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Abstract

We present a model of participation in elections in small networks, in which citizens su¤er from

cross-pressures if voting against the alternative preferred by some of their social contacts. We analyze

how the existence of cross-pressures may shape voting decisions, and so, political outcomes; and how

candidates may exploit this e¤ect to their interest.
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"To go against the dominant thinking of your friends, of most of the people you see every day,

is perhaps the most di¢ cult act of heroism you can perform".

Theodore H. White

1 Introduction

Scholars devoted to the study of voting behavior have placed much of their attention on the reasons

explaining the decision to cast a vote. Their interest on this issue comes from the necessity to understand

the "paradox of not voting", namely, why voters, in large elections, engage in costly voting if their

probability of being pivotal, and therefore their probability of changing the outcome of an election, is

vanishingly small. It has been argued and posteriori shown by empirical literature, that turnout levels are

inversely related to the cost of voting (Wol�nger and Rosenstone (1980), or Riker and Ordeshook (1968)

among others). The classic factors usually considered in the literature to impact the costs of voting are

the weather, the distance to the pooling place, or the information and the time required to think about

one�s voting decision. Little if no attention has been placed, however, on the existence of cross-pressures

that may undermine the incentives and willingness to vote.

Nevertheless, empirical research on the US has found that people experiencing con�icts and incon-

sistencies between their opinions and those of their relatives, friends or co-workers, are less likely to

participate in politics. Mutz (2002), in an empirical study for the US presidential and congressional

elections of the 1992 and 1996, �nds that the probability of voting in an election is positively related

to some of the usual predictors such as political interest, partisanship, education or age. But she also

�nds that the decision to cast a vote is strongly negatively related to the exposition to dissonant polit-

ical opinions within one�s personal network. Mutz (2002) documents two theories to explain this e¤ect.

First, that cross-cutting exposure is likely to engender attitudinal ambivalence to an individual, inducing

political inaction. Second, that cross-pressures arising from one�s personal network can create the need

to be socially accountable, and then, it may bring about uncomfortable feelings when facing a decision

that does not please everybody in one�s network. As a result, individuals embedded in networks that

supply them with political information that challenges their views can be discouraged from involving and

participating in politics.

Apart from Mutz (2002), there is a number of studies pointing out to the problems posed by the

existence of cross-pressures, such as Lazarsfeld et al. (1944), Simmel (1955), Campbell et al. (1960),

Hibbing and Theiss-Morse (2002) or Mutz (2006). All these studies are empirical and they all base on

the analysis of data from social and political surveys. There is not, however, and to the best of our

knowledge, any theoretical study in which this phenomenon has been formally introduced. This is the

aim of this paper, in which we want to analyze how the existence of cross-pressures may shape voting
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decisions, and so, political outcomes; and how political parties may exploit this e¤ect to their interest.

To this aim, we consider a winner-take-all election game with two candidates (an incumbent and a

challenger) representing two di¤erent alternatives or ideologies. We consider a �nite number of citizens

that belong to one of the two groups or factions depending on their own preferred alternative. There

is a network representing the structure of friendship or close relationship among the citizens in the

community, i.e., a link between two agents represents the idea that they are close friends and not merely

acquaintances. We focus our attention on the study of small communities or small networks, where the

pattern of friendship relationships within the community and the preferences of all the individuals are

known to everybody, and so the existence of cross-pressures becomes of a special relevance. We consider

that candidates nominate sequentially (�rst the challenger and then the incumbent) a certain number

of citizens, within those rooting for their same preferred alternative, to run for o¢ ce in support of that

alternative. This idea of small networks and a candidate making lists of citizens to be elected, may apply

to a number of situations. For example, in the �eld of the academics, we can think of elections for the

board of directors in a department (chair, vice-chair and secretary), or elections for the board of directors

in a college (dean and associate deans). Similarly, the elections for the board of directors in private �rms

or soccer clubs work, in some cases, this way. Additionally, it can also apply to elections for mayor in

villages or small towns in many European countries, like Austria, Finland, Italy, Spain or Turkey, where

parties make lists of nominees to be elected.

We introduce the e¤ect of the cross-cutting cost in the model in a very stylized way, which, however,

allows us to obtain some sharp results. We assume that an individual su¤ers from cross-pressure when

he has at least one friend with a cross-preferred alternative running for o¢ ce, and additionally, he

votes for his own preferred alternative (therefore against his friend). As already pointed out, empirical

evidence documenting the e¤ects of cross-pressures �nds the existence of political disagreement su¢ cient

to generate this cost. We are, however, much more restrictive and consider the existence of cross-pressure

only when, with your vote, you "hurt" some of your friends. By so doing, we clearly de�ne the cross-

cutting cost, although it implies it to be considered a much more limited phenomenon.

The existence of cross-pressures will lead certain citizens in our model to abstain from voting, in

particular, those for whom the bene�t of having their preferred alternative implemented does not pay

the cost of bearing the cross-cutting e¤ect. This, additionally, will lead the candidates to strategically

choose their nominees so as to exploit this e¤ect.

Because of two types of coordination problems among citizens that may arise in this model, our

equilibrium concept is the strong perfect equilibrium. The strong Nash condition requires an equilibrium

to be immune to every possible coalitional deviation, and as usual, the perfect condition says that a

strategy pro�le must remain an equilibrium strategy pro�le in every proper subgame of the game.

This stylized model delivers some sharp results. Our �rst result is that there always exists a strong

3



perfect equilibrium. Our second result says that, even though there may exist more than one strong

perfect equilibrium for our game, they all are outcome equivalent in terms of which is the alternative

winning o¢ ce. This result is important for our analysis as it allows us to restrict our attention to a subset

of strong perfect equilibria that satis�es some reasonable conditions, as it is that players use weakly

dominant strategies, and that candidates maximize (minimize) the di¤erence of votes if this di¤erence

is favorable (unfavorable) to them. It is important to note that these conditions, although restrict and

simplify the model, do not have any consequence in terms of the outcome, namely they do not alter which

is the alternative getting into power. Our third result refers to the candidates�optimal strategies, and

it establishes the conditions that the optimal strategy of a candidate must satisfy. From this result we

derive one implication for the case in which the candidates make lists of just one citizen, as it is that, in

such a case, the candidates nominate in equilibrium the citizen (or one of the citizens) with more friends

in the other group. That is to say, candidates �nd it optimal to nominate the citizen that "covers"

(have links to) the largest number of people in the other faction, and so, generates the highest amount

of pressure in the other side. This equilibrium displays the feature known in graph theory as maximal

covering (see, for instance, Asratian et al.(1998)). This quite intuitive result fails to hold, however, in the

case each candidate has to nominate more than one citizen. It turns out that, in such a case, a candidate�s

optimal strategy has to take into account not only the covering of a list, but also the di¤erence between

the citizens running for o¢ ce covered by the two lists. Hence, we show by a counter-example that, in this

case, there are not necessarily equilibria in maximal covering, as it may be the case that a list that is not

a maximal covering procures a favorable di¤erence of covered running-citizens that outweighs its smaller

covering. We next derive some results on the importance of being the last mover. Here we obtain that, in

the case each candidate proposes a list of just one citizen, the identity of the candidate getting into power

does not depend on who is the incumbent at the beginning of the game, but it is simply determined by

the covering of the two lists. This result, however, is not generally true when the lists are of two of more

citizens each. In such a case, the incumbent has generally the advantage of being the last mover of the

game. Finally, we analyze the equilibria of the game for extreme values of the cross-cutting cost (instead

of more intermediate values of this cost as it is assumed in the main body of the paper). We observe

that, for low values of the cross-cutting cost, an equilibrium may generally fail to exist. On the other

hand, for high values of cross-pressures we observe that the existence of such high costs favors the �rst

mover, i.e., challenger, as compared to the case of an intermediate cost.

The idea of this paper emerged after reading the work by Mutz (2002). Mutz (2002) crystallizes

insights from earlier theories within social psychologists and political sociologists, pointing out to the

negative e¤ects posed by cross-pressures on voting behavior. This is quite a long-standing debate within

these disciplines, with some classical studies such as Lazarsfeld et al., (1944), Simmel (1955) or Campbell

et al. (1960). However, none of these classical studies were successful in con�rming that people involved
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in cross-cutting networks were induced either political ambivalence or a need to be socially accountable

that �nally discouraged them from participating in politics. Mutz (2002), di¤erently, takes advantage of

the more complete data set available nowadays and uses two surveys, the Cross-National Election Project

(CNEP), executed during the 1992 US election, and the Spencer survey, carried out during the fall of

1996, just before the US presidential election in November; to show that "People whose network involve

greater political disagreement are less likely to participate (vote) in politics".

Our model �ts into the literature on voter turnout, pioneered by Riker and Ordeshook (1968), Ledyard

(1981, 1984) and Palfrey and Rosenthal (1983, 1985) among others. More recent contributions to this

literature embedded into the "group-based" models of turnout, so called because they coincide on the idea

that the act of voting needs to be understood as a group decision. This "group-based" models, such as

Uhlaner (1989), Morton (1991), Shachar and Nalebu¤ (1999), or Herrera and Martinelli (2006), consider

that voters participate in elections because they are mobilized by leaders, who happen to a¤ect the voting

decisions of a¢ ne citizens by means of side-payments or social pressure (see Feddersen (2004) for a recent

survey). Our model is close to this literature in that our leaders (candidates and running-citizens) also

compete for political support, although in our case they do it by means of demobilizing, rather than

mobilizing, the electorate. We di¤er from theirs in that we endogenize the choice of leaders (nominees),

and in the key feature that we consider a network structure, with all its richness and particularities, that

imposes heterogeneity among all our agents.

In the same vein of mobilization models, the literature on vote buying considers that vote buyers make

o¤ers to purchase votes so as to favor their preferred policy. Groseclose and Snyder (1996) considers a

model of sequential vote buying in a legislature, where the two-period game form provides the last mover

an important advantage. This second mover advantage does also appear in our game. Recently, Dekel et

al. (2006a,b) analyze a sequential vote buying game where the number of "bribing" rounds is determined

endogenously, and the structure of the game does not therefore provide an advantage to any of the parties.

Within the literature on social networks, Fowler (2005) is probably the paper closest to ours, who

studies, for a "small world" network, how an individual�s voting decision spreads within the network.

Fowler attempts to explain the striking turnout numbers in large elections, and he provides an answer

based on the idea that if voters imitate each other�s behavior, then a single voting decision may generate

a turnout cascade.

In the analysis that follows, we present the model and the structure of the game in Section 2. In

Section 3, we formally de�ne the equilibrium notion and characterize the equilibrium conditions of the

game. In Section 4, we make a deeper analysis of the equilibrium behavior of candidates. In Section 5,

we relax some of our assumptions and study the equilibria of the game for both high and low values of

the cross-cutting cost. Finally we conclude in Section 6.
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2 The model

We analyze a winner-take-all election with two candidates A and B representing alternatives or ideologies

A and B respectively. There is a �nite population of citizens N: We denote by NA the set of citizens

favoring alternative A; and by NB the set of citizens favoring alternative B; with NA [ NB = N and

NA \NB = ;. For simplicity, we assume that neither A nor B belong to N:

There is an undirected network g : N � N ! f0; 1g representing the structure of friendship among
the elements of N , where g(x; y) = 1 if there is a link between citizens x and y; i.e., citizens x and

y are friends or have a close relationship, and g(x; y) = 0 otherwise.1 Let us de�ne, for any i 2 NA,
F (i) = fj 2 NB : g(i; j) = 1g as the set of friends of citizen i that favor ideology B. Analogously, for any
j 2 NB, F (j) = fi 2 NA : g(i; j) = 1g represents the set of friends of citizen j that favor ideology A.
We analyze the full information version of the game. That is to say, we consider that the network

structure and the preferences of all the agents are known to everybody. This is not an extreme assumption

in this model, as we want to analyze voting in small networks or small communities, where everybody

knows each other and knows each other�s preferences. This does not imply, however, that there is a close

relationship among all the agents in the community, but the structure of friendships is determined by the

network g:

We consider elections in which there are k + 1 seats in o¢ ce for the winning alternative, with k 2
Nnf0g.2 We assume that k � minfjNAj ; jNBjg. At the beginning of the game we consider that there is
one candidate in o¢ ce, without loss of generality, candidate A: That is to say, at the beginning of the

game, candidate A and a list blA of k citizens in NA; representing alternative A, are in power. We consider
a three stage game with timing as follows:

First stage (challenging stage): The challenger, candidate B; chooses which k citizens, from the

set NB; nominate to join her and comprise the list that will challenge the incumbent, i.e., she chooses

a list from the set LB = flB � NB : jlB j = kg: The nominees are informed about the identity of the k
proposed citizens and then each nominee decides, simultaneously, whether to accept or not to be part

of that list. In the case at least one of the proposed citizens does not accept, the game �nishes: no

challenging list forms, and the incumbent keeps in o¢ ce. The reader can think of this situation as a

non contested election in which the only alternative available is the one currently being implemented.

For simplicity we assume that, in such a case, there is no election and the incumbent remains in o¢ ce.3

1The fact that g is undirected means that g(x; y) = g(y; x) 8x; y 2 N .
2For example, elections for board of directors or governance committees in university departments or �rms.
3However, the result would not change if we considered that an election takes place in such a case. The reason is that

the citizens currently at o¢ ce always want to run for a new election if they know that they will win for sure, as it is here

the case. This means that the incumbent proposes the same list, and the citizens in favor of this alternative vote for it (this

is, at least, a weakly dominant strategy for the citizens). As a result, the incumbent, with or without elections, keeps in

o¢ ce if the challenger is not able to form a list.
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Di¤erently, if all of the proposed citizens accept, the list representing alternative B is formed, and we
move to the second stage.

Second stage (response stage): At the beginning of the second stage all the citizens in N and

the two candidates observe the challenging list: The incumbent, candidate A; chooses which k citizens,

from the set NA; nominate to join her and comprise the new list that will contest the challenger, i.e., she

chooses a list from the set LA = flA � NA : jlAj = kg.4 The nominees are informed about the identity
of the k proposed citizens and then each nominee decides, simultaneously, whether to accept or not to

be part of that list. Again, if at least one of the proposed citizens does not accept, the game �nishes:

the incumbent is not able to form a list that will threaten the challenger and then the challenger gets

into o¢ ce.5 Di¤erently, if all of the proposed citizens accept, the new list representing alternative A is

formed, and we move to the third stage of the game.

Third stage (voting stage): Each citizen x 2 N decides whether to vote for the alternative he

favors or to abstain. We assume that the candidates, A and B; always vote for their preferred alternative.

The alternative with more votes gets into o¢ ce. In case of a tie, a coin �ip determines the winner.

We next de�ne the strategies for candidates and citizens. We focus on pure strategies. A strategy for

candidate B; sB ; is an element from the set SB = LB ; i.e., a strategy for candidate B is to nominate the

k citizens that will represent alternative B: A strategy for candidate A; sA; is a function sA : LB ! LA

that maps any possible list lB 2 LB formed in the �rst stage, into a list lA 2 LA of k citizens, representing
alternative A; to contest lB . Let SA be the set of strategies of candidate A.
Regarding citizens, they have two choices to make. They �rst have to decide whether to accept or

not to run for o¢ ce, if proposed to be part of a list; and then have to decide whether to vote or not for

their most preferred alternative. A strategy for citizen j 2 NB is then (rj ; vj); where rj : LB ! f0; 1g is
a function that represents the decision of whether to accept to run for o¢ ce, rj(lB) = 1, or not to accept

it, rj(lB) = 0, if proposed by candidate B in the �rst stage, given list lB ;6 and vj : LA � LB ! f0; 1g is
a function that represents the decision of whether to vote for alternative B, vj(lA; lB) = 1; or to abstain,
vj(lA; lB) = 0; in the third stage, given the two lists. Analogously, a strategy for citizen i 2 NA is (ri; vi);
where ri : LA � LB ! f0; 1g is a function that represents the decision of whether to accept to run for
o¢ ce, ri(lA; lB) = 1, or not, ri(lA; lB) = 0, if proposed by candidate A in the second stage, given lists

lA and lB ;7 and vi : LA � LB ! f0; 1g is a function that represents the decision of whether to vote for
4Note that we do not impose that candidate A contests the challenger with the list of citizens blA initially in power. We

do allow her, however, to choose a new list afresh.
5Here again we assume, for simplicity, that no election is held if it is not contested. The reader may note, however, that

an election would yield the same result, i.e., the unique list running for o¢ ce (candidate B�s list) gets into power.
6Note that, given a proposed list lB 2 LB , an individual j 2 NB has to decide whether to accept to be part of that list

only if j 2 lB . However, in order to de�ne a strategy pro�le in a compact way, we consider that each agent j 2 NB chooses
rj(lB) 2 f0; 1g for all lB 2 LB , regardless of whether j 2 lB or not. Clearly, the choice of all the agents in the set NBnlB
is irrelevant.

7By a similar argument to the one used in the previous footnote, we also consider that each agent i 2 NA chooses
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alternative A, vi(lA; lB) = 1, or to abstain, vi(lA; lB) = 0, in the third stage, given the two lists. Let Si
and Sj denote the set of strategies to any citizen i 2 NA and j 2 NB, respectively.
Let S be the set of (pure) strategy pro�les of the game, with

s = (sA(lB); sB ; f(ri(lA; lB); vi(lA; lB))gi2NA ; f(rj(lB); vj(lA; lB))gj2NB) 2 S:

We de�ne a function RB : S ! f0; 1g representing the idea of whether candidate B, supporting
alternative B, has successfully formed a list and is then running for o¢ ce. In particular, RB(s) =

minj2sBfrj(sB)g, where RB(s) = 1 if all the nominees accept to be in the list sB and, therefore,

candidate B (with list sB) runs for o¢ ce; and RB(s) = 0 if at least one of the nominees does not

accept and, hence, the list is not formed. Analogously, we de�ne the function RA : S ! f0; 1g; as
RA(s) = mini2sA(sB)fri(sA(sB); sB)g.
The number of votes for alternative A is 1 +

P
i2NA

vi(sA(sB); sB); i.e., the vote of candidate A

and those of citizens in NA that cast their vote. Analogously, the number of votes for alternative B
is 1 +

P
j2NB

vj(sA(sB); sB): We consider a winner-take-all election, and so, the alternative with more

votes gets into o¢ ce. In case of a tie, a coin �ip determines the winner. Hence, given s 2 S, the

probability that alternative A gets into o¢ ce is

PA(s) =

8>>>><>>>>:
1 if either RB(s) = RA(s) = 1 and

P
i2NA

vi(sA(sB); sB) >
P
j2NB

vj(sA(sB); sB); or RB(s) = 0

1=2 if RB(s) = RA(s) = 1 and
P
i2NA

vi(sA(sB); sB) =
P
j2NB

vj(sA(sB); sB)

0 otherwise,

and the probability that alternative B does is PB(s) = 1� PA(s):
In this model we want to capture the idea that voting in a small network, where everything is common

knowledge and relationships are close, may imply a cost for a citizen if he casts his ballot for other

alternative rather than the one preferred in his social network. That is to say, voting for your preferred

alternative, but against the option preferred by your friends, can create cross-pressures that citizens may

want to avoid. In this model we capture this idea in a very stylized way. In particular, we assume that

citizen x su¤ers from cross-cutting pressures if at least one of his contacts (friends or close-colleagues) in

the social network runs for o¢ ce supporting the alternative he does not favor and either citizen x votes

(for his preferred alternative) or he also belongs to a list. This means that, unless running for o¢ ce, to

abstain is a way to avoid the cross-cutting cost. Let us denote by c this cross-cutting cost.8

We consider that holding o¢ ce is attractive. More precisely, we assume that candidates and citizens

attach a bene�t of h if they hold o¢ ce. Additionally, we consider that candidates and citizens get a

bene�t of d if their most preferred alternative is implemented.

ri(lA; lB) 2 f0; 1g for all (lA; lB) 2 LA � LB .
8Note that candidates A and B do not incur in cross-cutting pressures as we assume that they do not belong to the

network and, therefore, do not have friends in the other faction. Nevertheless, our results would not change if we considered

that candidates belong to the network but only have friends among those ideologically a¢ ne to theirs.
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We can now specify the payo¤s of citizens in N and those of candidates. Given s 2 S, the payo¤ of
an agent i 2 NA [ fAg is

�i(s) = PA(s)(hi(s) + d)� ci(s)

where:

� hi(s) is a function representing the bene�t of holding o¢ ce, with hi(s) = h if either agent i is running
for o¢ ce (i 2 sA(sB) [ fAg and RB(s) = RA(s) = 1) or he is already at o¢ ce and the challenger does
not threaten the incumbent (i 2 l̂A [ fAg and RB(s) = 0); and hi(s) = 0 otherwise,
� d is the bene�t of having his preferred ideology A implemented, and

� ci(s) is a function representing the cross-cutting cost, with ci(s) = c if agent i has at least one friend
running for alternative B (RB(s) = RA(s) = 1 and F (i)\ sB 6= ;) and, either agent i runs for alternative
A (i 2 sA(sB)) or he votes for alternative A (vi(sA(sB); sB) = 1); and ci(s) = 0 otherwise. Note that

candidate A does not incur in the cross-cutting cost, i.e., cA(s) = 0 for all s 2 S (cf. footnote 8).
Analogously, the payo¤ of an agent j 2 NB [ fBg is �j(s) = PB(s)(hj(s) + d)� cj(s), where hj(s) is

an analogous function representing the bene�t of holding o¢ ce, d is the bene�t of having his preferred

ideology B implemented, and cj(s) is an analogous function representing the cross-cutting cost.
Note that the existence of the cross-cutting cost a¤ects not only the decision of whether to vote or

not, but it also a¤ects the decision of whether to accept to be part of a list. This is so because we assume

that agents in a list incur in the cross-cutting cost when they have at least one friend running for their

cross-preferred alternative, independently on whether they vote or not.

In the analysis that follows that constitutes the main body of the paper, we assume c > d > 0 and

h > 2c� d: Nevertheless, these two assumption are relaxed on Section 5, where we analyze the game for
the cases of a low (c < d) and a high (c > h) cross-cutting cost. Regarding the assumptions c > d > 0

and h > 2c�d that apply in the main body of the paper, we observe: (i) The �rst condition says that the
cross-cutting cost is more important for any citizen that the bene�t of having his preferred alternative

implemented, i.e., any citizen who is not in a list and has a friend with a cross preferred alternative who

is running for o¢ ce, gets a higher payo¤ by abstaining than by voting; (ii) The second condition says

that holding o¢ ce is su¢ ciently attractive, i.e., it is pro�table for any nominee who anticipates that his

list will win or tie in an election to accept to be part of that list.

3 Equilibrium analysis

3.1 The equilibrium notion

In the multistage setup proposed in our game it is reasonable to require subgame perfection to the Nash

concept. However, as we shall explain below, our model engenders two coordination problems, which
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result in a huge multiplicity of subgame perfect equilibria that are not necessarily outcome equivalent.9

The �rst coordination problem that generates multiplicity of subgame perfect equilibria appears when

the nominees have to decide whether to accept or not to be part of a list. For example, if k � 2 and

rj1(sB) = rj2(sB) = 0 for at least two nominees j1; j2 2 sB , then RB(s) = minj2sBfrj(sB)g = 0 and

therefore any acceptance decision for each of the remaining nominees in sB can be sustained in a subgame

perfect Nash equilibrium. In such equilibria, the challenger is not able to form a list and so the incumbent�s

list keeps in o¢ ce. Analogously, the nominees in the list sA(sB) may face the same coordination problem.

Thus, given any list sB ; if k � 2 and ri1(sA(sB); sB) = ri2(sA(sB); sB) = 0 for at least two nominees

i1; i2 2 sA(sB), then RA(s) = 0 and so any acceptance decision for each of the remaining nominees in

sA(sB) can be sustained in a subgame perfect Nash equilibrium. In such equilibria, the incumbent is not

able to form a list to contest the challenger, therefore the latter gets into o¢ ce. This �rst coordination

problem leads to the existence of multiple subgame perfect Nash equilibria, which are not necessarily

outcome equivalent, and with the common feature that in all of them a list is not formed, even though

it may be pro�table for all of the proposed nominees to (jointly) accept to be in the list.

The second coordination problem that generates multiplicity of subgame perfect Nash equilibria arises

when the citizens have to decide whether to vote or to abstain. To illustrate this problem, let us consider

a strategy leading to an outcome in which there are at least two agents in NB voting for alternative

B, whereas no agent in NA votes for alternative A. In such a case, those agents in NA who, for the

given pair of lists, do not have cross pressures, are indi¤erent between voting and not voting. Hence, the

multiplicity of equilibria. Note however that, if the number of such agents were higher than the number

of citizens voting for alternative B, they would all bene�t if they all were to vote.
To address these coordination problems, we use a re�nement that allows for coalitional deviations.

The two most well-known re�nements proposed in the literature meant to capture the possibility of co-

ordinated deviations are, possibly, the strong Nash equilibrium (Aumann (1959)) and the coalition-proof

Nash equilibrium (Bernheim et al. (1987)). These two concepts require an equilibrium to be immune to

coalitional deviations. The di¤erence between them is, however, that while the strong Nash equilibrium

allows for deviations by every possible coalition, the coalition-proof Nash equilibrium requires that de-

viations must be self-enforcing, i.e., no proper sub-coalition can bene�cially deviate from the deviation.

Thus, the strong Nash equilibrium is more restrictive than the coalition-proof Nash equilibrium. In fact,

the coalition-proof Nash equilibrium was de�ned in view of the existence problems that the strong Nash

equilibrium was shown to present in many games. The game we analyze is, however, such that there

always exists a strong Nash equilibrium, or more precisely, a strong perfect equilibrium, which is the

precise concept that we use.10 This concept adapts the strong Nash equilibrium notion to the class of

9Note that the concept of subgame perfect equilibria is based on the implicit assumption that players cannot coordinate

on any joint, mutually bene�cial, change of strategies.
10This is true given the conditions c > d > 0 and h > 2c� d, which we assume throughout the main body of the paper.
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sequential-move games, by simply imposing a strategy pro�le to be a strong Nash equilibrium in every

proper subgame of the game.

We now formally de�ne the equilibrium notion. For each subset C � N [ fAg [ fBg, we de�ne
SC =

Q
z2C Sz and S�C =

Q
z=2C Sz. We �rst de�ne the notion of strong Nash equilibrium, which was

introduced by Aumann (1959).

De�nition 1 A strong Nash equilibrium is a strategy pro�le s� 2 S such that for each coalition C and

strategy ŝC 2 SC there exists at least one agent z 2 C such that �z(ŝC ; s��C) � �z(s�).

We now add the requirement of subgame perfection to the equilibrium concept and de�ne the notion

of strong perfect equilibrium, which was �rst introduced by Rubinstein (1979) for repeated games with

in�nite horizon, and posteriorly generalized by Brusco (1996).

De�nition 2 A strong perfect equilibrium is a strategy pro�le s� 2 S which is a strong Nash equilibrium
for each proper subgame of the extensive form game. Let S� � S be the set of strong perfect equilibria.

3.2 Equilibrium characterization

We �rst introduce the conditions that characterize the set of strong perfect equilibria of the game. To

this aim, let us de�ne some sets that will play a crucial role in the characterization.

De�nition 3 Given a pair of lists (lA; lB) 2 LA � LB, let I(lA; lB) = lA [ fi 2 NA : lB \ F (i) = ;g and
J(lA; lB) = lB [ fj 2 NB : lA \ F (j) = ;g.

In words, the set I(lA; lB) encompasses those individuals favoring alternative A that, given two lists

lA and lB formed and running for o¢ ce, either incur or do not incur in the cross-cutting cost c regardless

of their decision in the voting stage, i.e., those individuals for whom the voting decision does not imply

a cost. This set is clearly composed by the members of the list lA (who incur in the cross-cutting cost if

they have at least one friend in lB and do not incur in the cost otherwise) and by those citizens in NA

who do not have friends in lB ; and therefore, do not su¤er from cross-pressures. Analogously, the set

J(lA; lB) encompasses those individuals favoring alternative B that either incur or do not incur in the
cross-cutting cost c regardless of their decision in the voting stage. As we shall see below, these sets are

crucial to determine the outcome of an election, given a pair of lists lA and lB already formed.

De�nition 4 Given a list lB 2 LB, let WA(lB) = flA 2 LA : jI(lA; lB)j > jJ(lA; lB)jg and T (lB) =
flA 2 LA : jI(lA; lB)j = jJ(lA; lB)jg. Let ~WB = flB 2 LB : WA(lB) [ T (lB) = ;g and eT = flB 2 LB :
WA(lB) = ; and T (lB) 6= ;g.

When we relax these conditions a strong perfect equilibrium may fail to exist (see Section 5).
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In words, given any list that candidate B may propose, the set WA(lB) encompasses those lists for

candidate A such that, once proposed and formed, the number of citizens favoring alternative A whose

cross-cutting cost is independent of their voting decision exceeds the respective number of citizens favoring

alternative B. Similarly T (lB) encompasses those lists for candidate A such that those numbers are equal.
Finally ~WB represents the set of lists for candidate B for which both WA(lB) and T (lB) are empty, and
~T represents the set of lists for candidate B such that WA(lB) is empty but T (lB) is not. As we shall see

below, the sets ~WB and ~T are crucial to determine the equilibrium outcome of the game (see Proposition

1). With this notation at hand, in the next lemma we characterize the set of strong perfect equilibria of

the game.

Lemma 1 A strategy pro�le s� =
�
s�A(lB); s

�
B ; f(r�i (lA; lB); v�i (lA; lB))gi2NA ; f(r�j (lB); v�j (lA; lB))gj2NB

�
2

S is a strong perfect equilibrium of the game if and only if the following conditions (1)-(6) hold.

(1) For any (lA; lB) 2 LA � LB, v�z(lA; lB) = 0, for any z 2 Nn(I(lA; lB) [ J(lA; lB)).

(2) For any (lA; lB) 2 LA � LB : (2.a) if jI(lA; lB)j > jJ(lA; lB)j then
P

i2NA
v�i (lA; lB) > jJ(lA; lB)j;

(2.b) if jI(lA; lB)j = jJ(lA; lB)j then
P

i2NA
v�i (lA; lB) =

P
j2NB

v�j (lA; lB) = jI(lA; lB)j; and (2.c)
if jI(lA; lB)j < jJ(lA; lB)j then

P
j2NB

v�j (lA; lB) > jI(lA; lB)j.

(3) For any (lA; lB) 2 LA � LB : (3.a) if jI(lA; lB)j � jJ(lA; lB)j then r�i (lA; lB) = 1, for any i 2 lA;
and (3.b) if jI(lA; lB)j < jJ(lA; lB)j and lB \ F (i) 6= ; for (at least) one agent i 2 lA, then

minx2lA r
�
x(lA; lB) = 0.

(4) For any lB 2 LB : (4.a) if WA(lB) 6= ; then s�A(lB) 2 WA(lB); and (4.b) if WA(lB) = ; and
T (lB) 6= ; then s�A(lB) 2 T (lB).

(5) For any lB 2 LB : (5.a) if jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j then r�j (lB) = 1, for any j 2 lB; and
(5.b) if jJ(s�A(lB); lB)j < jI(s�A(lB); lB)j and s�A(lB) \ F (j) 6= ; for (at least) one agent j 2 lB,
then miny2lB r

�
y(lB) = 0.

(6) (6.a) If ~WB 6= ; then s�B 2 ~WB; and (6.b) if ~WB = ; and ~T 6= ; then s�B 2 ~T .

The proof of Lemma 1 is shown in the Appendix. Conditions (1)-(2) determine the equilibrium

behavior of citizens in the third stage (voting stage). Condition (1) says that, given two lists running

for o¢ ce, those agents that incur in the cross-cutting cost if chose to vote �nd it optimal to abstain.

Condition (2) says that, given two lists running for o¢ ce, the outcome of an election depends on the

cardinalities of the sets I(lA; lB) and J(lA; lB), i.e., on the number of citizens for whom the voting

decision does not imply a cost. Thus, in the case jI(lA; lB)j > jJ(lA; lB)j ; the agents in I(lA; lB) can
form a list lA that grants the o¢ ce. For this equilibrium to hold, we need that more than jJ(lA; lB)j
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agents in the set I(lA; lB) vote, so that no coalition of agents in J(lA; lB) �nds it pro�table to deviate.

Analogously, if jI(lA; lB)j < jJ(lA; lB)j ; the agents in J(lA; lB) can form a list lB that grants the o¢ ce.

For this equilibrium to hold, we need that more than jI(lA; lB)j agents in the set J(lA; lB) vote. Finally,
if jI(lA; lB)j = jJ(lA; lB)j, the equilibrium requires that all the agents in I(lA; lB) and J(lA; lB) vote,

which procures a tie. This is the only equilibrium, as in any other case, there will always be a coalition

of agents, either I(lA; lB) or J(lA; lB); that will bene�t from deviating and altering the outcome of the

election.

Conditions (3) and (4) represent the equilibrium behavior in the second stage (response stage). Specif-

ically, condition (3) determines the equilibrium behavior of agents in NA regarding their acceptance de-

cision. Thus, given a list lB (already formed) and a list lA (so far merely proposed), the equilibrium

condition requires that, in view of (1)-(2), all the agents in lA accept to be in that list if they anticipate

that their list will win or tie in an election. Di¤erently, if they anticipate that their list will lose, the

equilibrium condition requires that the list is not formed if there is at least one nominee susceptible to

incur in cross-pressures. Condition (4) determines the equilibrium behavior of candidate A. This condi-

tion requires that candidate A; in view of (1)-(3), chooses s�A(lB) 2WA(lB) if the set of lists that allows

her to get into o¢ ce is not empty; and chooses s�A(lB) 2 T (lB) if such set is empty but the set of lists
that allows her to tie is not.

Finally, conditions (5) and (6) represent the equilibrium behavior in the �rst stage (challenging stage).

Speci�cally, condition (5) determines the equilibrium behavior of agents in NB regarding their acceptance

decision. Thus, given a list lB , the equilibrium condition requires that, in view of (1)-(4), all the agents

in lB accept to be in lB if they anticipate that either candidate A will not be able to form a list, or she

will but will not be able to win o¢ ce with probability one. Di¤erently, if they anticipate that their list

will lose, the equilibrium condition requires that the list is not formed if there is at least one nominee

susceptible to incur in cross-pressures. Finally, condition (6) determines the equilibrium behavior of

candidate B. This condition requires that candidate B, in view of (1)-(5), chooses s�B 2 ~WB if the set of

lists that allows her to get into o¢ ce is not empty; and chooses s�B 2 ~T if such set is empty but the set

of lists that allows her to tie is not.

In the next proposition we show that the set of strong perfect equilibria is never empty (whatever

NA, NB , k and g) and that the outcome of any strong perfect equilibrium, in terms of which candidate,

A or B, gets into o¢ ce, depends exclusively on the cardinalities of the sets ~WB and ~T .

Proposition 1 S� 6= ; and, for any s� 2 S�, PA(s�) =

8>><>>:
0 if ~WB 6= ;
1
2 if ~WB = ; and ~T 6= ;
1 otherwise.

The proof is shown in the appendix. From Proposition 1, we obtain the next corollary that states

that all the strong perfect equilibria are outcome equivalent in terms of which alternative, A or B, gets
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into o¢ ce.

Corollary 1 PA(s�) = PA(~s�) for any (s�; ~s�) 2 S� � S�.

The corollary follows directly from Proposition 1, since the sets ~WB and ~T are de�ned independently

of the strategy s� 2 S� under consideration.
In view of conditions (1)-(6) in Lemma 1, the set of strategy pro�les that are strong perfect equilibria

may be large. Note however that although this number may be large, all of the strong perfect equilibria

are outcome equivalent in terms of which alternative gets into o¢ ce (Corollary 1). This allows us to

simplify the problem and restrict our attention to a particular subset of strong perfect equilibria that

satis�es some reasonable conditions,11 it without restringing the set of the equilibrium outcomes.

De�nition 5 Let S�� � S� be the subset of strong perfect equilibria such that s� 2 S�� if and only if it
satis�es the following conditions (7)-(11).

(7) For any z 2 N , v�z(lA; lB) =

8<: 1 if z 2 I(lA; lB) [ J(lA; lB)
0 otherwise.

(8) For any i 2 NA, r�i (lA; lB) =

8<: 1 if jI(lA; lB)j � jJ(lA; lB)j
0 otherwise.

(9) s�A(lB) 2 argmaxlA2LA jI(lA; lB)j � jJ(lA; lB)j.

(10) For any j 2 NB, r�j (lB) =

8<: 1 if jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j
0 otherwise.

(11) s�B 2 argmaxlB2LB jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j.

Note that we obtain conditions (7)-(11) by imposing some additional restrictions on conditions (1)-(6)

in Lemma 1. In particular, we obtain (7) from conditions (1)-(2), once we require that all the agents in

I(lA; lB) and J(lA; lB) vote. Note that for these citizens it is weakly dominant to vote. We obtain (8)

from condition (3), if we consider that when a nominee in lA anticipates that his list will lose if formed,

he refuses to be in the list (note that, in such a case, there may be agents in lA indi¤erent between

accepting and not).12 We obtain (9) from condition (4) if we consider that, when candidate A is able

to win the election with two or more lists, she chooses one of the lists that grants her the maximum

di¤erence of votes (with respect to the number of votes of candidate B); and when candidate A is neither

11As it is that citizens use weakly dominant strategies, and that candidates maximize (minimize) the di¤erence of votes

if this di¤erence is favorable (unfavorable) to them.
12Note that the outcome induced by the behavior of citizens in this equilibrium is equivalent to a situation in which the

candidates were allowed to decide whether to propose or not a list, and chose not to do it when anticipating no chances of

winning.
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able to win nor to tie an election with any of her lists, she chooses one of the lists that grants her the

minimum di¤erence of votes (with respect to those of candidate B). We obtain (10) from condition (5)

if, analogously to condition (8), we consider that when a citizen anticipates that his list lB will lose if

formed, he refuses to be in that list (note that, in this case, there may also be agents in lB indi¤erent

between accepting and not). Finally, we obtain (11) from condition (6) if, analogously to condition (9),

we consider that, when candidate B is able to win the election with two or more lists, she chooses one

of the lists that grants her the maximum di¤erence of votes; and when candidate B is neither able to

win nor to tie an election with any of her lists, she chooses one of the lists that grants her the minimum

di¤erence of votes.

The reader may note that for the set S�� of strong perfect equilibria that we consider, there are only

three possible outcomes that we detail next: (i) The �rst possible outcome is that the incumbent, with the

initial list blA, keeps in o¢ ce. This occurs when the challenger is not able to conform a list to threaten the
incumbent, therefore no election takes place and the incumbent stays in power. (ii) The second possible

outcome is that the challenger gets into o¢ ce. This occurs when the incumbent is not able to conform

a list to threaten the challenger. Here too, no election takes place and the challenger gets directly into

o¢ ce. (iii) Finally, the third possible outcome is a tie between the incumbent and the challenger. This

occurs when the two candidates are able to conform and present a list, and then, an election takes place.

Such election necessarily results in a tie, as otherwise the nominees in the loser list would have refused

to be part of that list. Hence, in equilibrium, each alternative has necessarily a probability of one-half of

getting into o¢ ce.

4 The candidates�game

In the previous analysis we have fully characterized the behavior of citizens in equilibrium -conditions

(7), (8) and (10). Regarding candidates, however, we just got the �avour of what they want to maximize

-conditions (9) and (11). In this section we focus on the candidates�game, and study some features of the

lists they choose in equilibrium. Then, we analyze the �rst mover advantage and study its implications

for the equilibrium outcomes.

4.1 Optimal lists

Previous to this analysis, it is convenient to note that, in our model, all that matters is the structure

of links among citizens in di¤erent groups, meaning that neither the voting decision nor the acceptance

decision depends on the structure of links among citizens with the same preferred alternative. This

implies that we can restrict our attention to the bipartite graph ~g induced by the network g, which is

represented by ~g : NA � NB ! f0; 1g; where ~g(x; y) = g(x; y) for any x 2 NA and y 2 NB. That is to
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say, we can focus on the structure of links (representing friendship) among citizens in di¤erent groups

and abstract from the structure of these links among citizens within the same group.

Going into the analysis of the candidates�optimal behavior, we note that condition (7) determines

that the only citizens voting in an election are those belonging to a list and those without cross-pressure.

This implies that if the candidates want to win o¢ ce, it is crucial for them to conform a list of citizens

that generates as much pressure as possible on the opposite faction. As a result, it seems reasonable to

think that a candidate would maximize her chances of winning by proposing a list whose nominees had

as much friends in the other group as possible as, by so doing, she would generate cross pressure to the

people in the other faction, who would optimally choose to abstain in the election in order to avoid the

cross-cutting cost. This idea, however, does not always work, meaning that it is not always optimal for

a candidate to choose the list that "covers" the maximum number of people in the other faction. More

precisely, choosing this kind of list is optimal in the case the candidate has to nominate just one citizen

(k = 1). Di¤erently, if there are more than two seats in o¢ ce for the winning alternative (k � 2); this
choice is not necessarily optimal. The reason is that, in such a case, it is important the number of people

"covered" by a list, but it also matters the number of citizens "covered" by a list that runs for o¢ ce,

those we name running-citizens. The point is that, in equilibrium, the running-citizens will always vote

for their most preferred ideology, regardless of whether they su¤er from cross-pressures or not, and then,

there is no point in inducing them such a cost.

Prior to the formal analysis of these ideas, we de�ne three important concepts: the covering of a list,

a list of maximal covering, and the set of covered nominees.

De�nition 6 The covering of a list lA 2 LA of candidate A which, with some abuse of notation, we denote
by F (lA), consists on the subset of elements of NB which are linked to at least one element of lA, i.e.,

F (lA) =
[

i2lA
F (i). Analogously, the covering of a list lB 2 LB of candidate B is F (lB) =

[
j2lB

F (j).

In other words, the covering of a list lA (resp. lB) is the set of citizens supporting alternative B (resp.

A) who are friends of at least one citizen in the list lA (resp. lB).

De�nition 7 The set lmcA 2 LA is a list of maximal covering for candidate A if F (lmcA ) has maximal

cardinality among the set of all possible lists LA, i.e., lmcA 2 argmaxlA2LA jF (lA)j. Analogously, the set
lmcB 2 LB is a list of maximal covering for candidate B if lmcB 2 argmaxlB2LB jF (lB)j. Let LmcA and LmcB
be the sets of lists of maximal covering for candidates A and B, respectively.

De�nition 8 Given a pair of lists (lA; lB) 2 LA � LB, the set of covered nominees in the list lA; which
we denote by CA(lA; lB); is the set of citizens in lA who are linked to at least one citizen in lB, i.e.,

CA(lA; lB) = lA\F (lB): Analogously, the set of covered nominees in the list lB is CB(lA; lB) = lB\F (lA).

That is to say, the set of covered nominees in a list is the set of citizens in that list that have at least

one friend running for o¢ ce for the cross-preferred alternative.
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We are now in position to analyze the equilibrium behavior of candidates, namely which is the can-

didates�optimal strategy. The next proposition characterizes this behavior.

Proposition 2 A strategy pro�le s� 2 S�� if and only if s�A(lB) 2 argmaxlA2LA jF (lA)j+ jCA(lA; lB)j �
jCB(lA; lB)j for any lB 2 LB ; s�B 2 argmaxlB2LB jF (lB)j�jF (s�A(lB))j+jCB(s�A(lB); lB)j�jCA(s�A(lB); lB)j,
and conditions (7), (8) and (10) hold. Additionally, if s� 2 S��, then jF (lmcA )j � jF (s�A(lB))j � 2k� 2 for
any lB 2 LB, and jF (lmcB )j � jF (s�B)j � 2k � 2:

The proof is shown in the appendix. This proposition contains two related ideas. The �rst one

describes the equilibrium strategy for candidates, and shows that the optimal strategy takes into account

not only the covering of a list, but also the di¤erence between the nominees covered by the two lists. The

second part of the proposition establishes an additional condition on the set of the equilibrium strategies.

In particular, it sets up an upper limit on the di¤erence in covering between the equilibrium strategy and

the list of maximal covering, this upper limit being an increasing function in the number of citizens in a

list (k). Hence, the larger k, the greater the allowed di¤erence in covering, and then, the larger the set

of possible equilibrium strategies. As a result, the larger k; the more complex the problem become.

These two issues, however, turn out to be much more simple in the case k = 1: In such a case, we

obtain that any pair of lists of maximal covering constitutes a strong perfect equilibrium. This means

that, in the case k = 1, it is optimal for the candidates to nominate the citizen (or one of the citizens)

with more friends in the other group. This further implies that the optimal strategy of a candidate is, in

such a case, independent of the strategy of the opposing candidate. This idea is formalized in the next

corollary.

Corollary 2 Consider k = 1: A strategy pro�le s� 2 S�� if and only if s�A(lB) 2 LmcA for any lB 2 LB ;
s�B 2 LmcB , and conditions (7), (8) and (10) hold.

The proof is shown in the appendix. The intuition for this result is that, in the case k = 1; and for

any pair of lists, the number of covered nominees in the two lists is equal, and then, all that matters is

to propose the list with a maximal covering.

However, for the case of k � 2, this is not necessarily true. The reason is that, in such a case, the

number of covered nominees in each of the two lists does not necessarily coincide. Hence, it may be

the case that a list that is not a maximal covering procures a favorable di¤erence of covered nominees

that outweighs its smaller covering. As a result, it may be no equilibrium in maximal covering. To see

this point in more detail, let us consider the network represented in Figure 1, where NA = fi1; :::; i8g;
NB = fj1; :::; j8g; and the existence of a link between citizens i and j; eg(i; j) = 1; is represented by an

arc between them.13

13Note that we restrict our attention to the bipartite graph eg induced by g.
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i1 i2 i3 i8i4 i5 i6 i7

j1 j2 j3 j8j4 j5 j6 j7

Figure 1.

Let us consider that there are three seats in o¢ ce for the winning alternative, therefore k = 2, and

that candidate A, with a list blA of two citizens, is initially in power. In such a case, it is candidate B
that has to propose a list of two citizens to challenge the incumbent. We now obtain the covering of each

citizen in NA and the list of maximal covering for the incumbent.

F (i1) = fj1g F (i3) = fj2; j3; j5g F (i5) = fj3; j4; j5; j6g F (i7) = fj6g
F (i2) = fj1; j3; j4g F (i4) = fj3g F (i6) = fj6g F (i8) = fj7; j8g

hence lmcA = fi5; i8g, with F (lmcA ) = F (i5) [ F (i8) = fj3; j4; j5; j6; j7; j8g, is the (unique) list of maximal
covering of candidate A. We proceed analogously for candidate B and obtain

F (j1) = fi1; i2g F (j3) = fi2; i3; i4; i5g F (j5) = fi3; i5g F (j7) = fi8g
F (j2) = fi3g F (j4) = fi2; i5g F (j6) = fi5; i6; i7g F (j8) = fi8g

hence lmcB = fj3; j6g, with F (lmcB ) = F (j3) [ F (j6) = fi2; i3; i4; i5; i6; i7g, is the (unique) list of maximal
covering of candidate B. As k = 2 and jF (lmcB )j = jF (lmcA )j = 6, by Proposition 2 we know that, for any
s� 2 S��, jF (s�B)j � 4 and jF (s�A(s�B))j � 4.
We now show that there is no equilibrium in maximal covering, i.e., an equilibrium in which the

two candidates propose their (unique) list of maximal covering. To see it, let us consider that the

challenger proposes her list of maximal covering, lmcB ; and that the incumbent does so, lmcA : In such a case,P
i2NA

v�i (l
mc
A ; lmcB ) = 3 and

P
j2NB

v�j (l
mc
A ; lmcB ) = 4, i.e., the incumbent would not be able to maintain

in o¢ ce as the citizens proposed to be in her list would have anticipated the outcome of an election and

would have optimally chosen not to run for o¢ ce. If the incumbent, however, after observing lmcB , chooses

to propose the list lA = fi2; i3g, with F (lA) = F (i2)[F (i3) = fj1; j2; j3; j4; j5g, hence jF (lA)j < jF (lmcA )j,
she will guarantee a tie in the election as, in such a case,

P
i2NA

v�i (lA; l
mc
B ) =

P
j2NB

v�j (lA; l
mc
B ) = 4.

The reader may note, additionally, that neither the challenger nor the incumbent can do better than this,

as for any of the lists of the challenger that provides a covering of �ve or six citizens, the incumbent can

always respond with a list that guarantees a tie; and for any of the lists of the challenger that provides a

covering of four, the incumbent can always beat her and win the election. Hence, the pair lmcB = fj3; j6g
and lA = fi2; i3g is an equilibrium of this game, but additionally, and more importantly, there is not an
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equilibrium in which the two candidates propose their list of maximal covering. We then conclude that,

in the case k = 2 (and, in general, for k � 2), there is not necessarily an equilibrium in maximal covering.

4.2 The role of incumbency

In this section we analyze if being the incumbent and, therefore, having the possibility to respond to the

list proposed by the challenger, provides the former an advantage in order to get into o¢ ce. As we shall

see below, this is not the case when k = 1 as, in such a case, the equilibrium outcome depends only on

the network architecture, and not in the order of moves. Di¤erently, we illustrate that when k � 2 there
may exist a last mover advantage.

The next proposition shows that there is no advantage for the incumbent in the case k = 1:

Proposition 3 Consider a population N = NX [NY , where NX \NY = ;, and a bipartite graph de�ned
by a function eg : NX �NY ! f0; 1g. Let S� be the set of strong perfect equilibria of the game with A = X
and B = Y, and let Ŝ� be the set of strong perfect equilibria of the game with B = X and A = Y. If
k = 1, then PA(s�) = PB(ŝ�) for any s� 2 S� and ŝ� 2 Ŝ�.

The proof is shown in the appendix. This result relies on Corollary 2 which implies that, in the case

k = 1, the outcome of an election is simply determined by the cardinalities of the sets NA and NB; and

by the covering of the lists proposed by the two candidates (speci�cally, the maximal covering lists). As

a result, the probability of a candidate getting into o¢ ce is, in equilibrium, independent of whether this

candidate was initially in power or not. Or to say to it di¤erently, there is no advantage of being the

incumbent (last to move), but all that matters is the bipartite graph eg induced by the network g.
This result, however, is no longer true when k � 2: In such a case, we know that the outcome of

an election does not directly result from the covering of the two lists, but that the number of covered

nominees is also an important variable. This implies that the incumbent, as the last player to move,

has the possibility of placing her nominees within the group of covered citizens, and so recovering these

voters (that otherwise would not have voted) and taking advantage of her position. To see this idea in

more detail, assume k � 2 and consider a population N = NX [NY , where NX \NY = ;, and a bipartite
graph de�ned by a function eg : NX �NY ! f0; 1g. There are three possibilities:

(i) Let us �rst consider the case A = X and B = Y with ~WB 6= ;. Then, in equilibrium, candidate B;
by choosing s�B = �y 2 ~WB gets into o¢ ce, i.e., alternative Y is implemented in equilibrium. Then,
in such a case, if we consider instead B = X and A = Y, if candidate A chooses ŝA(lB) = �y for

any lB 2 LB , then I(�y; lB) > J(�y; lB) for any lB 2 LB . Hence alternative Y is also implemented in
equilibrium.

(ii) Let us now consider the case A = X and B = Y with ~WB = ; and ~T 6= ;. Then, in equilibrium,
candidate B; by choosing s�B = �y 2 ~T gets a tie, i.e., alternative Y is implemented with probability
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of 1=2. Then, in such a case, if we consider instead B = X and A = Y, if candidate A chooses

ŝA(lB) = �y for any lB 2 LB , then I(�y; lB) � J(�y; lB) for any lB 2 LB . Hence the (new) incumbent
can guarantee a tie in the election, but it is still possible that she can win in equilibrium (alternative

Y implemented with probability of 1) if WA(lB) 6= ; for some lB 2 LB .

(iii) Finally, consider the case A = X and B = Y with ~WB = ~T = ;. Then, in equilibrium, candidate
B does not get into o¢ ce, i.e., alternative Y is not implemented in equilibrium. In such a case, if
we consider instead B = X and A = Y, it is possible that candidate A gets a tie in the election

(alternative Y implemented with probability of 1=2) if T (lB) 6= ; for some lB 2 LB .

Hence, a candidate does never su¤er from being the incumbent and, if k � 2, he may eventually

bene�t from it. To illustrate the incumbency advantage -cases (ii) and (iii) above-, let us consider the

example represented in Figure 2, in which candidate A, with a list blA of two citizens (hence k = 2), is

initially in power.14

i1 i2 i3 i8i4 i5 i6 i7

j1 j2 j3 j8j4 j5 j6 j7

Figure 2.

Let us �rst suppose that NA = fi1; :::; i8g and NB = fj1; :::; j8g: In such a case, it is optimal for
candidate B to propose her (unique) list of maximal covering, s�B = lmcB = fj5; j8g; with F (lmcB ) =

fi2; i3; i4; i6; i7; i8g, and for candidate A; to respond to lmcB , with one of her lists of maximal covering.

Speci�cally, s�A(l
mc
B ) = lmcA = fi3; i6g, with F (lmcA ) = fj2; j3; j5; j6; j7g. If this is the case, then the

election results in a tie, with
P

i2NA
v�i (s

�
A(l

mc
B ); lmcB ) =

P
j2NB

v�j (s
�
A(l

mc
B ); lmcB ) = 4: Let us now consider

the converse case, i.e., NA = fj1; :::; j8g and NB = fi1; :::; i8g. In such a case, the new incumbent can
always use her list of maximal covering, lmcA = fj5; j8g, to respond to the challenger�s list, and by so
doing, she can always guarantee a tie. However, in this new situation, the new incumbent has a strategy

that allows her to win o¢ ce. To see this, the reader may note that the new challenger, candidate B, is

indi¤erent among proposing any of her lists, either of maximal covering or not, as in all the cases, the

new incumbent, candidate A, wins the election by one vote. This means that, in the case the previous

challenger were the incumbent, she could always do as well as when being the challenger. The reason

for the incumbency advantage, as already pointed out, is that it is the second mover in this game that

14Note that the initial list l̂A does not have any e¤ect on the equilibrium strategies.
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has the advantage of placing her nominees within the group of covered citizens, and so gaining these

voters that otherwise would not have voted. This possibility may be crucial, and in some cases, it may

determine the outcome of an election.

This result, however, is not always true, namely it is not always the case that a candidate can always do

strictly better by being the incumbent rather than the challenger. This ability, however, deeply depends

on the network structure. For example, in the case of the network represented in Figure 1, the outcome

of the election, i.e., the winner of the race, does not depend on who is the incumbent at that time. That

is to say, an election, in such a case, always results in a tie independently on the identity of the candidate

initially in power.

Finally, working a bit more on these examples, we observe that, for a given network g; if we were

to repeat the game for a number of times, we would obtain three well distinguished outcomes: (i) The

�rst one is that the incumbent initially in power perpetuates in o¢ ce. This will occur if the network g

is such that the challenger does not have any chances of getting into o¢ ce. (ii) The second one is the

example presented in Figure 1 above, in which an election always results in a tie independently on who

is the incumbent at that time. In such a case, we will have a random rotation in power between the

two candidates. (iii) The third one is the example presented in Figure 2 above, in which the network

is such that the incumbent at the beginning of the game is weaker than the challenger but she has the

incumbency advantage. In such a case, the �rst election will result in a tie that could yield any of the

two candidates into o¢ ce. Now, if the challenger were to get into o¢ ce at the �rst election, she would

maintain in power for the rest of the game (unless the network changes). Di¤erently, if the incumbent

were to keep in o¢ ce after the �rst election, the next election would also result in a tie, and we would be

in the previous case. Summing up, any election in this case will result in a tie until the challenger gets

into o¢ ce; and from then on, the new incumbent, i.e., the former challenger, stays in power.

5 Analysis for extreme values of the cross-cutting cost

This section deals with the more extreme cases of a low (c < d < h) and a high (c > h > d) cross-cutting

cost. Here we show that for a low cross-cutting cost, only under very limited conditions a strong perfect

equilibrium exists. Regarding the case of high cross-pressures, we observe that the existence of such

high costs favors the challenger as compared to the case of an intermediate cost (h > c > d) analyzed

throughout the paper.

5.1 Low cross-cutting cost

We �rst consider the case of a low cross-cutting cost, c < d < h: Here, we di¤erentiate two cases: c > d
2

and c < d
2 , that we study separately.
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We �rst analyze the case c > d
2 . The next proposition characterizes the conditions for equilibrium

existence.

Proposition 4 Assume h > d > c > d
2 . Then S

� 6= ; if and only if, for any (lA; lB) 2 LA � LB, one
of the following three conditions (I)-(III) hold. (I) jI(lA; lB)j = jJ(lA; lB)j; (II) jI(lA; lB)j � jNBj; (III)
jJ(lA; lB)j � jNAj.

The proof is shown in the appendix. This result relies on the fact that, given d
2 < c < d: (i) A citizen

who is abstaining and whose preferred alternative looses the election, �nds it pro�table to deviate to

vote, and so, to incur in the cross-cutting cost, if and only if, by participating in a deviating coalition, his

preferred alternative turns into the winner; (ii) A citizen who is voting and incurring in cross-pressure,

and whose preferred alternative wins the election, �nds it pro�table to deviate to abstain, and so, to save

the cross-cutting cost, if and only if after his deviation his preferred alternative either still wins or ties in

the election; (iii) A citizen who is voting and incurring in cross-pressures, and whose preferred alternative

ties in the election, �nds it always pro�table to deviate to abstain, and so, to save the cross-cutting cost.

>From Proposition 4 we learn that only under very limited conditions a strong perfect equilibrium (in

pure strategies) can be found. In particular, for an equilibrium to exist we need that either the number

of citizens whose voting decision does not imply a cost is the same in the two groups, in which case the

equilibrium will result in a tie; or that the number of this people in one of these groups is higher or

equal than the total number of citizens in the other faction, in which case the larger faction wins o¢ ce.

Clearly, to require that one of these three conditions hold for each pair of list is quite strong, and so, an

equilibrium fails to exist in most of the cases.

We now analyze the case c < d
2 . The next proposition characterizes the conditions for equilibrium

existence.

Proposition 5 Assume h > d
2 > c. Then S

� 6= ; if and only if one of the following three conditions (I�)-
(III�) hold. (I�) jNAj = jNBj; (II�) jI(lA; lB)j > jNBj for any (lA; lB) 2 LA�LB; (III�) jJ(lA; lB)j > jNAj
for any (lA; lB) 2 LA � LB.

The proof is omitted, since it is very similar to the proof of Proposition 4. The new condition c < d
2

implies that a citizen who is not voting and whose preferred alternative is either losing or tying, is always

willing to deviate to vote, even in the case it implies to incur in the cross-cutting cost, if by so doing,

his preferred alternative turns either from losing to tying, or from tying to winning. Additionally, the

cross-cutting cost is in this case so small that no citizen �nds it pro�table to deviate from voting to

abstaining if, with his deviation, the probability that his preferred alternative wins o¢ ce is reduced (even

if by abstaining this citizen saves the cross-cutting cost).

The reader may note, that although restrictive, these conditions are no such strong as the ones in

Proposition 4. Speci�cally, condition (I�) says that for networks with factions of equal size, there is always

22



a strong perfect equilibrium in which candidates propose any pair of lists, all the nominees accept to be in

the lists, and all the citizens vote. This equilibria always results in a tie. Di¤erently, for the cases in which

jNAj 6= jNBj ; the equilibrium requirements are strong, as in the previous case and so, an equilibrium fails
to exist in most of the cases. Note that, if the requirements are satis�ed, the equilibrium always results

in the larger faction winning o¢ ce.

5.2 High cross-cutting cost

We now consider the case of a high cross-cutting cost, c > h > d: This parameter con�guration says

that cross-pressures are so important that even the bene�t of holding o¢ ce (itself) does not pay the

cross-cutting cost. Here, we di¤erentiate two cases: c > h+ d and h+ d > c, that we study separately.

Let us �rst consider the case c > h + d. In such a case, the main point is that in any strong perfect

equilibrium, none of the citizens in the incumbent�s faction will �nd it pro�table to run for o¢ ce if they

have at least one friend in the challenger�s list. This is so even if, by accepting, they anticipate that they

will win or tie the election. Formally, r�i (lB) = 0 for any i 2 NA such that lB\F (i) 6= ;: This implies that,
in any equilibrium, and for a given list lB ; the incumbent is "restricted" to choose the members of her list

s�A(lB) from the set NAnF (lB). This further implies that, in equilibrium, the set of covered nominees for
any of the two sides is empty. This fact rules out the incumbency advantage that we observed in Section

4.2 for k � 2; when h > 2c � d and c > d. Moreover, in the current case, there would be a challenger�s
advantage, since the set of "available" lists for the incumbent is restricted by the challenger�s list.

We �nally consider the case c < h+ d: The main di¤erence with respect to the previous case is that,

when c < h + d; a citizen in the incumbent�s faction �nds it pro�table to run for o¢ ce if he anticipates

that his list will win the election, regardless of whether he incurs in cross-pressures or not. Note that he

will not accept in the case that he anticipates that his list will tie or loose in the election. As a result, the

challenger can still impose a restriction (although weaker than in the previous case) on the incumbent�s

lists, as none of the covered citizens will �nd it pro�table to run for o¢ ce unless they anticipate that they

will win for sure. Or, to say it di¤erently, the incumbent partially conserves her last mover advantage

observed in Section 4.2 (recall she can strategically place her nominees within the set of covered citizens,

and so, recover these votes), but only in the case this advantage allows her to win (in such a case, a

covered citizen in NA still �nds it pro�table to run for the incumbent). Di¤erently, she can no longer

strategically place her nominees within the set of covered citizens when, by so doing, she is, at most, able

to tie (in such a case, no covered citizen will be willing to run for o¢ ce in her list). Hence, it is not clear

which position, i.e., being the incumbent or the challenger, is more favorable in order to get into o¢ ce,

which depends on the network architecture.
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6 Conclusion

From the forties to the sixties, a number of studies by social psychologists and political sociologists

(Lazarsfeld et al., (1944), Simmel (1955) or Campbell et al. (1960) among others) suggested that people

experiencing some degree of con�ict among the factors swaying their voting decision tend to participate

less in politics. More recently, Mutz (2002, 2006), in an empirical study for the US presidential and

congressional elections of the 1992 and 1996, �nds new and recent evidence showing that people whose

networks involve greater political disagreement are less likely to participate in politics.

Our paper is an attempt to incorporate this well documented fact into a model of voter turnout, to

the aim of studying how the existence of cross-pressures may shape voting decisions, and so, political

outcomes; and how political parties may exploit this e¤ect to their interest. To this aim we propose a

model of elections in small networks where the structure of friendships is common knowledge, and so the

existence of cross-pressures attaches a special relevance.

From a technical point of view, we characterize the set of strong perfect equilibria of the game and to

show that they all are outcome equivalent in terms of which alternative gets into o¢ ce. This means that,

given a network and a particular con�guration of the parameters, in all of the strong perfect equilibria, the

candidate getting into o¢ ce is always the same. Regarding the candidates�optimal strategy, we establish

the conditions that an optimal strategy must satisfy, and determine a lower bound for the covering of an

optimal list, which is linear in the number of seats in o¢ ce. The optimal strategy is, in general, di¢ cult

to identify as it deeply depends on the network architecture. Nevertheless, we show that for the case in

which each candidate has to propose just one citizen, a candidate�s optimal list belongs to the set of lists

of maximal covering. This result, however, does not necessarily hold when candidates have to propose

lists of two or more citizens. In such a case, an equilibrium in maximal covering does not necessarily

exist. We also derive some implications on the role of incumbency. In particular, we observe that the

incumbent, as the last player to move, may bene�t from this position and so enjoys an incumbency

advantage (which does not exist in the case of candidates making lists of just one citizen). Finally, we

explore the equilibria of the game for extreme values of the cross-cutting cost. We observe that, for

low values of the cross-cutting cost, an equilibrium may generally fail to exist. On the other hand, for

high values of cross-pressures we observe that the existence of such high costs favors the challenger as

compared to the case of an intermediate cost.

From a more meaningful point of view, we bring into an strategic analysis of agents�behavior the

idea that cross-pressures may be relevant for voting games. We propose a stylized model of elections in

small networks, which serves to derive some initial insights into the issue, as well as to point out some

of the problems that an analysis of cross-pressures in small networks may face. Nevertheless, this is a

�rst attempt to model a game with cross-pressure considerations, and as such, there is much to do on

this respect. For example, it would be interesting to take a more realistic approach for the cross-cutting
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cost and to allow for di¤erent levels of cross-pressures; or to make the cost dependent on the relative

number of non-a¢ ne friends over the total number of social contacts. For such set-ups, the analysis of

the strategic considerations that the existence of cross-pressures implies for voting games is something

still unexplored, that we plan to address in future work.

7 Appendix

Proof of Lemma 1

The proof is divided in two parts. In the �rst part, we show that conditions (1)-(6) are necessary for

a strategy pro�le s� to be a strong perfect equilibrium and in the second part we show that they are also

su¢ cient.

Part I: necessary conditions.

We �rst prove that conditions (1)-(6) are necessary for a strategy pro�le s� to be a strong perfect

equilibrium. To this aim, we follow a backwards induction argument (allowing for the deviations of all

possible coalitions at every subgame). We start considering the third stage. Given a pair of lists lB and

lA, and given the assumption c > d > 0, it is strictly dominated for any agent x 2 Nn(I(lA; lB)[J(lA; lB))
to choose v�x(lA; lB) = 1. Hence, condition (1) is necessary for s

� to be a strong perfect equilibrium.

Given a pair of lists lB and lA, by condition (1) we know that the outcome of the election will be

determined by the votes of the citizens in the sets I(lA; lB) and J(lA; lB). For each of the citizen in

these sets it is weakly dominant to vote, since they either incur or do not incur in the cross-cutting cost,

regardless of their decision in the voting stage.

We �rst claim that if jI(lA; lB)j = jJ(lA; lB)j ; then v�x(lA; lB) = 1 for any x 2 I(lA; lB) [ J(lA; lB) is
a necessary condition for s� to be a strong perfect equilibrium. For the sake of contradiction, assume it

is not the case. Then, if
P

i2NA
v�i (lA; lB) <

P
j2NB

v�j (lA; lB), a coalition formed by those individuals in

I(lA; lB) who do not vote would �nd it pro�table to deviate to vote and make their preferred alternative

either to tie or to win the election, a contradiction. Analogously, if
P

i2NA
v�i (lA; lB) >

P
j2NB

v�j (lA; lB),

then a coalition formed by those individuals in J(lA; lB) who do not vote would �nd it pro�table to deviate

to vote and make their preferred alternative either to tie or to win the election, a contradiction. Finally,

if
P

i2NA
v�i (lA; lB) =

P
j2NB

v�j (lA; lB) < jI(lA; lB)j, then any individual in I(lA; lB) [ J(lA; lB) who
does not vote would �nd it pro�table to deviate to vote and make his preferred alternative to win the

election, a contradiction. This proves the claim.

We now claim that if jI(lA; lB)j > jJ(lA; lB)j then
P

i2NA
v�i (lA; lB) > jJ(lA; lB)j is a necessary

condition for s� to be a strong perfect equilibrium. For the sake of contradiction, assume it is not the

case. Then, if
P

i2NA
v�i (lA; lB) �

P
j2NB

v�j (lA; lB), a coalition formed by those individuals in I(lA; lB)

who do not vote would �nd it pro�table to deviate to vote and make their preferred alternative to win
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the election, a contradiction. Finally, if
P

i2NA
v�i (lA; lB) >

P
j2NB

v�j (lA; lB), then a coalition formed

by those individuals in J(lA; lB) who do not vote would �nd it pro�table to deviate to vote and make

their preferred alternative either to tie or to win the election, a contradiction. This proves the claim.

Analogously, it can be shown that, if jJ(lA; lB)j > jI(lA; lB)j, then
P

j2NB
v�j (lA; lB) > jI(lA; lB)j is a

necessary condition for s� to be a strong perfect equilibrium. Hence, condition (2) is necessary for s� to

be a strong perfect equilibrium.

Now, given that the equilibrium behavior in the third stage is determined by conditions (1) and (2),

we analyze the equilibrium behavior in the second stage. Given a list lB 2 LB (already formed) and a list
lA 2 LA (so far merely proposed), we �rst claim that if jI(lA; lB)j � jJ(lA; lB)j then r�i (lA; lB) = 1, for
any i 2 lA, is a necessary condition for s� to be a strong perfect equilibrium. For the sake of contradiction,
assume that r�i (lA; lB) = 0 for at least one agent i 2 lA. Then the list lA does not form and the list lB

gets into o¢ ce. If the coalition formed by all the agents in lA who do not accept deviated to accept, the

list would form and, given (1), (2) and jI(lA; lB)j � jJ(lA; lB)j, it would either tie or win the election.
Hence, given the assumption h > 2c � d, the coalition does have incentives to deviate, a contradiction.
We now claim that if jI(lA; lB)j < jJ(lA; lB)j and lB \ F (i) 6= ; for (at least) one agent i 2 lA, then it is
necessary for s� to be a strong perfect equilibrium that r�x(lA; lB) = 0 for (at least) one agent x 2 lA. For
the sake of contradiction, assume jI(lA; lB)j < jJ(lA; lB)j and lB \F (i) 6= ; for (at least) one agent i 2 lA
and r�x(lA; lB) = 1 for all x 2 lA. Then, the list lA forms and, given (1) and (2), list lB gets into o¢ ce
and agent i�s payo¤ is �c, since i 2 lA and lB \F (i) 6= ;, whereas if he deviated to choose r�i (lA; lB) = 0,
list lB would also get into o¢ ce but agent i would avoid the cross-cutting cost and get a payo¤ 0 > �c,
a contradiction with s� being a strong perfect equilibrium. This proves the claim. Hence, condition (3)

is necessary for s� to be a strong perfect equilibrium.

Now, given (1), (2) and (3), we analyze the equilibrium behavior of candidate A. Given a list lB 2 LB
(already formed), by (1), (2), and (3), if candidate A chooses a list s�A(lB) 2 WA(lB) she gets into o¢ ce

and achieves a payo¤ h+d; whereas if s�A(lB) =2WA(lB) she, at most, gets a tie (being her payo¤ at most
h+d
2 ). Hence, if WA(lB) 6= ; then s�A(lB) 2WA(lB) is a necessary condition for s� to be a strong perfect

equilibrium. In the case WA(lB) = ;, by choosing a list s�A(lB) 2 T (lB) there is a tie in the election
(being candidate A�s payo¤ h+d

2 ) whereas if s
�
A(lB) =2 T (lB) list lB gets into o¢ ce (being candidate A�s

payo¤ 0). Hence, if WA(lB) = ; and T (lB) 6= ; then s�A(lB) 2 T (lB) is a necessary condition for s� to be
a strong perfect equilibrium. Hence, condition (4) is necessary for s� to be a strong perfect equilibrium.

Now, given that the equilibrium behavior in the second and third stage is determined by conditions

(1)-(4), we analyze the equilibrium behavior in the �rst stage. Given a list lB (so far merely proposed),

we �rst claim that if jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j then r�j (lB) = 1, for any j 2 lB , is a necessary
condition for s� to be a strong perfect equilibrium. For the sake of contradiction, assume that r�j (lB) = 0

for at least one agent j 2 lB . Then the list lB does not form and the list l̂A remains in o¢ ce. However,
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if the coalition formed by all the agents in lB who do not accept deviated to accept, the list would form

and, given (1)-(4) and jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j, it would either tie or win the election. Given the
assumption h > 2c � d, the coalition has incentives to deviate, a contradiction. We now claim that if

jJ(s�A(lB); lB)j < jI(s�A(lB); lB)j and s�A(lB)\F (j) 6= ; for (at least) one agent j 2 lB , then it is necessary
for s� to be a strong perfect equilibrium that r�y(lB) = 0 for (at least) one agent y 2 lB . For the sake
of contradiction, assume jJ(s�A(lB); lB)j < jI(s�A(lB); lB)j and s�A(lB) \ F (j) 6= ; for (at least) one agent
j 2 lB and r�y(lB) = 1 for all y 2 lB . Then, the list lB forms and, given (1)-(4), the list s�A(lB) forms and
gets into o¢ ce, and agent j�s payo¤ is �c, since j 2 lB and s�A(lB) \ F (j) 6= ;, whereas if he deviated to
choose r�j (lB) = 0, list l̂A would remain in o¢ ce and agent j would avoid the cross-cutting cost and get a

payo¤ 0 > �c, a contradiction with s� being a strong perfect equilibrium. This proves the claim. Hence,
condition (5) is necessary for s� to be a strong perfect equilibrium.

Now, given (1)-(5) we analyze the equilibrium behavior of candidate B. By (1)-(5), if candidate B

chooses a list s�B 2 ~WB she gets into o¢ ce and achieves a payo¤ h+ d; whereas if s�B =2 ~WB she, at most,

gets a tie (being her payo¤ at most h+d
2 ). Hence, if

~WB 6= ; then s�B 2 ~WB is a necessary condition

for s� to be a strong perfect equilibrium. In the case ~WB = ;, by choosing a list s�B 2 ~T there is a tie

in the election (being candidate B�s payo¤ h+d
2 ) whereas if s

�
B =2 ~T alternative A gets into o¢ ce (being

candidate B�s payo¤ 0). Hence, if ~WB = ; and ~T 6= ; then s�B 2 ~T is a necessary condition for s� to be

a strong perfect equilibrium. Hence, condition (6) is necessary for s� to be a strong perfect equilibrium.

Part II: su¢ cient conditions.

Once we have proven that (1)-(6) are necessary conditions for a strategy pro�le s� to be a strong

perfect equilibrium, we prove that they are also su¢ cient, i.e., we claim that, if a strategy pro�le s� 2 S
satis�es (1)-(6), then s� is a strong perfect equilibrium. We have to prove that, if s� satis�es (1)-(6), no

coalition of players has incentives to deviate at any proper subgame. We also use a backwards induction

argument. In the third stage of the game, for any possible pair of proposed lists (lA; lB) 2 LA � LB ,
given (1) and (2), the outcome of the election is determined by the cardinalities of the sets I (lA; lB)

and J (lA; lB). If jI(lA; lB)j > jJ(lA; lB)j, list lA gets into o¢ ce and no individual in NA has incentives
to be part of a deviating coalition. The outcome of the election can only be altered if individuals in

the set NBnJ(lA; lB) deviate to vote but, as we already noted, it is strictly dominated to vote for such
individuals. Hence, no coalition has incentives to deviate in the voting stage when jI(lA; lB)j > jJ(lA; lB)j.
By an analogous reasoning we can also conclude that no coalition of citizens has incentives to deviate

in the third stage when jJ(lA; lB)j > jI(lA; lB)j. Finally if jI(lA; lB)j = jJ(lA; lB)j the outcome of the
election is a tie. Clearly, no individual in the sets I(lA; lB) and J(lA; lB) has incentives to be part of

a deviating coalition, since by deviating to not voting such individual can only reduce the probability

that his preferred alternative gets into o¢ ce. On the other hand, since for the remaining citizens it is

strictly dominated to vote, we conclude that no coalition has incentives to deviate in the voting stage
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when jI(lA; lB)j = jJ(lA; lB)j.
We now show that, given a list lB (already formed) and a list lA (so far merely proposed), if s�

satis�es (1)-(6) then no coalition of players in lA has incentives to deviate (in the acceptance decisions).

If jI(lA; lB)j � jJ(lA; lB)j, given (1)-(3), lA gets into power and, if any coalition of players in lA deviates,
then alternative lB gets into power instead. Given the assumption h > 2c � d, no coalition of players
deviates at this stage when jI(lA; lB)j � jJ(lA; lB)j. On the other hand, if jI(lA; lB)j < jJ(lA; lB)j, given
(1)-(3), lB gets into o¢ ce and it cannot be prevented by the deviation of any coalition of players in lA

in their acceptance decisions. Note that condition (3.b) requires that in such a case, and given lB ; the

list lA may form only if no player in the list is susceptible to incur in the cross-cutting cost. Hence, a

deviation at this stage cannot improve the payo¤ of any agent in lA but can reduce the payo¤ of some

of them (those who could incur in the cross-cutting cost c if the list were formed). Hence no coalition of

players in lA has incentives to deviate at this stage. Note also that, given (1)-(3), candidate A does not

have incentives to deviate from the behavior prescribed by (4), since it prescribes to choose a list that

allows her to get into o¢ ce, when such a list exists; and to choose a list that allows her to tie in the case

there is no list susceptible to win but there exists at least one list that can tie.

We �nally show that, if s� satis�es (1)-(6), then there is no pro�table deviation in the �rst stage. We

�rst show that given a list lB so far merely proposed, if s� satis�es (1)-(6), then no coalition of players in lB

has incentives to deviate (in the acceptance decisions). If jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j, given (1)-(5),
lB gets into power and, if any coalition of players in lB deviates, then s�A(lB) wins o¢ ce instead. Given the

assumption h > 2c�d, no coalition of players deviates at this stage when jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j.
On the other hand, if jJ(s�A(lB); lB)j < jI(s�A(lB); lB)j, given (1)-(5), either l̂A or s�A(lB) gets into o¢ ce
and it cannot be prevented by the deviation of any coalition of players in lB in their acceptance decisions.

Note that condition (5.b) requires that, in such a case, the list lB may form only if no player in the

list is susceptible to incur in the cross-cutting cost. Hence, a deviation at this stage cannot improve

the payo¤ of any agent in lB but can reduce the payo¤ of some of them (those who could incur in the

cross-cutting cost c if the list were formed). Hence no coalition of players in lB has incentives to deviate

at this stage. Note also that, given (1)-(5), candidate B does not have incentives to deviate from the

behavior prescribed by (6), since it prescribes to choose a list that allows her to get into o¢ ce, when such

a list exists; and to choose a list that allows her to tie in the case there is no list susceptible to win but

there exists at least one list that can tie. This completes the proof. �

Proof of Proposition 1

The fact that S� 6= ; follows directly from Lemma 1 since, by construction, the set of strategies

satisfying conditions (1)-(6) is not empty. Additionally, for any strategy pro�le s� 2 S� satisfying

conditions (1)-(6), we have three possibilities:

(i) ~WB 6= ;. In such a case we know, by (6), that s�B 2 ~WB . Hence WA(s
�
B) [ T (s�B) = ;. Thus
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s�A(s
�
B) 2 LA -unrestricted, given (4)-, and jJ(s�A(s�B); s�B)j > jI(s�A(s�B); s�B)j. By (1), (2), (3) and (5) we

conclude that RB(s�) = 1 and either RA(s�) = 1 and
P

j2NB
v�j (s

�
A(s

�
B); s

�
B) >

P
i2NA

v�i (s
�
A(s

�
B); s

�
B),

or RA(s�) = 0. Hence, PA(s�) = 0.

(ii) ~WB = ; and ~T 6= ;. In such a case we know, by (6), that s�B 2 ~T . Hence WA(s
�
B) = ; and

T (s�B) 6= ;. Thus, given (4) we have s�A(s�B) 2 T (s�B), and jI(s�A(s�B); s�B)j = jJ(s�A(s�B); s�B)j. By (1), (2),
(3) and (5) we conclude that RB(s�) = RA(s�) = 1 and

P
i2NA

v�i (s
�
A(s

�
B); s

�
B) =

P
j2NB

v�j (s
�
A(s

�
B); s

�
B).

Hence, PA(s�) = 1
2 .

(iii) ~WB = ~T = ;. In such a case we know, by (6), that s�B 2 LB is unrestricted. Hence

WA(s
�
B) 6= ;. Thus, given (4), s�A(s�B) 2 WA(s

�
B) and jI(s�A(s�B); s�B)j > jJ(s�A(s�B); s�B)j. By (1), (2),

(3) and (5) we conclude that either RB(s�) = 0 or RB(s�) = RA(s�) = 1 and
P

i2NA
v�i (s

�
A(s

�
B); s

�
B) >P

j2NB
v�j (s

�
A(s

�
B); s

�
B). Hence, PA(s

�) = 1. This completes the proof. �

Proof of Proposition 2

We have de�ned S�� as the set of equilibrium strategy pro�les satisfying conditions (7)-(11) de�ned

in Section 3.2. To prove the �rst part of the proposition we have to show that condition (9) is equivalent

to s�A(lB) 2 argmaxlA2LA jF (lA)j + jCA(lA; lB)j � jCB(lA; lB)j for any lB 2 LB , and condition (11) is
equivalent to s�B 2 argmaxlB2LB jF (lB)j � jF (s�A(lB))j+ jCB(s�A(lB); lB)j � jCA(s�A(lB); lB)j.
Let us �rst prove the �rst equivalence. Condition (9) states that s�A(lB) 2 argmaxlA2LA jI(lA; lB)j �

jJ(lA; lB)j ; for any lB 2 LB . Note that jI(lA; lB)j = jNAj�jF (lB)j+ jCA(lA; lB)j and jJ(lA; lB)j = jNBj�
jF (lA)j+jCB(lA; lB)j. Thus, jI(lA; lB)j�jJ(lA; lB)j = jF (lA)j�jF (lB)j+jCA(lA; lB)j�jCB(lA; lB)j+jNAj�
jNBj. Therefore, the set argmaxlA2LA jI(lA; lB)j�jJ(lA; lB)j coincides with the set argmaxlA2LA jF (lA)j+
jCA(lA; lB)j � jCB(lA; lB)j.
We now prove the second equivalence. Condition (11) states that s�B 2 argmaxlB2LB jJ(s�A(lB); lB)j�

jI(s�A(lB); lB)j. Note that jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j = jF (lB)j � jF (s�A(lB))j + jCB(s�A(lB); lB)j �
jCA(s�A(lB); lB)j+ jNBj� jNAj. Therefore the set argmaxlB2LB jJ(s�A(lB); lB)j� jI(s�A(lB); lB)j coincides
with the set argmaxlB2LB jF (lB)j � jF (s�A(lB))j+ jCB(s�A(lB); lB)j � jCA(s�A(lB); lB)j.
To prove the second part of the proposition, note that s�A(lB) 2 argmaxlA2LA jF (lA)j+ jCA(lA; lB)j�

jCB(lA; lB)j implies jF (s�A(lB))j+jCA(s�A(lB); lB)j�jCB(s�A(lB); lB)j � jF (lA)j+jCA(lA; lB)j�jCB(lA; lB)j
for any lA 2 LA. In particular, this must hold for lA = lmcA : Then, (jCA(s�A(lB); lB)j� jCB(s�A(lB); lB)j)�
(jCA(lmcA ; lB)j � jCB(lmcA ; lB)j) � jF (lmcA )j � jF (s�A(lB))j : Now note that, for any lA 2 LA and lB 2 LB ,
jCA(lA; lB)j = 0 implies jCB(lA; lB)j = 0; and jCA(lA; lB)j 2 f1; :::; kg implies jCB(lA; lB)j 2 f1; :::; kg.
Hence, jCA(lA; lB)j 2 f0; 1; :::; kg and jCB(lA; lB)j 2 f0; 1; :::; kg, together with the fact that jCA(lA; lB)j =
0 implies jCB(lA; lB)j = 0; results in jCA(lA; lB)j � jCB(lA; lB)j 2 f�k+1; :::; k� 1g. Hence, for any pair
of lists lA, l0A, (jCA(lA; lB)j� jCB(lA; lB)j)� (jCA(l0A; lB)j� jCB(l0A; lB)j) 2 f�2k+2;�2k+3; :::; 2k� 2g.
In particular, for the lists s�A(lB) and l

mc
A , we have (jCA(s�A(lB); lB)j�jCB(s�A(lB); lB)j)�(jCA(lmcA ; lB)j�

jCB(lmcA ; lB)j) � 2k � 2. Thus, jF (lmcA )j � jF (s�A(lB))j � 2k � 2.
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We now prove that (jF (lmcB )j � jF (s�B)j) � 2k � 2. First, note that s�B 2 argmaxlB2LB jF (lB)j �
(jF (s�A(lB))j+ jCA(s�A(lB); lB)j � jCB(s�A(lB); lB)j) implies jF (s�B)j � (jF (s�A(s�B))j+ jCA(s�A(s�B); s�B)j �
jCB(s�A(s�B); s�B)j) � jF (lB)j � (jF (s�A(lB))j+ jCA(s�A(lB); lB)j � jCB(s�A(lB); lB)j) for any lB 2 LB .
In particular, this must hold for lB = lmcB : Then, (jF (s�A(lmcB ))j+jCA(s�A(lmcB ); lmcB )j�jCB(s�A(lmcB ); lmcB )j)�

(jF (s�A(s�B))j+ jCA(s�A(s�B); s�B)j � jCB(s�A(s�B); s�B)j) � jF (lmcB )j � jF (s�B)j.
Note that, for any lB 2 LB , jF (s�A(lB))j+ jCA(s�A(lB); lB)j � jCB(s�A(lB); lB)j � jF (lmcA )j � k + 1. In

particular, we have that, for s�B , jF (s�A(s�B))j+ jCA(s�A(s�B); s�B)j � jCB(s�A(s�B); s�B)j � jF (lmcA )j � k + 1.
Moreover note that, for any lB 2 LB , jF (s�A(lB))j+ jCA(s�A(lB); lB)j�jCB(s�A(lB); lB)j � jF (lmcA )j+k�1.
In particular, for lmcB , jF (s�A(lmcB ))j+ jCA(s�A(lmcB ); lmcB )j � jCB(s�A(lmcB ); lmcB )j � jF (lmcA )j+ k � 1.
Hence, (jF (s�A(lmcB ))j+ jCA(s�A(lmcB ); lmcB )j � jCB(s�A(lmcB ); lmcB )j)� (jF (s�A(s�B))j+ jCA(s�A(s�B); s�B)j �

jCB(s�A(s�B); s�B)j) � 2k � 2. Therefore, jF (lmcB )j � jF (s�B)j � 2k � 2. This completes the proof. �

Proof of Corollary 2

Using a similar argument to the one used in the proof of Proposition 2, we have to show that, in the

case k = 1, condition (9) is equivalent to s�A(lB) 2 LmcA for any lB 2 LB , and condition (11) is equivalent
to s�B 2 LmcB . To this aim, note that, in the case k = 1, we have jCA(lA; lB)j = jCB(lA; lB)j for any
lA 2 LA and lB 2 LB .
>From Proposition 2 we know that the set argmaxlA2LA jI(lA; lB)j � jJ(lA; lB)j is equivalent to the

set argmaxlA2LA jF (lA)j + jCA(lA; lB)j � jCB(lA; lB)j : Then, given that jCA(lA; lB)j = jCB(lA; lB)j in
the case k = 1; we obtain s�A(lB) 2 argmaxlA2LA jF (lA)j for any lB 2 LB . Hence, s�A(lB) 2 LmcA for any

lB 2 LB .
Analogously for candidate B; we have that the set argmaxlB2LB jJ(s�A(lB); lB)j � jI(s�A(lB); lB)j is

equivalent to the set argmaxlB2LB jF (lB)j � jF (s�A(lB))j + jCB(s�A(lB); lB)j � jCA(s�A(lB); lB)j, which
furthermore coincides with the set argmaxlB2LB jF (lB)j, as jCA(lA; lB)j = jCB(lA; lB)j and s�A(lB) 2 LmcA
for any lB 2 LB , and then, jF (s�A(lB))j is constant and independent of lB . Hence, s�B 2 LmcB . This

completes the proof. �

Proof of Proposition 3

Assume k = 1. Consider �rst the case A = X and B = Y. By Corollary 2, if s� 2 S��, then s�

satis�es conditions (7), (8) and (10), s�A(s
�
B) 2 LmcA , and s�B 2 LmcB . Then jI(s�A(s�B); s�B)j = jNX j �

jF (s�B)j + jCA(s�A(s�B); s�B)j and jJ(s�A(s�B); s�B)j = jNY j � jF (s�A(s�B))j + jCB(s�A(s�B); s�B)j. As k = 1

implies jCA(s�A(s�B); s�B)j = jCB(s�A(s�B); s�B)j, there are three possibilities.
(i) If jNX j + jF (s�A(s�B))j > jNY j + jF (s�B)j, then jI(s�A(s�B); s�B)j > jJ(s�A(s�B); s�B)j and, by (7), (8)

and (10), PA(s�) = 1.

(ii) If jNX j + jF (s�A(s�B))j = jNY j + jF (s�B)j, then jI(s�A(s�B); s�B)j = jJ(s�A(s�B); s�B)j and, by (7), (8)
and (10), PA(s�) = 1=2.
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(iii) If jNX j+ jF (s�A(s�B))j < jNY j+ jF (s�B)j, then jJ(s�A(s�B); s�B)j > jI(s�A(s�B); s�B)j and, by (7), (8)
and (10), PA(s�) = 0.

Consider now the case B = X and A = Y. By Corollary 2, if ŝ� 2 Ŝ��, then ŝ� satis�es conditions (7),
(8) and (10), ŝ�A(ŝ

�
B) 2 L̂mcA , and ŝ�B 2 L̂mcB . Then jI(ŝ�A(ŝ�B); ŝ�B)j = jNY j � jF (ŝ�B)j + jCA(ŝ�A(ŝ�B); ŝ�B)j

and jJ(ŝ�A(ŝ�B); ŝ�B)j = jNX j � jF (ŝ�A(ŝ�B))j + jCB(ŝ�A(ŝ�B); s�B)j. As k = 1 implies jCA(ŝ�A(ŝ�B); ŝ�B)j =
jCB(ŝ�A(ŝ�B); s�B)j, there are three possibilities.
(i) If jNX j + jF (ŝ�B)j > jNY j + jF (ŝ�A(ŝ�B))j, then jJ(ŝ�A(ŝ�B); ŝ�B)j > jI(ŝ�A(lB); ŝ�B)j and, by (7), (8)

and (10), PA(ŝ�) = 0.

(ii) If jNX j + jF (ŝ�B)j = jNY j + jF (ŝ�A(ŝ�B))j, then jJ(s�A(ŝ�B); ŝ�B)j = jI(ŝ�A(ŝ�B); ŝ�B)j and, by (7), (8)
and (10), PA(ŝ�) = 1=2.

(iii) If jNX j + jF (ŝ�B)j < jNY j + jF (ŝ�A(ŝ�B))j, then jI(ŝ�A(lB); ŝ�B)j > jJ(ŝ�A(ŝ�B); ŝ�B)j and, by (7), (8)
and (10), PA(ŝ�) = 1.

Note that jF (s�A(s�B))j = jF (ŝ�B)j, since s�A(s�B) 2 LmcA (when A = X ) and ŝ�B 2 L̂mcB (when B = X ).
Analogously, jF (s�B)j = jF (ŝ�A(ŝ�B)j, since s�B 2 LmcB (when B = Y) and ŝ�A(ŝ�B) 2 L̂mcA (when A = Y).
Hence, it is readily seen that, for any s� 2 S�� and ŝ� 2 Ŝ��, PA(s�) = 1� PA(ŝ�) = PB(ŝ�).

To complete the proof we need to prove that this result holds for the complete sets of strong perfect

equilibria, i.e. S� and Ŝ�, but this follows directly from Corollary 1. �

Proof of Proposition 4

We �rst prove that if, for any (lA; lB) 2 LA � LB , either (I), (II) or (III) hold, then S� 6= ;.
Consider a strategy pro�le s� satisfying conditions (7)-(11) (cf. Section 3.2) and assume that for any

(lA; lB) 2 LA�LB , either (I), (II) or (III) hold. We follow a backwards induction argument to show that
s� 2 S�.
In the third stage of the game, for any possible pair of proposed lists (lA; lB) 2 LA � LB , given (7),

the outcome of the election is determined by the cardinalities of the sets I (lA; lB) and J (lA; lB). In case

(I), i.e. if jI(lA; lB)j = jJ(lA; lB)j, the outcome of the election is a tie. Clearly, no individual in the sets
I(lA; lB) and J(lA; lB) has incentives to to be part of a deviating coalition, since by deviating to not

voting such individual can only reduce the chances of her preferred alternative to get o¢ ce. On the other

hand, none of the remaining citizens has incentives to belong to a deviating coalition since if there is

no deviation they would obtain a payo¤ d
2 whereas, by altering the outcome of the election, they obtain

either 0 (if their preferred alternative looses) or d � c (if their preferred alternative wins). Note that
d
2 > d � c > 0. Hence, no coalition has incentives to deviate. In Case (II), i.e. if jI(lA; lB)j � jNBj, we
have three possibilities: (II.a) jI(lA; lB)j = jNBj = jJ(lA; lB)j; in this case, no coalition has incentives to
deviate as we showed in case (I). (II.b) jI(lA; lB)j = jNBj > jJ(lA; lB)j; in this case, list lA gets into o¢ ce
(no individual in NA has incentives to be part of a deviating coalition), and the outcome of the election
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can only be altered to a tie if all the individuals in the set NBnJ(lA; lB) deviate to vote but, in such a case
their payo¤ would be lower (d2 � c < 0). (II.c) jI(lA; lB)j > jNBj, list lA gets into o¢ ce (no individual in
NA has incentives to be part of a deviating coalition) and the outcome of the election cannot be altered

by the individuals in the set NBnJ(lA; lB). Hence, no coalition has incentives to deviate at this stage in
case (II). Analogously, it can be shown that in case (III), jJ(lA; lB)j � jNAj, no coalition has incentives
to deviate at this stage.

We now turn to the second stage. Given (7), clearly for any list lB 2 LB (formed in the �rst stage)
and any list lA 2 LA proposed by candidate A, no coalition of players in lA has incentives to deviate (in
the acceptance decisions) from the behavior prescribed by (8). To see this note that h > d > c implies
h+d
2 � c > 0. Note also that, given (7)-(8), candidate A does not have incentives to deviate from the

behavior prescribed by (9).

Finally, we analyze the �rst stage. Given (7)-(9), clearly for any list lB 2 LB proposed by candidate
B, no coalition of players in lB has incentives to deviate (in the acceptance decisions) from the behavior

prescribed by (10), since h > d > c implies h+d2 � c > 0. Note also that, given (7)-(10), candidate A does
not have incentives to deviate from the behavior prescribed by (11).

Since by construction, the set of strategy pro�les satisfying (7)-(11) is not empty, the proof of the

�rst part of the proposition is complete.

We now prove that if there exists a pair
�
�lA; �lB

�
2 LA�LB for which neither (I), (II) nor (III) holds,

then S� = ;.
Assume that such a pair

�
�lA; �lB

�
exists, we then prove that there is no strong Nash equilibrium in the

proper subgame corresponding to the third stage (voting stage) in which lists �lA and �lB have been formed.

Since neither (I), (II) nor (III) holds for
�
�lA; �lB

�
we know that jNAj >

��J(�lA; �lB)��, jNBj > ��I(�lA; �lB)��, and��I(�lA; �lB)�� 6= ��J(�lA; �lB)��. Assume for the sake of contradiction that there is a strong Nash equilibrium of

the voting game (v�z(�lA; �lB))z2N . There are 3 possibilities:

(i)
P

i2NA
v�i (
�lA; �lB) >

P
j2NB

v�j (
�lA; �lB). Then it must be the case that no individual in the set

NAnI(�lA; �lB) is voting, since otherwise such an individual would �nd it pro�table to deviate to non-
voting, saving the cross-cutting cost c (note that he would have incentives to deviate even if he is pivotal

since c > d
2 ). Hence jNBj >

��I(�lA; �lB)�� �Pi2NA
v�i (
�lA; �lB). But, in such a case, the coalition formed by

all the individuals in jNBj who do not vote would have incentives to deviate, since d > c and by deviating
they win the election, a contradiction with (v�z(�lA; �lB))z2N being a strong Nash equilibrium.

(ii)
P

j2NB
v�j (
�lA; �lB) >

P
i2NA

v�i (
�lA; �lB). Then it must be the case that no individual in the set

NBnJ(�lA; �lB) is voting, since otherwise such an individual would �nd it pro�table to deviate to non-
voting, saving the cross-cutting cost c. Hence jNAj >

��J(�lA; �lB)�� � P
j2NB

v�j (
�lA; �lB). But, in such a

case, the coalition formed by all the individuals in jNAj who do not vote would have incentives to deviate,
since d > c and by deviating they win the election, a contradiction with (v�z(�lA; �lB))z2N being a strong
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Nash equilibrium.

(iii)
P

i2NA
v�i (
�lA; �lB) =

P
j2NB

v�j (
�lA; �lB). Then it must be the case that no individual in the set

Nn
�
I(�lA; �lB) [ J(�lA; �lB)

�
is voting, since otherwise such an individual would �nd it pro�table to deviate

to non-voting, saving the cross-cutting cost c (recall that c > d
2 ). Hence

��I(�lA; �lB)�� �Pi2NA
v�i (
�lA; �lB) =P

j2NB
v�j (
�lA; �lB) and

��J(�lA; �lB)�� �Pi2NA
v�i (
�lA; �lB) =

P
j2NB

v�j (
�lA; �lB). Since

��I(�lA; �lB)�� 6= ��J(�lA; �lB)��
we have two possibilities: First, if

��I(�lA; �lB)�� > ��J(�lA; �lB)��, ��I(�lA; �lB)�� > P
i2NA

v�i (
�lA; �lB) and one

individual in I(�lA; �lB) who does not vote would have incentives to deviate, since by deviating his preferred

alternative wins the election (recall that the voting decision does not imply any cost for any individual in

the sets I(�lA; �lB) and J(�lA; �lB)), a contradiction with (v�z(�lA; �lB))z2N being a strong Nash equilibrium.

Analogously, if
��J(�lA; �lB)�� > ��I(�lA; �lB)��, ��J(�lA; �lB)�� > P

j2NB
v�j (
�lA; �lB) and one individual in J(�lA; �lB)

who does not vote would have incentives to deviate, since by deviating his preferred alternative wins the

election, a contradiction. This completes the proof. �
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