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Abstract

This paper considers games in which multiple principals contract simultaneously with the

same agent. We introduce a new class of revelation mechanisms that, although it does not

always permit a complete equilibrium characterization, it facilitates the characterization of the

equilibrium outcomes that are typically of interest in applications (those sustained by pure-

strategy pro�les in which the agent�s behavior in each relationship is Markov, i.e., it depends

only on payo¤-relevant information such as the agent�s type and the decisions he is inducing

with the other principals). We then illustrate how these mechanisms can be put to work in

environments such as menu auctions, competition in nonlinear tari¤s, and moral hazard settings.

Lastly, we show how one can enrich the revelation mechanisms, albeit at a cost of an increase

in complexity, to characterize also equilibrium outcomes sustained by non-Markov strategies

and/or mixed-strategy pro�les.
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1 Introduction

It is by now well understood that in environments in which multiple principals1 contract non-

cooperatively with the same agent, the Revelation Principle2 is invalid. The reason is that the

agent�s preferences over the decisions of one principal depend not only on his �type� (i.e. his

exogenous private information) but also on the decisions induced with the other principals.3

Two solutions have been proposed in the literature. Epstein and Peters (1999) have suggested

that the agent should communicate not only his type but also the mechanisms o¤ered by the

other principals. However, describing a mechanism requires an appropriate language. The main

contribution of Epstein and Peters is in proving existence of a universal language that is rich

enough to describe all possible mechanisms. This language also permits them to identify a class

of universal mechanisms with the property that any indirect mechanism can be embedded into it.

Since universal mechanisms have the agent truthfully report all his private information, they can

be considered direct revelation mechanisms and therefore a universal Revelation Principle holds.

Although a remarkable contribution, the use of universal mechanisms in applications has been

precluded by the complexity of the universal language. In fact, when asking the agent to describe

principal j�s mechanism, principal i has to take into account that principal j�s mechanism may also

ask the agent to describe principal i�s mechanism, whether this mechanism depends on principal j�s

mechanism...and so on, leading to the so called �in�nite regress�problem. The universal language

is in fact obtained as the limit of a sequence of enlargements of the message space, where at each

enlargement the corresponding direct mechanism becomes more complex to describe and hence

more di¢ cult to use when searching for equilibrium outcomes.

The second solution, proposed by Peters (2001) and Martimort and Stole (2002), is to restrict

the principals to o¤er menus of contracts. They have shown that, for any equilibrium relative to

any game with arbitrary sets of mechanisms for the principals, there exists an equilibrium in the

game in which the principals are restricted to o¤er menus that sustains the same outcomes. In

this equilibrium, the principals simply o¤er the menus in the range of the mechanisms they would

have o¤ered in the equilibrium of the indirect game and delegate to the agent the choice of the

contractual terms. This result is referred to as the Menu Theorem and is the analog of the Taxation

Principle for games with a single mechanism designer.4

1We refer to the players who o¤er the contracts either as the principals or as the mechanism designers. The two

expressions are meant to be synonyms. Furthermore, we adopt the convention of using feminine pronouns for the

principals and masculine pronouns for the agent.
2See, among others, Gibbard (1973), Green and La¤ont (1977) and Myerson (1979).
3Problems with standard direct revelation mechanisms have been documented, among others, in Katz (1991),

McAfee (1993), Peck (1997), Epstein and Peters (1999), Peters (2001) and Martimort and Stole (1997, 2002). Recent

work by Peters (2003), Attar, Piaser and Porteiro (2007,a,b), and Attar, Majumadar, Piaser, and Porteiro (2007)

has identi�ed special cases in which these problems do not emerge.
4The result is also referred to as the "Delegation Principle" (e.g. Martimort and Stole, 2002). For the Taxation
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The Menu Theorem has proved quite useful in applications. However, contrary to the Rev-

elation Principle, it provides no indication on how the agent uses the di¤erent allocations in the

menu as a function of his private information, nor does it permit one to restrict attention to any

particular type of menus. This is what we aim at doing in this paper by showing that, in most

cases of interest for applications, one can still conveniently describe the agent�s interaction with

each of his principals through revelation mechanisms. The structure of these mechanisms is however

more general than the one for games with a single mechanism-designer. Nevertheless, contrary to

universal mechanisms, it is not conductive to any �in�nite regress.�In the revelation mechanisms

we propose, the agent is asked to report his exogenous type along with the endogenous (payo¤-

relevant) decisions he is inducing with the other principals. To �x ideas, let V (�; �i; ��i) denote the

agent�s payo¤, with � 2 � denoting the agent�s type, �i 2 Di denoting a decision for principal i and
��i 2 D�i denoting a pro�le of decisions for all principals other than i:5 An incentive-compatible
revelation mechanism is a mapping �ri : � � D�i ! Di with the property that for any (�; ��i),
�ri (�; ��i) 2 argmax�i2Im(�ri ) V (�; �i; ��i), where Im(�

r
i ) denotes the range of �

r
i :

Describing the interaction of the agent with each of his principals through an incentive-

compatible revelation mechanism is convenient because it permits one to specify which decisions

the agent induces as a function of his type and the decisions he induces with the other principals.

In particular, it permits one to specify which decisions the agent takes in response to deviations by

any of the other principals. This in turn can give guidance on which outcomes can be sustained in

equilibrium.

The mechanisms described above are appealing because they capture the essence of common

agency, i.e., the fact that the agent�s preferences vis a vis the decisions of each principal depend

not only on his type � but also on the decisions ��i he induces with the other principals.6 However,

this property does not guarantee that it is always without loss to restrict the agent�s behavior

to depend only on (�; ��i): In fact, when indi¤erent, the agent may condition his behavior also

on payo¤-irrelevant information such as the decisions included in the menus o¤ered by the other

principals that he preferred not to select. Furthermore, when indi¤erent, the agent may randomize

over the principals�decisions inducing a correlation that cannot always be replicated by having the

agent simply report (�; ��i) to each principal. As a consequence, not all outcomes can be sustained

by restricting the principals to o¤er the simple revelation mechanisms described above.

While we �nd these considerations intriguing from a theoretical viewpoint, we seriously doubt

their relevance in applications.

Principle, see Rochet (1986) and Guesnerie (1995).
5Depending on the application of interest, a decision can be a price-quantity pair, as in the case of competion in

nonlinear tari¤s, a reward scheme, as in menu auctions, or an incentive contract, as in moral hazard settings.
6A special case is when preferences are separable, as in Attar, Majumdar, Piasier, and Porteiro (2007), in which

case they depend only on �:
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Our concerns with mixed-strategy equilibria are the usual ones: outcomes sustained by the

agent mixing over the contracts o¤ered by the principals or by the principals mixing over the

menus they o¤er to the agent are typically not robust. Furthermore, when principals can o¤er all

possible menus (including those containing lotteries over contracts), it is very hard to construct

(non-degenerate) examples in which the agent is made indi¤erent over some of the contracts o¤ered

by the principals and, at the same time, no principal has an incentive to change the composition

of her menu so as to break the agent�s indi¤erence and induce him to choose the decisions that are

most favorable to her (see also the discussion in Section 5.2).

Our concerns with equilibrium outcomes sustained by a strategy for the agent that is not

Markov, i.e., that it depends also on payo¤-irrelevant information, are motivated by the observa-

tion that this type of behavior does not seem plausible in most real-world situations. Think of a

buyer purchasing products or services from multiple sellers. While it is plausible that the qual-

ity/quantity purchased from seller i depends on the quality/quantity purchased from seller j (this

is the intrinsic nature of the common agency problem which leads to the failure of the standard

revelation principle), it does not seem plausible that, for given choice with seller j; the purchase

from seller i depends on payo¤-irrelevant information such as the other price-quantity o¤ers in

seller j�s menu that the buyer decided not to choose.7

For most of the analysis, we thus focus on outcomes sustained by pure-strategy pro�les in

which the agent�s behavior is Markov.8 We �rst show that any such outcome can be sustained

as a truthful equilibrium of the revelation game. We also show that, despite the fact that only

certain menus can be o¤ered in the revelation game, any truthful equilibrium is robust in the sense

that its outcome can also be sustained by an equilibrium of the menu game. This guarantees

that equilibrium outcomes in the revelation game are not arti�cially sustained by the fact that the

principals are forced to choose from a restricted set of menus.

We then proceed by addressing the question of whether there exist environments in which

restricting the agent�s strategy to be Markov is not only appealing but actually without any loss of

generality. Clearly, this is always the case when the agent�s preferences are strict, for it is only when

the agent is indi¤erent that his behavior may depend on payo¤-irrelevant information. Furthermore,

even when the agent can be made indi¤erent, restricting attention to Markov strategies is always

without loss of generality when information is complete and when the principals�preferences are

su¢ ciently aligned in the following sense: for any pro�le of decision ��i; and for any menu of

decisions Di � Di; there exists a decision �i 2 Di among those that are optimal for the agent given
��i such that the payo¤ of any principal Pj , j 6= i, under (�i; ��i) is (weakly) lower than under any

7Note that the fact that the agent�s strategy is Markov does not imply that the principals can be restricted to

o¤er menus that contain only the price-quantity pairs that are selected in equilibrium.
8Note that, while the de�nition of Markov strategy given here is di¤erent from the one considered in the literature

on dynamic games (see e.g. Pavan and Calzolari, 2008), it shares with that de�nition the same spirit.
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other pro�le (�0i; ��i) such that �
0
i is optimal for the agent given ��i. This condition guarantees that,

given ��i; the decision the agent induces with Pi to punish a deviation by one of Pi�s opponents

need not depend on the identity of the deviating principal. This property is trivially satis�ed when

there are only two principals. It is also satis�ed, for example, when the principals are retailers

competing �a la Cournot�in a downstream market (each retailer�s payo¤ is then decreasing in the

quantity the agent�here in the role of a common manufacturer�sells to any of the other principals).

As for the restriction to complete information, the only role that this restriction plays is to rule

out the possibility that the equilibrium outcomes are sustained by the agent punishing a deviation,

say by principal j; by choosing in state � the equilibrium decisions ���i(�) with all principals other

than i and then changing his behavior with principal i by inducing a decision �i 6= ��i (�): Allowing
type � to respond to the equilibrium decisions ���i(�) with a decision �i 6= ��i (�) may be necessary
to discourage certain deviations by principal j. This in turn implies that Markov strategies need

not be without loss of generality when information is incomplete. However, because this is the

only complication that arises with incomplete information, we show that one can safely restrict

attention to Markov strategies if one imposes a mild re�nement on the solution concept which

we call �Conformity to Equilibrium.�This re�nement simply imposes that each type of the agent

selects the equilibrium decision with each principal when the latter o¤ers the equilibrium menu and

the decisions the agent induces with the other principals are the equilibrium ones.9 Again, in most

real world situations, we �nd such a behavior plausible.

The rest of the paper is organized as follows. Section 2 describes the contracting environment.

Section 3 contains the main characterization results. Section 4 shows how the simple revelation

mechanisms described above can be put to work in applications such as competition in non-linear

tari¤s, menu auctions, and moral hazard settings. Section 5 shows how the revelation mechanisms

can be enriched to characterize also equilibrium outcomes sustained by non-Markov strategies

and/or mixed strategy equilibria. Section 6 concludes. All proofs are either in the Appendix or in

the Supplementary Material.

Quali�cation. While the approach here is similar (in spirit) to the one in Pavan and Calzolari

(2008) for sequential common agency, there are important di¤erences due to the simultaneity of

contracting. First, the notion of Markov strategies considered here is forward-looking instead of

backward-looking and takes into account the fact that, when choosing which messages to send to

principal i, the agent has not committed yet any decision with any of the other principals. Second,

contrary to sequential games, the agent can condition his behavior not only on the mechanisms

o¤ered upstream but on the entire pro�le of mechanisms o¤ered by all principals. These di¤erences

explain why, despite certain similarities, the results do not follow from the arguments in that paper.

9Note that this re�nement is milder than the �conservative behavior�re�nement considered in Attar, Majumdar,

Piasier, and Porteiro (2007).
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2 The environment

The following model encompasses essentially all variants of simultaneous common agency examined

in the literature.

Players, actions and contracts. There are n 2 N principals who contract simultaneously
and non-cooperatively with the same agent, A. Each principal Pi, i 2 N � f1; :::; ng; must select
a contract yi from a set of feasible contracts Yi. A contract yi : E ! �(Ai) speci�es (a lottery
over) the actions ai 2 Ai that Pi will take in response to the agent�s action/e¤ort e 2 E:10 Both
ai and e may have di¤erent interpretations depending on the application of interest. When the

agent is a buyer purchasing from multiple sellers, ai stands for the price of seller i and e for a

vector of quantities/qualities. When instead A is a politician lobbied by di¤erent interest groups,

ai represents a campaign contribution and E the set of relevant policies.

Depending on the environment, the set of feasible contracts Yi may also be more or less re-

stricted. For example, in a trade relationship, the price ai of seller i may not depend on the

quantities/qualities of other sellers.11 In a moral hazard model, because e is not observable by

the principals, the function yi : E ! �(Ai) is necessarily constant over E and an action ai 2 Ai
represents a state-contingent payment that rewards the agent as a function of some exogenous

performance measure correlated with the agent�s e¤ort. Finally, in certain environments, only

deterministic contracts may be enforceable which can be captured by restricting each yi 2 Yi to
respond to each e 2 E with a degenerate lottery yi(e) that assigns measure one to an element of

Ai.

Payo¤s. Principal i�s payo¤ is described by the function ui (e; a; �) ; whereas the agent�s payo¤

by the function v (e; a; �) : The vector a � (a1; :::; an) 2 A �
Qn
i=1Ai denotes a pro�le of actions

for the principals, while the variable � denotes the agent�s exogenous private information. The

principals share a common prior over � represented by the distribution F with support �. All

players are expected-utility maximizers.

To avoid the usual measure-theoretic complications, we will often assume that A, E and � are
�nite sets.

Mechanisms. Principals compete in mechanisms. A mechanism for Pi consists of a message

(or communication) spaceMi and a measurable mapping �i :Mi ! Di where Di � �(Yi) denotes a
(compact) set of feasible lotteries over Yi:12 When A selects a messagemi 2Mi, Pi thus randomizes

10Throughout, for any measurable set 
; �(
) will denote the set of probability measures over 
: Furthermore,

given any ! 2 �(
), Supp[!] will denote the support of !:
11An exception is Martimort and Stole (2005).
12Again, depending on the application, the sets Di may be more or less restricted. For example, in certain

applications, it is customary to assume that, not only the contracts yi must be deterministic, but also the lotteries

over the contracts Yi selected through the mechanism must be degenerate. More generally, the sets Di incorporate
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over Yi according to the lottery �i = �i(mi) 2 Di:
In the following, we will refer to ai 2 Ai as the action and to �i as the decision for principal i.

When A does not have any action to take after communicating with the principals (that is, when

jEj = 1), �i reduces to a lottery over the set Ai of payo¤-relevant actions.
To save on notation, in the sequel we will denote a mechanism simply by �i, thus dropping the

speci�cation of the message spaceMi whenever this does not create confusion. Given a mechanism

�i we then denote by Im(�i) � f�i 2 �(Yi) : 9 mi 2Mi s.t. �i(mi) = �ig the set of lotteries in the
range of �i.

For any common agency game �, we will then denote by �i the set of feasible mechanisms

for Pi, by � � (�1; :::; �n) 2 � �
Qn
j=1�j a pro�le of mechanisms for the n principals, and by

��i � (�1; :::; �i�1; �i+1; :::; �n) 2 ��i �
Q
j 6=i�j a collection of mechanisms for all Pj with j 6= i:13

As is standard, we assume that principals can fully commit to their mechanisms and that each

principal cannot contract directly over the decisions by other principals.14

Timing. The sequence of events is the following.

� At t = 0; A learns �:

� At t = 1; each Pi simultaneously and independently o¤ers the agent a mechanism �i 2 �i:

� At t = 2; A privately sends a message mi 2Mi to each Pi after observing the whole array of

mechanisms �: The messages (m1; :::;mn) are sent simultaneously.15

� At t = 3; the contracts (y1; :::; yn) are determined independently by the lotteries (�1(m1); :::; �n(mn)):

� At t = 4; A chooses e 2 E after observing the contracts (y1; :::; yn):

� At t = 5, the principals� actions (a1; :::; an) are determined independently by the lotteries

(y1(e); :::; yn(e)) and payo¤s are realized.

all sorts of exogenous restrictions dictated by the environment under examination. What is important to us, is that

the set of feasible lotteries Di is a primitive of the environment, not a choice of Pi:
13We also de�ne � � (�1; :::; �n) 2 D �

Qn
j=1Dj ; m � (m1; :::;mn) 2 M �

Qn
j=1Mj , y � (y1; :::; yn) 2 Y �Qn

j=1 Yj ; ��i 2 D�i; m�i 2M�i, and y�i 2 Y�i in the same way.
14As in Bernheim and Whinston (1986), this does not mean that Pi cannot reward the agent as a function of

the actions he takes with the other principals: It simply means that Pi cannot make her contract yi : E ! �(Ai)

contingent on the other principals�contracts y�i, nor her mechanism �i contingent on the other principals�mechanisms

��i:
15As in Peters (2001) and Martimort and Stole (2002), we do not model the agent�s participation decisions: these

can be easily accommodated by adding to each mechanism a null contract that leads to the default decisions that are

implemented in case of no participation such as, for example, no trade at a null price.
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Strategies and equilibria. A strategy for Pi is a distribution �i 2 �(�i) over the set of
feasible mechanisms. As for the agent, a strategy �A = (�; �) consists of a mapping � : � � � !
�(M) that speci�es a distribution overM for any (�; �); along with a mapping � : ����M�Y !
�(E) that speci�es a distribution over e¤ort for any (�; �;m; y):

Following Peters (2001), we will say that the strategy �A = (�; �) constitutes a continuation

equilibrium for � if for every (�; �;m; y), any e 2 Supp[�(�; �;m; y)] maximizes

�V (e; y; �) �
Z
A1
� � �
Z
An
v (e; a; �) dy1(e)� � � � � dyn(e)

and for every (�; �), any m 2 Supp[�(�; �)] maximizesZ
Y1

� � �
Z
Yn

max
e2E

�V (e; y; �)d�1 (m1)� � � � � d�n(mn):

For future reference, we denote by

V (�; �) �
Z
Y1

� � �
Z
Yn

max
e2E

�V (e; y; �)d�1 � � � � � d�n

the maximal payo¤ that A can obtain given the principals�decisions �:

Denoting by ��A(�; �) 2 �(A� E) the distribution over outcomes induced by �A given � and
the pro�le of mechanisms �; we then have that principal i�s expected payo¤ when he chooses the

strategy �i and the other principals and the agent follow (��i; �A) is given by

Ui(�i;��i; �A) �
Z
�1

� � �
Z
�n

�Ui(�;�A)d�1 � � � � � d�n

where
�Ui(�;�A) �

Z
�

Z
E

Z
A
ui (e; a; �) d��A(�; �)dF (�):

A perfect Bayesian equilibrium for � is thus a strategy pro�le � � (f�i; gni=1; �A) such that �A
is a continuation equilibrium and for every i 2 N ,

�i 2 arg max
~�i2�(�i)

Ui(~�i;��i; �A):

Throughout, we will denote the set of perfect Bayesian equilibria of � by E(�) and, for any
�� 2 E(�); the associated social choice function (SCF) by ��� : �! �(A� E):

Menus. A menu is a mechanism �Mi : MM
i ! Di whose message space MM

i � Di is a
subset of all possible decisions and whose mapping is the identity function, i.e. for any �i 2 MM

i ;

�Mi (�i) = �i. In what follows, we denote by �Mi the set of all possible menus for principal i and

by �M the �menu game�in which the set of feasible mechanisms for each Pi is �Mi : The game � is

an enlargement of �M (� < �M ) if for all i 2 N , (i) there exists an embedding �i : �Mi ! �i;
16

16Formally, an embedding �i : �Mi ! �i can here be thought of as an injective mapping such that, for any pair of

mechanisms �Mi ; �i with �i = �i(�
M
i ); Im(�i) = Im(�

M
i ):
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and (ii) for any �i 2 �i; Im(�i) is compact. A simple example of an enlargement of �M is a game

in which �i � �Mi for all i: More generally, an enlargement is a game in which every �i is larger

than �Mi in the sense that each menu �Mi is also present in �i, although possibly with a di¤erent

representation. The game in which the principals compete in menus is �focal� in the sense of the

following theorem (cfr Peters, 2001, and Martimort and Stole, 2002).

Theorem 1 (Menus) Let � be any enlargement of �M : A SCF � can be sustained as an equilib-

rium of � if and only if it can be sustained as an equilibrium of �M :

When � is not an enlargement of �M , for example because only certain menus can be o¤ered

in �, there may exist outcomes in � that cannot be sustained as equilibrium outcomes in �M and

vice-versa. In this case, one can still characterize all equilibrium outcomes of � using menus, but

it is necessary to restrict the principals to o¤er only those menus that could have been o¤ered in

� : that is, the set of feasible menus for Pi must be restricted to ~�Mi � f�Mi : Im(�Mi ) = Im(�i) for

some �i 2 �ig:
In the sequel we will restrict attention to environments in which all menus are feasible. The

purpose of our results is to show that, in many applications of interest, one can restrict the principals

to o¤er menus that can be conveniently described as incentive-compatible revelation mechanisms.

This in turn may facilitate the characterization of the equilibrium outcomes.

3 Simple revelation mechanisms

Motivated by the arguments discussed in the introduction, in this section we focus on outcomes

that can be sustained by pure-strategy pro�les in which the agent�s strategy is Markov.

De�nition 1 (i) Given the common agency game �; an equilibrium strategy pro�le � 2 E(�) is a
pure-strategy equilibrium if (a) no principal randomizes over her mechanisms; (b) given any

pro�le of mechanisms � 2 � and any � 2 �; the agent does not randomize over the messages he
sends to the principals.

(ii) The agent�s strategy �A is Markov in � if and only if, for any i 2 N , �i 2 �i; � 2 �
and ��i 2 D�i, there exists a unique �i(�; ��i;�i) 2 Im(�i) such that A always induces �i(�; ��i;�i)
with Pi when the latter o¤ers the mechanism �i; the agent�s type is � and the decisions A induces

with the other principals are ��i:

An equilibrium strategy pro�le is thus a pure-strategy equilibrium if no principal randomizes

over her mechanisms and no type of the agent randomize over the messages to the principals. Note

that the agent may however randomize over his choice of e¤ort.

The agent�s strategy �A in � is Markov if and only if the decisions the agent induces in each

mechanism �i depend only on his type � and the decisions ��i he is inducing with the other
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principals� and not on the particular pro�le of mechanisms (or menus) o¤ered by the latter. As

anticipated in the introduction, this de�nition is di¤erent from the one typically considered in

dynamic games but it shares with the latter the idea that the agent�s behavior should depend only

on payo¤-relevant information.

De�nition 2 (i) An incentive-compatible revelation mechanism is a mapping �ri :Mr
i !

Di, with message spaceMr
i � ��D�i, such that Im(�ri ) is compact and, for any (�; ��i) 2 ��D�i;

�ri (�; ��i) 2 arg max
�i2Im(�ri )

V (�i; ��i; �):

(ii) A revelation game �r is a game in which each principal�s strategy space is �(�ri ), where

�ri is the set of all revelation mechanisms for principal i:

(iii) Given a pro�le of mechanisms �r 2 �r, the agent�s strategy is truthful in �ri if, for any
� 2 � and any (mr

i ;m
r
�i) 2 Supp[�(�; �ri ; �r�i)];

mr
i = (�; (�

r
j(m

r
j))j 6=i):

(iv) An equilibrium strategy pro�le �r� 2 E(�r) is a truthful equilibrium if, given any pro�le

of mechanisms �r such that jfj 2 N : �rj =2 Supp[�r�j ]gj � 1; the agent�s strategy is truthful in every
�ri 2 Supp[�r�i ].

In a revelation mechanism, the agent is thus asked to report his type � along with the decisions

��i he is inducing with the other principals. Given a pro�le of mechanisms �r, the agent�s strategy

is truthful in �ri if the message m
r
i = (�; ��i) the agent reports to Pi coincides with his true type

� along with the true decisions ��i =
�
�j(mj)

�
j 6=i that the agent induces with all principals other

than i by sending the messages m�i � (mj)j 6=i. An equilibrium strategy pro�le is then said to be

a truthful equilibrium if, whenever at most one principal deviated from equilibrium play, the agent

reports truthfully to any of the non-deviating principals.

The following is our �rst characterization result.

Theorem 2 Suppose the SCF � can be sustained as a pure-strategy equilibrium of �M in which

the agent�s strategy is Markov. Then it can also be sustained as a truthful pure-strategy equilibrium

of �r: Furthermore, any SCF � that can be sustained as an equilibrium of �r can also be sustained

as an equilibrium of �M :

First, consider the "only if" part of the result. When the agent�s choice from each menu

depends only on his type � and the decisions ��i he is inducing with the other principals, it is

immediate that each principal can be restricted to o¤er the decisions �i(�; ��i;�M�
i ) that the agent

would have selected from the equilibrium menu �M�
i for some (�; ��i): Describing the menu of such

decisions as a revelation mechanisms is then a convenient way of specifying which decisions the

9



agent takes in response to each (�; ��i). As illustrated in the next section, this often facilitates the

characterization of the equilibrium allocations.

Next, consider the "if" part of the result. Despite the fact that �r is not an enlargement of

�M ; the result follows from arguments similar to those used to establish the Menu Theorem. The

equilibrium �M� that sustains � in �M features each principal o¤ering the menus in the range of

the equilibrium direct mechanism in �r:When all principals o¤er the equilibrium menus, the agent

implements the same decisions he would have implemented in �r. When, instead, one principal,

say Pi, deviates and o¤ers a menu �Mi =2 Supp[�M�
i ], the agent implements the same decisions he

would have implemented in �r had Pi o¤ered the direct mechanism �ri such that

�ri (�; ��i) 2 arg max
�i2Im(�Mi )

V (�i; ��i; �) 8 (�; ��i) 2 ��D�i:

The behavior prescribed by the strategy �M�
A constructed this way is clearly rational for the agent

in �M . Furthermore, given �M�
A ; no principal has an incentive to deviate.

Although in most applications restricting attention to Markov strategies seems perfectly rea-

sonable, it is interesting to examine whether there exist special environments in which such a

restriction is without any loss of generality. To address this question, we �rst need to introduce

some notation. For any k 2 N , and any (�; �) ; let

Uk (�; �) �
Z
Y

�Z
A
uk (a; �k(�; y); �) dy1(�k(�; y))� � � � � dyn(�k(�; y))

�
d�1 � � � � � d�n (1)

denote the minimal payo¤ for principal k that is compatible with the agent�s rationality, where

�k(�; y) 2 arg min
e2E�(�;y)

�Z
A
uk (a; e; �) dy1(e)� � � � � dyn(e)

�
(2)

and

E�(�; y) � argmax
e2E

�V (e; y; �):

Condition 1 (Uniform Punishment) We say that the "Uniform Punishment" condition holds

if for any i 2 N ; B � Di; ��i 2 D�i, and � 2 �, there exists a �0i 2 argmax�i2B V (�i; ��i; �) such
that for all j 6= i and all �̂i 2 argmax�i2B V (�i; ��i; �);

U j(�
0
i; ��i; �) � U j(�̂i; ��i; �):

The condition says that the principals�preferences are su¢ ciently aligned in the sense that,

given any menu of decisions B � Di o¤ered by Pi and any (�; ��i); there exists a decision �0i 2 B
that is optimal for the agent given (�; ��i) such that the payo¤ of any principal Pj ; j 6= i, under �0i
is lower than under any other decision �i 2 B that is optimal for the agent:

We then have the following result.
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Theorem 3 Suppose one of the following holds:

(a) for any i 2 N , B � Di; and (�; ��i) 2 ��D�i, jargmax�i2B V (�i; ��i; �)j = 1;
(b) j�j = 1 and the "Uniform Punishment" condition holds.

Then any SCF that can be sustained as a pure-strategy equilibrium of �M can also be sustained

as a pure-strategy equilibrium in which the agent�s strategy is Markov.

Condition (a) says that the agent�s preferences are "single-peaked" in the sense that, for any

(�; ��i) 2 ��D�i and any menu of decisions B � Di, there is a single decision in B that maximizes
the agent�s payo¤. Clearly in this case the agent�s strategy is necessarily Markov.

Condition (b) says that information is complete and that the principals�payo¤s are su¢ ciently

aligned in the sense of the Uniform Punishment condition. The role of this condition is to guarantee

that, given ��i; the agent can punish any principal Pj , j 6= i, by taking the same decision with

principal i: Note that this condition is satis�ed, for example, when the agent is a manufacturer and

the principals are retailers competing a�la Cournot in a downstream market; in fact, in this case

ui = f(qi +
P
k 6=i
qk)qi � ti

where qi denotes the quantity purchased by Pi, ti the total payment made by Pi to the manufacturer,

and f : R+ ! R the inverse demand function. In this environment, j�j = jEj = 1. A (deterministic)
contract �i is thus a degenerate lottery that assigns measure one to a single price-quantity pair

(ti; qi) 2 R � R+: It is then immediate that, given any menu B � R � R+ (i.e. any array of

price-quantity pairs) o¤ered by Pi; and any pro�le of contracts (t�i; q�i) 2 Rn�1 � Rn�1+ selected

by the agent with the other principals, the contract (ti; qi) 2 B that minimizes Pj�s payo¤ among

those that are optimal for the agent given (t�i; q�i) is the one that entails the highest quantity qi,

and this is true for any Pj ; j 6= i: The Uniform Punishment condition thus clearly holds in this

environment.

The reason why one needs information to be complete in addition to enough alignment in the

principals�preferences can be illustrated through the following example where n = 2 in which case

the Uniform Punishment condition trivially holds. The sets of primitive decisions are A1 = ft; bg
and A2 = fl; rg. There is no e¤ort so that a deterministic contract coincides with the choice of a
decision ai 2 Ai. There are two types of the agent, � and �. The principals�common prior is that
Pr(� = �) = p < 1=5: Payo¤s, (u1; u2; v) are as in the following table:

� = �

a1na2 l r

t 2 1 1 2 0 0

b 1 0 1 1 2 2

� = �

a1na2 l r

t 2 2 2 �2 0 2

b 1 0 1 �2 1 1

Table 1
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Consider the following (deterministic) SCF: if � = �; then a1 = b and a2 = r; if � = �; then a1 = t

and a2 = l: This SCF can be sustained as a (pure-strategy) equilibrium of the menu game in which

the agent�s strategy is non-Markov. The equilibrium features P1 o¤ering the menu �M�
1 = ft; bg

and P2 o¤ering the menu �M�
2 = fl; rg. Clearly P2 does not have pro�table deviations because she

is getting in each state her maximal feasible payo¤. If P1 deviates and o¤ers ftg then A selects

(t; l) if � = � and (t; r) if � = � (given (�; t); A has strict preferences for l, whereas given (�; t); he is

indi¤erent between l and r). A deviation to ftg thus yields a payo¤ U1 = 2(1� p)� 2p = 2� 4p to
P1 that is lower than her equilibrium payo¤ U�1 = 1+ p when p > 1=5: A deviation to fbg is clearly
never pro�table for P1, irrespective of the agent�s behavior. Thus the SCF �� described above can

be sustained in equilibrium.

Now to see that this SCF cannot be sustained by restricting the agent�s strategy to be Markov,

�rst note that it is essential that �M�
2 contains both l and r because in equilibrium A must choose

di¤erent a2 for di¤erent �: Restricting the agent�s strategy to be Markov then means that when P2

o¤ers the equilibrium menu, A necessarily chooses r if � = � and a1 = b and l if � = � and a1 = t:

Furthermore, because given (�; t); A strictly prefers l to r; A necessarily chooses l when � = � and

a1 = t: Given this behavior, if P1 deviates and o¤ers the menu �M1 = ftg, she then gets a payo¤
U1 = 2(1� p) + 2p = 2 > U�1 :

The reason why, when information is incomplete, restricting the agent�s strategy to be Markov

may preclude the possibility of sustaining certain SCFs is that Markov strategies do not permit

the same type of the agent, say �0, to punish a deviation by a principal Pj ; j 6= i; by choosing with
all principals other than i the equilibrium decisions ���i(�

0) and then choosing with Pi a decision

�i 6= ��i (�
0) to punish Pj . Allowing type �0 to change his behavior in response to the equilibrium

decisions ���i(�
0) may thus be essential to punish certain deviations. However, because this is the

only reason why one needs j�j = 1, the assumption of complete information can be dispensed with
if one imposes the following re�nement on the agent�s continuation equilibrium.

Condition 2 (Conformity to Equilibrium) Let � be any simultaneous common agency game.

Given any pure-strategy equilibrium �� 2 E(�), let �� denote the equilibrium mechanisms and

��(�) the equilibrium decisions implemented when the agent�s type is �: We say that the agent�s

strategy in �� satis�es the "Conformity to Equilibrium" condition if, for any i, �; ��i and m 2
Supp[�(�; ��i ; ��i)];

(�j(mj))j 6=i = �
�
�i(�) =) ��i (mi) = �

�
i (�):

In words, the agent�s strategy satis�es the Conformity to Equilibrium condition if each type of

the agent induces the equilibrium decision ��i (�) with each principal Pi when the latter o¤ers the

equilibrium mechanism ��i and the agent induces the equilibrium decisions ���i(�) with the other

principals. In many applications, this seems a mild requirement. We then have the following result.
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Theorem 4 Suppose the principals� payo¤s are su¢ ciently aligned in the sense of the Uniform

Punishment condition. Suppose in addition that the SCF � can be sustained as a pure-strategy

equilibrium �M� 2 E(�M ) in which the agent�s strategy �M�
A satis�es the "Conformity to Equilib-

rium" condition. Then, � can also be sustained as a pure-strategy equilibrium ~�M� 2 E(�M ) in
which the agent�s strategy ~�M�

A is Markov.

By implication, when the principals�payo¤s are su¢ ciently aligned (e.g. when n = 2), even if

j�j > 1; any SCF � that can be sustained as a pure-strategy equilibrium of �M in which the agent�s

strategy satis�es the "Conformity to Equilibrium" condition, can also be sustained as a truthful

pure-strategy equilibrium of the revelation game �r:

At this point, it is useful to contrast our results with those in Peters (2003, 2007) and Attar,

Majumdar, Piasier, and Porteiro (2007). Peters (2003, 2007) considers environments in which a

certain �no-externality condition� holds and shows that in these environments all pure-strategy

equilibria can be characterized by restricting the principals to o¤er standard direct revelation

mechanisms �i : � �! Di.17 The no-externality condition requires that (i) each principal�s payo¤
be independent of the other principals�actions a�i and (ii) that conditional on choosing e¤ort in a

certain equivalence class Ê,18 the agent�s preferences over any set of decisions B � Ai by principal
i be independent of the particular e¤ort the agent chooses in Ê, of his type �, and of the actions

a�i he induces with the other principals. Attar, Majumdar, Piasier, and Porteiro (2007) show

that in environments in which the only feasible contracts are deterministic, all action spaces are

�nite, and the agent�s preferences are �separable� and �generic�, condition (i) in Peters can be

dispensed with: all equilibrium outcomes of the menu game (including mixed-strategy ones) can

be sustained also in the game in which the principals�strategy space consists of all standard direct

revelation mechanisms. Separability requires that the agent�s preferences over the decisions of any

of the principals be independent of his choice of e¤ort and of the decisions of the other principals.

Genericity requires that the agent never be indi¤erent between any pair of e¤ort choices and/or

any pair of decisions by any of the principals.19 Combined these restrictions guarantee that the

17A standard direct revelation mechanism reduces to a take-it-or-leave-it-o¤ers�i.e. to a degenerate menu consisting

of a single contract yi : E �! �(Yi)�when the agent does not possess any exogenous private information, i.e. when

j�j = 1:
18 In the language of Peters, an equivalence class Ê � E is a subset of E such that any feasible contract of Pi must

respond to each e; e0 2 Ê with the same action, i.e. yi(e) = yi(e0) for any e; e0 2 Ê:
19Formally, separability requires that any type � of the agent who strictly prefers ai to a0i when the decisions by

all principals other than i are a�i and his choice of e¤ort is e also strictly prefers ai to a0i when the decisions taken

by all principals other than i are a0�i and his choice of e¤ort is e
0; for any (a�i; e); (a0�i; e

0) 2 A�i � E. Genericity
requires that , given any (�; ai) 2 � � Ai, v(�; ai; a�i; e) 6= v(�; ai; a

0
�i; e

0) for any (e; a�i); (e; a�i) 2 E � A�i with

(e; a�i) 6= (e; a�i): Note that in general separability is neither weaker nor stronger than condition (ii) in Peters

(2003, 2007). In fact, separability requires the agent�s preferences over Pi�s actions to be independent of e; whereas

13



messages each type of the agent sends to any of his principals do not depend on the messages he

sends to the other principals; restricting attention to standard direct revelation mechanisms is then

clearly without loss.

Compared to these results, our result in Theorem 2 does not require any restriction on the

players�preferences. Provided one is willing to restrict attention to equilibria in which the agent�s

strategy is Markov, then all pure-strategy equilibrium outcomes can be characterized through

a simple generalization of the class of standard direct revelation mechanisms in which the agent

reports the decisions ��i in addition to his type �: Because in most applications of interest, assuming

the agent strategy is Markov is appealing, Theorem 2 thus provides a possible route to equilibrium

characterization that does not require any restriction on the players�preferences. Theorem 3 in

turn guarantees that restricting attention to Markov strategies is not only appealing but actually

without any loss of generality when either the agent�s preferences are single-peaked or information

is complete and the principals� preferences are su¢ ciently aligned in the sense of the Uniform

Punishment condition.

Our results are thus complementary to those in Peters (2003, 2007) and Attar, Majumdar,

Piasier, and Porteiro (2007) in the sense that they are particularly useful precisely in environments

in which one cannot restrict attention neither to simple take-it-or-leave-it o¤ers nor standard direct

revelation mechanisms. For example, consider a pure adverse selection setting with only determin-

istic contracts,20 as in the baseline model of Attar, Majumdar, Piasier, and Porteiro (2007). Then

condition (a) in Theorem 3 is equivalent to the �genericity�condition in their paper. If, in addition,

preferences are separable (in the sense described above), then Theorem 1 in their paper implies

that all equilibrium outcomes can be sustained by restricting the principals to o¤er standard direct

revelation mechanisms. If, instead, they are not separable,21 then all equilibrium outcomes can still

be characterized restricting the principals to o¤er direct revelation mechanisms but the latter must

be extended to allow the agent to report the decisions ��i he is inducing with the other principals

in addition to his type �:

Also note that, when action spaces are continuous, as typically assumed in many applied

papers, Attar, Majumdar, Piasier, and Porteiro (2007) need to impose a restriction on the agent�s

behavior. This restriction, which they call �conservative behavior�consists in requiring that, after

condition (ii) in Peters only requires them to be independent of the particular e¤ort the agent chooses in a given

equivalence class. On the other hand, condition (ii) in Peters imposes that the agent�s preferences over Pi�s actions

be independent of the agent�s type, whereas such a dependence is allowed by separability. The two conditions are

however equivalent in standard moral hazard settings (i.e. when e¤ort is completely unobservable so that Ê = E and

information is complete so that j�j = 1).
20A pure adverse selction setting with only deterministic contracts is an environment in which jEj = 1 and where,

for all i; Di contains only degenerate lotteries that assign measure one to one of the elements of Ai.
21As, for example, in the case of a buyer whose preferences for the quality/quantity of the product/service of seller

i depend on the quality/quantity purchased from seller j.
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a deviation by Pk; each type � of the agent continues to choose the equilibrium decisions ���k(�)

with the non-deviating principals whenever this is compatible with the agent�s rationality. This

restriction is stronger than the "Conformity to Equilibrium" condition introduced above. Hence,

even with separable preferences, the more general revelation mechanisms introduced here may turn

useful in applications in which imposing the "conservative behavior" property seems too restrictive.

4 Using revelation mechanisms in applications

Equipped with the results established in the preceding session, we now show how revelation mech-

anisms can be put to work in applications to identify necessary and su¢ cient conditions for the

sustainability of outcomes as common agency equilibria. We consider three cases of interest: com-

petition in non-linear tari¤s, menu auctions, and a (simpli�ed version of a standard) moral hazard

setting.

4.1 Competition in non-linear tari¤s

Consider an environment in which P1 and P2 are two sellers providing two di¤erentiated products to

a common buyer, A. In this environment, there is no e¤ort and an action for principal i consists of

a price-quantity pair (ti; qi) 2 Ai � R�Q, where Q = [0; �Q] denotes the set of feasible quantities.22

The buyer�s payo¤ is given by v(a; �) = �(q1 + q2) + �q1q2 � t1 � t2, where � parametrizes the
degree of complementarity/substitutability between the two products, while � denotes the buyer�s

type which is assumed to be distributed over the interval � = [�; ��], � > 0; with log-concave density

f strictly positive for any �: The sellers�payo¤s are given by ui(a; �) = ti�C(qi); with C(q) = q2=2:
The buyer can participate in one mechanism without participating in the other (in the literature

this is referred to as non-intrinsic common agency). In the case A decides not to participate in Pi�s

mechanism, the default contract (0; 0) with no trade and zero transfer is implemented.

Following the pertinent literature, we assume here that only deterministic mechanisms �i :

Mi �! Ai are feasible. Note that any such mechanism is strategically-equivalent to a non-linear

tari¤ Ti such that, for any qi, T (qi) = minfti : (ti; qi) 2 Im(�i)g if fti : (ti; qi) 2 Im(�i)g 6= ? and
T (qi) = 1 otherwise. It is also immediate that any such tari¤ is equivalent to a menu of price-

quantity pairs (see also Peters, 2001, 2004). The question of interest is which tari¤s will be o¤ered

in equilibrium and how they can be conveniently characterized using incentive-compatibility.

22An alternative way of modelling this environment is the following. The set of primitive actions for each principal

i consists of the set R of all possible prices. A contract for Pi then consists of a tari¤ yi : Q �! R that speci�es

a price for each possible quantity q 2 Q. Given a pair of tari¤s y = (y1; y2); the agent�s e¤ort then consists of the

choice of a pair of quantities e = (q1; q2) 2 E = Q2: While the two approaches ultimately lead to the same results,

we �nd the one proposed in the text more parsimonious.
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Following the discussion in the previous sections, we focus on pure-strategy equilibria in which

the agent�s strategy is Markov.

First, we show how revelation mechanisms help identify necessary and su¢ cient conditions for

the implementability of schedules q�i : � �! Q. Next, we show how these conditions can be used
to prove that there is no equilibrium that sustains the schedules qc : � �! Q that maximize the

sellers�joint payo¤s (these schedules are referred to in the literature as the "collusive schedules").

Last, we identify su¢ cient conditions for the sustainability of di¤erentiable schedules.

Necessary and su¢ cient conditions for the implementability of schedules.

By Theorem 2, the schedules q�i (�); i = 1; 2; can be sustained as a pure-strategy equilibrium of

�M in which the agent�s strategy is Markov if and only if they can be sustained as a pure-strategy

truthful equilibrium of �r: Now let

mi(�) � � + �q�j (�)

denote type ��s marginal valuation for qi when he purchases the equilibrium quantity q�j (�) from Pj ,

j 6= i: In what follows we restrict attention to schedules q�(�) = (q�i (�))i=1;2 for which the functions
mi(�) are strictly increasing, i = 1; 2. Because for any (compact) collection of price-quantity pairs
B � Ai and any pair (�; qj ; tj) and (�0; q0j ; t0j) such that � + �qj = �0 + �q0j

arg max
(qi;ti)2B

v(�; qj ; tj ; qi; ti) = arg max
(qi;ti)2B

v(�0; q0j ; t
0
j ; qi; ti);

and because there are no direct externalities between the two principals, it is immediate that

it su¢ ces to consider revelation mechanisms with the property that �ri (�; qj ; tj) = �ri (�
0; q0j ; t

0
j)

whenever � + �qj = �0 + �q0j : In the sequel we thus restrict attention to such mechanism which,

with a slight abuse of notation, we denote by �ri = (~qi(~�i); ~ti(~�i))~�i2~�i ; where

~�i � f~�i 2 R : ~�i = � + �qi; � 2 �; qi 2 Qg

denotes the set of the agent�s possible marginal valuations for Pi�s quantity. Note that these

mechanisms specify price-quantity pairs also for ~�i that have zero measure on the equilibrium

path. As discussed in the literature, sellers may need to include in their menus also allocations

that are selected only o¤ equilibrium to punish deviations by other sellers.23 These allocations are

typically obtained by extending the principals�tari¤s outside the equilibrium range. Identifying the

appropriate extensions can however be quite complicated. One of the advantages of the approach

suggested here is that it permits one to use incentive-compatibility to describe such extensions.

Now note that, because the set ~�i is an interval and because the function ~v(~�; q) � ~�q is

equi-Lipschitz continuous and di¤erentiable in ~� and satis�es the increasing-di¤erence property,

from standard results in mechanism design (see e.g. Milgrom and Segal, 2002), the mechanism

23Such allocations are also referred to as "latent contracts" (see, e.g. Piasier, 2007).
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�ri = (~qi(�); ~ti(�)) is incentive-compatible if and only if the function ~qi(�) is non-decreasing and the
function ~ti(�) satis�es

~ti(~�i) = ~�i~qi(~�i)�
Z ~�i

min ~�i

~qi(s)ds�Ki 8~�i 2 ~�i;

where Ki is a constant. Next note that for any pair of mechanisms (�ri )i=1;2 for which there exists

an i 2 N and a ~�i 2 ~�i such that an agent with marginal valuation ~�i strictly prefers the null

contract (0; 0) to the contract (~qi(~�i); ~ti(~�i)), there exists another pair of mechanisms (�r0i )i=1;2

such that (i) any ~�i 2 ~�i weakly prefers the contract (~qi(~�i); ~ti(~�i)) to the contract (0; 0), i = 1; 2,
and (ii) (�r0i )i=1;2 sustains the same outcomes as (�

r
i )i=1;2:

24 It is thus without loss of generality to

restrict Ki � 0: We then have the following result.

Proposition 1 The schedules q�i (�); i = 1; 2; can be sustained as a pure-strategy equilibrium of

�M in which the agent�s strategy is Markov if and only if there exist non-decreasing functions

~qi : ~�i ! Q and scalars ~Ki � 0; i = 1; 2; such that the following conditions hold:
(a) for any ~�i 2 [mi(�);mi(��)]; ~qi(~�i) = q

�
i (m

�1
i (
~�i)); i = 1; 2;

25

(b) for any � 2 � and any pair (~�1; ~�2) 2 ~�1 � ~�2

V �(�) = sup
~�1;~�2

n
�
h
~q1(~�1) + ~q2(~�2)

i
+ �~q1(~�1)~q2(~�2)� ~t1(~�1)� ~t2(~�2)

o
where V �(�) � � [q�1(�) + q�2(�)]+ �q�1(�)q

�
2(�)� ~t1(m1(�1))� ~t2(m2(�2)) and, for i = 1; 2;

~ti(~�i) � ~�i~q(~�i)�
Z ~�i

min ~�i

~qi(s)ds� ~Ki; (3)

(c) each principal i�s equilibrium payo¤ satis�es

U�i �
Z ��

�

h
~ti(mi(�))� q�i (�)

2

2

i
dF (�) = �Ui (4)

where �Ui is the value of the following program

max
qi(�);ti(�)

R ��
� [ti(�)�

qi(�)
2

2 ]dF (�)

s.t.

�qi(�) + v
�
i (�; qi(�))� ti(�) � �qi(�̂) + v�i (�; qi(�̂))� ti(�̂) 8(�; �̂) (IC)

�qi(�) + v
�
i (�; qi(�))� ti(�) � v�i (�; 0) 8� (IR)

where, for any (�; q) 2 � � Q, v�i (�; q) � (� + �q) ~qj(� + �q) � ~tj(� + �q) =
R �+�q
min ~�j

~qj(s)ds + ~Kj ;

j 6= i:
24The result follows from replication arguments similar to those that lead to Theorem 2.
25This condition also implies that q�i (�) are nondecreasing, i = 1; 2:
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Condition (a) guarantees that, on the equilibrium path, the mechanism �r�i assigns to each

� the equilibrium quantity q�i (�): Condition (b) guarantees that each type � �nds it optimal to

truthfully report to each principal the marginal valuation mi(�) = � + �q�j (�). That each � also

�nds it optimal to participate follows from the fact that ~Ki � 0: Finally, condition (c) guarantees
that no principal has a pro�table deviation. Instead of specifying a reaction by the agent to any

possible pair of mechanisms and then checking that, given this reaction and the mechanism o¤ered

by the other principal, no Pi has a pro�table deviation; the program in condition (c) gives directly

the maximal payo¤ that each Pi can obtain given the opponent�s mechanism without violating

the agent�s rationality. To compute the payo¤ �Ui; the program in (c) uses the standard revelation

principle, taking into account that the value that each type � assigns to qi is �qi + v�i (�; qi); where

v�i (�; q) denotes the maximal payo¤ that the agent can obtain with Pj when his type is � and

the quantity purchased from Pi is qi. Note that, in general, this approach is not correct: in fact,

it presumes that, when indi¤erent, the agent follows the recommendations by Pi: Permitting the

agent to deviate from Pi�s recommendations can however be essential to sustain certain SCFs,

for it makes fewer deviations pro�table. The reason why, in this particular environment, Pi can

guarantee herself the payo¤ �Ui is twofold: (i) she is not personally interested in the decisions the

agent takes with Pj and (ii) the agent�s payo¤ for (qi; ti) is quasilinear and has the increasing-

di¤erence property with respect to (�; qi): As we show in the appendix, this implies that, given the

mechanism �r�j = (~qj(�); ~tj(�)) o¤ered by Pj ; there always exists an incentive-compatible mechanism
�ri = (~qi(�); ~ti(�)) such that, given (�r�j ; �ri ); any sequentially rational strategy �rA for the agent yields
Pi a payo¤ arbitrarily close to �Ui: This explains why condition (c) is not only su¢ cient but also

necessary.

When � > 0 and the function v�i (�; q) is di¤erentiable in � (which is the case for example when

the schedule ~qj(�) is continuous), the program in condition (c) has a simple solution. The fact

that the mechanism ��rj = (~qj(�); ~tj(�)) is incentive-compatible implies that the function gi(�; q) �
�q+v�i (�; q)�v�i (�; 0) is equi-Lipschitz continuous and di¤erentiable in �, it satis�es the increasing-
di¤erence property, and is increasing in �. It follows that a pair of functions qi : �! Q; ti : �! R
satis�es (IC) and (IR) if and only if qi(�) is nondecreasing and, for any � 2 �;

ti(�) = �qi(�) + [v
�
i (�; qi(�))� v�i (�; 0)]�

Z �

�
[qi(s) + ~qj(s+ �qi(s))� ~qj(s)]ds�Ki; (5)

with Ki � 0. The program in condition (c) then reduces to

max
qi(�);Ki

Z ��

�
hi(qi(�); �)dF (�)�Ki (6)

s.t. Ki � 0 and qi(�) is nondecreasing

where

hi(q; �) � �q + [v�i (�; q)� v�i (�; 0)]� q2

2 �
1�F (�)
f(�) [q + ~qj(� + �q)� ~qj(�)] (7)
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with

v�i (�; q)� v�i (�; 0) =
Z �+�q

�
~qj(s)ds:

Equipped with these tools, one can then establish for example the following couple of results.

Non-implementability of the collusive schedules:

It has long been noted that when two products are complements (� > 0), it may be impossible

to sustain the collusive schedules qc(�) as a non-cooperative equilibrium.26 However, this result

has been established restricting the principals to o¤er twice continuously di¤erentiable tari¤s, thus

leaving open the possibility that it is merely a consequence of a technical assumption.27

The approach suggested here permits one to verify that this result is true more generally.

Proposition 2 Suppose � > 0: There exists no equilibrium in which the agent�s strategy is Markov

that sustains the collusive schedules

qi(�) = q
c(�) 8�; i = 1; 2:

The proof uses the characterization of Proposition 1. By relying only on incentive-compatibility,

it guarantees that the aforementioned impossibility result is by no means a consequence of the

assumptions one makes on the di¤erentiability of the tari¤s, or on the way one extends the tari¤s

outside the equilibrium range.

Su¢ cient conditions for the implementability of di¤erentiable schedules.

We conclude by showing how the conditions in Proposition 1 specialize in the case of di¤eren-

tiable schedules and can be used to construct equilibria.

Proposition 3 Let q� : � �! Q be a non-decreasing function satisfying the following di¤erential

equation

�
h
q�(�)(1� �)� � + 2

�
1�F (�)
f(�)

�i dq�(�)
d�

= � � 1�F (�)
f(�) � q�(�)(1� �) (8)

with boundary condition q�(��) = ��=(1� �). Then let ~q : ~� �! Q be the function de�ned by

~q(~�) �

8>><>>:
0 if ~� < m(�)

q�(m�1(~�)) if ~� 2 [m(�);m(��)]
q�(��) if ~� > m(��);

(9)

with m(�) � � + �q�(�): If, for any � 2 int(�); the function h(�; �) : Q ! R de�ned by

h(q; �) � �q +
Z �+�q

�
~q(~�)d~� � q2=2� 1�F (�)

f(�) [q + ~q(� + �q)� ~q(�)] (10)

26The collusive schedules solve the following pointwise maximization problem: maxq1;q2f� [q1 + q2] + �q1q2 � 1
2
(q21+

q22) � 1�F (�)
f(�)

[q1 + q2]g:
27 In the approach followed in the literature, twice di¤erentiability is assumed to guarantee that a seller�s best

response can be obtained as a solution to a well-behaved optimization problem (e.g. Martimort 1992).
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is quasiconcave in q; then the schedules qi(�) = q�(�); i = 1; 2; can be sustained as a symmetric

pure-strategy equilibrium of �M in which the agent�s strategy is Markov.

The result in Proposition 3 thus o¤ers a convenient two-step procedure to construct equilibrium

schedules. The �rst step consists in solving the di¤erential equation given in (8). The second

step consists in checking whether the function h(�) constructed using the solution q�(�) to (8) is
quasiconcave. If this is the case, the pair of schedules qi(�) = q�(�); i = 1; 2; is implementable.

4.2 Menu auctions

Consider now a menu auction environment a�la Bernheim and Whinston (1985, 1986a): in these

models, the agent�s e¤ort is veri�able, preferences are common knowledge (i.e. j�j = 1) and each
principal is restricted to o¤er only deterministic mechanisms.28

De�nition 3 The environment is deterministic if and only if, for any i 2 N ; the set Di contains
only degenerate lotteries that assign measure one to deterministic contracts yi : E �! Ai.

In virtually all menu auction papers, it is customary to assume that principals make take-it-or-

leave-it o¤ers to the agent, that is, they o¤er a single contract yi : E �! Ai. Peters (2003) shows
that any equilibrium in take-it-or-leave-it o¤ers is robust; furthermore when the no-externalities

condition holds, any outcome that can be sustained with richer menus can also be sustained with

take-it-or-leave-it o¤ers. The no-externalities condition typically holds in environments in which

the principals�decisions are monetary transfers to the agent (as in Bernheim and Whinston) and

where payo¤s are quasi-linear in money. When instead a principal�s action is the selection of a

policy, or of a reward package that includes a non-monetary compensation such as the transfer of

an asset, assuming the no-externalities condition holds is restrictive. In this case, principals must

be allowed to o¤er menus of contracts. The question is then how to identify the menus that sustain

the equilibrium outcomes.

One approach is o¤ered by Theorem 2. A pro�le of decisions (e�; a�) can then be sustained

as a pure-strategy equilibrium in which the agent�s strategy is Markov if and only if there exists a

pro�le of incentive-compatible revelation mechanisms29 �r�i : Y�i �! Yi, i = 1; :::; n; and a pro�le

of contracts y� � (y�1; :::; y�n) such that (i) �r�i (y��i) = y�i ; (ii) given y�, e� 2 argmaxe �V (e; y�) and
y�i (e

�) = a�i , i = 1; :::; n; (iii) given any contract yi 6= y�i , there exists a pro�le of contracts y�i =
(y1; :::; yi�1; yi+1; :::; yn) such that, for any j 2 Nnfig; yj = �r�j (y�j�i; yi); where y�j�i � (yl)l 6=i;j ,
and a level of e¤ort e 2 argmaxe �V (e; y�i; yi) such that ui (e; a) � ui (e

�; a�) ; with a = y(e) and

28See also Dixit, Grossman and Helpman (1997), Biais, Martimort and Rochet (1997), Parlour and Rajan (2001),

and Segal and Whinston, (2003).
29Because the environment is deterministic, we �nd it convenient to denote the domain of �ri with Y�i and its

codomain with Yi instead of D�i and Di respectively.
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V (e; a) � V (e0; a0) for any (e0; a0) such that there exists a y0�i 2 Im(�r��i) for which a0 = y0(e0); where
y0 = (y0�i; yi):

This approach uses incentive-compatibility over contracts, i.e. it speci�es a contract for the

agent as a function of the contracts o¤ered by the other principals. An alternative and perhaps

more convenient approach is to think of the principals o¤ering revelation mechanisms that respond

directly to the primitive actions a�i taken by the other principals.

De�nition 4 Let ��ri denote the set of mechanisms ��
r

i : E � A�i ! Ai such that, for any e 2 E
and any a�i; a0�i 2 A�i

v(�ri (e; a�i); e; a�i) � v(�ri (e; a0�i); e; a�i):

The idea is simple. In settings in which the no-externalities condition fails, for any given

e 2 E; the agent�s preferences over the contracts o¤ered by principal i depend on the decisions a�i
by the other principals. By implication, any menu of contracts by Pi can be conveniently described

through a mapping��
r

i that speci�es, for each observable e and for each unobservable a�i, an action

ai that is optimal for the agent among those that the agent can induce by reporting di¤erent a0�i.
30

We then have the following result.

Proposition 4 Let ��r be the game in which Pi�s strategy space is �(��ri ), i = 1; :::; n: Suppose the

environment is deterministic. A SCF � can be sustained as a pure-strategy equilibrium of �M in

which the agent�s strategy is Markov if and only if it can be sustained as a pure-strategy truthful

equilibrium of ��r.

Using the direct mechanisms of De�nition 4, the necessary and su¢ cient conditions for the

implementability of the decisions (e�; a�) can then be stated as follows. There exists a pro�le of

mechanisms ��
r�
such that (i) a�i = ��

r�
i (e

�; a��i) with v(e
�; a�) � v(e0; a0) for any e0 2 E and any

a0 2 A such that a0j = ��
r�
j (e

0; â�j) for some â�j 2 A�j ; (ii) for any i and any contract yi 2 Yi,
there exists a pro�le of decisions (e; a) with ai = yi(e) and aj =��

r�
j (e; a�j) for all j 6= i such that

ui(e; a) � ui(e�; a�) and v(e; a) � v(e0; a0) for any e0 2 E and any a0 2 A such that a0i = yi(e
0) and

a0j =
��
r�
i (e

0; â�j) for some (â�j) 2 A�j :
To illustrate how these conditions can facilitate the construction of equilibria in environments in

which the no-externalities condition fails, consider a setting with two principals where E = fe1; e2g
and Ai = [0; 1]; i = 1; 2: Payo¤s are given by the following functions, where i; j = 1; 2; j 6= i :

ui (e; a) =

(
ai(1� aj=2)� aj if e = ei

ai(aj � 1=2)� aj if e = ej
v (e; a) =

(
1 + a2(2a1 � 1) if e = e1

2 + a1(a2 � 2)� a2=2 if e = e2

30When the agent�s preferences are not common knowledge, these mechanisms must be replaced by ��
r

i : E�A�i�
�! Ai, with ��

r

i (e; a�i; �) 2 argmax
ai2Ai(e;��

r
i )

v(e; ai; a�i; �) for any (e; a�i; �) 2 E �A�i ��; where Ai(e;��
r

i ) � fai : ai =

��
r

i (e; a�i; �); a�i 2 A�i; � 2 �g:
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One can interpret this environment as one in which a politician, or a regulator, must choose between

two policies, e1 and e2, and where two �rms (P1 and P2) must choose the "aggressiveness" of their

business strategies, with ai = 1 denoting the most aggressive strategy and ai = 0 the least aggressive

one. When e = ei �rm i has a dominant strategy in choosing ai = 1 in which case the other �rm

has an (iteratively) dominant strategy in choosing aj = 1: However, by behaving aggressively,

�rms reduce their payo¤s with respect to what they could obtain by "colluding", i.e. by playing

a1 = a2 = 0. The politician�s payo¤ is domestic welfare (some weighted average of consumer surplus

and domestic pro�ts). This in turn depends on the aggressiveness of the two �rms�strategies and

on the policy e: Think of policy e2 as opening the domestic market to foreign competition, while

policy e1 as protectionism. While under protectionism welfare is maximal when the two domestic

�rms behave aggressively, the opposite is true under foreign competition.31

Notice that in this environment, condition (b) of Theorem 3 holds so that restricting attention

to Markov strategies is without loss: by implication, any pure-strategy equilibrium outcome can be

characterized as a truthful equilibrium of the revelation game.

In the lobbying game in which the two �rms are restricted to make take-it-or-leave-it o¤ers to

the politician (these o¤ers specify a business strategy for each policy e), the only two pure-strategy

equilibrium outcomes are: (i) e� = e1 and a�i = 1; i = 1; 2 which yields each �rm a payo¤ of �1=2
and the policy maker a payo¤ of 2; and (ii) e� = e2 and a�i = 1=2; i = 1; 2 which yields P1 a payo¤

of �1=2; P2 a payo¤ of �1=8 and the policy maker a payo¤ of 1 (the proof is in the Appendix).
When, instead, �rms can o¤er menus of contracts, the following outcome can also be sustained

as an equilibrium: e� = e1; a�1 = 1=2; a
�
2 = 0. This can seen using Theorem 3 and Proposition 4.

Suppose, for example, that the principals o¤er following mechanisms which clearly satisfy conditions

(i) and (ii) above:

��
r

1(e; a2) =

(
1=2 if e = e1 8a2
1 if e = e2 8a2

; ��
r

2(e; a1) =

8>><>>:
1 if e = e1 and a1 � 1=2
0 if e = e1 and a1 < 1=2

1 if e = e2 8a1

Given these mechanisms, �rms induce the policy maker to choose the protectionist policy e1 while

at the same time achieving higher cooperation than under simple take-it-or-leave-it o¤ers, thus

obtaining higher total pro�ts. The key to sustaining this outcome is to have P2 respond to the

policy e1 with a business strategy that depends on what P1 does. Because P2 cannot observe

a1 directly, such a contingency must be achieved with the compliance of the agent. A revelation

mechanism is then a convenient way of describing P2�s response to P1�s strategy that is compatible

with the agent�s incentives.

31There may be several explanations for this. For example, the politician may value cooperation between the two

domestic �rms when high consumer surplus is guaranteed by foreign supply, while it may prefer low cooperation when

the entire supply comes from the two domestic �rms.
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4.3 Moral hazard

We now turn to environments in which the agent�s e¤ort is not observable. In these environments,

a principal�s action consists of an incentive scheme that speci�es a reward to the agent as a function

of some (veri�able) performance measure that is correlated with the agent�s e¤ort. Depending on

the application of interest, the reward can be a monetary payment, the transfer of an asset, the

choice of a policy, or a combination of any of the above.

At a �rst glance, using revelation mechanisms may appear prohibitively complex in this setting

due to the fact that the agent must report an entire array of incentive schemes to each principal.

However, as long as for any array of incentive schemes, the choice of optimal e¤ort for the agent

is unique, things simplify signi�cantly. Indeed, it su¢ ces to attach to each incentive scheme a

label, say an integer aj ; and then simply have the agent reports an array of integers a�i along

with his payo¤ type �. In fact, because for each array of incentive schemes, the choice of e¤ort is

unique, all players�preferences can be expressed in reduced form directly over A: The analysis of
incentive-compatibility then proceeds in the familiar way.

To illustrate, considered the following (simpli�ed version of a) standard moral-hazard setting.

There are two principals and two e¤ort levels, e and �e. As in Bernheim and Whinston (1986,b),

the agent�s preferences are common knowledge so that j�j = 1. Each principal i must choose an

incentive scheme ai from the set Ai = fal; am; ahg, i = 1; 2; where al stands for a low-power, am

for a medium-power and ah for a high-power incentive scheme.32

Instead of specifying for each player an utility function over (w; e); where w � (wi)
n
i=1 is an

array of rewards (e.g. monetary transfers from the principals to the agent), in the following table

we describe directly the players�expected payo¤s (u1; u2; v) as a function of the agent�s e¤ort and

the principals�incentive schemes.

e = e

a1na2 ah am al

ah 1 2 2 1 3 1 1 6 0

am 2 2 2 2 3 4 2 6 1

al 3 2 0 3 3 1 3 6 4

e = �e

a1na2 ah am al

ah 4 5 4 4 5 5 4 4 3

am 5 5 5 5 5 1 5 4 0

al 6 5 2 6 5 0 6 4 0

Table 2

Note that there are no direct externalities between the principals: given e; ui(e; ai; aj) is independent

of aj ; j 6= i; meaning that Pi is interested in the incentive scheme o¤ered by Pj only because the
latter in�uences the agent�s choice over e¤ort. Nevertheless, the no-externalities condition of Peters

32That the set of feasible incentive schemes is �nite in this example is clearly only to shorten the exposition. The

same logic applies to settings in which each Ai has the cardinality of the continuum; in this case, an incentive scheme

can be indexed, for example, by an integer ai 2 [0; 1]:
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(2003) fails here because the agent�s preferences over the schemes o¤ered by Pi depend on the

incentive scheme o¤ered by Pj ; by implication, restricting the principals to o¤er a single incentive

scheme may preclude the possibility of sustaining certain outcomes, as we verify below.33 Also note

that payo¤s are such that the agent prefers a high e¤ort to a low e¤ort if and only if at least one of

the two principals o¤ered a high-power incentive scheme: The players�payo¤s (U1; U2; V ) can thus

be written in reduced form as a function of the (a1; a2) only.

a1na2 ah am al

ah 4 5 4 4 5 5 4 4 3

am 5 5 5 2 3 4 2 6 1

al 6 5 2 3 3 1 3 6 4

Table 3

Now suppose the principals were restricted to o¤er a single incentive scheme to the agent. The

unique pure-strategy equilibrium outcome would be (ah; am; �e) with associated expected payo¤s

(4; 5; 5):

When, instead, principals are allowed to o¤er menus of incentive schemes, the outcome (am; ah; �e)

can also be sustained as a pure-strategy equilibrium outcome.34 The advantage of menus stems

from the fact that they give the agent the possibility of punishing deviations by principal j

by selecting a di¤erent incentive scheme with principal i. Because the agent�s preferences over

Pi�s incentive schemes in turn depend on the incentive scheme selected by Pj ; these menus can

be conveniently described as mappings �ri : Aj �! Ai with the property that, for any aj ;
�ri (aj) 2 argmaxai2Im(�ri ) V (ai; aj): The following mechanisms then support (a

m; ah; �e) as a truthful

equilibrium:

�r�1 (a2) =

(
ah if a2 = al; am

am if a2 = ah
�r�2 (a1) =

(
ah if a2 = ah; am

al if a2 = al

Given these mechanisms, it is strictly optimal for the agent to choose (am; ah) and then to select

e = �e. Furthermore, given �r��i; it is immediate that no principal i has a pro�table deviation, which

veri�es that (am; ah; �e) can be supported as an equilibrium.

33See Attar, Piaser and Porteiro, (2007a) and Peters (2007) for the appropriate version of the no-externalities

condition in models with non-contractable e¤ort and Attar, Piaser, and Porteiro (2007b) for an alternative set of

conditions.
34Note that the possibility of sustaining (am; ah; �e) is appealing because (am; ah; �e) yields a Pareto improvement

with respect to (ah; am; �e).
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5 Enriched mechanisms

Suppose now one is interested in SCFs that cannot be sustained by restricting the agent�s strategy

to be Markov or in SCFs that cannot be sustained by restricting the players�strategies to be pure.

The question we address in this section is whether there exist natural ways of enriching the simple

revelation mechanisms introduced above so as to characterize such SCFs, while at the same time

avoiding the �in�nite regress�problem of universal revelation mechanisms.

First, we consider pure-strategy equilibrium outcomes sustained by non-Markov strategies.

Next, we turn to mixed-strategy equilibria.

Although the revelation mechanisms presented here are more complex than the ones considered

in the previous sections, they still permit one to conceptualize the role that the agent plays vis a

vis each of his principals thus potentially facilitating the characterization of equilibrium outcomes

in applications.

5.1 Non-Markov strategies

We �rst introduce a new class of revelation mechanisms that permits one to accommodate non-

Markov strategies and adjust the notion of truthful equilibria accordingly. We then prove that any

pure-strategy equilibrium outcome that can be sustained in the menu game can also be sustained

as a truthful equilibrium in the new revelation game.

De�nition 5 (i) Let �̂r denote the revelation game in which each principal�s strategy space is

�(�̂ri ), where �̂
r
i is the set of revelation mechanisms �̂

r

i : M̂r
i ! Di with message space M̂r

i �
� � D�i � N�i with N�i � Nnfig [ f0g, such that Im(�̂ri ) is compact and, for any (�; ��i; k) 2
��D�i �N�i;

�̂
r

i (�; ��i; k) 2 arg max
�i2Im(�̂

r
i )
V (�i; ��i; �):

(ii) Given a pro�le of mechanisms �̂
r 2 �̂r, the agent�s strategy is truthful in �̂ri if and only if,

for any � 2 � and any (m̂r
i ; m̂

r
�i) 2 Supp[�(�; �̂

r
)];

m̂r
i = (�; (�̂

r

j(m̂
r
j))j 6=i; k), for some k 2 N�i:

An equilibrium strategy pro�le �r� 2 E(�̂r) is a truthful equilibrium if and only if, given any pro�le

of mechanisms �̂
r
such that jfj 2 N : �̂

r

j =2 Supp[�r�j ]gj � 1; the agent�s strategy is truthful in every
�̂
r

i 2 Supp[�r�i ] with k = 0 if �̂
r

j 2 Supp[�r�j ] for all j 2 N and k = l if �̂
r

j 2 Supp[�r�j ] for all j 6= l
and �̂

r

l =2 Supp[�r�l ] for some l 2 N :

The interpretation is that the agent is now asked to report to each Pi the identity k 2 N�i of
a deviating principal, in addition to (�; ��i), with k = 0 in the absence of any deviation. Because
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the identity of a deviating principal is not payo¤-relevant, a revelation mechanism �̂
r

i is incentive-

compatible only if, for any (�; ��i) 2 � � D�i and any k; k0 2 N�i; V (�ri (�; ��i; k); �; ��i) =
V (�ri (�; ��i; k

0); �; ��i): As we show below, allowing a principal�s response to (�; ��i) to depend on

the identity of a deviating principal may be essential to sustain certain outcomes when the agent�s

strategy is not Markov.

An equilibrium strategy pro�le is then said to be a truthful equilibrium of the new revelation

game �̂r if, whenever no more than one principal deviated from equilibrium play, the agent truthfully

reports to any of the non-deviating principals his true type �; the decisions he is inducing with the

other principals, and the identity k of the deviating principal. We then have the following result.

Theorem 5 Any SCF � that can be sustained as a pure-strategy equilibrium of �M can also be sus-

tained as a pure-strategy truthful equilibrium of �̂r. Furthermore, any SCF � that can be sustained

as an equilibrium of �̂r can also be sustained as an equilibrium of �M .

Consider the"only if" part of the result (the "if" part follows from essentially the same ar-

guments as in the proof of Theorem 2).35 The key step in the proof consists in showing that if

the SCF � can be sustained as a pure-strategy equilibrium of �M ; it can also be sustained by a

continuation equilibrium �M�
A with the following property. For any k 2 N ; � 2 � and �k 2 Dk,

there exists a unique pro�le of decisions ��k(�; �k) 2 D�k such that A always selects ��k(�; �k) with
all principals other than k when his type is �, the decision A induces with Pk is �k, and k is the only

deviating principal. In other words, the decisions that the agent induces with the non-deviating

principals depend on the decision �k of the deviating principal but not on the menus o¤ered by the

latter. The decisions ��k(�; �k) belong to those that minimize the payo¤ of the deviating principal

Pk among those in the equilibrium menus of the non-deviating principals that are optimal for type

� given �k. The rest of the proof then follows quite naturally. When the agent reports to Pi that

no deviation occurred� i.e. when he reports that his type is �; that the decisions he is inducing

with the other principals are ���i(�) and that k = 0� the revelation mechanism �̂
r�
i responds with

the equilibrium decision ��i (�):When instead, the agent reports that principal k deviated and that,

as a result, the agent is inducing the decision �k with Pk and the decisions (�j(�; �k))j 6=i;k with

the other principals, the mechanism �r�i responds with the decision �i(�; �k) that, together with

(�j(�; �k))j 6=i;k, minimizes the payo¤ of the deviating principal Pk.36 Given the equilibrium mech-

anisms �̂
r�
�k; following a truthful strategy is clearly optimal for the agent. Furthermore, given �̂

r�
A ,

a principal Pk who expects all other principals to o¤er the equilibrium mechanisms �̂
r�
�k cannot do

better than o¤ering the equilibrium mechanism �̂
r�
i herself. We conclude that if the SCF � can be

35Note that in general �̂r is not an enlargement of �M (certain menus in �M may not be available in �r); nor is

�M an enlargement of �̂r (the same menu can be o¤ered through multiple revelation mechanisms).
36This is only a partial description of the equilibrium mechanisms �̂

r�
and of the continuation equilibrium �r�A :

The complete description is in the appendix.
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sustained as a pure-strategy equilibrium of �M it can also be sustained as a pure-strategy truthful

equilibrium of �̂r.

To see why, with non-Markov strategies, it may be essential to condition a principal�s response

to (�; ��i) on the identity of a deviating principal, consider the following example where n = 3,

j�j = jEj = 1; A1 = ft;m; bg; A2 = fl; rg, A3 = fs; dg and payo¤s (u1; u2; u3; v) as in the following
table.

a3 = s

a1na2 l r

t 1 4 4 5 1 5 0 4

m 1 1 1 0 1 5 1 0

b 1 1 1 0 1 0 1 0

a3 = d

a1na2 l r

t 1 0 5 4 1 1 1 3

m 1 1 1 0 1 0 5 5

b 1 1 5 0 1 5 0 5

Table 3

For simplicity, assume that lotteries over contracts are not feasible and that only deterministic

contracts can be o¤ered: because there is no e¤ort, a menu of deterministic contracts for each

Pi then consists of a subset of Ai. The outcome (t; l; s) can then be sustained as a pure-strategy
equilibrium of the menu game �M . The equilibrium features each Pi o¤ering the entire menu Ai:
Given the equilibrium menus, the agent chooses (t; l; s): Any deviation by P2 to the (degenerate)

menu frg is punished by the agent choosing m with P1 and d with P3; whereas any deviation by

P3 to the degenerate menu fdg is punished by the agent choosing b with P1 and r with P2: This
strategy for the agent is clearly non-Markov: given the same actions (a2; a3) = (r; d) with P2 and

P3; the agent chooses di¤erent actions with P1 as a function of the particular menus o¤ered by

P2 and P3. This behavior is essential to sustain the equilibrium outcome. By implication, (t; l; s)

cannot be sustained as an equilibrium of the revelation game �r in which the principals o¤er the

simple mechanisms �ri : A�i ! Ai considered in the previous sections.37The outcome (t; l; s) can
however be sustained as a truthful equilibrium of the more general revelation game �̂r in which

the agent reports the identity of the deviating principal in addition to the payo¤-relevant decisions

a�i.38

37 In fact, any incentive-compatible mechanism �r1 that permits the agent to induce the equilibrium decision t must

satisfy �ri (a2; a3) = t for any (a2; a3) 6= (r; d); this is because the agent strictly prefers t to both m and b for any

(a2; a3) 6= (r; d): It follows that any such mechanism either fails to provide the agent with the decision m that is

necessary to punish a deviation by P2 or the decision b that is necessary to punish a deviation by P3:
38Consistently with the result in Theorem 3, note that the problems with simple revelation mechansims �ri : A�i !

Ai emerge in this example only because (i) the agent is indi¤erent about P1�s response to (a2; a3) = (r; d) so that

he can be induced to choose di¤erent decisions with P1 as a function of whether it is P2 or P3 who deviated from

equilibrium play; (ii) the principals�payo¤s are su¢ ciently asymmetric so that the decision the agent induces with

P1 to punish a deviation by P2 cannot be the same as the one he induces to punish a deviation by P3:
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5.2 Mixed strategies

We now turn to equilibria in which the principals randomize over their mechanisms and/or the

agent randomizes over the reports he sends to the principals.39

The reason why the simple mechanisms considered in Section 3 may fail to sustain certain

mixed-strategy outcomes is that they do not permit the agent to induce di¤erent decisions with

the same principal in response to the same decisions ��i he is inducing with the other principals.

To illustrate, consider the following example in which j�j = jEj = 1; n = 2; A1 = ft; bg and
A2 = fl; rg, and where payo¤s, (u1; u2; v) are as in the following table:

a1na2 l r

t 2 1 1 1 0 1

b 1 0 1 1 2 0

Table 4

Assume that Di contains only degenerate lotteries over Ai. The following is then an equilibrium
in the menu game. Each principal o¤ers the menu �M�

i whose image is the entire set Ai: Given
the equilibrium menus, the agent selects with equal probabilities the decisions (t; l); (b; l) and

(t; r): Note that it is essential that Di contains only degenerate lotteries. If P1 could o¤er non-
degenerate lotteries, she could do better by deviating and o¤er the lottery that gives t and b

with equal probabilities. In this case, A would strictly prefer to induce l with P2 thus giving P1

a higher payo¤. As anticipated in the introduction, we see this as a serious limitation on what

can be implemented with mixed strategy equilibria: when neither the agent�s nor the principals�

preferences are �at (i.e. constant over E �A) and when all lotteries are feasible, it is very di¢ cult
to construct examples where the agent is indi¤erent over the lotteries o¤ered by the principals (so

that he can be induced to randomize) and, at the same time, no principal can bene�t by breaking

the agent�s indi¤erence by o¤ering a di¤erent menu so as to induce the agent to choose only those

lotteries that are more favorable to her.

Having said this, it is important to note that, while certain SCFs may not be sustained with

the simple revelation mechanisms �ri : D�i �! Di of the previous sections, any SCF that can
be sustained as a mixed strategy equilibrium in the menu game can also be sustained as a truth-

ful equilibrium of an enriched revelation game in which the principals o¤er set-valued revelation

39Recall that the notion of pure-strategy equilibria given in De�nition 1 allows the agent to mix over e¤ort.
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mechanisms ~�
r
i : ��D�i �! 2Di such that, for any (�; ��i) 2 ��D�i;40

~�
r
i (�; ��i) = arg max

�i2Im(~�
r
i )
V (�i; ��i; �)

The interpretation is that the agent �rst reports his type along with the decisions ��i that he

is inducing with the other principals (possibly by mixing, or in response to a mixed strategy by

one of the other principals); the mechanism then responds by giving the agent the decisions in ~�
r
i

that are optimal for type � given ��i; �nally, the agent selects a decision from the set ~�
r
i (�; ��i)

and this decision is implemented. In the example above, the equilibrium SCF can be sustained by

having P1 o¤er the mechanism ~�
r�
1 (l) = ft; bg; ~�

r�
1 (r) = ftg; and P2 the mechanism ~�

r�
2 (t) = fl; rg;

~�
r�
2 (b) = flg. Given the equilibrium mechanisms, with probability 1=3, the agent induces the

decisions (t; l) by reporting l truthfully to P1 and then choosing t from ~�
r�
1 (l) and by reporting t

truthfully to P2 and then choosing l from ~�
r�
2 (t), and so on. The equilibrium is truthful in the

sense that the agent may well randomize over the decisions he is inducing with the principals, but

once he has decided which decisions he wants to induce (i.e. for any given realization of his mixed

strategy), he always reports these decisions truthfully to each principal.

Now note that, although a revelation mechanism is conveniently described by the correspon-

dence ~�
r
i : � � D�i �! 2Di ; formally such a mechanism is a standard single-valued mapping

��
r
i :Mr

i ! Di with message space ~Mr
i � ��D�i �Di such that41

��
r
i (�; ��i; �i) =

(
�i if �i 2 ~�

r
i (�; ��i);

�0i 2 ~�
r
i (�; ��i) otherwise.

These mechanisms are clearly incentive-compatible in the sense that, given (�; ��i), the agent

(weakly) prefers any decision in ~�
r
i (�; ��i) to any decision that can be obtained by reporting (�

0; �0�i).

Furthermore, given any pro�le of mechanisms ~�
r
; the decisions that are optimal for each type �

always belong to those that can be obtained by reporting truthfully to each principal.

De�nition 6 Let ~�r denote the revelation game in which each principal�s strategy space is �(~�ri ),

where ~�ri is the class of set-valued incentive-compatible revelation mechanisms de�ned above. Given

a mechanism ~�
r
i 2 ~�ri ; the agent�s strategy is truthful in ~�

r
i if and only if, for any ~�

r
�i 2 ~�r�i, � 2 �

and ~mr 2 Supp[�(�; ~�ri ; ~�
r
�i)];

~mr
i = (

��
r
1( ~m

r
1); :::;

��
r
i ( ~m

r
i ); :::;

��
r
n( ~m

r
n); �),

40With an abuse of notation, in the sequel, we denote by 2Di the power set of Di, with the exclusion of the empty
set.

For any set-valued mapping f :Mi ! 2Di , we then let Im(f) � f�i 2 Di : 9 mi 2Mi s.t. �i 2 f(mi)g denote the
range of f:
41The particular decision �0i associated to the message m

r
i = (�; ��i; �i), with �i =2 ~�

r

i (��i; �) is not important: the

agent never �nds it optimal to choose any such message.
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An equilibrium strategy pro�le ~�r 2 E(~�r) is a truthful equilibrium if ~�rA is truthful in every ~�
r
i 2 ~�ri

for any i 2 N .

The agent�s strategy is truthful in ~�
r
i if the message ~m

r
i = (�; ��i; �i) the agent sends to principal

i coincides with his true type � along with the true decisions ��i =
�
��
r
j( ~m

r
j)
�
j 6=i

induced with the

other principals by sending the messages ~mr
�i and the true decision �i = ��

r
i ( ~m

r
i ) that A induces

with Pi by sending the message ~mr
i . We then have the following result.

Theorem 6 A SCF � : � �! �(E �A) can be sustained as an equilibrium of �M if and only if

it can be sustained as a truthful equilibrium of ~�r.

The proof is similar to the one that establishes the Menu Theorems and is thus con�ned to

the Supplementary Material. The reason why the result does not follow directly from the Menu

Theorems is that ~�r is not an enlargement of �M : In fact, the menus in the range of the revelation

mechanisms in ~�r are only those that have the following property: for each �i in the menu there

exists a (�; ��i) such that, given (�; ��i), �i is as good for the agent as any other decision in the

menu.42

That the principals can be restricted to o¤er menus that have this property is not surprising;

the proof however requires some work to show how the agent�s and the principals�mixed strategies

can be adjusted to preserve the same distribution over outcomes as in the original unrestricted menu

game �M : The value of Theorem 6 is however not in re�ning the existing Menu Theorems but in

providing a convenient way of describing which decisions the agent �nds it optimal to induce as a

function of the decisions he induces with the other principals; this can facilitate the construction

of the equilibrium outcomes in applications in which mixing plays a role.

6 Conclusions

We have shown how the equilibrium outcomes that are typically of interest in common agency

games (those sustained by pure-strategy pro�les in which the agent�s behavior is Markov) can be

conveniently characterized by having the principals o¤ering revelation mechanisms in which the

agent truthfully reports his type along with the decisions he is inducing with the other principals.

As compared to universal mechanisms, the approach proposed here has the advantage that

it does not lead to the in�nite regress problem, for it does not require the agent to describe the

mechanisms o¤ered by other principals.

42These menus are also di¤erent from the menus of undominated decisions considered in Martimort and Stole

(2002). A menu for principal i is said to contain a dominated decision, say �i, if there exists another decision �0i in

the menu such that, whatever the decisions ��i of the other principals, the agent�s payo¤ under �0i is strictly higher

than under �i.
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As compared to the Menu Theorems, our results o¤er a convenient way of describing how the

agent chooses from a menu as a function of �who he is�(his exogenous type) and �what he is doing�

with the other principals (the decisions he induces in the other relationships). The advantage of

describing the agent�s choices from a menu through revelation mechanisms comes from the fact

that this often facilitates the characterization of the necessary and su¢ cient conditions for the

sustainability of outcomes as common agency equilibria. We have illustrated such a possibility in

a few cases of interest: menu auctions, moral hazard settings, and competition in non-linear tari¤s

with adverse selection.

We have also shown how the simple revelation mechanisms described above can be enriched

(albeit at the cost of an increase in complexity) to characterize also outcomes sustained by non-

Markov strategies and/or mixed strategy equilibria.

Throughout the analysis, we have maintained the assumption of a single agent. The idea of

having each agent truthfully reporting a pro�le of payo¤-relevant decisions in addition to his private

information seems however promising also in environments with multiple agents (see, for example,

Yamashita, 2007, for an exploration in this direction).

Appendix

Proof of Theorem 2. Part 1. We prove that if there exists a pure-strategy equilibrium

�M
�
of �M in which the agent�s strategy is Markov and that implements �; then there also exists

a truthful pure-strategy equilibrium �r� of �r that implements the same SCF.

Let �M� and �M�
A denote respectively the equilibrium menus and the continuation equilibrium

that support � in �M . Because �M�
A is Markov, then for any i and any (�; ��i; �Mi ) there exists a

unique decision �i(�; ��i;�Mi ) 2 Im(�Mi ) such that A always induces �i(�; ��i;�Mi ) with Pi when

the latter o¤ers the menu �Mi ; the agent�s type is �, and the decisions A induces with the other

principals are ��i: Finally let ��(�) = (��i (�))
n
i=1 denote the equilibrium decisions that type � induces

in �M when all principals o¤er the equilibrium menus, i.e., when �M = (�M�
i )ni=1:

Now consider the following strategy pro�le �r� for the revelation game �r. Each principal i;

i 2 N , o¤ers the mechanism �r�i such that

�r�i (�; ��i) = �i(�; ��i;�
M�
i ) 8 (�; ��i) 2 ��D�i:

The agent�s strategy �r�A is such that, when �r = (�r�i )
n
i=1; then each type � reports to each

principal i the message mr
i = (�; ���i(�)) thus inducing the equilibrium decision ��i (�) with each

principal. Given the contracts y; then each type � induces the same distribution over e¤ort he

would have induced in �M had the contracts pro�le been y, the menus pro�le been �M�, and the

lotteries pro�le been ��(�):
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If, instead, �r is such that �rj = �
r�
j for all j 6= i whereas �ri 6= �r�i , then each type � induces

the same outcomes he would have induced in �M had the menu pro�le been �M = ((�M�
j )j 6=i; �

M
i )

where �Mi is the menu whose image is Im(�Mi ) = Im(�
r
i ): That is, let �(�;�

M ) denote the decisions

that type � would have induced in �M given �M : Then given �r, A induces the decision �i(�;�M )

with the deviating principal Pi and then reports to each non-deviating principal Pj the message

mr
j = (�; ��j(�;�

M )) thus inducing the same decisions �(�;�M ) as in �M . In the continuation game

that starts after the contracts y are realized, A then induces the same distribution over e¤ort he

would have induced in �M given the contracts y; the menus �M and the decisions �(�;�M ):

Finally, given any pro�le of mechanisms �r such that jfj 2 N : �rj 6= �r�j gj > 1; the strategy
�r�A prescribes that A induces the same outcomes he would have induced in �M given �M , where

�M is the pro�le of menus such that Im(�Mi ) = Im(�
r
i ) for all i:

The strategy �r�A described above is clearly a truthful strategy. The optimality of such a

strategy in �r then follows directly from the optimality of the agent�s strategy �M�
A in �M together

with the fact that Im(�r�i ) � Im(�M�
i ) for all i:

Given the continuation equilibrium �r�A it is then immediate that any principal Pi who expects

all other principals Pj ; j 6= i, to o¤er the mechanisms �r��i cannot do better than o¤ering the

equilibrium mechanism �r�i :We conclude that the pure-strategy pro�le �
r� constructed above is an

equilibrium of �r and sustains the same SCF � as the equilibrium �M� of �M :

Part 2. We now prove the converse: if there exists an equilibrium �r� of �r that sustains the

SCF �; then there also exists an equilibrium �M� of �M that sustains the same SCF.

First, consider the principals. For any i 2 N and any �Mi 2 �Mi ; let �ri (�Mi ) � f�ri 2 �ri :
Im(�ri ) = Im(�

M
i )g denote the set of revelation mechanisms with the same range as �Mi (note that

�ri (�
M
i ) may well be empty). The strategy �

M�
i 2 �(�Mi ) for Pi in �M is then such that, for any

set of menus B � �Mi
�M�
i (B) = �r�i (

S
�Mi 2B

�ri (�
M
i )):

Next, consider the agent.

Case 1. Given any pro�le of menus �M 2 �M such that, for any i 2 N ; �ri (�Mi ) 6= ?; the
strategy �M�

A induces the same distribution over A � E as the strategy �r�A in �r given the event

that �r 2 �r(�M ) �
Q
i�

r
i (�

M
i ): Precisely, let ��r�A : � � �r ! �(A� E) denote the distribution

over outcomes induced by the strategy �r�A in �r: Then, for any � 2 �; �M�
A (�; �M ) is such that

��M�
A
(�; �M ) =

Z
�r
��r�A (�; �

r)d�r�1 (�
r
1j�r1(�M1 ))� � � � � d�r�n (�rnj�rn(�Mn ))

where, for any i; �r�i (�j�ri (�Mi )) denotes the regular conditional probability distribution over �ri
generated by the original strategy �r�i conditioning on �ri belonging to �

r
i (�

M
i ):

Case 2. If, instead, �M is such that there exists a j 2 N such that �ri (�
M
i ) 6= ? for all i 6= j
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while �rj(�
M
j ) = ?, then let �rj be any arbitrary revelation mechanism such that

�rj(�; ��j) 2 arg max
�j2Im(�Mj )

V (�j ; ��j ; �) 8 (�; ��j) 2 ��D�j :

The strategy �M�
A then induces the same outcomes as the strategy �r�A given �rj and given �

r
�j 2

�r�j(�
M
�j) �

Q
i6=j �

r
i (�

M
i ); that is, for any � 2 �;

��M�
A
(�; �M ) =

Z
�r�j

��r�A (�; �
r
j ; �

r
�j)d�

r�
1 (�

r
1j�r1(�M1 ))� � � � � d�r�n (�rnj�rn(�Mn )) (11)

Case 3. Finally, for any �M such that jfj 2 N : �rj(�
M
j ) = ?j > 1, simply let �M�

A (�; �M ) be

any strategy that is sequentially optimal for A given (�; �M ).

The fact that �r�A was a continuation equilibrium for �r guarantees that the strategy �M�
A

constructed above is a continuation equilibrium for �M . Furthermore, given �M�
A ; any principal

Pi who expects any other principal Pj , j 6= i, to follow the strategy �M�
i cannot do better than

following the strategy �M�
i . We conclude that the strategy pro�le �M� constructed above is an

equilibrium of �M and sustains the same outcomes as �r� in �r:

Proof of Theorem 3. When (a) holds, the result is immediate. In what follows we prove

that when (b) holds, then if the SCF � can be sustained as a pure-strategy equilibrium �M� of

�M , it can also be sustained as a pure-strategy equilibrium �̂M in which the agent�s strategy �̂MA
is Markov.

Let �M� denote the equilibrium menus under the strategy pro�le �M� and �� denote the

equilibrium decisions that are implemented when all principals o¤er the equilibrium menus �M�.

Suppose that �M�
A is not Markov. This means that there exists an i 2 N , a ~�Mi 2 �Mi ; a

�0�i�D�i and a pair �M�i; ��
M
�i 2 �M�i such that A selects (�i; �0�i) when �M = (~�

M
i ; �

M
�i) and (

��i; �
0
�i)

when �M = (~�
M
i ;
��
M
�i); with �i 6= ��i: We then show that, starting from �M�

A ; one can construct a

Markov continuation equilibrium �̂MA that induces all principals to continue to o¤er the equilibrium

menus �M� and that sustains the same equilibrium decisions �� as �M�
A :

Case 1. First consider the case that ~�
M
i = �M�

i and �0�i = �
�
�i. Let then �̂

M
A be the strategy

that coincides with �M�
A for all �M 6= (~�

M
i ; �

M
�i),(

~�
M
i ;
��
M
�i) and that prescribes that A selects ��

both when �M = (~�
M
i ; �

M
�i) and when �

M = (~�
M
i ;
��
M
�i). In the continuation game that starts after

the lotteries �� select the contracts y; �̂MA prescribes that A induces the same distribution over

e¤ort he would have induced according to the original strategy �M�
A as if the menus o¤ered had

been �M�. It is immediate that the strategy �̂MA is sequentially rational for the agent. It is also

immediate that, given �̂MA , any principal Pj who expects any other principal Pl, l 6= j, to o¤er the
equilibrium menu �M�

l cannot do better than o¤ering the equilibrium menu �M�
j :

Case 2. Next consider the case that ~�
M
i = �M�

i and �0�i 6= ���i (which implies that both �
M
�i

and ��M�i are necessarily di¤erent from �
M�
�i ): Let �̂

M
A be the strategy that coincides with �M�

A for all
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�M 6= (~�Mi ; �M�i),(~�
M
i ;
��
M
�i) and that prescribes that A selects (�

0
i; �

0
�i) both when �

M = (~�
M
i ; �

M
�i)

and when �M = (~�
M
i ;
��
M
�i); where �

0
i 2 argmax�i2Im(~�Mi ) V (�i; �

0
�i) is any decision such that, for all

j 6= i;
U j(�

0
i; �

0
�i) � U j(�̂i; �0�i) for all �̂i 2 arg max

�i2Im(~�
M
i )

V (�i; �
0
�i):

By the Uniform Punishment condition, such a decision always exists: In the continuation game that

starts after the lotteries � = (�0i; �
0
�i) select the contracts y; A then selects e¤ort �k(y), where

k 2 fj 2 Nnfig : �Mj 6= �M�
j g

is identity of one of the principals who deviated from equilibrium play, whereas �k(y) is the level of

e¤ort de�ned in (2). Clearly, when
��fj 2 Nnfig : �Mj 6= �M�

j g
�� > 1; the identity k of the deviating

principal can be chosen arbitrarily. Once again, it is immediate that the strategy �̂MA is sequentially

rational for the agent and that, given �̂MA , any principal Pj who expects any other principal Pl,

l 6= j, to o¤er the equilibrium menu �M�
l cannot do better than o¤ering the equilibrium menu �M�

l :

Case 3. Lastly, consider the case that ~�
M
i 6= �M�

i . Irrespective of whether �0�i = ���i or

�0�i 6= ���i; let �̂MA be the strategy that coincides with �M�
A for all �M 6= (~�Mi ; �M�i),(~�

M
i ;
��
M
�i) and

that prescribes that A selects (�0i; �
0
�i) both when �

M = (~�
M
i ; �

M
�i) and when �

M = (~�
M
i ;
��
M
�i);

where �0i 2 argmax�i2Im(~�Mi ) V (�i; �
0
�i) is any decision such that

U i
�
�0i; �

0
�i
�
� U i

�
�̂i; �

0
�i

�
for all �̂i 2 arg max

�i2Im(~�
M
i )

V (�i; �
0
�i):

Again, �̂MA is trivially sequentially rational for the agent and, given �̂MA , no principal has an incentive

to deviate.

Note that the strategy �̂MA constructed from �M�
A using the procedure described above has the

property that, given any �M 2 �M such that �Mi 6= ~�Mi the behavior speci�ed by �̂MA is the same as

that speci�ed by the original strategy �M�
A : Furthermore, for any �M 2 �M ; the decision the agent

takes with any principal Pj , j 6= i; is the same as under the original strategy �M�
A : This implies that

the procedure described above can be iterated for all i 2 N and all ~�
M
i 2 �Mi ; this gives a strategy

for the agent that is Markov and that induces all principals to continue to o¤er the equilibrium

mechanisms.

Proof of Theorem 4. The proof follows from applying the same steps indicated in the proof

of Theorem 3 to all � 2 � and by noting that, when �M�
A satis�es the "Conformity to Equilibrium"

condition, the following is true. For any i 2 N there exists no pair �M�i;
��
M
�i 2 �M�i such that some

type � 2 � selects (�i; �
�
�i(�)) when �

M = (�M�
i ; �M�i) and (

��i; �
�
�i(�)) when �

M = (�M�
i ; ��

M
�i);

with �i 6= ��i: In other words, Case 1 in the proof of Theorem 3 never arises when the strategy

�M�
A satis�es the "Conformity to Equilibrium" condition. This in turn guarantees that when one
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replaces the original strategy �M�
A with the strategy �̂MA that is obtained from �M�

A iterating the

steps in the proof of Theorem 3 for all � 2 �; all i 2 N , and all ~�Mi 2 �Mi , it remains optimal for
each Pi to o¤er the equilibrium menu �M�

i :

Proof of Proposition 1. It is immediate that conditions (a)-(c) guarantee existence of a

truthful equilibrium in the revelation game �r sustaining the schedules q�i (�); i = 1; 2: Theorem 2

then implies that the same schedules can also be sustained in the menu game �M .

Thus consider the necessity of these conditions. That conditions (a) and (b) are necessary

follows directly from Theorem 2: If the schedules q�i (�), i = 1; 2; can be sustained as a pure-strategy
equilibrium of �M in which the agent�s strategy is Markov, then they can also be sustained as a

pure-strategy truthful equilibrium of �r. As discussed in the main text, the same schedules can then

also be sustained by a truthful (pure-strategy) equilibrium in which the mechanism o¤ered by each

principal i is such that �ri (�; qj ; tj) = �
r
i (�

0; q0j ; t
0
j) whenever �+�qj = �

0+�q0j : The de�nition of such

an equilibrium then implies that there must exist a pair of mechanisms �r�i = (~qi(�); ~ti(�)); i = 1; 2;
such that ~qi(�) is nondecreasing, ~ti(�) satis�es (3), and conditions (a) and (b) in the proposition
hold.

It remains to show that condition (c) is also necessary. To see this, �rst note that if there exists

a pair of mechanisms (~qi(�); ~ti(�))i=1;2 and a truthful continuation equilibrium �rA that sustain the

schedules q�i (�); i = 1; 2; then this means that the schedules q�i (�) and t�i (�) � ~ti(mi(�)), i = 1; 2;

must satisfy the equivalent of the (IC) and (IR) constraints in the program of condition (c); this

in turn means that necessarily U�i � �Ui, i = 1; 2: To prove the result it then su¢ ces to show that

if U�i < �Ui; then Pi has a pro�table deviation. This can be shown by contradiction. Suppose there

exists a truthful equilibrium �r 2 E(�r) sustaining the schedules (q�i (�))i=1;2 and such that U�i < �Ui,

for some i 2 N . Then there also exists a (pure-strategy) equilibrium �M� 2 E(�M ) sustaining the
same schedules and such that (i) each Pi o¤ers the menu �M�

i de�ned by Im(�M�
i ) = Im(�r�i ) and

(ii) each type � selects the pair (q�i (�); t
�
i (�)) from each menu �M�

i , thus yielding Pi a payo¤ U�i
(see the proof of part 2 of Theorem 2). We then show that, irrespective of which continuation

equilibrium �r�A one considers, Pi has a pro�table deviation.

Case 1. Suppose that the schedules qi(�) and ti(�) that solve the program of condition (c) are

such that the (IC) and (IR) constraints hold as strict inequalities for almost all �: This immediately

implies that if in �M Pi deviates and o¤ers the menu �Mi de�ned by Im(�Mi ) = f(qi(�); ti(�)) :
� 2 �g then in any continuation equilibrium, almost every type � will necessarily select the pair
(qi(�); ti(�)) from �Mi ; thus giving Pi a payo¤ �Ui > U

�
i .
43

43Note that, while almost every � 2 � strictly prefers (qi(�); ti(�)) to any other pair (qi; pi) 2 Im(�Mi ); there

may exist a positive-measure set of types �0 who, given (qi(�0); ti(�0)), is indi¤erent between inducing the decision

(~qj(�
0 + �qi(�

0)); ~tj(�
0 + �qi(�

0)) with Pj or inducing another decision (qj ; tj) 2 Im(�M�
j ): The fact that Pi is not

personally interested in (qj ; tj) however implies that Pi�s deviation to �Mi is pro�table irrespective of how one speci�es
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Case 2. Next suppose that the schedules qi(�) and ti(�) that solve the program of condition

(c) are such that the (IC) constraints hold as strict inequalities for almost all �; but there exists

a positive-measure set of types �0 � � such that, for any �0 2 �0 the (IR) constraint holds as an
equality. In this case, a deviation to the menu �Mi of Case 1 need not be pro�table for Pi, for

each type �0 2 �0 could react by choosing not to participate. However, if this is the case, then Pi
could o¤er another menu �M 0

i such that Im(�M 0
i ) = f(q0i(�); t0i(�)) : � 2 �g; with q0i(�) = qi(�) and

t0i(�) = ti(�) � " for all � 2 �; with " > 0. Clearly such a menu guarantees participation by all

types. By choosing " arbitrarily close to zero, Pi can then guarantee herself a payo¤ arbitrarily

close to �Ui and thus strictly higher than U�i ; once again a contradiction.

Case 3. Finally, let Vi(�; �0) � �qi(�
0) + v�i (�; qi(�

0)) � ti(�0) denote the payo¤ that type �
obtains by selecting the pair (qi(�0); ti(�0)) designed by Pi for type �0 and then selecting the pair

(~qj(� + �qi(�
0)); ~tj(� + �qi(�

0)) with Pj , where qi(�) and ti(�) are again the schedules that solve the
program of condition (c). Now suppose there exists a positive-measure set of types �0 � � such

that for any � 2 �0, there exists a �0 2 � such that

Vi(�; �) = Vi(�; �
0)

with qi(�0) 6= qi(�),44 whereas for any � 2 �n�0;

Vi(�; �) > Vi(�; �̂) for any �̂ 2 � such that qi(�̂) 6= qi(�):

The set �0 thus corresponds to the set of types � for whom the pair (qi(�); ti(�)) is not strictly

optimal, in the sense that there exists another pair (qi(�0); ti(�0)) with (qi(�0); ti(�0)) 6= (qi(�); ti(�))
that is as good for type � as the pair (qi(�); ti(�)):

Without loss, assume that qi(�) and ti(�) are such that each type � 2 � strictly prefers the

pair (qi(�); ti(�)) to the null contract (0; 0) (as shown in Case 2 above, Pi can always adjust the

original transfer schedule ti(�) so as to guarantee that this property holds, while preserving incentive
compatibility for all types and still obtaining a payo¤ Ui > U�i ).

Now let z : �� 2� be the correspondence de�ned by

z(�) = f�0 2 �; �0 6= � : Vi(�; �) = Vi(�; �0) and qi(�0) 6= qi(�)g 8� 2 �

and then let z(�) � Im(z) denote the range of z(�): In words, this correspondence maps each type
� 2 � into the set of types �0 6= � that receive a contract (qi(�0); ti(�0)) di¤erent from the one

(qi(�); ti(�)) designed for type � but that nonetheless give type � the same payo¤ as the contract

(qi(�); ti(�)):

the agent�s choice with Pj :
44Cearly if qi(�) = qi(�0), which also implies that ti(�) = ti(�0); then whether type � selects the contract designed

for him or that designed for type �0 is inconsequential for Pi�s payo¤.
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Finally, let g : �� 2� denote the correspondence de�ned by

g(�) = f�0 2 �; �0 6= � : (qi(�0); ti(�0)) = (qi(�); ti(�))g 8� 2 �:

This correspondence maps each type � into the set of types �0 6= � that, given the schedules

(qi(�); ti(�)); receive the same price-quantity pair as type �: Then, given any set �0 � �; let

g(�0) � f
S
g(�) : � 2 �0g

Starting from the schedules qi(�) and ti(�); then let q0i(�) and t0i(�) be a new pair of schedules
such that q0i(�) = qi(�) for all � 2 �; t0i(�) = ti(�) for all � =2 �0[g(�0) while for any � 2 �0[g(�0),
t0i(�) = ti(�) � " with " > 0. Clearly, if " is chosen su¢ ciently small, then the new schedules q0i(�)
and t0i(�) necessarily satisfy the (IC) and (IR) constraints in the program of condition (c) for all �:

Now suppose that the original schedules qi(�) and ti(�) were such that f�0 [ g(�0)g \ z(�) =
?. Then the new schedules q0i(�) and t0i(�) guarantee that each type � 2 � now strictly prefers

the contract (q0i(�); t
0
i(�)) designed for him to any other contract (q0i(�

0); t0i(�
0)) 6= (q0i(�); t

0
i(�)):

This in turn implies that by choosing " su¢ ciently small and o¤ering the menu �M 0
i such that

Im(�M 0
i ) = f(q0i(�); t0i(�)) : � 2 �g, irrespective of the agent�s continuation equilibrium �MA , Pi can

guarantee herself a payo¤ arbitrarily close to �Ui and hence has pro�table deviation.

Next suppose that f�0 [ g(�0)g \ z(�) 6= ?: This means that there exists a pair �; �0 with
� 2 �0 and �0 2 z(�) such that either �0 2 �0 or there exists another type �00 2 �0 such that
(qi(�

00); ti(�
00)) = (qi(�

0); ti(�
0)) which in turn implies that �00 2 z(�): Without loss, thus assume the

former case. The schedules q0i(�) and t0i(�) constructed above then leave type � indi¤erent between
the contract (q0i(�); t

0
i(�)) designed for him and the contract (q0i(�

0); t0i(�
0)) designed for type �0: The

fact that the agent�s payo¤ �qi+v�i (�; qi)�v�i (�; 0) has the strict increasing-di¤erence property with
respect to (�; qi) however guarantees that � =2 z(�0) : that is, if type � is willing to take type �0�s
contract, then it cannot be that type �0 is also willing to swap with type �: The same property also

implies that if �00 2 z(�0), with �00 6= �; then necessarily � =2 z(�00): That is, if type � is indi¤erent
between the contract designed for him and the contract designed for type �0 and if, at the same

time, type �0 is indi¤erent between the contract designed for him and that designed for type �00;

then it cannot be that type �00 is also indi¤erent between the contract designed for him and that

designed for type �: These properties in turn guarantee that the procedure that permits one to

transform the schedules qi(�) and ti(�) into the schedules q0i(�) and t0i(�) can be iterated (without
cycling) till no type is any longer indi¤erent.

We conclude that if there exists a pair of schedules qi(�) and ti(�) that solve the program in

condition (c) in the proposition and yield Pi a payo¤ �Ui > U�i ; then irrespective of how one speci�es

the agent�s continuation equilibrium, Pi necessarily has a pro�table deviation. This in turn proves

that (c) is necessary.
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Proof of Proposition 2. The collusive schedules solve the following pointwise maximization

problem:

max
q1;q2

f� [q1 + q2] + �q1q2 � 1
2(q

2
1 + q

2
2)�

1�F (�)
f(�) [q1 + q2]g:

The solution to this program is given by45

qi(�) = q
c(�) � 1

1��

�
� � 1�F (�)

f(�)

�
8�, i = 1; 2:

To prove the result, we proceed by contradiction. Suppose there exists a pair of tari¤s that

sustains the collusive schedules as an equilibrium in which the agent�s strategy is Markov. Using the

result of Proposition 1, there then exists a pair of incentive-compatible mechanisms �ri = (~qi(�); ~ti(�))
that satis�es conditions (a) and (b) in Proposition 1 with q�i (�) = qc(�); i = 1; 2. The fact that it is
optimal for each � to select the quantity qc(�) and pay ~ti(m(�)) to each principal implies that, for

i = 1; 2;

V �(�) = sup
~�1;~�2

n
�
h
~q1(~�1) + ~q2(~�2)

i
+ �~q1(~�1)~q2(~�2)� ~t1(~�1)� ~t2(~�2)

o
= sup

~�i2~�i

n
�~qi(~�i) + v

�
i (�; ~qi(

~�i))� ~ti(~�i)
o

= sup
~�i2[mi(�);mi(��)]

n
�~qi(~�i) + v

�
i (�; ~qi(

~�i))� ~ti(~�i)
o

where all equalities follow directly from the fact that the mechanisms �ri = (~qi(�); ~ti(�)) are incentive-
compatible and satisfy conditions (a) and (b) in Proposition 1. Because for any � 2 � and

any message ~�i 2 [mi(�);mi(��)]; the marginal valuation � + �~qi(~�i) 2 [mj(�);mj(��)] and be-

cause ~qj(�) is continuous over [mj(�);mj(��)]; there exists a constant Mi > 0 such that, for any

q 2 [~qj(mj(�)); ~qj(mj(��))] = [qc(�); qc(��)]; the function wi(�; q) : � ! R de�ned by wi(�; q) �
�q + v�i (�; q) is Mi-Lipschitz continuous and di¤erentiable and its derivative satis�es

@wi(�; q)

@�
= q + ~qj(� + �q) � 2 �Qi:

Using the envelope theorem, we then have that, if the mechanisms �r1 and �
r
2 satisfy conditions (a)

and (b), then the functions ~ti(�) must satisfy

~ti(m(�)) = �qc(�) + v�i (�; q
c(�))�

Z �

�
[qc(s) + ~qj(s+ �q

c(s))]ds� K̂i

= �qc(�) + [v�i (�; q
c(�))� v�i (�; 0)]�

Z �

�
[qc(s) + ~qj(s+ �q

c(s))� ~qj(s)]ds�Ki

for some K̂i;Ki � 0, where the second equality comes from the fact that v�i (�; 0) =
R �
min ~�i

~qj(s)ds+

~Kj =
R �
� ~qj(s)ds+

~Kj : This in turn implies that the equilibrium payo¤U�i for each Pi can be written

45For simplicity, we assume that the solution is interior: qc(�) 2 int(Q) for any �:
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as

U�i =

Z ��

�
hi(q

c(�); �)dF (�)�Ki:

Now take an interval
�
�0; �00

�
� [�; ��] and, for any � 2

�
�0; �00

�
, let Q(�) � [qc(�)� "; qc(�) + "] ;

where " > 0 is chosen so that, for any � 2
�
�0; �00

�
and any q 2 Q(�); (�+ �q) 2 [m(�);m(�)]: Next,

note that, for any � 2
�
�0; �00

�
; the function hi(�; �) de�ned in (7) is continuously di¤erentiable over

Q(�) with

@hi(q
c(�); �)

@q
= � + �~qj(� + �q

c(�))� qc(�)� 1�F (�)
f(�)

h
1 + �

@~qj(�+�q
c(�))

@~�

i
= � + (�� 1) qc(�)� 1�F (�)

f(�) � 1�F (�)
f(�) �

@~qj(�+�q
c(�))

@~�
< 0

where the inequality follows from the de�nition of qc(�) and from the fact that ~qj(�) is strictly
increasing over [m(�);m(��)]: This means that there exists a non-decreasing schedule qi : � ! Q
such that Z ��

�
hi(qi(�); �)dF (�) >

Z ��

�
hi(q

c(�); �)dF (�): (12)

Condition (12) then implies that Pi has a pro�table deviation, which contradicts the assumption

that ~�
r
1 and ~�

r
2 satisfy condition (c) in the proposition. We conclude that, when the agent�s behavior

is Markov, there exists no pair of tari¤s that support the collusive schedules as an equilibrium.

Proof of Proposition 3. Let q�(�) be the solution to the di¤erential equation in (9) and ~q(�)
the schedule given in (9). Using the result in Proposition 1, it su¢ ces to show that there exists a

scalar ~K � 0 such that the pair of schedules ~qi(�) = ~q(�); i = 1; 2; along with the pair of schedules
~ti(�) = ~t(�), i = 1; 2; with ~t(�) de�ned by

~t(~�) = ~�~q(~�)�
Z ~�

min ~�
~q(s)ds� ~K 8~� 2 ~�

satisfy conditions (a)-(c) in Proposition 1. That these schedules satisfy condition (a) is immediate.

Thus consider (b). Fix �r�j = (~q(�); ~t(�)). Note that, for any q 2 Q; the function

gi(�; q) � �q + v�i (�; q)� v�i (�; 0) = �q +
Z �+�q

�
~q(s)ds

is equi-Lipschitz continuous in �, has the strict increasing di¤erence property, and satis�es the

"convex-kink" condition of Assumption 1 in Ely (2001). Theorem 2 in Milgrom and Segal (2002)

together with Theorem 2 in Ely (2001) then imply that, given �r�j ; the schedules (qi(�); ti(�)) satisfy
the (IC) and (IR) constraints of condition (c) in Proposition 1 if and only if qi(�) is nondecreasing
and ti : �! R is such that, for any � 2 �;

ti(�) = �qi(�) + [v
�
i (�; qi(�))� v�i (�; 0)]�

Z �

�
[qi(s) + ~q(s+ �qi(s))� ~q(s)]ds�K 0

i (13)
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for some K 0
i � 0: Now let t�(�) be the schedule that is obtained from (13) letting qi(�) = q�(�) and

setting K 0
i = 0: By construction, it then follows that each type � prefers the allocation

(q�(�); t�(�); ~q(m(�)); ~t(m(�))) = (q�(�); t�(�); q�(�); ~t(m(�)))

to any allocation (qi; ti; qj ; tj) such that (qi; ti) 2 f
�
q�(�0); t�(�0)

�
: �0 2 �g [ (0; 0); and (qj ; tj) 2

f(~q(~�0); ~t(~�0)) : ~�0 2 ~�g [ (0; 0): This also means that the pair of schedules q0 : [m(�);m(��)] �! Q
and t0 : [m(�);m(��)] �! R given by

q0(~�) = q�(m�1(~�)) and t0(~�) = t�(m�1(~�))

are incentive-compatible over [m(�);m(��)]: But this means that the schedule t0(�) can also be written
as

t0(~�) � ~�q0(~�)�
Z ~�

m(�)
q0(s)ds:

Clearly, if Pj o¤ers the mechanism �r�j = (~q(�); ~t(�)) and Pi o¤ers the schedules (q0(�); t0(�)) ; it
is optimal for each � to participate and report m(�) to each principal. Because for each ~� 2
[m(�);m(��)]; q0(~�) = ~q(~�) and because ~q(~�) = 0 for any ~� < m(�); we then have that, for any
~� 2 [m(�);m(��)];

t0(~�) = ~t(~�) + ~K:

Furthermore, because for any ~� > m(��);
�
~q(~�); ~t(~�)

�
=
�
~q(m(��)); ~t(m(��))

�
= (q0(��); t0(��)); it is

immediate from the aforementioned results that when both principals o¤er the mechanism �r�i =

(~q(�); ~t(�)) i = 1; 2; with ~K = 0; each type � �nds it optimal to participate in both mechanisms and

report m(�) to each principal thus obtaining the equilibrium quantity q�(�). In other words, the

pair of mechanisms �r�i = (~q(�); ~t(�)); i = 1; 2; with ~K = 0; satis�es conditions (a) and (b) in the

proposition.

It remains to show that, condition (c) also holds. Recall that, given �r�j = (~q(�); ~t(�)); a pair of
schedules (qi(�); ti(�)) satis�es the (IC) and (IR) constraints of Proposition 1 if and only if qi(�) is
nondecreasing and ti(�) is as in (13). This means that the program of condition (c) is equivalent to

that in (6). Because, for any � 2 int(�); the function h(�; �) is maximized at q = q�(�); the solution
to this program is the function q�(�) along with Ki = 0. To see this, note that the fact that q�(�)
solves the di¤erential equation in (8) implies that the function h(�; �) is di¤erentiable at q = q�(�)
with derivative

@h(q�(�); �)

@q
= � + �~q(� + �q�(�))� q�(�)� 1�F (�)

f(�)

h
1 + �@~q(�+�q

�(�))

@~�

i
= 0 (14)

Together with the fact that h(�; �) is quasiconcave then gives the result.

Equilibria in the menu auction game of Section 4.2. Consider the menu auction

environment of Section 4.2 and assume principals are restricted to make take-it-or-leave-it o¤ers

ai : E ! [0; 1].
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Consider �rst pure-strategy equilibria in which e1 is selected. In any such equilibrium, nec-

essarily a�1(�) is such that a�1(e1) = 1; otherwise P1 could deviate and o¤er a contract a1(�) such
that a1(e1) = a1(e2) = 1; ensuring that A does not �nd it pro�table to switch to e = e2, and

obtaining a higher payo¤. But then necessarily a�2(�) must be such that a�2(e1) = 1; otherwise P2
could increase a2(e1) ensuring A does not �nd it pro�table to change action, and obtaining a higher

payo¤. We conclude that in any equilibrium in which e1 is selected, a�i (e1) = 1; i = 1; 2: That such

an equilibrium exists follows from the fact that it can be sustained, for example, by the following

contracts a�i (e) = 1; i = 1; 2; e = e1; e2:

Next, consider equilibria in which e2 is selected. In these equilibria, necessarily a�1(e2) = 1=2:

To see this, �rst suppose that a�1(e2) < 1=2: The agent�s equilibrium payo¤ is then strictly higher

than 1: But then, necessarily a�2(e2) = 1; otherwise P2 could deviate and o¤er a contract such that

a2(e2) = 1 and a2(e1) = 0 which ensures that A does not bene�t from switching to e = e1 and gives

P2 a strictly higher payo¤. This means that P1�s equilibrium payo¤ is strictly less than �1=2: But
then P1 has a pro�table deviation that consists in setting a1(e) = 1 for any e; which induces A to

switch to e1, raising P1�s payo¤ to at least �1=2:
Next, suppose that a�1(e2) > 1=2: Then necessarily a

�
2(e2) = 1; this follows from the fact that,

given e2, both the agent�s and P2�s payo¤s are increasing in a2: But then necessarily a�1(e2) = 1;

for otherwise P1 would have a pro�table deviation that consists in setting a1(e1) = a1(e2) = 1 thus

inducing A to change action. But this means that P1�s equilibrium payo¤ is exactly equal to �1=2:
This in turn also implies that necessarily a�2(e1) = 1; for otherwise P1 would again have a pro�table

deviation by setting a1(e1) = a1(e2) = 1 which would induce A to switch to e = e1: Furthermore,

because A�s equilibrium payo¤ is 1=2; this also means that necessarily a�1(e1) � 1=4; else A would
bene�t from deviating to e = e1: But then P2 has a pro�table deviation that consists in o¤ering a

contract such that a2(e1) = 0 and a2(e2) = 1 which induces the agent to switch to e = e1:

Thus necessarily a�1(e2) = 1=2: Now, because P1 can guarantee herself at least �1=2 by o¤ering
a contract such that a1(e1) = a1(e2) = 1 and inducing A to select e = e1; it must be that

a�2(e2) � 1=2: Furthermore, for any a2(e2) < 1=2, given e2, both the agent�s and P1�s payo¤ are

strictly decreasing in a1; this implies that there cannot exist equilibria in which a2(e2) < 1=2:

Hence, in any equilibrium in which e2 is selected, necessarily a�1(e2) = a�2(e2) = 1=2: To see that

such an equilibrium exists, it then su¢ ces to note that it can be sustained, for example, by the

following contracts: a�1(e1) = a
�
1(e2) = 1=2, a

�
2(e1) = 1 and a

�
2(e2) = 1=2: Given the contract o¤ered

by P2; P1 clearly does not have pro�table deviations� this is true whatever the agent�s strategy.

Furthermore, given the contract o¤ered by P1; the agent is indi¤erent about e� this is true whatever

the contract o¤ered by P2: It follows that any deviation by P2 can be punished by having the agent

switching to e = e1: We conclude that an equilibrium that sustains (e�2; a
�
1 = a

�
2 = 1=2) exists.

Proof of Theorem 5.
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The proof is in two parts. Part 1 proves that if there exists a pure-strategy equilibrium �M
�

of �M that implements the SCF �; there also exists a truthful pure-strategy equilibrium �r� of �̂r

that implements the same outcomes. Part 2 proves that any SCF � that can be sustained as an

equilibrium of �̂r can also be sustained as an equilibrium of �M :

Part 1. Let �M� and �M�
A denote respectively the equilibrium menus and the continuation

equilibrium that support � in �M . Then, for any i; let ��i (�) denote the decision that A takes in

equilibrium with Pi when his type is �:

As a preliminary step, we prove the following result.

Lemma 1 Suppose the SCF � can be sustained as a pure-strategy equilibrium of �M : Then it can

also be sustained as a pure-strategy equilibrium in which the agent�s strategy satis�es the following

property. For any k 2 N ; � 2 � and �k 2 Dk, there exists a unique ��k(�; �k) 2 D�k such that
A always selects ��k(�; �k) with all principals other than k when Pk deviates from the equilibrium

menu, the agent�s type is �, the decision A selects with Pk is �k, and any principal Pi, i 6= k, o¤ered
the equilibrium menu.

Proof of Lemma 1. Let ~�
M
and ~�MA denote respectively the equilibrium menus and the

continuation equilibrium that support � in �M . Take any k 2 N and for any (�; �k) 2 ��Dk let
��k(�; �k) be any pro�le of decisions such that

��k(�; �k) 2 arg min
��k2D�k(�;�k;~�

M
�k)

Uk (�k; ��k; �) (15)

where

D�k(�; �k; ~�
M
�k) � arg max

��k2Im(~�
M
�k)

V (��k; �k; �)

with Im(~�
M
�k) �

Q
j 6=k Im(

~�
M
j ): Now consider the following pure-strategy pro�le��

M : For any i 2 N ;
��Mi is the pure strategy that prescribes that Pi o¤ers the same menu ~�

M
i as under ~�M . The

continuation equilibrium ��MA is such that, when either �Mi = ~�
M
i for all i; or jfi 2 N : �Mi 6=

~�
M
i gj > 1, then ��MA (�; �M ) = ~�MA (�; �

M ); for any �: When instead �M is such that �Mi = ~�
M
i for

all i 6= k; while �Mk 6= ~�
M
i for some k 2 N , then each type � selects a pro�le of decisions (�k; ��k)

such that �k is the same decision that, given the menus (~�
M
�k; �

M
k ); type � would have selected with

Pk according to the original strategy ~�MA whereas ��k = ��k(�; �k); as de�ned in (15). Given any

pro�le of contracts y selected by the lotteries (�k; ��k); the e¤ort the agent selects is then �k(�; y)

as de�ned in (2).

It is immediate that the behavior prescribed by the strategy ��MA is sequentially rational for

the agent. Furthermore, given ��MA ; a principal Pi who expects all other principals to o¤er the

equilibrium menus ~�
M
�i cannot do better than o¤ering the equilibrium menu ~�

M
i . We conclude that

��M is a pure-strategy equilibrium of �M that sustains the same SCF as ~�M .
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Hence, without loss, assume �M� satis�es the property of Lemma 1. For any i; k 2 N with

k 6= i; and for any (�; �k) 2 ��Dk; let �i(�; �k) denote the unique decision that A selects with Pi
when his type is �; the decision taken with Pk is �k, and the menus o¤ered are �Mj = �M�

j for all

j 6= k; and �Mk 6= �M�
k :

Next, consider the following strategy pro�le �̂r� for �̂r: Each principal o¤ers a direct mechanism

�̂
r�
i such that, for any (�; ��i; k) 2 ��D�i �N�i;

�̂
r�
i (�; ��i; k) =

8>><>>:
��i (�) if k = 0 and ��i = �

�
�i(�)

�i(�; �k) if k 6= 0 and ��i is such that �j = �j(�; �k) for all j 6= i; k
�i 2 argmax�0i2Im(�M�

i ) V (��i; �
0
i; �) in all other cases.

By construction, �̂
r�
i is incentive compatible. Now consider the following strategy �̂r�A for the agent

in �̂r:

(i) Given the equilibrium mechanisms �̂
r�
; each type � reports a message m̂r

i = (�; �
�
�i(�); 0) to

each Pi: Given any pro�le of contracts y selected by the lotteries ��(�), the agent then mixes over E

with the same distribution he would have used in �M given (�; �M�;m�(�); y) where m�(�) � ��(�)
are the equilibrium messages that type � would have sent in �M given the equilibrium menus �M�.

(ii) Given any pro�le of mechanisms �̂
r
such that �̂

r

i = �̂
r�
i for all i 6= k; while �̂

r

k 6= �̂
r�
k for

some k 2 N ; let �k denote the decision that type � would have induced with Pk in �M had the

menus o¤ered been �M = (�M�
�k ; �

M
k ) where �

M
k is the menu whose image Im(�Mk ) = Im(�̂

r

k). The

strategy �̂r�A then prescribes that type � reports to Pk any message mr
k such that �

r
k(m

r
k) = �k and

then reports to any other principal Pi, i 6= k, the message m̂r
i = (�; ��i; k), with

��i = (�k; (�j(�; �k))j 6=i;k):

Given any contracts y selected by the lotteries � = (�k; �j(�; �k)j 6=k), A then selects e¤ort �k(�; y);

as de�ned in (2).

(iii) Finally, for any pro�le of mechanisms �̂
r
such that the jfi 2 N : �̂

r

i 6= �̂
r�
i gj > 1, simply

let �̂rA(�; �
r) be any strategy that is sequentially optimal for A given (�; �̂

r
).

The behavior prescribed by the strategy �̂r�A is clearly a continuation equilibrium. Furthermore,

given �̂r�A , any principal Pi who expects all other principals to o¤er the equilibrium mechanisms

�̂
r�
�i cannot do better than o¤ering the equilibrium mechanism �̂

r�
i ; for any i 2 N : We conclude

that the strategy pro�le �̂r� in which each Pi o¤ers the mechanism �̂
r�
i and A follows the strategy

�̂�A is a truthful pure-strategy equilibrium of �̂r and sustains the same SCF � as �M� in �M :

Part 2. We now prove that if there exists an equilibrium �̂r of �̂r that sustains the SCF

�, then there also exists an equilibrium �M� of �M that sustains the same SCF. For any i 2 N
and any �Mi 2 �Mi ; let �̂

r
i (�

M
i ) � f�̂ri 2 �ri : Im(�̂

r

i ) = Im(�Mi )g denote the set of revelation
mechanisms with the same image as �Mi . The proof then follows from the same steps as in the
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proof of Part 2 in Theorem 2 replacing the mappings �ri (�) with the mappings �̂ri (�) and with the
following adjustment for Case 2. For any �M such that there exists a j 2 N such that �̂ri (�

M
i ) 6= ?

for all i 6= j while �̂rj(�Mj ) = ?, let �̂
r

j be any arbitrary revelation mechanism such that

�̂
r

j(�; ��j ; k) 2 arg max
�j2Im(�Mj )

V (�j ; ��j ; �) 8 (�; ��j ; k) 2 ��D�j �N�j :

For any � 2 �; the strategy �M�
A (�; �M ) then induces the same distribution over outcomes as the

strategy �̂r�A given �̂
r

j and given �̂
r

�j 2 �̂r�j(�M�j) �
Q
i6=j �̂

r
i (�

M
i ) in the sense of (11).
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