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Credible Deviations from Signaling Equilibria∗

Péter Eső† James Schummer‡

April 14, 2009

Abstract

In games with costly signaling, some equilibria are vulnerable to
deviations which could be “unambiguously” interpreted as coming
from a unique set of Sender-types. This occurs when these types
are precisely the ones who gain from deviating for any beliefs the Re-
ceiver could form over that set. We show that this idea characterizes
a unique equilibrium outcome in two classes of games. First, in mono-
tonic signaling games, only the Riley outcome is immune to this sort of
deviation. Our result therefore provides a plausible story behind the
selection made by Cho and Kreps’ (1987) D1 criterion on this class of
games. Second, we examine a version of Crawford and Sobel’s (1982)
model with costly signaling, where standard refinements have no ef-
fect. We show that only a Riley-like separating equilibrium is immune
to these deviations.
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1 Introduction

In Sender-Receiver games, out-of-equilibrium beliefs can be thought of as

the Sender’s hypothesis of what the Receiver would think upon observing

a deviation. This hypothesis rationalizes the Sender’s anticipation of what

the Receiver would do, in turn justifying the Sender’s decision not to deviate

from the equilibrium. Even though out-of-equilibrium beliefs should not

be taken too literally, equilibrium refinements often prescribe exactly what

those beliefs should be, instead of stopping at conditions that rationalize the

Sender’s actions.

In this paper we show that strong predictions neither require, nor neces-

sarily follow from, such specific impositions on beliefs. Rather than refining

the set of admissible beliefs, we ask whether it is possible for the Sender to

implicitly signal a candidate set of deviating types, even if he cannot antici-

pate exactly which beliefs the Receiver would form over that set. A Credible

Deviation is one that uniquely and unambiguously identifies a set of types

that gain from deviating, provided that the Sender anticipates the Receiver

to form some beliefs over that set. We analyze the extent to which equilibria

are immune to such deviations in costly-signaling games.

Our results concern two classes of signaling games. In Section 3 we show

that in monotonic signaling games, only the least-distortive separating (or

Riley) equilibrium outcome is immune to the Credible Deviations we describe.

Therefore, on this particular class of games, there is a connection between the

predictions made by standard refinements (D1, stability) and immunity to

Credible Deviations. That is, our concept provides one behavioral motivation

for selecting the stable outcome on this class.

Section 4 considers a class of signaling games whose structure is like Craw-

ford and Sobel’s (1982), but with costly messages. Similar to the previous

model, only a “Riley-like” equilibrium is free of Credible Deviations. In con-

trast, standard refinements widely used in practice (e.g. D1, D2, Divinity,

etc.) can have little predictive power here.
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1.1 An example

Consider the Sender-Receiver game in Figure 1. The Sender privately knows

whether he is a “Quantitative” type or not; both types are equally likely

from the Receiver’s (prior) perspective. The Sender must choose an action:

whether or not to get an MBA.

If the Sender gets an MBA, the employer (Receiver) sees this message

and decides whether to promote the Sender to Head of Human Resources

(HR), to promote him to Chief Financial Officer (CFO), or to keep him at

his current job (Assistant) with a pay raise. If the Sender does not get an

MBA, the game ends.

Assist. HR CFO Assist.
Quantitative 2, 2 0, 0 5, 5 3, 3
Non-Quant. 2, 2 1, 5 0, 0 3, 3

no MBA get MBA

Figure 1: A Sender-Receiver game. The Sender’s payoff is listed first.

The Receiver would like to promote an MBA in a way corresponding to his

type. Neither type wants to be promoted to HR, while only a Quantitative

type would like to be CFO. It profits both Sender types (and the Receiver)

to get an MBA and a raise with no promotion.

There are three kinds of (pure strategy) equilibria in this game.1 In one,

both Sender types get an MBA, and due to the balanced prior beliefs, the

Receiver keeps the employee as an Assistant. In another, only the Quantita-

tive type gets an MBA, which leads to promotion to CFO. In the third, no

Sender type gets an MBA. This outcome is supported by the Sender’s an-

ticipation that the Receiver would promote an MBA to HR with sufficiently

high probability. In turn, this means the Sender thinks the Receiver will

believe that only (or with high probability) non-Quantitative types get an

MBA.

We now argue that the latter kind of equilibrium is not robust to the pos-

sibility that an out-of-equilibrium message can be interpreted as an implicit

1We consider only pure strategies throughout the paper. In any case, we make assump-
tions in both Sections 3 and 4 that imply pure best responses for the Receiver.
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statement about the Sender’s possible type(s). Before doing so it is worth

noting that, perhaps surprisingly, all three equilibria satisfy various refine-

ments commonly used in the literature, such as the Intuitive Criterion, D1,

and even Kohlberg and Mertens’ (1986) stability. Proofs of this are available

upon request.

Suppose that the “no MBA” pooling equilibrium is being anticipated by

the Receiver, and consider the possibility that if the Receiver sees the out-

of-equilibrium choice “get MBA,” he interprets it as the following (implicit)

statement: “I am the Quantitative type.” Would this be credible?

If the Receiver were to believe this (implicit) statement, he would choose

the CFO action. Therefore the Quantitative type would gain from the Re-

ceiver’s trust in this statement. The non-Quantitative type however would

not. In this sense, this implicit statement is credible: the Quantitative type

is precisely the only one who would want to “send” it.2

On the other hand, “get MBA” cannot credibly convey the statement

“I am the non-Quantitative type.” The Receiver’s trust in this statement

would cause him to choose HR, under which the non-Quantitative type does

not gain. In fact neither type would gain if the Receiver believed such a

statement.

Finally, consider the possibility that if the Sender gets an MBA, he is

trying to convey the less precise statement: “I am either the Quantitative

type or the non-Quantitative type.” In order to determine whether or not this

is a credible statement, we need to predict how the Receiver would respond

to it. More precisely, we need to determine what the Sender anticipates

the Receiver to believe about the likelihood of types in order to predict a

response.

One could argue that, due to the credibility of the “I am Quantitative”

speech, it should be less likely for a Quantitative type to send this less precise

message.3 On the other hand, one could admit the possibility that the two

2This kind of reasoning also appears in Grossman and Perry’s (1986) Perfect Sequential
Equilibrium and in Farrell’s (1993) neologism-proofness. In fact those concepts would con-
sider the credibility of “I am the Quantitative type” sufficient to rule out this equilibrium.
Below we diverge from these two concepts; see also Section 2.2.

3Precisely this kind of argument leads Matthews et al. (1991) to require a consistent
set of “speeches” which may separate different deviant types from each other.
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types have different abilities to perform forward induction reasoning (which

have not been explicitly modeled here). For example, the Quantitative type

could be more likely to be able to perform this reasoning, which would make

this type more likely to have sent the message. A third, more stringent

approach would be to explicitly assume that the Receiver simply updates his

prior using Bayes’ rule when evaluating such a potential implied statement.

Since receiving this out-of-equilibrium message is a counterfactual event,

we see little justification for prescribing any single, particular belief over

the two types when evaluating this speech. In fact, we view the Sender’s

anticipation of the Receiver’s posterior beliefs as being ambiguous. Therefore

as a first approach, we use a max-min criterion to evaluate preferences when

Sender types are deciding whether to deviate. This means that, in this

example, we ask whether both types would gain from conveying this less

precise message, regardless of the beliefs formed by the Receiver.

If the Receiver puts enough weight on the probability that the Quantita-

tive type is trying to make this speech, the Receiver would choose CFO.

As argued above, the non-Quantitative type would not gain in this sce-

nario. Similarly, with beliefs sufficiently biased toward the non-Quantitative

type, the Receiver would choose HR, making both types regret the deviation.

Therefore neither type would unambiguously gain from conveying this third

statement, undermining its credibility.4

To summarize, if we interpret the message “get MBA” as an implicit

attempt to convey information about a candidate set of types, only one such

message is credible: “I am the Quantitative type.” The uniqueness of this

credible message makes this equilibrium vulnerable to a deviation which can

be “unambiguously” interpreted to be coming from a unique set of possible

Sender-types, namely the singleton “Quantitative type.”

In more general games, we say that an equilibrium is vulnerable to a

credible deviation if there is an out-of-equilibrium message m through which

the Sender can convey the following statement. (This “speech” is not really

4In contrast, Grossman and Perry (loc. cit.) would consider this statement credible
because they require the Receiver to update his prior off the equilibrium path. This is the
crucial difference between our concept and theirs. In a modified version of the example
(available upon request), they would eliminate all pure equilibria while we would not. The
same can occur in monotonic signaling games as well (Section 3).
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made by the Sender; it is implicitly communicated through m.)

“By sending this out-of-equilibrium message m, I am signaling that my
type belongs to the set of types C. If you form any belief over C and
take a corresponding best response, then any type θ ∈ C is guaranteed
to be better off than he would have been in equilibrium. Conversely,
for any remaining type θ′ /∈ C, there exists a belief over C (and your
corresponding best response) that would make θ′ worse off than in
equilibrium. That is, C is precisely the set of types that gains re-
gardless of the beliefs you form, as long as those beliefs are over C.
Moreover, given message m, this speech cannot be made for any other
set C ′.”

The existence of such a message m and set of types C makes the equilib-

rium in question less plausible than others. Under a mild notion of forward

induction, it becomes a self-fulfilling prophecy for the Receiver, upon see-

ing m, to behave as if the Sender’s type is in C.

In this argument, we do not prescribe specific posterior beliefs for the

Receiver following the receipt of m. As discussed following the example

of Figure 1, this even allows for the possibility that the Sender’s type is

correlated with the ability to perform this forward-induction reasoning. If

the Receiver admits the possibility of such correlation, it is unclear how he

would update his beliefs without specifying a more detailed model. It is even

less clear how the Sender should anticipate the Receiver’s understanding of

this possibility. Since we think of the Receiver’s posterior beliefs simply as

a way to rationalize the Sender’s equilibrium behavior, a theory with fewer

specific assumptions on these posterior beliefs is more appealing.

The ideas outlined above may appear similar to certain concepts used in

the literature on equilibrium refinements. We postpone comparisons to this

literature to Section 2.2, after we formalize our definitions.

2 Sender-Receiver Games

Our main results concern two different classes of 2-player, Sender-Receiver

games with costly signaling. Since those two classes share some structure,

we introduce their shared notation here.
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The Sender has private information that is summarized by his type

θ ∈ Θ = {θ1, θ2, . . . , θn} ⊂ R. For notational convenience, we order the types

so that θ1 < θ2 < · · · < θn. The commonly known prior probability that

the Sender’s type is θ is π(θ). Upon realizing his type, the Sender chooses

a message m ∈ R+. A strategy for the Sender is a function M : Θ → R+.

After observing any message m, the Receiver chooses an action a ∈ R. A

strategy for the Receiver is a function A : R+ → R. The Sender and Receiver

receive respective payoffs of uS(θ, m, a) and uR(θ, m, a), which are both con-

tinuously differentiable in (m, a). A Sender-Receiver game is given by the

tuple (Θ, π, uS, uR).

The Receiver’s (posterior) beliefs upon receiving the Sender’s message

is a function µ : R+ → 4(Θ), where 4(Θ) refers to the set of probability

distributions on Θ. For any message m ∈ R+ and any fixed (posterior belief)

distribution π̃ ∈ 4(Θ), denote the Receiver’s best responses to m (given

π̃) by BR(π̃, m) ≡ arg maxa∈R E[uR(θ, m, a) | π̃]. Assumptions made below

guarantee the non-emptiness of this correspondence. In a standard abuse of

notation, for any set of types T ⊆ Θ we write BR(T, m) ≡ ⋃
π̃∈∆T BR(π̃, m),

which can be thought of as the Receiver’s rationalizable actions knowing only

that θ ∈ T .

The triplet (M, A, µ) is a Perfect Bayesian Equilibrium if it satisfies the

usual incentive compatibility and consistency conditions.5 This concept puts

no restrictions on beliefs following out-of-equilibrium messages.

When an equilibrium (M, A, µ) is clearly given in context, we denote

the Sender’s equilibrium payoff (as a function of his type) as u∗S(θ) ≡
uS(θ, M(θ), A(M(θ))).

2.1 Formalizing Credible Deviations

We ask whether the Sender, upon sending an out-of-equilibrium message m,

can induce the Receiver to reason that it must have been sent by a type

within some set C. Under our definition, this reasoning is justified when C

is precisely the set of Sender types that would benefit from deviating to m,

whenever the Receiver plays any best response to m with beliefs restricted

5See Fudenberg and Tirole (1991a), Definition 8.1, pp. 325-326. On the classes of games
we consider, Perfect Bayesian Equilibrium is equivalent to Sequential Equilibrium.
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to C. An equilibrium is Vulnerable to a Credible Deviation if, for some

out-of-equilibrium message, there is a unique such C.

Definition 1 (Vulnerability to a Credible Deviation) Given an

equilibrium (M,A, µ), we say that an out-of-equilibrium message m ∈
R+\M(Θ) is a Credible Deviation if the following condition holds for ex-

actly one (non-empty) set of types C ⊆ Θ.

C = {θ ∈ Θ : u∗S(θ) < min
a∈BR(C,m)

uS(θ, m, a)} (1)

We call C the (unique) Credible Deviators’ Club for message m. If such a

message exists, the equilibrium is Vulnerable to a Credible Deviation.

The fact that (1) is an equality (as opposed to, say, the inclusion relation

C ⊇) enforces the precision mentioned above. The uniqueness requirement

on C given m makes our invulnerability condition weaker. If two such sets,

C and C ′, existed for m then it would be arbitrary for types in C to assume

that the Receiver would restrict beliefs to C, and not to C ′ (or even C ∪C ′).
However, all of our results would hold even if C is not required to be unique.

We use a max-min criterion to evaluate the Sender’s preferences because

it is unclear how the Receiver should form beliefs over C (see Section 1.1).

We view this as a natural starting point, though alternate definitions could be

considered. For example, one could require only that the Receiver possess a

single, “worst-case” belief over C that dissuades each θ /∈ C from deviating.6

It turns out that this weaker condition would yield the same results as our

definition for the models in Sections 3 and 4. On the other hand, games exist

in which this alternate version has no bite and ours does.

2.2 Relation to the refinements literature

Immunity to Credible Deviations may appear similar to certain equilibrium

refinements used in the literature, but there is no general, logical relation

between these concepts and our condition. We explore this below.

6We thank Johannes Hörner and Jeroen Swinkels for independent comments leading
us to these observations.
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Perhaps the least controversial refinement is the Intuitive Criterion (see

Cho and Kreps (1987)). It deems an equilibrium implausible whenever some

Sender type would gain from deviating to an out-of-equilibrium message, as

long as the Receiver makes the minimal assumption that it was sent by types

that could potentially benefit.

Definition 2 (Intuitive Criterion) For a given equilibrium (M, A, µ)

and out-of-equilibrium message m ∈ R+ \M(Θ), denote by J(m) the set of

types whose equilibrium payoff is higher than any payoff they could get by

sending m, as long as the Receiver plays a rationalizable action, i.e.

J(m) ≡ {θ ∈ Θ : u∗S(θ) > max
a∈BR(Θ,m)

uS(θ, m, a)}.

The equilibrium fails the Intuitive Criterion (via m) if J(m) 6= Θ and

{θ ∈ Θ : u∗S(θ) < min
a∈BR(Θ\J(m),m)

uS(θ, m, a)} 6= ∅. (2)

Inequality (2) says that by sending m, at least one type θ gains unambigu-

ously so long as the Receiver restricts his beliefs to Θ\J(m). This restriction

on the Receiver’s beliefs is a very minimal requirement, since no type in J(m)

could gain by sending m if he anticipates any rational reaction from the Re-

ceiver. Given this restriction, the Intuitive Criterion merely checks for the

existence of some type θ /∈ J(m) who, anticipating such beliefs, would gain

unambiguously compared to his equilibrium payoff.

This concept differs from Vulnerability to Credible Deviations in two

ways. First note that in eqn. (1) the Receiver’s beliefs are restricted more

than in eqn. (2). This makes it easier to find deviating types in (1) than in (2),

making the Intuitive Criterion a relatively weak concept. Second, however,

consider which types should not have an incentive to deviate. While eqn. (2)

merely requires non-emptiness of the set of deviators, eqn. (1) precludes types

outside C from wanting to perform certain deviations. This makes it harder

to find a deviating set (club) in (1) than in (2), making the Intuitive Criterion

a relatively stronger concept.

On the classes of games studied in this paper (or any Sender-Receiver

game with only two Sender types), the Intuitive Criterion is weaker than
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Immunity to Credible Deviations. There are, however, games in which the

Intuitive Criterion rules out an equilibrium which is immune to Credible

Deviations.7

In certain important classes of Sender-Receiver games with more than two

Sender types (e.g. Spence (1973)), the Intuitive Criterion does not reduce

the set of equilibrium outcomes. This has led to, among others, a well-

known concept that makes specific requirements on posterior beliefs. The

D1 Criterion (see Banks and Sobel (1987), Cho and Kreps (1987), Cho and

Sobel (1990)) requires the Receiver to disbelieve that a deviating message

could be sent by a type θ who weakly gains “less often” (i.e. under fewer

a ∈ BR(Θ,m)) than some other type θ′ strictly gains.

Definition 3 (D1 Criterion) An equilibrium (M, A, µ) fails the D1 Cri-

terion if there exists an out-of-equilibrium message m ∈ R+\M(Θ) and types

θ, θ′ ∈ Θ such that µ(θ |m) > 0 and

{a ∈ BR(Θ,m) : u∗S(θ) ≤ uS(θ, m, a)}
( {a ∈ BR(Θ,m) : u∗S(θ′) < uS(θ′,m, a)}.

As has been observed in the literature (e.g. Fudenberg and Tirole (1991a),

p. 460), there is little intuitive justification for the Receiver to put infinitely

more weight on Sender types that gain from the deviation “more often” (θ′)
than others (θ). While there are arguments against the “speeches approach”

as well (e.g. the Stiglitz Critique), one could argue that a missing behavioral

motivation is a disadvantage of this practically useful refinement.

This motivates our study of monotonic signaling games (Section 3). We

show that D1 eliminates an equilibrium if and only if it is Vulnerable to Cred-

ible Deviations. Hence the Riley outcome can be justified by an intuitive,

plausible robustness check: Immunity to Credible Deviations. While we re-

ject the same equilibrium outcomes that D1 eliminates, we do not impose

any specific restrictions on out-of-equilibrium beliefs. On the other hand, D1

has little predictive power in a class of non-monotonic signaling games we

study (Section 4), while our condition still selects a unique outcome.

7Straightforward proofs of these facts are available upon request.
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A related notion is that of Kohlberg and Mertens’ (1986) Stability. In

generic Sender-Receiver games all Stable equilibria satisfy the D1 Criterion;

furthermore the two concepts are equivalent on the class of discrete mono-

tonic signaling games, resembling the continuous one we study in Section 3

(see Cho and Sobel (1990)). In contrast, on the general class of Sender-

Receiver games, the Stability of an equilibrium neither implies nor is implied

by its immunity to Credible Deviations.8

Our motivation for Credible Deviations has a flavor similar to the moti-

vation behind Grossman and Perry’s (1986) Perfect Sequential Equilibrium

(PSE). Roughly speaking, under PSE a set of types T breaks an equilibrium

with an out-of-equilibrium message m if all types in T improve their payoff

by sending that message as long as the Receiver believes that all (and only)

the types in T would always deviate and send m. The word always here

implies that the Receiver is specifically assumed to update his priors over T

in accordance with Bayes’ Rule. This amounts to replacing BR(C, m) with

BR(π|C ,m) in the right-hand side of eqn. (1).9

In Section 1.1, we argued against doing this. When considering the case

C ′ = {Quant, Non-Quant} in that example, PSE would specify that the

Receiver use precisely his prior beliefs, which in turn would cause him to

choose the action “Assist.” Since both types prefer this outcome, this set

of types C ′ would break the pooling equilibrium under PSE. However, C =

{Quant} would also break the equilibrium under PSE by inducing the action

“CFO”. Therefore, when beliefs over C ′ are required to coincide with the

prior distribution, the Receiver is implicitly forced to ignore the possibility

that C is the deviating set. We find this inconsistent.

More generally, our opinion is that such specific assumptions off the equi-

librium path are too prescriptive. While we can think of equilibrium play

(and the resulting beliefs) as being self-enforced by, say, repeated interaction,

pre-play communication, or even explicit agreement, there is less justification

8A less related notion is evolutionary stability in games with pre-play communication,
see Kim and Sobel (1995) and references therein.

9To be precise, Grossman and Perry allow the Receiver to put less weight on types
in T who are indifferent about deviating, reflecting the idea that such types may randomly
choose whether to deviate. Therefore the posterior beliefs may not be exactly π|T . PSE
also does not require uniqueness of the deviating set of types T , as we do.
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for this reasoning off the equilibrium path.

Even on the standard class of monotonic signaling games, Perfect Sequen-

tial Equilibria may not exist; see Sec. 10.6 of vanDamme (1991). We examine

that same class in Section 3, and characterize a single equilibrium outcome

as being immune to Credible Deviations. It is worth noting, however, that if

an equilibrium is Vulnerable to a Credible Deviation by a singleton C, then

it also fails PSE, since only one belief can be formed over a singleton set.

Relatedly, Farrell’s (1993) Neologism-proofness asks whether a set of

types can credibly distinguish itself in cheap-talk games by explicitly sending

an out-of-equilibrium message that self-identifies a set of potential deviating

types, T . An equilibrium fails Neologism-proofness if the types in T are pre-

cisely the ones who gain when, in response to the message, the Receiver’s

beliefs are a Bayesian update of his prior beliefs on T . This concept is anal-

ogous to PSE, so the above comparisons apply.

3 Monotonic Signaling Games

Monotonic signaling games (Spence (1973)) capture situations in which: the

Sender would prefer the Receiver to take higher actions; the Receiver prefers

his action to be correlated with the Sender’s type; and it is relatively less

costly for higher Sender types to send higher messages. These games exhibit

multiple equilibria. In applications, refinements such as D1 or Stability are

used to select a unique outcome, the least-distortive separating (or Riley)

outcome.10 In this section we show that this outcome is the only one immune

to Credible Deviations.

Following Cho and Sobel (1990) and Ramey (1996), monotonic signaling

games are defined as follows. First, uS(θ, m, a) is strictly increasing in a for

all (θ, m). One can think of a as some sort of compensation for the Sender;

all Sender types always prefer more. In order to avoid solutions involving

arbitrarily large messages and actions we assume that limm→∞ uS(θ, m, a) =

−∞ for all θ and a.

We assume that uR is such that, for any type θ and message m, the

10Note that Grossman and Perry’s (1986) PSE does not always exist on this class
(vanDamme (1991)).
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Receiver has a unique best response, i.e. that BR({θ},m) is a singleton.

Throughout Section 3 we denote this action as {β(θ, m)} ≡ BR({θ},m).

Furthermore we assume that β(·, ·) is uniformly bounded from above.

We assume that ∂uR/∂a is strictly increasing in θ for all (m, a). As

a result, BR(π̃,m) is greater for beliefs that are greater in the first-order

stochastic sense, and in particular, β(θ, m) is strictly increasing in θ (Cho

and Sobel (1990), p. 392). Together with monotonicity, this captures the

idea that the Sender wants to induce the Receiver to choose larger actions

by trying to convince him that his type is greater.

We make a central assumption in Spencian signaling games, the single-

crossing condition: −(∂uS/∂m)/(∂uS/∂a) is strictly decreasing in θ. That

is, for a given increase in m, in order to keep the Sender at the same utility

level, a higher Sender-type needs less compensation in terms of a (in case m

is locally costly for the Sender) or he is willing to give up a larger amount of

a (in case m is locally beneficial for him).

Finally, we assume that uS(θ,m, β(θ,m)) is strictly quasiconcave in m.

In many applications, this assumption is implied by stronger assumptions

made directly on the primitives of the model.

Most applied signaling models have a lot more structure. For example,

since m is usually interpreted as a costly action undertaken by the Sender

that may be beneficial for the Receiver (e.g. the Sender’s education level), it

is often assumed that uS(θ, m, a) is weakly decreasing in m and β(θ,m) is

weakly increasing in m. We need not impose these conditions.

An additional piece of notation simplifies the exposition. For any θ and

m, let â(θ,m) be the action to satisfy

uS(θ,m, â(θ, m)) = u∗S(θ) (3)

if such an action exists, and denote â(θ, m) = ∞ otherwise. This action by

the Receiver would give Sender-type θ his equilibrium payoff after sending m.

If such an action exists, it is unique by monotonicity.

The single-crossing property suggests that higher types need less compen-

sation for sending higher messages than do lower types. Lemma 1 strengthens

that idea, applying it relative to equilibrium payoffs. Proofs of all Lemmas

13



appear in the Appendix.

Lemma 1 Fix an equilibrium (M,A, µ) and type θh ∈ R+. For all m′ >

M(θh) and all θ` < θh, â(θh,m′) < ∞ implies â(θh,m′) < â(θ`,m′).

The next lemma states that in this monotonic environment, when search-

ing for a potential deviators’ club, it suffices to find a type θ′ who would

prefer to be self-identified by an off-equilibrium message, while no lower type

would prefer to be perceived as θ′.

Lemma 2 Fix an equilibrium (M, A, µ), and suppose there exists a type θ′

and an out-of-equilibrium message m′ such that

u∗S(θ′) < uS(θ′, m′, β(θ′,m′)) and

u∗S(θ) ≥ uS(θ, m′, β(θ′,m′)) ∀θ < θ′.

Then there exists a unique credible deviators’ club for m′.

The explanation for this result has two parts. First, in the monotonic

setting, the Sender is made worse off as the Receivers beliefs shift towards

lower types. Therefore, the “worst” belief over any club C is the one putting

probability one on the lowest type in C. If C satisfies (1), then the inequalities

of the lemma must be satisfied for θ′ = min C. Furthermore these inequalities

are sufficient since adding higher types to a set C does not change the set

BR(min C,m). This explains why the inequalities generate some credible

deviators’ club.

The uniqueness result also relies on monotonicity. Since lower types can-

not gain by sending m′ when being perceived as θ′, they also cannot gain

by being perceived as themselves, and hence cannot belong to any club C.

If only higher types formed a club C by sending m′, θ′ would want to join

this club; hence θ′ must belong to any club that exists, and be the minimum

member. But then all types in C ′ would want to join such a club, since θ′ is

the “worst case” member.

This result rules out pooling (or semi-pooling). The intuition for the

following lemma is that the highest type θ′ in any pooling set would be able
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to find a sufficiently high message m′ with which to satisfy the inequalities

of Lemma 2.

Lemma 3 If an equilibrium (M, A, µ) is not Vulnerable to Credible Devia-

tions, it is a separating equilibrium—no two types send the same message.

Finally, of all the separating equilibria, only the least-distortive one is

not Vulnerable. In a separating equilibrium, each type θi ∈ Θ is uniquely

identified by his equilibrium message mi. As a result, µ(θi |mi) = 1 and the

Receiver’s response is ai = β(θi,mi). The Riley outcome is the list of pairs

(mr
i , a

r
i )1≤i≤|Θ| such that

mr
1 = arg max

m≥0
uS(θ1,m, β(θ1,m)) (4)

and for all 1 < i ≤ n,

mr
i = arg max

m≥0
uS(θi,m, β(θi,m)) (5)

s.t. uS(θj,m
r
j , β(θj,m

r
j)) ≥ uS(θj,m, β(θi,m)) ∀j < i,

and ar
i = β(θi,m

r
i ) for each i. The uniqueness of such messages is guaranteed

by our quasi-concavity assumption. Due to the single-crossing assumption,

the Riley messages mr
i also are increasing in i. This is obvious when messages

are always costly, but it also holds on our more-general class of games.

Lemma 4 Any equilibrium whose outcome is different from the Riley out-

come is Vulnerable to Credible Deviations.

The intuition for this result is that, if a separating equilibrium has a “gap”

between equilibrium messages beyond that of the Riley outcome, then some

type would be able to lower his message and still maintain the inequalities

of Lemma 2. It immediately yields our main result.

Theorem 1 The Riley outcome is the unique equilibrium outcome that is

not Vulnerable to Credible Deviations.

Proof: Lemma 4 makes any other outcome Vulnerable. To prove that the

Riley outcome is not Vulnerable, observe from Cho and Sobel (1990) that
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the Riley outcome can be supported by a sequential equilibrium (in fact,

with out-of-equilibrium beliefs that satisfy D1). Fix such an equilibrium,

and suppose toward contradiction that C is a deviators’ club for some out-

of-equilibrium message m′, i.e. eqn. ((1)) holds for m = m′. Denote the

lowest type in C as θi = min C. As in the proof of Lemma 2, due to the

monotonicity of the Receiver’s best responses with respect to beliefs, and the

monotonicity of uS with respect to a, we have

min
a∈BR(C,m′)

uS(θ,m′, a) = uS(θ, m′, β(θi, m
′)) ∀θ ∈ Θ.

Therefore for any j < i, since θj /∈ C we have

u∗S(θj) ≥ min
a∈BR(C,m′)

uS(θj,m
′, a) = uS(θj,m

′, β(θi,m
′))

These are precisely the constraints in (5), which define mr
i . Hence, by

strict quasi-concavity, uS(θi,m
r
i , β(θi,m

r
i )) > uS(θi,m

′, β(θi,m
′)). That is, θi

prefers not to deviate from mr
i to m′ when the Receiver believes the message

came from him, which contradicts θi ∈ C. ¤

Theorem 1 shows that on this class of games, Credible Deviations exist if

and only if D1 fails. As we show in the next section, however, this similarity

breaks down even on a similar class of games, when we slightly weaken the

monotonic structure.

4 Information Transmission and Bias

In this section we consider a class of games which conveys the following type

of interaction. The Sender wants the Receiver to take an action that matches

his type; messages are costly; and the Receiver wants to take an action that

matches the Sender’s type offset by some bias. This is a version of Crawford

and Sobel’s (1982) model, but with discrete types and costly signaling.11

We make the following assumptions. The Sender’s payoff is of the form

uS(θ, m, a) = −d(θ − a) − c(θ,m). The distance function d is convex and

11It is somewhat similar to the model of Austen-Smith and Banks (2000), who combine
costly signaling with Crawford and Sobel’s cheap talk.
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θ1 θn
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Figure 2: If the Receiver’s bias is large enough, a low type prefers being
perceived as a higher type to being perceived as himself.

symmetric about zero (d(x) ≡ d(|x|)); hence increasing on [0,∞). The cost

function c is continuous, strictly increasing in m, satisfies limm→∞ c(·,m) =

∞, and satisfies single-crossing: c(θ, m′) − c(θ,m) > c(θ′, m′) − c(θ′,m) for

all m′ > m, θ′ > θ. In words, the Sender wants the Receiver to choose a as

close as possible to θ (with a symmetric convex loss function), while sending

larger messages is more costly for him, but relatively less costly if he has a

higher type.

The Receiver’s payoff is of the form uR(θ, m, a) = −(θ−a−b)2, where b >

0 is a commonly known bias. As a consequence, in equilibrium the Receiver

chooses action a = E[θ |µ,m]− b, where E[θ |µ,m] is the Sender’s expected

type given the observed message m and Receiver’s update function µ. The

two parties’ preferences are misaligned according to the bias b.

We shall analyze the case in which the bias is not “too small”. In order to

impose this restriction without making assumptions on the prior distribution

of types, we assume that the bias is not small relative to the distance between

any two types.

Assumption: The bias is not too small: b > (θn − θ1)/2.

To get intuition for the role of the bias assumption in our results, see

Figure 2. In this model, the no-small-bias assumption—coupled with the

fact that b > 0—implies that a low type prefers to be perceived as any higher

type. For instance, θ1 prefers the action a = θn − b to the action a = θ1 − b,

due to the symmetry of the distance function. In the monotonic games of

Section 3, this feature of low types wanting to be perceived as high types is

more general in that the Sender always prefers any higher action to a lower

one. Therefore our bias assumption in this section preserves some of this

incentive in a slightly richer model.

We now show that in this class of games there exists a unique outcome im-
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mune to Credible Deviations, while the D1 criterion does not always restrict

the set of equilibria.

4.1 Credible Equilibrium

The only equilibrium outcome immune to Credible Deviations involves sep-

aration. It is the unique outcome that minimizes the Sender’s messages

subject to the incentive constraints: θ1 sends m1 = 0, θ2 sends a different

message m2 low enough to make θ1 indifferent between sending m1 = 0 and

deviating to m2, and so on. In this sense, this outcome resembles the Riley

outcome in Section 3.

To formalize this, observe that in any separating equilibrium (M, A, µ),

the Receivers equilibrium actions clearly satisfy A(M(θi)) ≡ θi − b. We

define a minimal-cost separating equilibrium to be one where A satisfies that

condition, and additionally, M(θ1) = 0 while for 2 ≤ i ≤ n,

−d(θi−1−A(M(θi−1)))−c(θi−1, M(θi−1)) = −d(θi−1−A(M(θi)))−c(θi−1,M(θi))

(6)

which states that θi−1 is indifferent between sending his equilibrium message

M(θi−1) and sending M(θi). Because of the assumption that the bias is not

too small, these messages are uniquely defined and strictly monotonic.

To prove that this is the unique surviving equilibrium, we show that in

any other equilibrium, a credible deviators’ club must exist in one of two

ways. First, there could exist a separating type who is greater than any

pooling types (if they exist), but for whom eqn. (6) fails to hold. In the

proof of Lemma 5 we show that if any such types exist, the highest of them

would form a unique deviators’ club.

Lemma 5 Suppose an equilibrium (M, A, µ) is immune to Credible Devia-

tions. If for some s ≥ 2, the types θs, θs+1,. . . , θn are all separating (i.e.

send unique equilibrium messages), then eqn. (6) holds for all i ≥ s.

Second, there could exist pooling types. Using the previous case’s result,

we show (Lemma 6) that the highest one then would form a unique deviators’

club. Hence we arrive at Theorem 2: There can be no pooling, and the

separating equilibrium must be the one defined above.
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Lemma 6 Suppose a non-separating equilibrium exists, and let θp denote the

highest pooling type. If eqn. (6) holds for all i > p, then there exists a message

for which {θp} is a unique credible deviators’ club.

Alternating applications of Lemmas 5 and 6 prove the main result.

Theorem 2 If an equilibrium (M,A, µ) is immune to Credible Deviations

then it is a minimal-cost separating equilibrium: A(M(θi)) ≡ θi−b, M(θ1) =

0, and for 2 ≤ i ≤ n, M(θi) satisfies (6).

Proof: If an equilibrium is immune to Credible Deviations, then Lemma 6

implies that the highest type, θn, does not pool. Hence Lemma 5 implies

that eqn. (6) holds for i = n.

In turn, this means (again with Lemma 6) that θn−1 does not pool; hence

Lemma 5 implies that eqn. (6) also holds for i = n − 1. Continuing this

argument for i = n− 2, n− 3, . . . , 2, θi does not pool and eqn. (6) holds.

Therefore θ1 also does not pool. It remains to be shown that M(θ1) = 0.

This is true in any separating equilibrium, though, under our assumption θn−
θ1 < 2b. Indeed, the Receiver’s equilibrium response A(M(θ1)) = θ1−b is the

worst rationalizable action the Receiver could take (from θ1’s perspective),

regardless of beliefs. Given this, M(θ1) = 0 is strictly best for θ1. ¤

4.2 D1 and Pooling

In order to see that the D1 Criterion may fail to select a unique outcome

in the class of games examined in this section, consider a 2-type example

where θ1 = 2, θ2 = 5, b = 2, and the prior is π(θ2) = 0.9. These parameters

satisfy our previous bias-assumption, namely θ2 − θ1 < 2b. Let d(x) = |x|
and c(θi,m) = m/i.

There exists a pooling-equilibrium (M,A, µ) such that M(θ) ≡ 0 and,

accordingly, A(0) = E(θ) − b = 4.7 − 2 = 2.7. We show that if A(m) =

θ1 − b = 0 and µ(θ1 |m) = 1 for all m > 0, then the equilibrium satisfies D1.

To see this, we examine the potential gains from deviation for both types.

Observe that regardless of the Receiver’s (posterior) beliefs, he would never

choose an action outside the range [θ1 − b, θ2 − b] = [0, 3]; hence we can

restrict attention to that interval.
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Figure 3: Rationalizable actions preferred by θ1 (dashed line) are disjoint
from those preferred by θ2 (solid line), so D1 permits pooling.

If θ1 sends an out-of-equilibrium message m > 0 and the Receiver re-

sponds with a ∈ [0, 3], then θ1 gains (relative to his equilibrium payoff) if

and only if m ∈ (0, .7) and a ∈ (1.3 + m, 2.7 −m). This range of actions is

represented by the dashed line in Figure 3. Similarly, θ2 gains if and only if

m ∈ (0, 0.6) and a ∈ (2.7 + m/2, 3].12

For m ∈ (0, 0.6), both types could gain from deviation. In those cases,

however, (1.3+m, 2.7−m)∩ (2.7+m/2, 3] = ∅, i.e. the sets of actions which

make the two types better-off are not related by inclusion (and in fact do not

even overlap). Hence D1 does not restrict out-of-equilibrium beliefs following

such a message.

For m ∈ [0.6, 0.7), only θ1 could gain from deviation; D1 therefore requires

µ(θ1|m) = 1. For m ≥ 0.7, neither type can gain from deviation and D1

places no restrictions µ().

Therefore the pooling equilibrium satisfies the D1 Criterion. Since the

Receiver responds with action A(m) = θ1 − b = 0 for m > 0, neither type

could gain by deviating. On the other hand, this equilibrium is Vulnerable

to Credible Deviations since C = {θ2} is a unique credible deviators’ club

for various out-of-equilibrium messages.

It is clear that this example is robust to perturbations. More extreme

priors would yield the same results, making the out-of-equilibrium beliefs we

used (with unit probability on the low type) even less appealing while still

satisfying D1. Furthermore, due to the slack in our arguments, it is clear

that there even exist D1 equilibria in which all types pool by sending some

positive message m > 0.

12Type θ2 could also gain for some values a > 3, but we have stated such an action is
never a best response for the Receiver.
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5 Conclusion

We have shown that some equilibria of Sender-Receiver games are vulnerable

to a particular kind of signaling. Credible signals identify a set of deviating

types who gain by deviating as long as the Receiver reacts as if only such

types could be deviating. Generally, this vulnerability is not captured by

standard concepts in the refinements literature. While Credible Deviations

are eliminated on the class of monotonic signaling games (Section 3) by, for

example, Cho and Kreps’ (1987) D1 Criterion, this does not happen in a

related class of games (Section 4) where best response sets are not ordered

(see also the example in Section 1.1).

On the other hand we wish to emphasize the point that immunity from

Credible Deviations does not, by itself, serve well as a generally predictive

concept. In some games all equilibria may be Vulnerable to Credible De-

viations. This reinforces the fact that our primary goal is not to propose

an equilibrium refinement that selects a unique equilibrium in every game.

Instead it is to be aware of a type of non-robustness which some (or all) equi-

libria may possess in Sender-Receiver games that are used in applications.

The basis for our approach is centered on our view that the Receiver’s

beliefs (and subsequent action) in response to a deviant message m should

be regarded as ambiguous to the Sender. While previous work has allowed

agents’ beliefs to differ off the equilibrium path (e.g. Fudenberg and Levine

(1993)), ours is the first formalization (to our knowledge) which explicitly

allows ambiguity of the Receiver’s beliefs from the Sender’s perspective.
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6 Appendix: Proofs of Lemmas

Proof of Lemma 1. Denote mh ≡ M(θh). Since θh sends mh in equi-

librium, we have â(θh,mh) = A(mh) (by definition and uniqueness of â()).

Therefore the incentive constraints for θ` yield

uS(θ`, mh, â(θ`,mh)) ≡ u∗S(θ`) ≥ uS(θ`,mh, â(θh,mh))
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implying â(θ`,mh) ≥ â(θh,mh) by monotonicity of uS.

The derivative of (3) with respect to m is zero, so

∂â

∂m
(θ, m) = −∂uS/∂m

∂uS/∂a
(θ,m, â(θ, m))

for any θ and m. By the single-crossing condition, for any m,

[
â(θ`, m) = â(θh,m)

]
=⇒ ∂â

∂m
(θ`, m) >

∂â

∂m
(θh,m). (7)

Recall that â(θ`,mh) ≥ â(θh,mh). If there exists m′ > mh such that

â(θ`,m′) ≤ â(θh,m′), then there is m′′ ∈ [mh,m′] such that both â(θ`,m′′) =

â(θh,m′′) and ∂â/∂m(θ`,m′′) ≤ ∂â/∂m(θh,m′′), contradicting (7). ¤

Proof of Lemma 2. Let θ′ and m′ satisfy the inequalities in the lemma.

We show that the unique set of types to satisfy (1) is

C ′ = {θ ∈ Θ : u∗S(θ) < uS(θ, m′, β(θ′,m′)). (8)

The inequalities imply θ′ ∈ C ′, and in fact that θ′ = min C ′. By mono-

tonicity of uS() in a and by monotonicity of the Receiver’s best response with

respect to beliefs, respectively, we have, for any θ ∈ Θ,

min
a∈BR(C′,m′)

uS(θ,m′, a) = uS(θ, m′, minBR(C ′,m′))

= uS(θ, m′,BR(min C ′,m′)) (9)

= uS(θ, m′, β(θ′, m′))

Hence C ′ satisfies (1) with respect to m′ (showing existence).

To show that C ′ is the unique such set, let C satisfy (1). For any θ < θ′,
monotonicity of the Receiver’s best response implies

uS(θ,m′, β(θ, m′)) < uS(θ, m′, β(θ′,m′)) ≤ u∗S(θ)

where the last inequality follows from the lemma’s assumption. Hence no

such type can belong to a deviators’ club for m′. Hence min C ≥ θ′.

23



If min C = θ > θ′, then again by monotonicity of the Receiver’s best

responses, for any a ∈ BR(C,m′),

u∗S(θ′) < uS(θ′,m′, β(θ′,m′)) < uS(θ′,m′, a).

But this contradicts the fact θ′ /∈ C. Hence θ′ = min C.

By (9), a credible deviators’ club is uniquely determined by its minimum

element; no two distinct clubs can have the same minimum element. Hence

C = C ′ defined by (8). ¤

Proof of Lemma 3. Suppose to the contrary that some equilibrium mes-

sage me is sent by several types, the highest of which is θ′.
Note that A(me) < β(θ′,me) because θ′ is the highest of several types

that sends me (and due to the assumptions on uR). Therefore u∗S(θ′) <

uS(θ′,me, β(θ′,me)), i.e. θ′ would be better off if the Receiver “knew” it was

θ′ sending me and best-responded accordingly.

We claim that there exists m′′ > me such that u∗S(θ′) =

uS(θ′,m′′, β(θ′,m′′)) and uS(θ′,m′′, β(θ′,m′′)) is locally decreasing in m. To

see this, it is enough to observe that uS tends to −∞ as m →∞, and β(θ′,m)

is bounded from above by assumption.

By choice of m′′, â(θ′,m′′) = β(θ′,m′′) < ∞. By Lemma 1, for all θ < θ′

we have â(θ,m′′) > â(θ′,m′′), and hence u∗S(θ) > uS(θ, m′′, β(θ′,m′′)).
By continuity, there is an out of equilibrium message m′ < m′′ (sufficiently

close to m′′) such that u∗S(θ′) < uS(θ′, m′, β(θ′,m′)) and for all θ < θ′, u∗S(θ) >

uS(θ, m′, β(θ′,m′)). By Lemma 2, there exists a unique deviators’ club with

respect to m′. ¤

Proof of Lemma 4. Suppose an equilibrium (M,A, µ) is not Vulnerable

to Credible Deviations. By Lemma 3 it is separating: 1 ≤ i 6= j ≤ n

implies M(θi) 6= M(θj). If the Sender uses Riley messages (M(θi) ≡ mr
i ),

the Receiver responds accordingly, and we are done.

Otherwise, let θi be the lowest type such that M(θi) 6= mr
i . For any j < i,

u∗S(θj) = uS(θj,m
r
j , β(θj,m

r
j)) ≥ uS(θj,M(θi), β(θi,M(θi)))

by incentive compatibility. Therefore M(θi) does not maximize
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uS(θi,m, β(θi,m)) subject to the constraints of (5) (since the maximizer mr
i

is unique, by strict quasi-concavity in m). That is,

u∗S(θi) = uS(θi, M(θi), β(θi,M(θi))) < uS(θi,m
r
i , β(θi,m

r
i ))

By Lemma 2, there exists a unique deviators’ club for message mr
i . ¤

Proof of Lemma 5. To derive a contradiction under the hypothesis of the

lemma, let θj ≥ θs be the highest type for whom eqn. (6) fails; we prove

the lemma by showing that {θj} forms a unique credible deviators’ club.

Throughout the proof, denote mi ≡ M(θi) and ai ≡ A(M(θi)).

(Existence) Incentive compatibility implies

d(θj−1 − aj−1)− d(θj−1 − aj) < c(θj−1,mj)− c(θj−1,mj−1) (10)

where the strictness follows from the choice of j. By assumption, either θj−1

is a separating type, or pools only with lower types. Therefore the Receiver’s

response to mj−1 satisfies aj−1 ≤ θj−1−b < θj−b = aj. With our assumption

that the bias is not too small, this makes the left hand side of (10) positive.

The right hand side then implies mj > mj−1.

For any ` < j − 1, d(θ` − aj−1) − d(θ` − (θj − b)) ≤ d(θj−1 − aj−1) −
d(θj−1 − (θj − b)) by the convexity of d, while c(θj−1,mj) − c(θj−1,mj−1) <

c(θ`,mj)− c(θ`,mj−1) by the single-crossing property of c. Combining these

two inequalities with (10) we get d(θ`− aj−1)− d(θ`− (θj − b)) < c(θ`,mj)−
c(θ`,mj−1). The incentive constraint for θ` not to send mj−1 is d(θ` − a`)−
d(θ` − aj−1) ≤ c(θ`, mj−1) − c(θ`,m`). Adding it to the previous inequality

yields

d(θ` − a`)− d(θ` − (θj − b)) < c(θ`, mj)− c(θ`,m`) (11)

for all ` < j − 1. With (10) this establishes that any θ` < θj strictly prefers

his equilibrium payoff to imitating type θj.

In the case that j < n, types θj and θj+1 both separate by assumption,

and θj is indifferent between sending mj and mj+1:

d(θj − (θj − b))− d(θj − (θj+1 − b)) = c(θj,mj+1)− c(θj,mj).
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Since θj+1 − θj < 2b, the left hand side of the equality is positive.

By the convexity of d and the single-crossing property of c, for all h > j,

d(θh − (θj − b))− d(θh − (θj+1 − b)) > c(θh,mj+1)− c(θh,mj). The incentive

constraint for θh > θj+1 (if any exist) not to send mj+1 is d(θh− (θj+1− b))−
d(b) ≥ c(θh,mh)− c(θh,mj+1). Adding these two inequalities yields

d(θh − (θj − b))− d(b) > c(θh,mh)− c(θh,mj).

Hence any θh > θj strictly prefers his equilibrium payoff to imitating type θj.

By continuity, this implies that C = {θj} satisfies (1) for any message

mj − ε, as long as ε > 0 is kept sufficiently small so as not to violate the

strict inequalities established above. Only type θj would gain from sending

mj − ε if the Receiver would react to it with the action a = θj − b.

(Uniqueness) We complete the proof by showing that there is no other

deviators’ club for message mj − ε, whenever ε is sufficiently small.

For θ` < θj to belong to a deviators’ club requires that he gain even when

the Receiver believes the message came from θ`, i.e. d(θ` − (θ` − b))− d(θ` −
a`) < c(θ`,m`)− c(θ`,mj − ε). Adding this to (11) yields

d(θ` − (θ` − b))− d(θ` − (θj − b)) < c(θ`,mj)− c(θ`,mj − ε).

The left hand side of this inequality, which can be written d(b)−d(b−(θj−θ`)),

is positive because 0 < θj − θ` < 2b. Hence for sufficiently small ε > 0, this

inequality is violated; θ` < θj cannot belong to any credible deviators’ club

C for message mj − ε, when ε > 0 is sufficiently small.

On the other hand, suppose some deviators’ club for mj − ε consisted

only of types higher than θj. Similar reasoning as above implies that θj

would want to “join that club” since |θj − (θh − b)| < |θj − (θj − b)| when

θh < θj, i.e. θj is even better off when the Receiver believes the message was

sent by θh than when the Sender believes it was θj. This contradicts the fact

that such a club C exists without θj.

Therefore, any such club C must contain θj. But we have already proven

that no other type gains by sending mj − ε when the Receiver chooses a =

θj − b. We conclude that {θj} is the unique deviators’ club for (any out-of-

equilibrium) message mj − ε when ε > 0 is chosen sufficiently small, making
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the equilibrium Vulnerable to a Credible Deviation. ¤

Proof of Lemma 6. Denote mi ≡ M(θi) and ai ≡ A(M(θi)).

Let m̂p denote the message that would give θp his his equilibrium payoff

if the Receiver would respond with action a = θp − b, i.e.

d(θp − ap)− d(θp − (θp − b)) = c(θp, m̂p)− c(θp,mp). (12)

We shall prove that {θp} is a unique deviators’ club for some message m̂p−ε.

First, we show that for all i 6= p, if θi would send m̂p and the Receiver

would respond with a = θp− b, then θi would be strictly worse off than he is

in equilibrium, i.e.

d(θi − ai)− d(θi − (θp − b)) < c(θi, m̂p)− c(θi,mi). (13)

To prove this claim we separately address types lower and higher than θp.

(Low Types) Since θp is the highest pooling type, the Receiver’s re-

sponse to his equilibrium message is ap < θp − b. This implies that the left

hand side of eqn. (12) is positive, hence m̂p > mp.

For all ` < p, d(θ`−ap)−d(θ`−(θp−b)) ≤ d(θp−ap)−d(θp−(θp−b)) by the

convexity of d, and c(θp, m̂p)− c(θp,mp) < c(θ`, m̂p)− c(θ`,mp) by m̂p > mp

and the single-crossing property of c. Combining these two inequalities with

eqn. (12) yields d(θ` − ap) − d(θ` − (θp − b)) < c(θ`, m̂p) − c(θ`,mp). The

incentive constraint for θ` not to imitate θp is −d(θ` − ap) − c(θ`, mp) ≤
−d(θ` − a`)− c(θ`,m`). Adding it to the previous inequality yields

d(θ` − a`)− d(θ` − (θp − b)) < c(θ`, m̂p)− c(θ`, m`) ∀` < p

so (13) holds for all θi < θp.

(High Types) Lemma 5 says that θp+1 (if it exists) separates from θp at

the least cost, that is,

− d(θp − (θp+1 − b))− c(θp,mp+1) = −d(θp − ap)− c(θp,mp). (14)

Since |θp − (θp+1 − b)| < |θp − (θp − b)|, this equality with eqn. (12) implies
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m̂p < mp+1. Combine eqns. (12) and (14) to get

d(θp − (θp − b))− d(θp − (θp+1 − b)) = c(θp,mp+1)− c(θp, m̂p).

For h > p, d(θh−(θp−b))−d(θh−(θp+1−b)) ≥ d(θp−(θp−b))−d(θp−(θp+1−b))

by the convexity of d, while c(θp,mp+1)− c(θp, m̂p) > c(θh,mp+1)− c(θh, m̂p)

by mp+1 > m̂p and the single-crossing property of c. Therefore, for h > p,

−d(θh − (θp+1 − b)) − c(θh,mp+1) > −d(θh − (θp − b)) − c(θh, m̂p). The

incentive constraint for θh not to imitate type θp+1 is −d(b) − c(θh,mh) ≥
−d(θh − (θp+1 − b))− c(θh,mp+1). With the previous inequality, for h > p,

−d(b)− c(θh,mh) > −d(θh − (θp − b))− c(θh, m̂p).

This establishes (13) for all θi > θp.

We finish the proof by arguing that for any sufficiently small ε, {θp} is

the unique credible deviators’ club with respect to message m̂p − ε. Since

these arguments are mostly the same as those used in the end of the proof

of Lemma 5, we keep these arguments brief.

Continuity in eqn. (13) implies that for sufficiently small ε, C = {θp}
satisfies (1) with respect to message m̂p−ε. To show that no other deviators’

club C can exist, first consider θ` < θp. Since 0 < θp − θ` < 2b, any such

θ` would prefer the Receiver to take action θp − b rather than θ` − b. Hence

by transitivity and (13), θ` cannot belong to a deviators’ club for message

m̂p − ε, as in the proof of Lemma 5.

Finally, if a deviators’ club consisted only of higher types θh, θp would

want to join that club, which is a contradiction. Hence θp belongs to any such

C, in which case (13) implies θh could not belong to the club for message

m̂p−ε, preferring his equilibrium payoff to the one he gets when the Receiver

responds with action a = θp − b. ¤
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