early days in 1993, when the VIX, an index of implied volatility, was created for

the Chicago Board of Trade, a plethora of volatility-based derivative products has been engineered,

including variance and covariance swaps, overshooters, and up and downcrossers, for example (see,

e.g., Carr and Lee, 2003). Important early examples of such volatility-based derivatives include

short and long dated volatility options on various currencies such as the British pound and the

Japanese Yen; and VOLAX futures, which are based upon the implied volatility of DAX index

options. One of the reasons why volatility based products now form an important class of assets is

the stylized fact that volatility is counter cyclical (see Schwert, 1989), suggesting the adoption of

volatility exposure in order to reduce the riskiness of a portfolio.

Given the development of this new class of financial instruments, it is of interest to construct

conditional (predictive) volatility densities, rather than just point forecasts thereof. This poses a

formidable challenge to the researcher, since volatility is inherently a latent variable. However,

crucial steps toward the understanding of several features of financial volatility have been taken

in recent years, based upon theoretical advances in the use of high frequency returns data. In

particular, it is now possible to obtain precise estimators of financial volatility, under very mild

assumptions on the process driving the behaviour of the underlying variables. Such estimators are

constructed using intra day realized returns data, and therefore provide a measure of the ex post

(realized) variation of asset prices. The distinct advantage of these estimators is that they exploit

the often substantial amount of information contained in intra day movements of asset prices, with-

out having to rely on a particular model for the underlying asset. The first and most widely used

estimator of integrated volatility is realized volatility, concurrently proposed by Andersen, Boller-

slev, Diebold and Labys (2001), and Barndorff-Nielsen and Shephard (2002).1 Realized volatility

consistently estimates the increments of quadratic variation, when the underlying asset follows a

1See also Barndorff-Nielsen and Shephard (2004a) for an extension and generalization to the multivariate case.
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Brownian semimartingale process, a class of processes which is commonly employed in continuous

time modeling. Important variants of realized volatility have subsequently been proposed. These

variants are largely motivated by the need to provide consistent estimators of integrated volatility

in situations which are quite common in financial markets, such as when jumps occur in the asset

price process, and when there are market frictions leading to market microstructure noise. Leading

examples include bipower variation (Barndorff-Nielsen and Shephard, 2004b) and different estima-

tors that are robust to the presence of microstructure noise (see, e.g., Zhang, 2004, Äıt-Sahalia,

Mykland and Zhang, 2005,2006, Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2006 and Zhang,

Mykland and Äıt-Sahalia, 2005). The estimators due to the above authors remain consistent for

integrated volatility, in the presence of jumps, and when observed prices are affected by microstruc-

ture noise. The cost of implementing these new robust estimators is a loss of efficiency, or a slower

rate of convergence. Since all of the estimators discussed above are designed to measure the ex

post variation of asset prices, in the remainder of the paper we will call them realized volatility

measures.

In this paper, we develop a method for constructing conditional (predictive) densities and

associated conditional (predictive) confidence intervals for daily volatility, given observed market

information. Exploiting the usual factorization of joint densities, our density estimator is derived

as the ratio between a (nonparametric) kernel estimator of the joint density of current and future

volatility, and a kernel estimator of the marginal density of current (and past) volatility. Our

conditional confidence interval estimator is based on the standard Nadaraya-Watson estimator.

We also consider local linear estimators of both conditional densities and conditional confidence

intervals, along the lines of Fan, Yao and Tong (1996) and Hall, Wolff and Yao (1999). We show that

the proposed estimators are consistent and asymptotically normally distributed, under very mild

assumptions on the underlying diffusion process. Our results require no parametric assumption on

either the functional form of the estimated densities, or on the specification of the diffusion process

driving the asset price. Nevertheless, we require the diffusive part of the log-price process to be

Brownian. In this sense, our approach might be viewed as semiparametric.

The intuition for the approach taken in the sequel is as follows. Since integrated volatility is

unobservable, we use the realized (volatility) measures discussed above as a key ingredient in the

construction of kernel estimators. However, this introduces a technical difficulty, as each realized

measure can be decomposed into integrated volatility, the object of interest, and an error term.
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Formally,

RMt,M = IVt +Nt,M ,

where RMt,M and Nt,M denote a particular realized volatility measure and its corresponding error

term, respectively. Here, IVt denotes integrated volatility, and the subscripts t andM denote a par-

ticular day, t, and the number of intra day observations,M, used in the construction of the realized

measure. Our estimators are therefore based on a variable which is subject to measurement error.

For this reason, we provide sufficient conditions under which conditional density (and confidence

interval) estimators based on (the unobservable) integrated volatility and ones based on a realized

measure are asymptotically equivalent. Broadly speaking, it suffices that the supremum over t ≤ T

of the k-th moment of the measurement error approaches zero at rate T 1/2b
−k/2
M , for some k > 2,

where bM → ∞, as M → ∞. Of note is that the rate at which the moments of the measurement

error approach zero varies across different realized measures. We also provide conditions on the

relative rate of growth of bM and T , under which the estimators constructed using various realized

measures are asymptotically equivalent to their unfeasible counterparts.

It should be noted that there is a well developed literature on kernel estimation in the presence

of variables measured with error. The two common assumptions in this literature are that the error

has a characteristic function bounded away from zero everywhere, and that the error is independent

of the variable of interest. Since the error term does not vanish (even asymptotically), consistent

estimators of the object of interest cannot be obtained via implementation of standard kernel

based methods. In this case, consistent density estimators and corresponding convergence rates

are derived in Fan (1991) and Fan and Truong (1993), via use of deconvolution methods, for the

case in which the density of the measurement error is known. The case for which the error density

is unknown is treated by Li and Vuong (1998) for density estimation, and by Schennach (2004)

for estimation of regression functions. Both of these papers rely on particular properties of the

Fourier transform of the kernel function. Our set-up is different. In our case, the measurement

error approaches zero asM →∞ (which is implied by the fact that realized measures are consistent

estimators), and if M grows fast enough relative to T, then standard kernel estimators constructed

using realized measures are asymptotically equivalent to those constructed using the unknown

integrated volatility.

The idea of using a realized measure as a basis for predicting integrated volatility has been

adopted in other papers (see e.g., Andersen, Bollerslev, Diebold and Labys, 2003, Andersen, Boller-

slev and Meddahi, 2004, 2005, 2006, Äıt-Sahalia and Mancini, 2006, Ghysels and Sinko, 2006, and
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Corradi, Distaso and Swanson, 2005).2 The first three papers deal with the problem of pointwise

prediction of integrated volatility, using ARMA models based on the log of realized volatility. An-

dersen, Bollerslev and Meddahi (2004, 2005) also investigate the crucial issue of evaluating the loss

of efficiency associated with the use of realized volatility measures, relative to optimal (unfeasible)

forecasts (based on the entire volatility path); Andersen, Bollerslev and Meddahi (2006) address

the forecasting volatility issue in the presence of microstructure effects. Äıt-Sahalia and Mancini

(2006) compare the out of sample relative forecast ability of realized volatility and two scale re-

alized volatility (which is robust to the presence of microstructure noise) in a variety of contexts.

According to their findings, two scale realized volatility outperforms realized volatility not only

in the presence of microstructure noise, as expected, but also in the presence of jumps and long

memory in the return process. Ghysels and Sinko (2006) analyze the relative predictive ability

of realized volatility and two scale realized volatility within the mixed data sampling (MIDAS)

framework. The papers cited above deal with pointwise prediction of integrated volatility. Corradi,

Distaso and Swanson (2005) focus on estimating the conditional density of integrated volatility.

This paper differs from theirs in a number of respects. First, we also examine conditional den-

sity and confidence interval estimators based on local linear regression. Second, by focusing on

pointwise convergence, we achieve much faster rates of convergence than in Corradi, Distaso and

Swanson (2005), where conditions for uniform convergence are outlined. Third, and perhaps most

importantly, we establish asymptotic normality, allowing for the construction of confidence bands

around our estimators. Fourth, our results are valid in a much more general setting than those

obtained in Corradi, Distaso and Swanson (2005). For example, the results in this paper are not

restricted to the class of eigenfunction stochastic volatility models of Meddahi (2001). Additionally,

in this paper we allow for dependence in the market microstructure noise.

In order to evaluate the sharpness of our theoretical results, we carry out a Monte Carlo ex-

periment in which pseudo true predictive intervals are used in conjunction with intervals based on

realized measures in order to assess the finite sample behavior of our statistics, in the presence

of jumps or microstructure noise. This is done for various daily sample sizes and for a variety of

different intradaily data frequencies. As expected, robust realized volatility measures yield sub-

stantially more accurate predictive intervals than the other measures, when data are subject to

microstructure noise, for relatively large values of M. However, for small values of M, realized

volatility performs the best; and in the presence of jumps, bipower variation is superior, as ex-

2Realized volatility measures have also been used to estimate and test the specification of stochastic volatility
models (see e.g., Bollerslev and Zhou, 2002 and Corradi and Distaso, 2005a).
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pected. In general, our experiment underscores the relative trade-offs between T and M, under

various different data generating assumptions. An empirical illustration based on New York Stock

Exchange data underscores the importance of using microstructure robust measures when using

data sampled at a high frequency.

The rest of the paper is organized as follows. In Section 2, we describe the model and the

different realized volatility measures for which asymptotic results are derived. Section 3 outlines

the conditional density and confidence interval estimators. Asymptotic theory is gathered in Section

4. In Section 5, the results of a Monte-Carlo experiment designed to assess the extent to which our

asymptotic limiting distribution results yield accurate finite sample approximations are discussed.

In Section 6, an empirical illustration based upon the use of data from the New York Stock Exchange

is discussed. All the proofs are contained in the Appendix.

2 Setup

We denote the log-price of a generic financial asset as Yt, at a continuous time, t. In the paper we

will assume that the log-price process belongs to the class of Brownian semimartingale processes

with jumps. We will denote this by writing Y ∈ BSMJ .3 Then:

Yt =

∫ t

0
µsds+

∫ t

0
σsdWs +

Jt∑
i=1

ci. (1)

The drift component, µs, is a predictable process; and the diffusion term, σs, is a continuous process

whose properties are specified below. The jump component is modeled as a sum of nonzero i.i.d.

random variables, ci, which are independent of Jt, which is a finite activity counting process. Hence,

in this paper we consider the case of a finite number of jumps over any fixed time span. The process

described in (1) is very general. For example, both the case of a constant drift and the case of a

mean reverting linear drift are nested within this framework.

From a risk management perspective, it is of interest to separate the discontinuous (due to

jumps) part of Y , denoted by Y d, from the continuous Brownian component, Y c. Indeed, it is well

known that:

〈Y 〉t = 〈Y c〉t +
〈
Y d
〉
t
,

where 〈·〉 denotes the quadratic variation process. In particular:

〈Y c〉t =

∫ t

0

σ2sds and
〈
Y d
〉
t
=

Jt∑
i=1

c2i .

3The notation and setup that we use is similar to that adopted in a series of papers by Barndorff-Nielsen and
Shephard.
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The object of interest to the researcher is represented by the quantity on the left, integrated

volatility. A special case of the class of Brownian semimartingales with jumps, which has a key role

in financial economics, is obtained when Jt ≡ 0, for all t. In this case, the log-price process belongs

to the class of Brownian semimartingales and we write Y ∈ BSM. This class includes the popular

stochastic volatility models, which have been used extensively in theoretical and applied work.

Thus far, we have considered a market that is free from frictions. However, there is a substantial

literature in financial economics that documents the presence of market distortion or friction, and

that has identified several possible causes thereof (see, e.g., O’Hara, 1997). We introduce market

friction in the following way. Assume that transaction data available in financial markets are

contaminated by measurement error, so that the observed process is given by:

X = Y + ε.

Thus, we allow for the possibility that the observed transaction price can be decomposed into the

“true” price and a “noise” term arising due to measurement error, the latter of which captures

generic microstructure effects. In order to properly manage financial risk, one is interested in the

contribution to quadratic variation of the Brownian component of Y . Now, in order to study

integrated volatility using econometric tools, assume that there are a total of MT equi-spaced

observations from the processX, consisting ofM intradaily observations for T days. More precisely,

a sample of data is given by:

Xt+j/M = Yt+j/M + εt+j/M , t = 1, . . . , T and j = 1, . . . ,M,

where εt+j/M is a zero-mean weakly dependent process. Following Äıt-Sahalia, Mykland and Zhang

(2006), we let the error term be geometrically mixing, so that for each s there is a constant, ρ < 1,

which satisfies:

cov(εt+j/M , εt+(j+|s|)/M) = E(εt+j/Mεt+(j+|s|)/M ) ≈ ρs.

Finally, we assume independence between the true latent process, Y, and the error term ε.4

As mentioned in the introduction, when deriving kernel estimators for conditional (predictive)

densities and confidence intervals of integrated volatility, we make no assumptions on the functional

4This assumption is standard in the literature on the estimation of integrated volatility in the presence of noise
(see, e.g., Äıt-Sahalia, Mykland and Zhang, 2005, Zhang, Mykland and Äıt-Sahalia, 2005, Bandi and Russell, 2004,
2005 and Barndorff-Nielsen, Hansen, Lunde and Shephard, 2006). The work by Hansen and Lunde (2006) suggests
that removing this assumption does not have too damaging an impact when using one minute returns data. As in Äıt-
Sahalia, Mykland and Zhang (2006), when the microstructure noise is i.i.d., then our setup allows for the existence of
some contemporaneous correlation between Y and ε. Of further note is that the specification tests for microstructure
noise models by Awartani, Corradi and Distaso (2005) are also derived without assuming independence between Y

and ε.
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forms of the drift, diffusion, and jump components in (1). We will also make no parametric

assumptions on the form of the density that characterizes integrated volatility. However, in this

paper we consider a subset of the class of semimartingales, namely the Brownian subset. In this

respect, our approach is inherently semiparametric.

The object of interest, daily integrated volatility, is defined as:

IVt =

∫ t

t−1
σ2sds, t = 1, . . . , T. (2)

Since IVt is not observable, different realized measures, based on the sample Xt+j/M , are used as

proxies for IVt. The realized measure, RMt,M , is assumed to be a noisy measure of true integrated

volatility. Namely, assume that:

RMt,M = IVt +Nt,M .

In the sequel, we first derive kernel estimators for conditional densities and conditional confidence

intervals based on a generic realized volatility measure. We then provide sufficient conditions on

the structure of the measurement error, Nt,M , ensuring that the distributions of the estimators

based on realized measures, and the corresponding distribution associated with the “true” (but

latent) daily volatility process, are asymptotically equivalent. Finally, we adapt the given primitive

conditions on Nt,M to four particular realized measures of integrated volatility.

The four measures that we consider are:

(i) Realized Volatility (due to Andersen, Bollerslev, Diebold and Labys, 2001, and Barndorff-

Nielsen and Shephard, 2002):

RVt,M =
M−1∑
j=1

(
Xt+(j+1)/M −Xt+j/M

)2
. (3)

(ii) Normalized Bipower Variation (due to Barndorff-Nielsen and Shephard, 2004b):

(µ1)
−2BVt,M = (µ1)

−2 M

M − 1

M−1∑
j=2

∣∣Xt+(j+1)/M −Xt+j/M

∣∣ ∣∣Xt+j/M −Xt+(j−1)/M

∣∣ , (4)

where µ1 = E |Z| = 21/2Γ(1)/Γ(1/2) and Z is a standard normal random variable.

(iii) Two Scale Realized Volatility (due to Zhang, Mykland and Äıt-Sahalia, 2005):

R̂V t,l,M = RV avg
t,l,M − 2lν̂t,M , (5)

where

ν̂t,M =
RVt,M
2M

=
1

2M

M−1∑
j=1

(
Xt+ j

M

−Xt+ j−1
M

)2
(6)
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and

RV avg
t,l,M =

1

B

B∑
b=1

RV b
t,l =

1

B

B∑
b=1

l−1∑
j=1

(
X

t+ jB+b
M

−X
t+

(j−1)B+b
M

)2
. (7)

Here, Bl ∼= M, l = O(M1/3), l denotes the subsample size, and B denotes the number of

subsamples. The logic underlying (5) is as follows. The first step is to construct B realized

volatilities using l non overlapping subsamples. Then, one takes an average of these B realized

volatilities and corrects this average by using an estimator of the bias term due to market

microstructure noise, where the bias estimator is constructed using a finer grid of equispaced

observations.

(iv) Multi Scale Realized Volatility (due to Zhang, 2004, Äıt-Sahalia, Mykland and Zhang, 2006):

R̃V t,e,M =
e∑

i=1

aiR̃V t,ei,M +
RVt,M
M

=
e∑

i=1

ai
1

ei

⎛
⎝M−ei∑

j=1

(
X

t+
j+ei
M

−Xt+ j

M

)2⎞⎠+
RVt,M
M

, (8)

where the weights ai have to satisfy the following two restrictions

e∑
i=1

ai = 1 and
e∑

i=1

ai
i
= 0.

Thus, R̃V t,e,M is a linear weighted combination of e realized volatilities computed over e

different frequencies ei/M, with i = 1, ..., e. For ei = i,

ai = 12
i

e2

(
i
e −

1

2
−

1

2e

)
(
1− 1

e2

) .

Barndorff-Nielsen, Hansen, Lunde and Shephard (2006) adopt a different approach in the

estimation of integrated volatility. They use kernels to consistently estimate the contribution

to quadratic variation of X due to the Brownian component of Y . When the asset price

dynamics is described by a scaled Brownian motion they also suggest an optimal choice

of e. Their estimator is asymptotically equivalent to R̃V t,e,M . Therefore, results derived

for R̃V t,e,M will also hold (at least asymptotically) for their kernel based realized volatility

measure.

We now discuss our estimation methodology.
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3 Conditional (Predictive) Density and Confidence Interval Esti-
mation

As discussed to in the introduction, conditional densities of integrated volatility play a crucial role

in the pricing of riskiness associated with the variability of volatility, and are instrumental when

one wishes to construct model free measures of variance risk premia. Given this fact, our objective

is to construct a nonparametric estimator of the density of integrated volatility at time T + h,

conditional on given realized volatility measures that are observed at times T, . . . , T − (d− 1) .

To simplify the discussion, and without loss of generality, we confine our attention to the case

where h = 1. Extension to the case of τ−step ahead prediction follows directly, for finite τ. Loosely

speaking, our objective is to predict the density of integrated volatility at time T + 1, using the

information contained in contemporaneous as well as d−1 lags of a given realized volatility measure.

Hereafter, let:

RM
(d)
t,M = (RMt,M , . . . ,RMt−(d−1),M).

Analogously, define:

IV
(d)
t = (IVt, . . . , IVt−(d−1)).

Following the typical approach, our conditional density estimator is defined as the ratio of joint

and marginal density estimators, where the latter is assumed to be bounded away from zero. Thus,

the kernel based conditional density estimator for a generic realized measure can be defined as:

f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M) =

1
T

∑T−1
t=d K

(
RM

(d)
t,M−RM

(d)
T,M

ξ1

)
1
ξd1
K
(
RMt+1,M−x

ξ2

)
1
ξ2

1
T

∑T−1
t=d K

(
RM

(d)
t,M

−RM
(d)
T,M

ξ1

)
1
ξd1

, (9)

where K can either be a d−dimensional kernel, or the product of d univariate kernel functions,

such as:

K

⎛
⎝RM

(d)
t,M

−RM
(d)
T,M

ξ1

⎞
⎠ =

d∏
i=1

H

(
RMt−i+1,M −RMT−i+1,M

ξ1

)
,

where H and K are one dimensional kernels, which may or may not be the same. Note that we

use the same bandwidth, ξ1, for all of the conditioning variables, RMt,M , . . . ,RMt−d+1,M ; and we

use a different bandwidth, ξ2, for the variable to be predicted, RMt+1,M . The rationale behind this

choice is the following. Since the underlying integrated volatility process is assumed to be strictly

stationary (see A1 below), and as we are evaluating the density of the conditioning variables at

the observed values RMT,M , . . . ,RMT−d+1,M , it is natural to use the same bandwidth for each

conditioning variable. On the other hand, we want to compute the predictive density at some

9



arbitrary point x, and therefore it may be sensible to use a different bandwidth for the dependent

variable.5

Now, define the unfeasible conditional density estimator based on the unobservable integrated

volatility process as follows:

f̂
IVT+1|IV

(d)
T

(x|RM
(d)
T,M ) =

1
T

∑T−1
t=d K

(
IV

(d)
t −RM

(d)
T,M

ξ1

)
1
ξd1
K
(
IVt+1−x

ξ2

)
1
ξ2

1
T

∑T−1
t=d K

(
IV

(d)
t −RM

(d)
T,M

ξ1

)
1
ξd1

,

Further, let f
IVT+1|IV

(d)
T

(x|RM
(d)
T,M

) be the true conditional density evaluated at RM
(d)
T,M

. Intuitively:

f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

tends to zero (in probability) at a rate depending on the number of intraday observations M. On

the other hand, it is immediate to see that:

f̂
IVT+1|IV

(d)
T

(x|RM(d)
T,M

)− f
IVT+1|IV

(d)
T

(x|RM(d)
T,M

)

approaches zero (in probability) at a rate depending only on T and on the bandwidth parameters.

In the sequel, we shall provide conditions on the relative rates of growth of M and T (as

M,T →∞) as well as ξ1 and ξ2 (as ξ1, ξ2 → 0), under which the limiting distribution of:

√
Tξd1ξ2

(
f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

)

is the same as that of:

√
Tξd1ξ2

(
f̂
IVT+1|IV

(d)
T

(x|RM
(d)
T,M

)− f
IVT+1|IV

(d)
T

(x|RM
(d)
T,M

)
)
;

In other words, we provide conditions under which the effect of the measurement error associated

with the realized volatility measure is asymptotically negligible. In this sense, we provide a tool

for model free prediction of integrated volatility.

In financial risk management, it is often of interest to predict the probability that daily volatility

will fall within a given interval, conditional on present and past values of a given realized measure.

In our context, this corresponds to the construction of a model free estimator of:

Pr
(
(u1 ≤ IVT+1 ≤ u2)|RM

(d)
T,M

)
.

5Of course, one may choose to let ξ2 depend on the evaluation point x.
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Provided that the daily volatility process is strictly stationary (see A1 below), it is immediate to

see that:

E
(
1{u1≤IVT+1≤u2}|RM

(d)
T,M

)
= Pr

(
(u1 ≤ IVT+1 ≤ u2)|RM

(d)
T,M

)
,

and, in order to measure the quantity above, we can therefore employ a standard Nadaraya-Watson

estimator. The relevant statistic of interest is thus based on:

F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M

)− F̂
RMT+1,M |RM

(d)
T,M

(u1|RM
(d)
T,M

)

=

1
T

∑T−1
t=d 1{u1≤RMt+1,M≤u2}K

(
RM

(d)
t,M

−RM
(d)
T,M

ξ

)
1
ξd

1
T

∑T−1
t=d K

(
RM

(d)
t,M

−RM
(d)
T,M

ξ

)
1
ξd

=

1
T

∑T−1
t=d 1{u1≤RMt+1,M≤u2}K

(
RM

(d)
t,M−RM

(d)
T,M

ξ

)
1
ξd

f̂
RM

(d)
T,M

(RM
(d)
T,M)

. (10)

As in the case of conditional densities, we also define the unfeasible conditional confidence interval,

based on the unobservable integrated volatility IVt. Namely, define:

F̂
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M )− F̂

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M) =

1
T

∑T−1
t=d 1{u1≤IVt+1≤u2}K

(
IV

(d)
t −RM

(d)
T,M

ξ

)
1
ξd

1
T

∑T−1
t=d K

(
IV

(d)
t −RM

(d)
T,M

ξ

)
1
ξd

=

1
T

∑T−1
t=d 1{u1≤IVt+1≤u2}K

(
IV

(d)
t −RM

(d)
T,M

ξ

)
1
ξd

f̂
IV

(d)
T

(RM
(d)
T,M

)
.

Further, the true conditional interval is:

F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M ).

Visual inspection of (9) and (10) immediately reveals that, in the case of conditional confidence

interval estimation, the curse of dimensionality is reduced by one. However, the treatment of

measurement error in this case is more complex, as the error enters into the indicator function,

which is a nondifferentiable function. As a result, the conditions on the rate of growth ofM, relative

to T, that are required to ensure that measurement error is asymptitically negligible turn out to

be more stringent, as we shall see in the next section.

4 Asymptotic Theory

We begin by stating the assumptions which will be used to derive our asymptotic results.
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Assumption A1: IVt =
∫ t

t−1 σ
2
sds is a strictly stationary α−mixing process with size −2r/(r−2),

r > 2.

Assumption A2:

(i) The kernel, K, is a symmetric, nonnegative, continuous function with bounded support

[−∆,∆]; and is at least twice differentiable on the interior of its support, satisfying:

∫
K(s)ds = 1,

∫
sK(s)ds = 0.

(ii) Let K
(j)
i be the j − th derivative of the kernel with respect to the i−th variable. Then,

K
(j)
i (−∆) = K

(j)
i (∆) = 0, for i = 1, . . . , d, j = 1, . . . , J, J ≥ 1.

Assumption A3:

(i) The kernelK is a symmetric, nonnegative, continuous function with bounded support [−∆,∆]d,

at least twice differentiable on the interior of its support, satisfying:

∫
K(s)ds = 1,

∫
sK(s)ds = 0.

(ii) Let K(j) be the j − th derivative of the kernel. Then, K(j)(−∆) = K(j)(∆) = 0, for j =

1, . . . , J, J ≥ 1.

Assumption A4:

(i) f
IV

(d)
T

(·) and, for any fixed x, f
IVT+1|IV

(d)
T

(x|·) are absolutely continuous with respect to the

Lebesgue measure in Rd, and ω−times continuously differentiable on Rd, with ω ≥ 2.

(ii) For any fixed x, u and RM
(d)
T,M , f

IV
(d)
t

(RM
(d)
T,M) > 0, f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M) > 0, and

0 < F
IVt+1|IV

(d)
t

(u|RM(d)
T,M) < 1.

Assumption A5: There exists a sequence bM , with bM →∞ as M →∞, such that:

sup
t≤T

E
(
|Nt,M |

k
)
= O

(
T 1/2b

−k/2
M

)
, k ≥ 2

where Nt,M = RMt,M − IVt, and RMt,M is a generic realized measure.

Assumption A1 requires the daily volatility process to be strong mixing. For example, this

assumption holds for the case of the eigenfunction stochastic volatility models of Meddahi (2001). In

this case, integrated volatility has an ARMA structure and is strong mixing, with mixing coefficients

12



declining at a geometric rate. It should be pointed out that A2 does not rule out the possibility

that volatility is a deterministic function of the price of the underlying asset, provided that the

log-price follows a stationary mixing process.6

A3 and A4 are somewhat standard assumptions in the literature on nonparametric density

estimation. The reason why we require a kernel function with a bounded support is the following.

Realized volatility measures are by construction non negative. Thus, if we were to use a kernel

function with unbounded support, the estimated density would suffer from a downward bias, as

some weight would be given to negative observations. Thus, it suffices to use a boundary corrected

kernel function for those values of x and RM
(d)
T,M that are “close” to the lower bound of the support.

The use and the choice of boundary corrected kernels will be explained in Section 6.

Assumption A5 requires that the k−th moment of the measurement error decays to zero fast

enough as M → ∞, uniformly in t; also, it implicitely requires that M grow fast enough relative

to T. In Subsection 4.4, we shall provide primitive conditions, in terms of moments of σ2t and µt,

under which A5 is satisfied by the four realized measures defined in (3),(4),(5) and (8).

4.1 Predictive Density Results

We are now in position to state our main results summarizing the asymptotic behavior of the kernel

based conditional (predictive) density estimator. We begin by considering the case in which the

evaluation points x and RMT,M are away from the boundary, so that no correction is necessary.

The issue of boundary correction is treated in the empirical application (see Section 6).

Theorem 1. Let A1-A5 hold. Then, pointwise in x :

(i) If ξ1, ξ2 → 0 and Tξd1ξ2 →∞, then:

f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M )− f̂

IVT+1|IV
(d)
T

(x|RM
(d)
T,M ) = OP

(
T

1
2k−1 b

−1/2
M

)
.

(ii) If ξ1, ξ2 → 0, Tξd1ξ2 →∞, and T
2k+1
2k−1 b−1

M ξd1ξ2 → 0, then:

√
Tξd1ξ2

(
f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

)

=
√
Tξd1ξ2

(
f̂
IVT+1|IV

(d)
T

(x|RM
(d)
T,M )− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M )

)
+ oP (1),

where k is defined as in Assumption 5.
6Hence, we do not need to choose between one-factor and stochastic volatility models. In this context, however, it

should be noted that Corradi and Distaso (2005b) suggest a testing procedure for choosing between one-factor and
stochastic volatility models, without making any assumption on the parametric specification of either the drift or
variance term.

13



As the unfeasible estimator based on the unobservable integrated volatility process for IVt

converges to the true conditional density at rate
√
Tξd1ξ2, the limiting distributions of the feasible

and unfeasible estimators are asymptotically equivalent, provided that T
2k+1
2k−1 b−1

M ξd1ξ2 → 0. In this

sense, the rate at which bM has to grow (relative to T ) is lower the higher is the number of

conditioning variables and the faster the bandwidth parameters go to zero.

We can now establish the limiting distribution of our conditional density estimator.

Theorem 2. Let A1-A5 hold. If ξ1, ξ2 → 0, Tξd1ξ2 → ∞, Tξ4+d1 ξ2 → 0, Tξd1ξ
5
2 → 0, and

T
2k+1
2k−1 b−1M ξd1ξ2 → 0, then:

√
Tξd1ξ2

(
f̂
RMT+1,M |RM

(d)
T,M

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

)

d
−→ N

⎛
⎝0,

⎛
⎝f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

f
IV

(d)
T

(RM
(d)
T,M)

∫
K2(u)du

∫
K2(v)dv

⎞
⎠
⎞
⎠ . (11)

The limit theory provided above is unfeasible, since the variance in (11) needs to be estimated.

A feasible limit theory is given in the following corollary.

Corollary 1. Let A1-A5 hold. If ξ1, ξ2 → 0, Tξd1ξ2 → ∞, Tξ4+d1 ξ2 → 0, Tξd1ξ
5
2 → 0, and

T
2k+1
2k−1 b−1M ξd1ξ2 → 0, then:

⎛
⎜⎝ f̂

RMT+1,M |RM
(d)
T,M

(x|RM
(d)
T,M )

f̂
RM

(d)
T,M

(RMd
T,M)

∫
K2(u)du

∫
K2(v)dv

⎞
⎟⎠

1/2

×
√
Tξd1ξ2

(
f̂
RMT+1,M |RM

(d)
T

(x|RM
(d)
T,M )− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M )

)
d
−→ N(0, 1).

As the underlying conditional density is at least twice differentiable, the bias term goes to zero

at a rate not slower than min(ξ21 , ξ
2
2). Thus, if Tξ

4+d
1 ξ2 → 0 and Tξd1ξ

5
2 → 0, the bias term associated

with the estimator will be asymptotically negligible. If instead, Tξ4+d1 ξ2 and Tξd1ξ
5
2 converge to

a fixed constant, then in principle one could bias-correct the estimated density. However, bias

correction is only feasible when the degree of differentiability of the density is known.

4.2 Predictive Confidence Interval Results

We now turn to the asymptotic behavior of the conditional confidence interval estimator defined in

(10).
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Theorem 3. Let A1-A5 hold. Then:

(i) If ξ → 0 and Tξd →∞, then:(
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M)− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M)

)
−
(
F̂
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M )− F̂

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M)

)
= OP

(
T

3
2k−1 b

−1/2
M

)
+OP

(
T
−

1
2
+ 3

4k−2(
1
4
+ 1

2r )b
−

1
4 (

1
4
+ 1

2r )
M

)
,

where k ≥ 2 (see A5) and r > 2 (see A1).

(ii) If ξ → 0, Tξd →∞, and T
2k+5
2k−1 b−1M ξd → 0, then:

√
Tξd

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M )− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M )

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M )

))
=
√
Tξd

((
F̂
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)− F̂

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M)

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M )

))
+ oP (1).

From part (i) of the theorem, it follows that, in the case of conditional confidence interval

estimation, the measurement error is asymptotically negligible if bM goes to zero at a rate faster

than T
6

2k−1 . This contrasts with the statement of Theorem 1, part (i), where it is required that

bM → ∞ at a rate faster than T
2

2k−1 . This is due to the fact that in the conditional confidence

interval case, the measurement error component enters in the indicator function, which is a non

differentiable function. Furthermore, Nt,M is not independent of IVt.7 Therefore, in our proofs we

can no longer employ intermediate value expansions, but we can only use the fact that:

sup
t≤T

Nt,M = OP (T
3

2k−1 b
−1/2
M ).

The next theorem and corollary state the unfeasible and feasible limiting distributions of our

conditional confidence interval estimators.

Theorem 4. Let A1-A5 hold. If ξ → 0, Tξd →∞, Tξ4+d → 0, and T
2k+5
2k−1 b−1M ξd → 0, then:

√
Tξd

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M )− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M)

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M )

))
d
−→ N(0, V (u1, u2)) ,

7Meddahi (2002, Proposition 4.3) shows that in the case of realized volatility, and in the absence of leverage, the
measurement error is uncorrelated with the integrated volatility process.
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where

V (u1, u2)

=
1

f
IV

(d)
T

(RM
(d)
T,M

)

∫
K

2(u)du
((

F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M

)− F
IVT+1|IV

(d)
T

(u1|RM
(d)
T,M

)
)

×
(
1−

((
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M

)− F
IVT+1|IV

(d)
T

(u1|RM
(d)
T,M

)
))))

.

Corollary 2. Let A1-A5 hold. If ξ → 0, Tξd →∞, Tξ4+d → 0, and T
2k+5
2k−1 b−1

M ξd → 0, then:

V̂ −1/2(u1, u2)√
Tξd

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M )− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M )

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M )

))
d
−→ N(0, 1) ,

where

V̂ (u1, u2)

=
1

f̂
RM

(d)
T,M

(RM
(d)
T,M )

∫
K

2(u)du

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M )− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M )

)

×

(
1−

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M)− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M)

))))
.

Comparing the statements in Theorems 2 and 4 with the associated corollaries, we see that in the

latter case the asymptotic equivalence of the limiting distributions of kernel estimators constructed

using the unobservable integrated volatility and a generic realized volatility measure requires that

bM grows faster than T
2k+5
2k−1 ξd. This condition is more demanding than in Theorem 2, where it is

required that T
2k+1
2k−1 b−1

M ξd1ξ2 → 0.

4.3 Local Linear Estimators Results

So far, we have resorted to standard Nadaraya-Watson and kernel estimators for conditional confi-

dence intervals and densities. Nevertheless, a viable alternative is to use local linear estimators. The

objective of this subsection is to provide the relevant asymptotic theory for local linear estimators.

We begin by considering conditional density estimators. Following Fan, Yao and Tong (1996),

define β̂T,M(x,RM
(d)
T,M ) as:

β̂T,M (x,RM
(d)
T,M

) = argmin
β

ST,M(β; x,RM
(d)
T,M

),

where

ST,M(β;x,RM
(d)
T,M)
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=
1

Tξd1ξ2

T∑
t=d

(
K

(
RMt+1,M − x

ξ2

)
− β0 − β′

1

(
RM

(d)
t,M −RM

(d)
T,M

))2
K

⎛
⎝RM

(d)
t,M

−RM
(d)
T,M

ξ1

⎞
⎠ ,

β = (β0,β′

1)
′, K and K are defined as in (9). Therefore:

β̂T,M (x,RM
(d)
T,M) =

⎛
⎜⎜⎜⎜⎝

β̂0,T ,M(x,RM
(d)
T,M )

β̂1,T ,M(x,RM(d)
T,M

)
...

β̂d,T,M (x,RM
(d)
T,M

)

⎞
⎟⎟⎟⎟⎠

=
(
X′

(M)W(M)X(M)

)
−1
X′

(M)W(M)y(M),

whereX(M) is a matrix of dimension (T − d)×(d+1),W(M) is a diagonal (T − d)×(T − d) matrix,

and Y(M) is a (T − d)× 1 vector. In particular:

X(M)=

⎛
⎜⎜⎝

1 RMd,M −RMT,M · · · RM1,M −RMT−(d−1),M

1 RMd+1,M −RMT,M · · · RM2,M −RMT−(d−1),M
...

...
. . .

...
1 RMT−1,M −RMT,M · · · RMT−(d−2),M −RMT−(d−1),M

⎞
⎟⎟⎠ , (12)

W(M)=
1

ξd1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K

(
RM

(d)
d,M

−RM
(d)
T,M

ξ1

)
0 · · · 0

0 K

(
RM

(d)
d+1,M−RM

(d)
T,M

ξ1

)
· · · 0

...
...

. . .
...

0 0 · · · K

(
RM

(d)
T,M−RM

(d)
T,M

ξ1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

and

y(M)=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
ξ2
K
(
RM2,M−x

ξ2

)
1
ξ2
K
(
RM3,M−x

ξ2

)
...

1
ξ2
K
(
RMT,M−x

ξ2

)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The local linear estimator of the conditional density is given by β̂0,T,M (x,RM
(d)
T,M). Hereafter, let:

f̂
(ll)

RMT+1,M |RM
(d)
T,M

(x|RM
(d)
T,M ) = β̂0,T ,M(x,RM

(d)
T,M )

and let f̂
(ll)

IVT+1|IV
(d)
T

(x|RM
(d)
T,M ) be its unfeasible counterpart. We have the following result.

Theorem 5. Let A1-A5 hold. Then, pointwise in x:

(i) If ξ1, ξ2 → 0, Tξd1ξ2 →∞, and T
2k+1
2k−1 b−1

M ξd1ξ2 → 0, then:√
Tξd1ξ2

(
f̂
(ll)

RMT+1,M |RM
(d)
T,M

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

)
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=
√
Tξd1ξ2

(
f̂
(ll)

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)− f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

)
+ oP (1).

(ii) If ξ1, ξ2 → 0, Tξd1ξ2 →∞, Tξ4+d1 ξ2 → 0, Tξd1ξ
5
2 → 0, and T

2k+1
2k−1 b−1

M ξd1ξ2 → 0, then:√
Tξd1ξ2

(
f̂
(ll)

RMT+1,M |RM
(d)
T,M

(x|RM
(d)
T,M

)− f
IVT+1|IV

(d)
T

(x|RM
(d)
T,M

)

)

d
−→N

⎛
⎝0,

⎛
⎝f

IVT+1|IV
(d)
T

(x|RM
(d)
T,M)

f
IV

(d)
T

(RM
(d)
T,M)

∫
K

2(u)du

∫
K2(v)dv

⎞
⎠
⎞
⎠ .

From the theorem above, it is immediate to see that standard kernel and local linear estimators

are asymptotically equivalent.

We now consider local linear estimators of conditional confidence intervals. Define α̂T,M (u1, u2,RM
(d)
T,M

)

as:

α̂T,M(u1, u2,RM
(d)
T,M

) = argmin
α

ZT,M (α;u1, u2,RM
(d)
T,M

),

where

ZT,M (α;u1, u2,RM
(d)
T,M )

=
1

Tξd1ξ2

T∑
t=d

(
1{u1≤RMt+1≤u2} − α0 −α

′
1

(
RM

(d)
t,M −RM

(d)
T,M

))2
K

⎛
⎝RM

(d)
t,M

−RM
(d)
T,M

ξ1

⎞
⎠

and α = (α0,α′
1)

′. Then:

α̂T,M (u1, u2,RM
(d)
T,M ) =

⎛
⎜⎜⎜⎜⎝

α̂0,T ,M(u1, u2,RM
(d)
T,M )

α̂1,T ,M(u1, u2,RM
(d)
T,M

)
...

α̂d,T,M (u1, u2,RM
(d)
T,M )

⎞
⎟⎟⎟⎟⎠

=
(
X′

(M)W(M)X(M)

)−1
X′

(M)W(M)ỹ(M)(u1, u2),

where X(M) and W(M) are defined in (12) and (13) (using ξ1 = ξ), and:

ỹ(M)(u1, u2) =

⎛
⎜⎜⎜⎝

1{u1≤RMd+1≤u2}

1{u1≤RMd+2≤u2}
...

1{u1≤RMT+1≤u2}

⎞
⎟⎟⎟⎠ .

The local linear estimator of the conditional density is given by α̂0,T ,M(u1, u2,RM
(d)
T,M). Hereafter,

let:

F̂
(ll)

RMT+1,M |RM
(d)
T,M

(u2|RM
(d)
T,M )− F̂

(ll)

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M ) = α̂0,T,M (u1, u2,RM

(d)
T,M ),
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and let:

F̂
(ll)

IVT+1|IV
(d)
T

(u2|RM
(d)
T,M

)− F̂
(ll)

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M

)

denote the corresponding estimator obtained using the unobservable IVt. The local estimator

for conditional distributions outlined above has been recently used by Äıt-Sahalia, Fan and Peng

(2005), in the context of tests for the correct specification of diffusion models. Such an estimator is

not ensured to lie between 0 and 1 in finite samples. More complex estimators based, for example,

on logistic approximation do instead lie between 0 and 1 for any sample size (see Hall, Wolff and

Yao, 1999); however they typically cannot be written in closed form. Finally we have the following

result.

Theorem 6. Let A1-A5 hold. Then:

(i) If ξ → 0, Tξd →∞, and T
2k+5
2k−1 b−1M ξd → 0, then:

√
Tξd

((
F̂
(ll)

RMT+1,M |RM
(d)
T,M

(u2|RM
(d)
T,M)− F̂

(ll)

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M)

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M )− F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M)

))
=
√
Tξd

((
F̂
(ll)

IVT+1|IV
(d)
T

(u2|RM
(d)
T,M )− F̂

(ll)

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M )

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M )− F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M)

))
+ oP (1).

(ii) If ξ → 0, Tξd →∞, Tξ4+d → 0, and T
2k+5
2k−1 b−1

M ξd → 0, then:

√
Tξd

((
F̂
(ll)

RMT+1,M |RM
(d)
T,M

(u2|RM
(d)
T,M )− F̂

(ll)

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M )

)

−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M

)−F
IVT+1|IV

(d)
T

(u1|RM
(d)
T,M

)
))

d
−→ N(0, V (u1, u2)) ,

where V (u1, u2) is defined as in the statement of Theorem 4.

4.4 Primitive Conditions for Assumption A5

We now provide primitive conditions on the moments of the drift and variance terms which ensure

that Assumption A5 is satisfied by the four realized measures outlined in Section 2.

Lemma 1. If E
((
σ2t
)2k+η

)
<∞ and E

(
(µt)

2k+η
)
<∞, for some η > 0, then there is a sequence

bM , where bM →∞ as M →∞, such that for all finite k :

(i) If Jt ≡ 0 for all t (no jumps) and ε ≡ 0 (no microstructure noise), then:

sup
t≤T

E
(
|RVt,M − IVt|

k
)
= O(T 1/2b

−k/2
M ), with bM =M.
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(ii) If ε ≡ 0, then:

sup
t≤T

E
(∣∣BVt,M − µ21IVt

∣∣k) = O(T 1/2b
−k/2
M ), with bM =M,

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2), and Z is a standard normal variate.

(iii) If Jt ≡ 0 for all t (no jumps), E
(
εt+j/M

)2k+η
< ∞, for η > 0, and l/M1/3 → π, and

0 < π <∞, then:

sup
t≤T

E

(∣∣∣R̂V t,l,M − IVt

∣∣∣k) = O(T1/2b
−k/2
M ) with bM =M1/3.

(iv) If Jt ≡ 0 for all t (no jumps), E
(
εt+j/M

)2k+η
<∞, for η > 0, and e/M1/2 → π, 0 < π <∞,

then:

sup
t≤T

E

(∣∣∣R̃V t,e,M − IVt

∣∣∣k) = O(T 1/2b
−k/2
M ) with bM =M1/2,

where RVt,M , BVt,M , R̂V t,l,M , and R̃V t,e,M are defined in (3), (4), (5) and (7), respectively.

From the proof of the Lemma above, it is immediate to see that in the case of no leverage

and/or bounded drift and variance, the following sharper rates hold. Namely:

sup
t≤T

E
(
|RVt,M − IVt|

k
)
= O(M−k/2),

sup
t≤T

E
(∣∣BVt,M − µ21IVt

∣∣k) = O(M−k/2),

sup
t≤T

E

(∣∣∣R̂V t,l,M − IVt

∣∣∣k) = O(M−k/6),

sup
t≤T

E

(∣∣∣R̃V t,e,M − IVt

∣∣∣k) = O(M−k/4).

Thus, in the case of no leverage and/or bounded drift and variance term, Assumption A5 can be

restated as A5’:

sup
t≤T

E
(
|Nt,M |

k
)
= O

(
b
−k/2
M

)
, k ≥ 2.

Now, with regard to the conditional density estimators, by replacing A5 with A5’, Theorem 1(i)

holds with a measurement error term of order OP

(
b
−1/2
M

)
, instead of OP

(
b
−1/2
M T

1

2k−1

)
. Addi-

tionally, the statements in Theorem 1(ii), Theorem 2 and Corollary 1 require that Tb−1M ξd1ξ2 → 0,

instead of T
2k+1
2k−1 b−1M ξd1ξ2 → 0. With regard to the conditional interval estimators, under A5’, the

statement in Theorem 3(i) holds with a measurement error term of order

OP

(
T

1
k−1 b

−1/2
M

)
+OP

(
T
−

1
2
+ 1

2(k−1)(
1
4
+ 1

2r )b
−

1
4(

1
4
+ 1

2r )
M

)
,

20



instead of

OP

(
T

3
2(k−1) b

−1/2
M

)
+OP

(
T
−

1
2
+ 3

4k−2(
1
4
+ 1

2r )b
−

1
4(

1
4
+ 1

2r )
M

)
.

Additionally, the statements in Theorem 3(ii), Theorem 4 and Corollary 2 require that T
k+1
k−1 b−1M ξd →

0, instead of T
2k+5
2k−1 b−1M ξd → 0.

Finally, within the class of eigenvalues stochastic volatility models of Meddahi (2001), and in

the case of constant drift, it follows from Corradi and Distaso (2005a, Propositions 1-3) that for

k = 1, 2 :

E
(
|Nt,M |

k
)
= O

(
b
−k/2
M

)
.

4.5 Remarks

Remark 1. From Lemma 1, it follows that bM =M for the case of realized volatility and bipower

variation, while bM = M1/3 and bM = M1/2 for RMt,M = R̂V t,l,M and RMt,M = R̃V t,e,M ,

respectively. Thus, bM grows withM at different rates across different realized volatility measures.

More precisely, bM grows as fast as M in the case of realized volatility and bipower variation, while

it grows at a rate slower than M in the case of microstructure robust realized measures. Hence,

for empirical implementation of our results, one may select either a relatively small value of M,

for which the microstructure noise effect is not too distorting, together with a non microstructure

robust realized measure, or select a very large M and a microstructure robust realized measure.

This issue is investigated in the Monte Carlo section.

Remark 2. In general we do not have a closed form expression for the “true” conditional confidence

interval:

F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M)−F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M ).

In fact, even if the data generating process for the instantaneous volatility process is known, this

does not imply knowledge of the data generating process for the integrated volatility process. For

example, if instantaneous volatility is modelled as a square root process, we know that integrated

volatility is an ARMA(1,1) process (see, e.g., Meddahi, 2001). However, while we know the au-

toregressive parameter, we do not know the moving average component of the ARMA process.

Additionally, we do not know the marginal distribution of the innovation term in the ARMA pro-

cess. Of course, we can simulate the instantaneous volatility process, obtain the implied daily

volatility process, and then construct the conditional confidence intervals using kernel estimators

based on simulated integrated volatility. By keeping the number of simulations large enough, we

can obtain conditional confidence intervals arbitrarily close to the true ones. Then, we can test
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whether the conditional confidence intervals implied by a given model of instantaneous volatility

are correctly specified. In practice, simulated confidence intervals are constructed using estimated

parameters based on samples of T observations.

Remark 3. From a practical point of view, the asymptotic normality results stated in Theorems

2 and 4 are useful, as these results facilitate the construction of confidence bands around estimated

conditional densities and confidence intervals. The sort of empirical problem for which these results

may be useful is the following. Suppose that we want to predict the probability that integrated

volatility will take a value between IVl and IVu, say, given that we observe the current (and past)

values for a chosen realized measure. Then, as bM and T →∞, and if bM grows fast enough relative

to T ,

Pr
(
(IVl ≤ IVT+1 ≤ IVu)|IV

(d)
T = RM

(d)
T,M

)
will fall in the interval(

F̂
RMT+1,M |RM

(d)
T,M

(IVu|RM
(d)
T,M)− F̂

RMT+1,M |RM
(d)
T,M

(IVl|RM
(d)
T,M )

)
± V̂ −1/2(l, u)zα/2,

with probability 1 − α, where V̂ (l, u) is defined in Corollary 2 and zα/2 denotes the α/2 quantile

of a standard normal. Analogous confidence bands can be constructed for conditional densities at

different evaluation points.

Remark 4. In empirical work, volatility is often modelled and predicted with ARMA models that

are constructed using logs of realized volatility. For example, Andersen, Bollerslev, Diebold and

Labys (2001, 2003) use the log of realized volatility for modelling and predicting stock return and

exchange rate volatility. According to these authors, one reason for using logs is that while the

distribution of realized volatility is highly skewed to the right, the distribution of logged realized

volatility is much closer to normal. It is immediate to see that a Taylor expansion of log(RMt,M)

around IVt gives:

log(RMt,M ) = log(IVt) +
1

IVt
Nt,M −

1

2

1

IV 2
t

N2
t,M +

1

3

1

IV 3
t

N3
t,M + . . . ,

where Nt,M = IVt − RMt,M . Provided that IVt is bounded away from zero, under the conditions

in Lemma 1 it follows that supt≤T E
(
|log(RMt,M)− log(IVt)|

k
)
= O(T 1/2b

−k/2
M ). Therefore, the

statements in the theorems above hold in the case where we are interested in predictive densities

and confidence intervals for the log of integrated volatility, conditional on the log of current and

past realized volatility measures.
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5 Monte Carlo Results

In this section, our objective is to assess the finite sample efficacy of the limiting distribution result

given for the conditional (predictive) interval estimator in Corollary 2. Namely, we will construct:

GT,M(u1, u2)

=V̂ −1/2(u1, u2)
√
Tξd

((
F̂
RMT+1,M |RM

(d)
T,M

(u2|RM
(d)
T,M )− F̂

RMT+1,M |RM
(d)
T,M

(u1|RM
(d)
T,M )

)
−
(
F
IVT+1|IV

(d)
T

(u2|RM
(d)
T,M )− F

IVT+1|IV
(d)
T

(u1|RM
(d)
T,M)

))
.

Our objective will then be to assess the finite sample properties of the interval estimator by exam-

ining the empirical level properties of GT,M (u1, u2) for a given data generating process (DGP). In

particular, data are generated according to the following DGP:

dYt =mdt+dzt +
√
σ2t dW1,t

dσ2t = κ
(
v − σ2t

)
dt+ η

√
σ2t dW2,t,

where W1,t and W2,t may be correlated with correlation coefficient ρ. Using a Milstein scheme, S

paths of length d + 1 are generated, with S much larger than T, and with a very small discrete

interval (1/N) between successive observations. These data are used to construct a “pseudo true”

confidence interval for integrated volatility.

Then, Monte Carlo iterations are carried out by generating paths of length T days. In each

iteration, the first dN observations are kept fixed, and are taken from the first d days of data used

in the construction of the pseudo true interval.8 Simulated data are then sampled at frequency

1/M, for various values of M, where M < N. Thereafter, the four realized volatility measures

outlined in Section 2 are constructed, using each path of simulated asset data, and are in turn used

to construct GT,M (u1, u2).

In the implementation of this experiment, we set m = 0.05, η = 1, κ = 2.5, v = 1, and

ρ = 0.9 In our basic case (denoted by Case I in Table 1), we simply set Xt+j/M = Yt+j/M (i.e. we

assume that there is no microstructure noise), for t = 1, . . . , T , and j = 1, . . . ,M. Additionally,

we assume in this case that Jt ≡ 0 for all t (no jumps). Under Case II (see Table 2), daily

data are generated by adding microstructure noise. Accordingly, Xt+j/M = Yt+j/M + εt+j/M ,

8In this way, the conditioning set, RM
(d)
T,M , is held fixed across all iterations, and is the same as that used in the

construction of the pseudo true interval.
9This parameterization is artificial, in the sense that it is not calibrated from any particular dataset. Rejection

frequency results reported below may worsen when the magnitude of the mean reversion parameter is decreased, for
example.
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t = 1, . . . , T , and j = 1, . . . ,M, as discussed above, where we set εt+j/M ∼ i.i.d. N(0, ν), and where

ν = {(3 ∗ 1152)−1, (4 ∗ 1152)−1, (5 ∗ 1152)−1}. Finally, in Case III (see Table 3) jumps are added

by including an i.i.d. N(0, 0.64ajumpµ̂IVt) shock to the process for Yt+j/M , where ajump is set equal

to {3, 5, 10}, and µ̂IVt is the mean of our pseudo true IVt values. In this case, it is assumed that

jumps arrive randomly with equal probability at any point in time, once within each 5 day interval,

on average. We set S = 3000, and d = 1. Additionally, we set the interval [u1, u2] = [µ̂IVt − βσ̂IVt ,

µ̂IVt + βσ̂IVt ] where µ̂IVt is defined above, σ̂IVt is the standard error of the pseudo true data, and

β = {0.125, 0.25, 0.50}. The associated confidence intervals based on these combinations of [u1, u2]

are 0.128, 0.181, and 0.341, for the three different β values, respectively. We consider daily samples

of T = {100, 300, 500} observations, and we set M = {72, 144, 288, 576}. Experimental results are

reported for estimated intervals constructed using a quartic kernel. Additionally, whenever the

message of the experiment is not lost, tabulated results are only reported for T = 100. Finally, all

results are based upon 500 Monte Carlo iterations.

In Tables 1-3, rejection frequencies are reported, using two-sided 10% nominal level tests. The

first column of rejection frequencies contains results for RVt,M , the second for BVt,M , the third for

̂RV t,l,M and the fourth for˜RV t,e,M . Results for different values of M are reported in different rows

of the tables. A number of clear conclusions emerge upon examination of the results.

Turning first to Table 1, where there is no microstructure noise or jumps in the DGP, note that

RVt,M and BVt,M perform approximately equally well. Both of these measures have empirical sizes

close to the nominal 10% level in various cases, and there is a substantial improvement as both M

and T increase. Indeed, in many cases the nominal size is achieved, or very nearly so, a finding which

might be viewed as rather surprising given the small values of M and T used in our experiment.

Of note is that, roughly speaking, our findings are qualitatively the same, regardless of the width

of the confidence interval for which the test statistics are constructed. In particular, the three

confidence interval widths reports in Panels A-C of Table 1 yield similar empirical findings, with

marginal improvement as the interval, [u1, u2], increases in width. As expected, RVt,M and BVt,M

yield more accurate confidence intervals than the two subsampled measures. In particular, note that

empirical rejection frequencies for̂RV t,l,M and˜RV t,e,M are often 0.20-0.30 whenM = 576, whereas

rates for RVt,M and BVt,M are often 0.10-0.20. Furthermore, empirical performance of̂RV t,l,M and

˜RV t,e,M is very poor for very small values of M (rejection frequencies of 0.50-0.80 are not unusual

in such cases), and performance often worsens as T increases, for fixed M. Nevertheless, it should

be stressed that the robust measures clearly yield empirical rejection frequencies that improve quite
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quickly as M increases, for fixed T . In summary, there is clearly a need for reasonably large values

of M when implementing the microstructure robust realized measures in our context.

We now turn to Tables 2 and 3, where microstructure noise and jumps are added to the DGP.

We report results only for the case where T = 100.10 Our conclusions based on these tables are as

follows. Under microstructure noise (Table 2),̂RV t,l,M and˜RV t,e,M are both superior to the non-

microstructure noise robust realized measures, particularly for large values of M, as expected. For

example, consider Panel C in Table 2. The rejection frequency for RVt,M ranges from 0.310-0.763

for M = 576, whereas the analogous entries for˜RV t,e,M range from 0.190-0.196, which indicates a

marked improvement when using the robust measure, as long as M is large, and even though T is

only 100. Of course, forM too small, there is nothing to gain by using the robust measures. Indeed,

for M = 48, RVt,M rejection frequencies are much closer to the nominal level than R̂V t,l,M and

R̃V t,e,M rejection frequencies. Additionally, BVt,M outperforms all other measures under jumps

(see Table 3). Note also that within each panel in Table 3, there are three different jump intensities

reported on. As expected, when jump intensity increases, while holding jump frequency, T , andM

fixed, the performance of BVt,M remains stable, while that of the other three measures worsens.

In summary, the above experiment suggests that our asymptotic theory yields reasonably sharp

finite sample distributional approximations, even for small values of T and M, such as T = 300

and M = 576. Additionally, all realized measures perform as expected, and the robust measures

perform as well as might be expected for moderately small values of M (i.e. M = 576), and very

small values of T (i.e. T = 100 daily observations). Finally, in the context of microstructure noise,

the trade-off between using robust measures with large values ofM versus non-robust measures with

small values ofM that is predicted by our asymptotic theory is clearly apparent in our experimental

results.

6 Empirical Illustration: Daily Volatility Predictive Densities for

Intel

In this section we construct and examine predictions of the conditional distribution of daily in-

tegrated volatility for Intel using two different samples of data, and using the realized measures

discussed in Section 2. The rest of this section is broken into three subsections, including: a dis-

cussion of the data; a discussion of boundary corrected kernels; and a discussion of our empirical

findings.
10In order to extrapolate the reported findings to T = 300 and T = 500, one need only note that the magnitudes

of rejection frequencies associated with increasing T are of the same order of magnitude as those reported in Table

1. Tabulated results illustrating this are available upon request from the authors.
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6.1 Data Description

Data were retrieved from the Trade and Quotation (TAQ) database at the New York Stock Ex-

change (NYSE), and we base our analysis on two different sample sizes. The first one extends from

January 2 to May 27, 1998; the second from January 2 to May 22, 2002. Both sample sizes consist

of a total of 100 trading days. The reason of the choice of two different sample periods is to analyze

the effect of the decimalization of the tick size (the tick size was reduced from a sixteenth of a dollar

to one cent on January 29, 2001). From the original data set, which includes prices recorded for

every trade, we extracted 10 second and 5 minute interval data. Provided that there is sufficient

liquidity in the market, the 5 minute frequency is generally accepted as the highest frequency at

which the effect of microstructure biases are not too distorting (see Andersen, Bollerslev, Diebold

and Labys, 2001, Andersen, Bollerslev and Lang, 1999 and Ebens, 1999). Hence, our choice of the

two frequencies allows us to evaluate the effect of microstructure noise on the estimated predictive

densities.

The price figures for each 10 seconds and 5 minutes intervals are determined using the last tick

method, which was first proposed by Wasserfallen and Zimmermann (1985). From the calculated

series we have obtained 10 second and 5 minute intradaily returns as the difference between suc-

cessive log prices. A full trading day consists of 2340 (resp. 78) intraday returns calculated over

an interval of ten seconds (resp. five minutes).

6.2 Boundary Corrected Kernels

Since variances are by construction positive, the densities that we want to predict will have support

on the positive real line. Furthermore, it is well known that conventional kernel functions do not

produce consistent estimates when the evaluation points are close to the boundaries of the support.

In the literature, different approaches have been proposed to resolve this problem. We have used

the boundary corrected kernel function of Müller (1991), using a locally variable bandwidth. Apart

from their optimality properties (in terms of minimizing the integrated mean square error), a nice

and convenient feature of boundary corrected kernel functions is that they simplify to conventional

ones when the evaluation point is not close to the boundary. For ease of exposition, we will highlight

how the method works in the case of univariate densities, but extensions are straightforward.

Consider a density estimator based on the standard quartic kernel:

f̂ (x) =
1

nξ

n∑
i=1

K

(
x−Xi

ξ

)
,
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where

K (u) =
15

16

(
1− u2

)2
1{|u|≤1}.

Denote q = min (x/ξ, 1). The boundary modified kernel estimator has the form:

f̂q (x) =
1

nξq

n∑
i=1

Kq

(
x−Xi

ξq

)
,

where

Kq (u) =
30
(
1 + u2

)
(q − u)2

(1 + q)5

(
1 + 7

(
1− q

1 + q

)2
+ 14

(1− q)u

(1 + q)2

)
1{−1≤u≤q}

and

ξq = b (q) ξ = (2− q) ξ.

Notice that K1 (u) = K (u). Hence, the resulting limiting distributions are the same.11

6.3 Empirical Results

Using the two series of returns at different frequencies, predictive densities and 10% confidence

intervals were calculated for each of the four considered realized measures. Results are reported for

the case of d = 1 (that is, we have conditioned on the current value of integrated volatility), using

the boundary modified quartic kernel function and 1000 evaluation points.

Selected results are presented in Figures 1-4. The graphs reveal some interesting facts. First,

the graphs for the realized volatility and bipower variation are quite similar (see Figures 1 and 2).12

This seems to imply that jumps occur occasionally in the price process, and therefore do not affect

a procedure which is based on samples containing a large number of daily observations.

Second, and not surprisingly, the graphs displaying results for two scale and multi scale realized

volatility are somewhat similar (see Figure 1, for example).

Third, the effect of market microstructure noise emerges clearly in our empirical illustration.

In fact, by looking at the range of the densities of realized volatility and bipower variation for the

two different frequencies, the distorting impact of microstructure noise is made quite clear. As

predicted by theory (see Äıt-Sahalia, Mykland and Zhang, 2005), and confirmed by the simulation

results in Section 5, when the time interval between successive observations becomes small, then

the signal to noise ratio of the data decreases, and realized volatility and bipower variation tend

to explode, instead of converging to the increments of quadratic variation. This result is apparent
11The only difference is that, in order to calculate the variance of our conditional density estimator close to the

boundary at zero, we will need to compute integrals which depend on q.
12This similarity occurs for all values of M and for both subsamples. Therefore, we report results only for one of

the two realized measures in some of the figures, for the sake of brevity.

27



upon inspection of the predictive densities, as the ranges of the densities of the two estimators,

estimated with higher frequency data, are considerably wider than the corresponding ones obtained

with lower frequency data. Furthermore, the microstructure robust realized volatility measures are

clearly more stable, and increasing the frequency at which the data are sampled does not seem to

induce any appreciable distortion in density esitmators based on these robust measures (see the

lower 2 plots in Figure 3).

Fourth, tick decimalization has had a marked impact in reducing the effect of market mi-

crostructure noise. This can be seen by comparing the change of the range of the densities using

realized volatility and bipower variation (when moving from M = 78 to M = 2340), in the two

years considered. For example, comparing the upper 2 plots in Figure 1 with the same in Figure

2, one can see that the range of the density using bipower variation increases sixfold increase in

1998, when moving from M = 78 to M = 2340. There is only a twofold increase in range when an

analogous comparison is made using the 2002 data (see the upper two plots in Figure 3). However,

microstructure noise still seems to have an important effect on the estimation of financial volatility.

A final interesting feature that can be observed upon inspection of Figures 1-3 is the multi-

modality of the densities, which is probably due to volatility clustering effects.

Figure 4 reports various predictive densities and 10% confidence intervals based on the log

of integrated volatility, calculated using a standard quartic kernel function with 1000 evaluation

points. Similar to results reported in the literature (see, e.g., Andersen, Bollerslev, Diebold and

Labys, 2001, 2003) logging our realized volatility measures appears to induce the densities to be

closer to “normal” (see the plots in Figure 4), with the same microstructure related distortion effect

noted earlier for the non-robust measures.

28



Appendix

Proof of Theorem 1:

(i) Note that:13

f̂
RM

(d)
T,M

(x|RM
(d)
T,M ) =

1
T

∑T−1
t=d K

(
RM

(d)
t,M

−RM
(d)
T,M

ξ1

)
1
ξd1
K
(
RMt+1,M−x

ξ2

)
1
ξ2

f̂
IV

(d)
T

(x|RM
(d)
T,M)

(14)

+

⎛
⎜⎝ 1

f̂
RM

(d)
T,M

(x|RM
(d)
T,M

)
−

1

f̂IVT (x|RM
(d)
T,M

)

⎞
⎟⎠

×
1

T

T−1∑
t=d

K

⎛
⎝RM

(d)
t,M −RM

(d)
T,M

ξ1

⎞
⎠ 1

ξd1
K

(
RMt+1,M − x

ξ2

)
1

ξ2
. (15)

Given A2-A3, begin by expanding the numerator of the right hand side of (14) as follows:

1

T

T−1∑
t=d

K

⎛
⎝RM(d)

t,M −RM
(d)
T,M

ξ1

⎞
⎠ 1

ξd1
K

(
RMt+1,M − x

ξ2

)
1

ξ2

=
1

T

T−1∑
t=d

K

⎛
⎝IV

(d)
t −RM

(d)
T,M

ξ1

⎞
⎠ 1

ξd1
K

(
IVt+1 − x

ξ2

)
1

ξ2

+
1

T

T−1∑
t=d

d−1∑
i=0

K1
i

⎛
⎝R̃M

(d)

t,M −RM
(d)
T,M

ξ1

⎞⎠ 1

ξd+11

K

(
IVt+1 − x

ξ2

)
1

ξ2
Nt−i,M (16)

+
1

T

T−1∑
t=d

K

⎛⎝IV
(d)
t −RM

(d)
T,M

ξ1

⎞⎠ 1

ξd1
K1

(
R̃M t+1,M − x

ξ2

)
1

ξ22
Nt,M , (17)

whereK
(1)
i denotes the first derivative ofKwith respect to its i-th argument, R̃M

(d)

t,M ∈

(
RM

(d)
t,M , IV

(d)
t

)
,

and R̃M t+1,M ∈ (RMt+1,M , IVt+1) .

We need to find the orders of probability of the terms in (16) and (17), which represent the

contribution of measurement error. We begin by considering (16):

1

T

T−1∑
t=d

d−1∑
i=0

K
(1)
i

⎛⎝R̃M
(d)

t,M −RM
(d)
T,M

ξ1

⎞⎠ 1

ξd+11

K

(
IVt+1 − x

ξ2

)
1

ξ2
Nt−i,M .

Let

Rt,i,M = K
(1)
i

⎛⎝R̃M
(d)

t,M −RM
(d)
T,M

ξ1

⎞⎠ 1

ξd+11

K

(
IVt+1 − x

ξ2

)
1

ξ2
.

13All summations should be rescaled by 1

T−d
, however for notational brevity we rescale by 1

T
.
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Now, recalling A5:

Pr

(
T
−

1
2k−1 b

1/2
M

∣∣∣∣∣ 1T
T−1∑
t=d

d−1∑
i=0

Rt,i,MNt−i,M

∣∣∣∣∣ > ε

)
≤

d−1∑
i=0
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(
T
−

1
2k−1 b

1/2
M

∣∣∣∣∣ 1T
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t=d
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≤
d
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T
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k
)

=
d
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k/2
M O

(
T 1/2b

−k/2
M

)
→ 0,

so that (16) is OP (T
1

2k−1 b
−1/2
M ). The term in (17) can be treated in an analogous way, and so it is

OP (T
1

2k−1 b
−1/2
M ).

Finally, we evaluate (15). As ξd1 , ξ2 → 0 and Tξd1ξ2 →∞,

1

T
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K
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(d)
t,M −RM

(d)
T,M
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K
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since it satisfies a law of large numbers, while:⎛⎜⎝ 1
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RM

(d)
T,M
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−
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(d)
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⎞⎟⎠
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− 1
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M ),

by the same argument as the one used above. The statement in the theorem then follows.

(ii) Immediate by Part (i). �

Proof of Theorem 2:

From Theorem 4.1 in Robinson (1983). �

Proof of Theorem 3:

(i) We start by rearranging our object of interest:

F̂
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(d)
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⎛
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⎛
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⎛
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×
1
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(d)
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(d)
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ξ

⎞
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We begin by considering the term in (18). Since:

f̂
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(d)
t

(RM
(d)
T,M ) = f
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(d)
t

(RM
(d)
T,M ) + oP (1)

and, by A4(ii), f
IV

(d)
T

(RM
(d)

t,M) > 0, it suffices to consider the numerator. Now, it is immediate to

see that:
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The term in (20) can be treated as in the proof of Theorem 1, part (i), and is thus OP (T
− 1

2k−1 b
−1/2
M ).

We now consider (21):∣∣∣∣∣∣
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Now, given A5:
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Thus, for all samples except a subset with probability measure approaching zero as T,M → ∞,

there is a constant c such that:
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Hereafter, let cεb
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Also, by the law of large numbers:
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so that the term in (27) is oP
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.

Now, for all samples, except a subset with probability measure approaching zero as T,M →∞,
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We are left with the term in (25). Let:
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Schwartz inequality, it follows that (22) is of a smaller order of probability than (20) and (21).
14Notice that since M enters only in the conditioning set, we write Ut instead of Ut,M .
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Summarizing, the numerator of (18) is:
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It now remains to consider the term in (19). First, note that:
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and that the term in the denominator is bounded away from zero. Also, by the same argument as

the one used in the proof of Theorem 1, part (i):
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The statement in part (i) then follows.

(ii) From part (i), it is immediate to see that:
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−1/2
M ξ

d
2

)
+OP

(
T

3

2k−1(
1

4
+ 1

2r )b
− 1

4(
1

4
+ 1

2r )
M ξ

d
2

)
. (29)

The first term on the right hand side of (29) approaches zero, provided that T
2k+5
2k−1 ξdb−1M → 0. It is

immediate to see that the establish convergence to zero implies convergence to zero of the second

term as well. �

Proof of Theorem 4:

Follows from Remark 6 in Hall, Wolff and Yao (1999). �

Proof of Theorem 5:

(i) Define:

β̂T (x, IVT ) =

⎛
⎜⎜⎜⎝

β̂0,T (x, IVT )

β̂1,T (x, IVT )
...

β̂d,T (x, IVT )

⎞
⎟⎟⎟⎠ =

(
X′WX

)
−1
X′Wy,
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where X,W,y are defined as X(M),W(M),y(M), but replacing the realized measure series with

integrated volatility. Note that:

β̂T,M(x,RM(d)
T,M

)− β̂T (x, IVT )

=
(
T−1X′WX

)
−1

T−1
(
X′

(M)W(M)y(M) −X
′Wy

)
+

(
T−1

(
X′

(M)W(M)X(M)

)
−1
−

(
T−1X′WX

)
−1
)
T−1X′Wy

+

((
T−1X′

(M)W(M)X(M)

)
−1
−

(
T−1X′WX

)
−1
)(

T−1X′

(M)W(M)y(M) − T−1X′Wy

)
. (30)

Now:

T−1
(
X′

(M)W(M)y(M) −X
′Wy

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
T ξd1ξ2

∑T−1
t=d

(
K

(
RM

(d)
t,M−RM

(d)
T,M

ξ1

)
K
(
RMt+1,M−x

ξ2

)
−K

(
IV

(d)
t −RM

(d)
T,M

ξ1

)
K
(
IVt+1−x

ξ2

))

1
T ξd1ξ2

∑T−1
t=d

(
K

(
RM

(d)
t,M−RM

(d)
T,M

ξ1

)
K
(
RMt+1,M−x

ξ2

)
(RMt,M −RMT,M )

−K

(
IV

(d)
t −RM

(d)
T,M

ξ1

)
K
(
IVt+1−x

ξ2

)
(IVt −RMT,M)

)
...

1
Tξd1ξ2

∑T−1
t=d

(
K

(
RM

(d)
t,M−RM

(d)
T,M

ξ1

)
K
(
RMt+1,M−x

ξ2

) (
RMt−(d−1),M −RMT−(d−1),M

)

−K

(
IV

(d)
t −RM

(d)
T,M

ξ1

)
K
(
IVt+1−x

ξ2

) (
IVt−(d−1) −RMT−(d−1),M

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= OP (T
1

2k−1 b
−1/2
M ),

by the same argument used in the proof of Theorem 1(i).

The i, j−th element of
(
T−1

(
X

′

(M)W(M)X(M)

)
−

(
T−1
X

′
WX

))
, for 1 < i, j ≤ d+1, is given

by:

1

Tξd1

T−1∑
t=d

⎛
⎝K

⎛
⎝RM

(d)
t,M −RM

(d)
T,M

ξ1

⎞
⎠(RMt−(j−1),M −RMT−(j−1),M

) (
RMt−(i−1),M −RMT−(i−1),M

)

− K

⎛
⎝IV

(d)
t −RM

(d)
T,M

ξ1

⎞
⎠K

(
IVt+1 − x

ξ2

)(
IVt−(j−1) −RMT−(j−1),M

) (
IVt−(i−1) −RMT−(i−1),M

)⎞⎠

= OP (T
1

2k−1 b
−1/2
M ),

and so, provided the two matrix are uniformly positive definite,

(
T−1

(
X

′

(M)W(M)X(M)

)
−
(
T−1
X

′
WX

))
= OP (T

1
2k−1 b

−1/2
M ).

The statement of the Theorem then follows.

(ii) From Fan, Yao and Tong (1996, p.196). �
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Proof of Theorem 6:

(i) Follows using the same argument as in the proof of Theorem 5, and by noting that the indicator

function should be treated as in the proof of Theorem 3.

(ii) Follows from Remark 4, in Hall, Wolff and Yao (1999). �

Proof of Lemma 1:

(i) We begin by considering the case of zero drift. As a straigthforward application of Ito’s lemma,

note that:

√
MNt+1,M = 2

√
M

M−1∑
i=0

(∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M
σudWu

)
σsdWs

)

= 2
√
M

M−1∑
i=0

(
σ2i/M

∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M
dWu

)
dWs

)

+ 2
√
M

M−1∑
i=0

(
σi/M

∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M

(
σu − σi/M

)
dWu

)
dWs

)

+ 2
√
M

M−1∑
i=0

(
σi/M

∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M
dWu

)(
σs − σi/M

)
dWs

)

+ 2
√
M

M−1∑
i=0

(∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M

(
σu − σi/M

)
dWu

)(
σs − σi/M

)
dWs

)
= 2

(√
MN

(1)
t+1,M +

√
MN

(2)
t+1,M +

√
MN

(3)
t+1,M +

√
MN

(4)
t+1,M

)
Also, for sake of notational simplicity, we consider the case of k = 4; the case of k > 4 can be

treated in an analogous manner. Hereafter, let
∑

ji
=
∑M−1

ji=0
unless otherwise specified. Then:

E

((√
MN

(1)
t+1,M

)4)
=M2

∑
j1

∑
j2

∑
j3

∑
j4

E
[
σ2j1/Mσ2j2/Mσ2j3/Mσ2j4/M

×
(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M
dWu

)
dWs

)(∫ t+(j2+1)/M

t+j2
/M

(∫ s

t+j2/M
dWu

)
dWs

)

×
(∫ t+(j3+1)/M

t+j3/M

(∫ s

t+j3/M
dWu

)
dWs

)(∫ t+(j4+1)/M

t+j4/M

(∫ s

t+j4/M
dWu

)
dWs

)]
.

Define Ω+ = {ω : lim supT T
−1/2σ2kT > ε}, and note that:

Pr

(
lim sup

T
T−1/2σ2kT > ε

)
≤

T∑
t=1

Pr
(
T−1/2σ2kt > ε

)
≤ TT−2+η/2E

((
σ2t
)2k+η

)
→ 0,
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so that Pr(Ω+) = 1. Therefore, for all ω ∈ Ω+ :

T−1/2E

((√
MN

(1)
t+1,M

)4)
≤ CM2

∑
j1

∑
j2

∑
j3

∑
j4

E

[(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M
dWu

)
dWs

)

×
(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M
dWu

)
dWs

)(∫ t+(j3+1)/M

t+j3
/M

(∫ s

t+j3/M
dWu

)
dWs

)

×
(∫ t+(j4+1)/M

t+j4/M

(∫ s

t+j4/M
dWu

)
dWs

)]
,

where C denotes a generic constant.

For j1 �= j2,
∫ t+(j1+1)/M
t+j1/M

(∫ s
t+j1/M

dWu

)
dWs is independent of

∫ t+(j2+1)/M
t+j2/M

(∫ s
t+j2/M

dWu

)
dWs.

Thus,

T−1/2E

((√
MN

(1)
t+1,M

)4) ≤ CM2
∑
j1

E

⎛⎝(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M
dWu

)
dWs

)4
⎞⎠

+ CM2
∑
j1

∑
j2 �=j1

E

⎛⎝(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M
dWu

)
dWs

)2

×
(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

)2
⎞⎠

= O(M−1) +CM2
∑
j1

∑
j2 �=j1

E

⎛⎝(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M
dWu

)
dWs

)2
⎞⎠

×
⎛⎝(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M
dWu

)
dWs

)2
⎞⎠

= O(M−1) +O(1) uniformly in t,

given that E

((∫ t+(j1+1)/M
t+j1/M

(∫ s
t+j1/M

dWu

)
dWs

)4)
= O(M−4).

Because of the Hölder continuity of a diffusion, E

((√
MN

(i)
t+1,M

)4)
for i = 2, 3, 4 cannot be of

larger order of magnitude than E

((√
MN

(1)
t+1,M

)4)
.

With regard to the drift term, its contribution to the measurement error on an interval of length

1/M is given by

√
M

M−1∑
k=0

(∫ t+(j+1)/M

t+j/M

µsds

)2
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+ 2
√
M

M−1∑
k=0

(∫ t+(j+1)/M

t+j/M
µsds

)(∫ t+(j+1)/M

t+j/M

(∫ s

t+j/M
σudWu

)
σsdWs

)
,

which is of smaller order than
√
M
∑M−1

j=0

(∫ t+(j+1)/M
t+j/M

(∫ s
t+j/M σudWu

)
σsdWs

)
.

(ii) By the same argument as that used in the proof of Lemma 5 in Corradi and Distaso (2005a), the

orders of magnitude of the moments of the pure jump component and of the cross term component

are respectively smaller and equal to the order of magnitude of the moments of the continuous

component. Therefore we can ignore them. Let ∆Xt+(j+1)/M = Xt+(j+1)/M −Xt+j/M . Thus:

BVt,M − µ21IVt

=
M−1∑
i=1

σ2t+(i−1)/M

(∣∣∣∣∣
∫ i/M

(i−1)/M
dWs

∣∣∣∣∣
∣∣∣∣∣
∫ (i+1)/M

i/M
dWs

∣∣∣∣∣ − µ21
M

)

+
M−1∑
i=1

(∣∣∆Xt+(j+1)/M

∣∣ ∣∣∆Xt+(j+1)/M

∣∣− σ2t+(i−1)/M

∣∣∣∣∣
∫ i/M

(i−1)/M

dWs

∣∣∣∣∣
∣∣∣∣∣
∫ (i+1)/M

i/M

dWs

∣∣∣∣∣
)

− µ21

M−1∑
i=1

∫ (i+1)/M

i/M

(
σ2(i−1)/M − σ2s

)
ds

= µ21

(
N

(1)
t,M +N

(2)
t,M +N

(3)
t,M

)
, (31)

where µ1 is defined as in the statement of the Lemma. As in the proof of Part (i), we proceed

conditioning on ω ∈ Ω+. Hereafter, let
∣∣∣∫ i/M(i−1)/M dWs

∣∣∣ = ∣∣∆Wi/M

∣∣ , and note that

E

((∣∣∆Wi/M

∣∣ − µ21
M

)(∣∣∆Ws/M

∣∣− µ21
M

))
= 0

for all s such that |i− s| > 1. As in Part (i), for the sake of notational simplicity, we consider the

case of k = 4; again, the case of k > 4 can be treated in an analogous manner. Hereafter, with the

notation ≈ we mean “of the same order of magnitude”. Thus:

T−1/2E

((
µ21N

(1)
t,M

)4)
≈
∑
j1

E

(((∣∣∆Wj1/M

∣∣− µ21
M

)(∣∣∆W(j1+1)/M

∣∣ − µ21
M

))4
)

+
∑
j1

∑
j2 �=j1

E

(((∣∣∆Wj1/M

∣∣− µ21
M

)(∣∣∆W(j1+1)/M

∣∣− µ21
M

))2

((∣∣∆Wj2/M

∣∣ − µ21
M

)(∣∣∆W(j2+1)/M

∣∣− µ21
M

))2
)

= O
(
M−2

)
,
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by the same argument as that used in Part (i); and, as in Part (i), for any generic k,E

((
µ21N

(1)
t,M

)k)
=

O
(
T 1/2M−k/2

)
, uniformly in t.

With regard to N
(2)
t,M ,

E

((
µ21N

(2)
t,M

)k)
= O

(
T 1/2M−k/2

)
,

uniformly in t, by the same argument as that used in the proof of Theorem 5.1 in Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard (2006). Finally, E

((
µ21N

(3)
t,M

)k)
= O

(
T 1/2M−k/2

)
,

uniformly in t, by the same argument as that used in the proofs in Section 7 of Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard (2006). It should be pointed out that Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard assume bounded drift and instantaneous variance. In

our case σ2t and µt are not bounded in general, a feature which is captured by the extra T 1/2 term

in the orders of magnitude.

(iii) We can expand as follows:

E

((
R̂V t,l,M − IVt

)k)

= E

⎛⎝⎛⎝⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

(
Xt+(jB+b)/M −Xt+((j−1)B+b)/M

)2

− l

M

M∑
j=1

(
Xt+j/M −Xt+((j−1)/M

)2⎞⎠− IVt

⎞⎠k
⎞⎟⎠

≈ E

⎛⎜⎝
⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − IVt

⎞⎠k
⎞⎟⎠ (32)

+ E

⎛⎜⎝
⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

) (
εt+(jB+b)/M − εt+((j−1)B+b)/M

)⎞⎠k
⎞⎟⎠ (33)

+ E

⎛⎜⎝
⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

((
εt+(jB+b)/M − εt+((j−1)B+b)/M

)2 − 2ν
)⎞⎠k

⎞⎟⎠ (34)

+ E

⎛⎜⎝
⎛⎝ l

M

M∑
j=1

((
εt+j/M − εt+(j−1)/M

)2 − 2ν
)⎞⎠k

⎞⎟⎠ . (35)

Provided that E(ε2kt+j/M ) < ∞, the term in (35) is O(lk/Mk/2), when the microstructure noise is

i.i.d.. For the geometrically mixing microstructure error case, (35) is still O(lk/Mk/2), provided
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that E(ε2k+η
t+j/M

) < ∞, with η > 0. This follows by the same argument as that used by Yoshihara

(1975, Lemma 1) for the case of k = 2.

Also, the term in (34) is O(lk/2/Bk/2). Thus, (35) and (34) are O(b
−k/2
M ), with bM = M1/3,

provided that B =M2/3 and l =M1/3.

Given that the noise is independent of the price process, the term in (33) is o(b
−k/2
M ). We are

left with (32).

E

⎛⎜⎝
⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − IVt

⎞⎠k
⎞⎟⎠

≈ E

⎛⎜⎝
⎛⎝ 1

B

B∑
b=1

l−1∑
j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − 1

M

M∑
j=1

(
Yt+j/M − Yt+(j−1)/M

)⎞⎠k
⎞⎟⎠ (36)

+ E

⎛⎜⎝
⎛⎝ 1

M

M∑
j=1

(
Yt+j/M − Yt+(j−1)/M

)
− IVt

⎞⎠k
⎞⎟⎠ . (37)

From the proof of part (i), it follows that term in (37) is O(T 1/2M−k/2). With regard to (36), from

the proof of Theorem 2 in Zhang, Mykland and Äıt-Sahalia (2005), note that:

1

B

B∑
b=1

l−1∑
j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − 1

M

M∑
j=1

(
Yt+j/M − Yt+(j−1)/M

)
= 2

M∑
j=1

(
Yt+(j+1)/M − Yt+j/M

)B∧j∑
i=1

(
1− j

B

)(
Yt+(j−i+1)/M − Yt+(j−i)/M

)
+O(B/M),

where the last term captures the end effects.

By the same argument used in the proof of part (i), given that E
((
σ2t
)2k+η

)
< ∞ and

E
(
(µt)

2k+η
)
<∞, for all samples except a subset of measure zero, and k = 4 :

E

⎛⎝⎛⎝ M∑
j=1

(
Yt+(j+1)/M − Yt+j/M

)B∧j∑
i=1

B∧j∑
i=1

(
1− j

B

)(
Yt+(j−i+1)/M − Yt+(j−i)/M

)⎞⎠4⎞⎠
≈ E

⎛⎝⎛⎝M−1∑
j=1

σ2kt+j/M

∫ t+(j+1)/M

t+j/M

dWs

B∧j∑
i=1

∫ t+(j−i+1)/M

t+(j−i)/M

dWs

⎞⎠4⎞⎠
≤ CT 1/2

M∑
j1=1

B∧j1∑
i1=1

M∑
j2 �=j1

B∧j2∑
i2=1

E

⎛⎝(∫ t+(j1+1)/M

t+j1/M
dWs

∫ t+(j1−i1+1)/M

t+(j1−i1)/M
dWs

)2

(∫ t+(j2+1)/M

t+j2/M
dWs

∫ t+(j2−i2+1)/M

t+(j2−i2)/M
dWs

)2
⎞⎠
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= O
(
T 1/2B2M−2

)
= O(T 1/2b−2M ), for bM =M1/3. (38)

By the same argument, for any generic k, the term in (36) is O
(
T 1/2Bk/2M−k/2

)
= O(T 1/2b

−k/2
M ).

(iv) Recalling that
∑e

i=1
ai

i = 0, along the lines of Zhang (2004), it follows that:

R̃V t,e,M − IVt

=

⎛⎝ e∑
i=1

ai
i

M−i∑
j=1

(
Yt+(j+i)/M − Yt+j/M

)2 − IVt

⎞⎠ (39)

− 2
e∑

i=1

ai
i

M−i∑
j=1

εt+(j+i)/M εt+j/M (40)

+ 2
e∑

i=1

ai
i

M−i∑
j=1

(
Yt+(j+i)/M − Yt+j/M

) (
εt+(j+i)/M − εt+j/M

)
(41)

−
⎛⎝ e∑

i=1

ai
i

i∑
j=1

(
εt+j/M − ν

)⎞⎠ (42)

−
⎛⎝ e∑

i=1

ai
i

M∑
j=M−i

(
εt+j/M − ν

)⎞⎠ (43)

+ 2 (ν̂t,M − ν) ,

where ν̂t,M is defined in (6) and E
(
ε2t+j/M

)
= ν. By the same argument as that used in the proof

of part (iii), it follows that E
(
(ν̂t,M − ν)k

)
= O(M−k/2). Note that ai ≈ i2/e3. Therefore:

E

⎛⎜⎝
⎛⎝ e∑

i=1

ai
i

i∑
j=1

(
εt+j/M − ν

)⎞⎠k
⎞⎟⎠

≈
(

e∑
i=1

i3/2

e3

)k

E

⎛⎜⎝
⎛⎝ 1√

i

i∑
j=1

(
εt+j/M − ν

)⎞⎠k
⎞⎟⎠ = O(e−k/2),

so that the expectations of the k-th moments of (42) and (43) are O(e−k/2).

Now, with regard to the term in (40),

e∑
i=1

ai
i

M−i∑
j=1

εt+(j+i)/Mεt+j/M ≈
1

e2

e∑
i=1

M−1∑
j=1

εt+(j+i)/Mεt+j/M .

Hence, when the microstructure noise is i.i.d.,

E

⎛⎝⎛⎝ 1

e2

e∑
i=1

M−1∑
j=1

εt+(j+i)/Mεt+j/M

⎞⎠2⎞⎠ = O
(
M/e3

)
= O(b−1M ),
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E

⎛⎝⎛⎝ 1

e2

e∑
i=1

M−1∑
j=1

εt+(j+i)/Mεt+j/M

⎞⎠4⎞⎠ = O
(
M2/e6

)
= O(b−2M ),

and in general:

E

⎛⎜⎝
⎛⎝ 1

e2

e∑
i=1

M−1∑
j=1

εt+(j+i)/Mεt+j/M

⎞⎠k
⎞⎟⎠ = O

(
Mk/2/e3k/2

)
= O(b

−k/2
M )

for bM =M1/2 and e =M1/2.

The same rate holds in the case of geometrically mixing errors, provided that E(ε2k+η
t+j/M

) <∞,

with η > 0, by the same argument as that used in Yoshihara (1975, Lemma 1).

With regard to the term in (39), the least favorable case (i.e. the case where the rate of

convergence to integrated volatility is slowest) occurs when i = e, and in that case, by the same

argument as the one used in the proof of part (i):

E

⎛⎜⎝
⎛⎝ e∑

i=1

ai
i

M−i∑
j=1

(
Yt+(j+i)/M − Yt+j/M

)2 − IVt

⎞⎠k
⎞⎟⎠ (44)

= O
(
T 1/2e−k/2

)
= O

(
T 1/2M−k/4

)
= O

(
T 1/2b

−k/2
M

)
,

for e =M1/2 and bM =M1/2.

Finally, the expecation of the k-th power of (41) is of smaller order than (44). �
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Table 1: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case I: No Microstructure Noise or Jumps in DGP

M Realized V olatility Bipower V ariation ̂RV t,l,M
˜RV t,e,M

Panel A: Interval = µ̂IVt
+ 0.125σ̂IVt

Sample Size = 100 Daily Realized Measure Observations
72 0.233 0.253 0.533 0.396
144 0.260 0.270 0.313 0.366
288 0.253 0.223 0.306 0.340
576 0.236 0.240 0.246 0.233

Sample Size = 300 Daily Realized Measure Observations
72 0.146 0.173 0.576 0.436
144 0.173 0.153 0.383 0.336
288 0.156 0.136 0.243 0.233
576 0.143 0.110 0.223 0.193

Sample Size = 500 Daily Realized Measure Observations
72 0.143 0.133 0.633 0.496
144 0.123 0.096 0.420 0.386
288 0.086 0.093 0.313 0.270
576 0.086 0.120 0.160 0.236

Panel B: Interval = µ̂IVt
+ 0.25σ̂IVt

Sample Size = 100 Daily Realized Measure Observations
72 0.156 0.220 0.543 0.463
144 0.163 0.170 0.316 0.410
288 0.196 0.163 0.263 0.296
576 0.166 0.183 0.210 0.193

Sample Size = 300 Daily Realized Measure Observations
72 0.160 0.153 0.726 0.556
144 0.143 0.110 0.496 0.456
288 0.143 0.113 0.320 0.306
576 0.070 0.086 0.220 0.216

Sample Size = 500 Daily Realized Measure Observations
72 0.126 0.153 0.840 0.716
144 0.083 0.096 0.603 0.560
288 0.103 0.086 0.376 0.360
576 0.076 0.100 0.206 0.310

Panel C: Interval = µ̂IVt
+ 0.50σ̂IVt

Sample Size = 100 Daily Realized Measure Observations
72 0.153 0.190 0.590 0.500
144 0.106 0.140 0.416 0.423
288 0.166 0.146 0.216 0.296
576 0.130 0.146 0.183 0.203

Sample Size = 300 Daily Realized Measure Observations
72 0.116 0.103 0.876 0.750
144 0.123 0.113 0.620 0.553
288 0.113 0.100 0.340 0.286
576 0.120 0.113 0.190 0.230

Sample Size = 500 Daily Realized Measure Observations
72 0.126 0.143 0.970 0.883
144 0.130 0.136 0.716 0.690
288 0.140 0.136 0.446 0.420
576 0.160 0.136 0.203 0.286

∗ Notes: Entries denote rejection frequencies based on the construction of GT,M(u1, u2) values are compared with 10% nominal
size critical values of the standard normal distribution. We use “pseudo true” IV values in place of actual IV values when con-
structing GT,M(u1, u2), as discussed above. Results are reported for various realized measures (including Realized V olatility,

Bipower V ariation, ̂RV t,l,M and ˜RV t,e,M ), for various different values of M, and for various daily sample sizes. We set the
interval [u1, u2] = [µ̂IVt − βσ̂IVt ,µ̂IVt

+ βσ̂IVt ] where µ̂IVt and σ̂IVt are the mean and standard error of the pseudo true data,
and β = {0.125, 0.25,0.50}. See Section 5 for further details.
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Table 2: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case II: Microstructure Noise in DGP

M Realized V olatility Bipower V ariation ̂RV t,l,M
˜RV t,e,M

Panel A: Interval = µ̂IVt
+ 0.125σ̂IVt

Noise = i.i.d. N(0, (3 ∗ 1152)−1)
72 0.280 0.270 0.553 0.373
144 0.256 0.296 0.416 0.340
288 0.420 0.416 0.326 0.293
576 0.896 0.923 0.233 0.256

Noise = i.i.d. N(0, (4 ∗ 1152)−1)
72 0.246 0.280 0.556 0.376
144 0.236 0.263 0.393 0.316
288 0.290 0.303 0.300 0.306
576 0.653 0.683 0.263 0.296

Noise = i.i.d. N(0, (5 ∗ 1152)−1)
72 0.233 0.276 0.556 0.386
144 0.270 0.233 0.380 0.320
288 0.273 0.293 0.293 0.300
576 0.513 0.563 0.280 0.300

Panel B: Interval = µ̂IVt
+ 0.25σ̂IVt

Noise = i.i.d. N(0, (3 ∗ 1152)−1)
72 0.163 0.180 0.516 0.410
144 0.160 0.170 0.403 0.363
288 0.213 0.240 0.316 0.300
576 0.830 0.840 0.200 0.226

Noise = i.i.d. N(0, (4 ∗ 1152)−1)
72 0.183 0.183 0.530 0.426
144 0.133 0.136 0.423 0.323
288 0.193 0.170 0.340 0.313
576 0.500 0.540 0.216 0.240

Noise = i.i.d. N(0, (5 ∗ 1152)−1)
72 0.166 0.160 0.513 0.433
144 0.120 0.143 0.416 0.343
288 0.163 0.173 0.323 0.313
576 0.343 0.366 0.226 0.240

Panel C: Interval = µ̂IVt
+ 0.50σ̂IVt

Noise = i.i.d. N(0, (3 ∗ 1152)−1)
72 0.113 0.170 0.616 0.510
144 0.126 0.126 0.400 0.400
288 0.186 0.166 0.246 0.273
576 0.713 0.763 0.183 0.196

Noise = i.i.d. N(0, (4 ∗ 1152)−1)
72 0.120 0.153 0.613 0.490
144 0.203 0.163 0.403 0.380
288 0.190 0.160 0.260 0.293
576 0.386 0.403 0.183 0.190

Noise = i.i.d. N(0, (5 ∗ 1152)−1)
72 0.133 0.170 0.616 0.496
144 0.163 0.143 0.386 0.396
288 0.183 0.160 0.263 0.310
576 0.266 0.310 0.190 0.196

∗ Notes: See notes to Table 1. All experiments are based on samples of 100 daily observations.
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Table 3: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case III: Jumps in DGP

M Realized V olatility Bipower V ariation ̂RV t,l,M
˜RV t,e,M

Panel A: Interval = µ̂IVt
+ 0.125σ̂IVt

One i.i.d. N(0, 3 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.373 0.336 0.620 0.583
144 0.333 0.276 0.596 0.510
288 0.290 0.286 0.390 0.456
576 0.280 0.270 0.453 0.460

One i.i.d. N(0, 5 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.370 0.366 0.630 0.586
144 0.346 0.283 0.613 0.530
288 0.290 0.300 0.386 0.463
576 0.306 0.273 0.426 0.463

One i.i.d. N(0, 10 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.383 0.353 0.620 0.610
144 0.363 0.303 0.616 0.523
288 0.320 0.276 0.403 0.466
576 0.330 0.266 0.480 0.476

Panel B: Interval = µ̂IVt
+ 0.25σ̂IVt

One i.i.d. N(0, 3 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.383 0.373 0.703 0.686
144 0.356 0.306 0.610 0.593
288 0.293 0.273 0.470 0.526
576 0.246 0.226 0.460 0.486

One i.i.d. N(0, 5 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.393 0.396 0.720 0.656
144 0.346 0.310 0.630 0.630
288 0.310 0.263 0.490 0.563
576 0.273 0.216 0.463 0.520

One i.i.d. N(0, 10 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.410 0.410 0.700 0.686
144 0.363 0.320 0.690 0.620
288 0.313 0.260 0.500 0.580
576 0.306 0.223 0.496 0.550

Panel C: Interval = µ̂IVt
+ 0.50σ̂IVt

One i.i.d. N(0, 3 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.526 0.416 0.846 0.840
144 0.420 0.296 0.770 0.783
288 0.360 0.240 0.636 0.750
576 0.346 0.240 0.566 0.680

One i.i.d. N(0, 5 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.546 0.443 0.890 0.863
144 0.440 0.300 0.806 0.806
288 0.410 0.270 0.656 0.766
576 0.360 0.233 0.573 0.706

One i.i.d. N(0, 10 ∗ 0.64 ∗ µ̂IVt
) Jump Every 5 Days

72 0.576 0.483 0.883 0.883
144 0.480 0.353 0.826 0.853
288 0.423 0.270 0.713 0.796
576 0.390 0.223 0.626 0.740

∗ Notes: See notes to Table 2.
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Figure 1: Predictive Conditional Densities for Intel Integrated Volatility Based on Various Realized Measures

One-Step Ahe ad Based Upon Data Until May 28, 1998: M=78, T=100
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Figure 2: Predictive Conditional Densities for Intel Integrated Volatility Based on Various Realized Measures

One-Step Ahead Bas ed Upon Data Until May 28, 1998: M=2340, T=100
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Figure 3: Predictive Conditional Densities for Intel Integrated Volatility Based on Various Realized Measures

One-Step Ahead Based Upon Data Until May 23, 2002: Various M, T=100
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Figure 4: Predictive Conditional Densities for Intel Logged Integrated Volatility Based on Various Logged Realized Measures

One-Step Ahead Based Upon Data Various Dates: M=2340, T=100
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