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Abstract

We consider multi-resolution time series models and theplieation to high-frequency fi-
nancial data. An individual transaction share price of ac#jefirm is subject to market mi-
crostructure noise. Therefore, we propose trading durdiine weighted averages over given
time intervals. Averages over long intervals lead to a aegsolution and averaging over shorter
intervals lead to a finer resolution. Arranging sub-inté&\af given lengths on scales with coarse
to fine resolution imply a structure which can be represeated directed acyclic graph. Time
series models are then formulated using this graph steictuis shown that these models have a
linear state space representation which allows for effi@emputation of the likelihood needed
in parameter estimation and for a straightforward treatroémissing observations. Application
of these models to the log transaction prices of the IBM shénadded at the New York Stock
Exchange from February until October 2002 show that theesponding one-step prediction er-
rors are heavy tailed and therefore a specific variance terallowed to follow a IEGARCH

specification, improving the tail behavior and leading taetdsy fit.

Keywords: multiresolution, time series, state space representatioiored transition noise,

directed acyclic graphs.



1 Introduction

In this paper we introduce and discuss multi-resolutioretgaries models and their application
to high-frequency financial data. In particular, we consia®dels for all transactions data of
company over several months traded at the New York Stockdhgdn (NYSE). Such tick-by-tick
financial data give rise to very large data sets. Each tickesgmts direct information from the
market. The price process for an equity of one individual pany is strongly determined by the
specific behavior of this firm and general trends in the maitket economy and the branch. A
detailed discussion of the properties of high-frequencarfaial data can be found for example
in Campbell et al. (1997), Dacorogna et al. (2001), Goodaadt O'Hara (1997), Engle (2000)
and in Hautsch and Pohlmeier (2002). We focus in this papanodels for transaction prices
allowing for duration effects and market micro structur&odels for transaction prices are the
building block for assessing financial market volatiliteésfor example Shephard (2005)), which
is of paramount importance in risk management and optiaringyi

First, transaction prices are quoted in discrete unitgadled ticks. Current tick-size at the
NYSE is ﬁ& Further, trade direction (buy or sell from the market makers an impact on
the trading price. Unfortunately, the trade direction ismeaorded in the Trade-and-Quote (TAQ)
database of the NYSE. Observations are sampled at irrégatzaced random time points and are
unlikely to be independently distributed. Within one tragliday some observations are separated
only by a few seconds while others are separated by sevenaltesi resulting in an inhomoge-
neous time series. An individual value measured at a spdiifie point is subject to market
microstructures such as discreteness in the price obemrsatthe trade direction and bid-ask
bounces. As a result, an individual value is severely distband of little significance. Therefore
we are more interested in determining average values otewais in order to reduce such ef-
fects. In Section 2 we propose to use the trading duratioe tirighted average of the log-prices
over a given time interval to transform the inhomogeneaue tseries into a homogeneous one.

The remainder is organized as follows: In Section 3 we dseusulti-resolution approach for
averaging, where on scales with a coarse (fine) resolutieraging is conducted over long (short)
intervals. This structure is represented by a directedlacgcaph. In Section 4 we formulate
time series models for normally distributed observatiosisgia given directed acyclic graph. In
Section 5 a linear state space representation for theselsriederived which allows for efficient

evaluation of the likelihood and the treatment of missingestiations. In Section 6 we apply



these models to trading duration time weighted averagesgsptices of IBM shares from the
NYSE. Here time invariant variance terms are not appropratd therefore we allow a specific
variance term to follow a IEGARCH specification as introdiid®y Bollerslev and Mikkelsen

(1996) which improves the fit. The final section provides dosions and model extensions.

2 Trading Duration Time Weighted Averages

Regular trading days and hours at the NYSE are week-daysNtonday until Friday frormd : 30
a.m. until4 : 00 p.m. Eastern Time. In after-hours less trading activityslmarket participants
and less liquidity are observed. Therefore we neglect-afters trading. Since periods of trading
interchange with periods of non-trading (or after-houeliing) in calendar time, the calendar
time scale is transformed into a trading time scale, whicltothe periods of non-trading or that
of after-hours trading. Starting at zero we extend for eadlitriading day the trading time scale
by 23.400 seconds the length of a regular trading day. Week-ends ditthiz® are omitted. The
complete observation interval on the trading time scale erete byl.

For a given interval := [t{, t!] ¢ Ip we define the trading duration time weighted average
of log-prices as follows: LelN; denote the number of trades occurring witlhjri; the time point
of thei*" trade,i = 1,..., Ny andp(t;) the observed log-price at timg, ¢; € I. For the special
case of several transactions recorded at timee call the number of trades @tby n;, the volume
of thel*” trade occurring at; by v;,1, and the log-price for th&” trade at; bypii,l=1,...,n;

In this case we define the log-pricetato bep(t;) := Ul S pigviy Wherew; := 371 v . For
to := t{ we definep(ty) to be the last observed log-price befagaf no trading is recorded dt.

The trading duration time weighted average of log-pricesr @us then given by

1) pri= %Zp(ti)[tz#l — til,

where|I| denotes the interval length. If there is no tradeljn then (1) impliesp; = p(to).
Definition (1) allows that the price procegét), t € I, can be interpreted as a step-function in
continuous time:p(t) := p(t;), t; < t < tiy1, i@ = 1,..., N;. Therefore, we may view the

trading duration time weighted average of log-prices asrenatized Riemann integral

o0 = [ pls) s



3 Interval Arrangement and Directed Acyclic Graphs

It is an open questions how to choose the interval length. oAs discussed in Section 3.3 of
Dacorogna et al. (2001), averaging over long intervalsddadslow reaction to changes in the
underlying time series but has less noise, while averagesshorter intervals yield a faster re-
action to changes but have more noise. Therefore, we do msid=r just one interval length
but we combine different interval lengths into one modehgsa multi-resolution approach. For
example, on a first scale we consider averages over weekssenoad scale averages over days,
on a third scale averages over hours and on the finest scakegageover five minute intervals.
This multi-resolution approach allows to formulate modelat characterize the long-term be-
havior, relating to coarse scales (weeks), and the shart berhavior, relating to finer scales
(five minute intervals). More formally, lef denote the number of scales. For a family of nat-
ural numbers{N;,; = 1,...,J} with N;; > N; we consider a collection of sub-intervals
{Lix € Io : j =1,...,J,k = 1,...,N;} for which the following assumptions hold for
j=1,...,J:

(2 |Ij,k|>07 kzl,...,Nj,
N;
3) U Zir = To.
k=1
4 Ij,kmlj,k+2:®a k=1,...,N; -2,

Fork=1,...,N; — 1 there exists &' € {1,...,N;_;}

(5) such thaI(ijk U Ij7k+1) - (Ij—l,k’ U Ij—l,k’-l-l)

From the interval arrangement defined in (2) - (5) we obtaimadirected graplg? := (V, &)
with the set of nodes defined := {(j,k) e NxN:j=1,....J, k=1,...,N;} and the set
of edgesf C V x V defined by

(6) Liax Nl #06 ((5—LEk),(GkK)) €&

A directed version of;”, denoted byg*, is obtained by representing the edges as arrows pointing
from (7 — 1,k) to (5,k"),if (( — 1, k), (4, k")) € €. Conditions (5) and (6) imply that a node can
have up to two parents. Since arrows only point from a nodecale$ to a node on scalg+ 1,
j=0,...,J — 1, we call Graphg® atwo-parent scale-to-scale graph Figure 1 illustrates an
example for an interval arrangement defined by (2) - (5) amdsga graphical representation of

the corresponding two-parent scale-to-scale GGph
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Figure 1. Example for an Interval Arrangement defined by (&) -

and the Representation of the Corresponding Geaph

We need some basic graph theory, as discussed for examplaangHand Cressie (2001)
and Lauritzen (1996). A path of lengthfrom node(j, k;) to node(i, k;), i := j+n —1,isa
sequencéy, k;), (j+1, kjy1),. .., (i, k;) of distinct nodes such thétl, k;), (I + 1, kj11)) € € for
l=4,...,i—1. Node(j, k;) is said to be an ancestor of nodek;) if there is a path frontj, k)
to (i, k;), for ¢ > j and node(i, ;) is then said to be a descendant of nggé:;). We denote
the set of descendants on sca node(j, k;) by de(i, j, k). If ((7 —1,k;-1). (J,k;)) € € then
node(j — 1, k;_1) is said to be a parent of nodg, ;). The set of parents on scale- 1 of a node
(j,k;) is denoted bya(j — 1,7, k;). We say thatanodg — 1,k;_1) € pa(j — 1,7, k;) is aleft
parent of(j, k;) if ( — 1,k;_1) is the unique parent dfj, ;) or if both nodegj — 1,%;_1) and
(7 —1,kj—1 + 1) are parents ofj, ;). In a similar manner, we say that a noge— 1,%k;_;) €
pa(j — 1,7.k;) is a right parent ofj, k;) if (j — 1,k;_1) is the unique parent ofj, k;) or if
both nodeqj — 1,k;_1 — 1) and(j — 1,k;_,) are parents ofj, k;). Since(j, k;) can have up
to two parents, it has a unique left parent and a unique rigrerg,; = 2,...,.J. We denote the
left parent of(j, k;) on scalej — 1 by Ipa(j — 1, 4, k;) and the right parent bypa(j — 1, j, k;),
respectively. A cycle is a path which begins and ends withséome node. In this paper we

consider directed acyclic graphs only.

4 Time Series Models Using Directed Acyclic Graphs

We formulate now time series models using a given directgdli@ographG® for trading dura-

tion time weighted averages of log-prices. Huang and Geg&601) and Huang et al. (2002)
discussed stochastic models over an acyclic directed doagpatial data. Modification of these
models to time series is straightforward. However, Huard) @ressie (2001) and Huang et al.

(2002) considered only a deterministic trend. Therefore r@lax their assumptions to allow for



a stochastic trend which may be more appropriate for timeserSince in our application in
Section 6 we require only models for univariate time serieg@strict ourselves to this case. An
extension to multivariate time series is straightforwand & discussed in Hogn (2005).

As Huang and Cressie (2001) we define a univariate stocimst’tess{Yj,k,j =0,...,J, k=
1,... ,N]-} indexed by the nodes of a given Gra@f with univariate or multivariate transition

noise{W;, k=1,...,N;},j =1,...,J, as follows:

(7) Yipg=G Wi, kE=1,...,Ny,
andforj =2,....J

) Yik = kYipa(i—1,5k) + BikYrpai-1,jk) + GiWik, k=1,..., Nj,

wherea; i, 85 € [0,1] anda; i, + B, = 1. On scalej, W, € R™" is a random vector and
w

G; € R™™i is a known selection matrix. We assume that observatiinare directly related

to the finest scale only:
(9) Zk = YJ’k.

This is not restrictive, since we can always find a grgghsuch that (9) is satisfied. We assume
that the transition noisW ; ;.,j = 1,...,J,k = 1,..., N;} are jointly normally distributed and

the transition relating to different scales is mutuallygpdndent, i.e.
(20) {Wirk=1,...,N;} L{W,, l=1,... . N;}, i,5=1,...,J, i # ],

whereU L V denotes that both random vectds V' are independent. LaV/ := {Wik, i=
1,...,4, k=1,..., N;} denote the transition noise relating to scales1, ..., j. From (7) and

(8) itfollows thatY; s, j =1,...,J,k =1,..., N, is alinear function of a subset o

4.1 Physically Overlapping Parameters

We interpreto; , andg; , forj = 1,...,J,k = 1,..., N;, as physically overlapping parameters.
In particular, if7; ;. C I,4(j—1,5,) then the nodej, k) of G° has a unique parent on scale 1 and
therefordpa(j—1,j,k) = rpa(j—1, . k). Inthis case we set eithet; ,, := 1 or §; , := 1. When

(j, k) has two different parents on scgle- 1 we have thatl;x C (Ijpa(j—1,5k) Y Lrpa(i—1.5.k))



and we partition/; ;, into three disjoint sub-intervals:

1

Ij(k) i= (Lik \ Lrpa(j-1,4.k)) C Lipa(j—1,j.k)>
2

Ij(k) 1= (Ij e N Dipagj—1,5.k) N Trpa(i—1,5.k)) C (Tipa(i—1,.k) N rpa(i—1,3,k))s
3

I](k) = (Tje \ Tipa(j-1,j.k)) C Trpa(j—1,j,k)-

It follows that/; x = I]“k) U I](2k) U I](3k> The fraction ofY; ; relating toI](.,llg may then depend only
ON Yj,a(j—1,5,k), the fraction ofY; ; relating toI](.Qk) equally on bothy,q(j_1,5,k) @NdYjpa(j—1,5.k)s

. Therefore, we define

and the fraction ot ;. relating toI](.?k) only onY,pq(i-1,j.k)

(1) 11 7(2) 117(2) (3)
(11) P vt 10 v IR | vt
" 1 k| Pk |17 k|

It is straightforward to see that; , + 3, = 1 as required.

4.2 Transition Noise Specifications

For an individual scalg, the transition nois¢ W ; ., k = 1,... N, } is specified as a linear Gauss-
sian state space model with the following representatidrere/N (u, ) denotes the (multivari-

ate) normal distribution with megn and variances:

Wi~ N (u, =),
W"k+1=B"kW"k+I‘"kV"k, k=1,...,N; —1,
(12) J J J J J J
Vj’kNN(O,EVj), k=1,...,N; -1,
Vin LW Vi LV k=1, Nj—1, k#1,

xmW

whereV ;. € R™ is a random vector. MatriceB; . € R™ %™ and B, € R™S XM
may contain some unknown parameters to be estimated. $Weg,, k£ =1,... N;} for fixed
scalej are not assumed to be serially independent we refer to theitin noise as colored
transition noise. For reference in Section 5, where we diseulinear state space representation
of Model (7) - (12) on a given two-parent scale-to-scale @rgpg, we collect the following
properties of the transition noise: Assumption (12) implikatW ; ;. is a sum of independent
normal random vector¥ ; 1, V1,..., Vi forj=1,...,J,k=1,...,N;. SinceV,; L

W;1,Vji,..., Vi itfollows that

(13) Vj,k 1 Wj,la e aWj,k-



Assumptions (10) and (12) imply that
(14) {(Viwi=1,...,J, k=1,...,N;} are serially independent

From (10) and (14) it follows that

(15) Vik LWip gii=1,....5, j#4, k=1,....,Nj—1,1=1,...,N;.
SinceYj., 5 = 1,...,J,k = 1,...,N; is alinear function of a subset &7 it follows from
(15) that

(16) Vik LY, i=1,...,5j-1,1=1,...,N;, k=1,...,N; — L.

Using (13) we get
a7 Vik LY., Y

The following specifications fofW , ;,k = 1,...,N;}, j =1,...,J will be used:

4.2.1 Stationary Gaussian ARMA(p,q) process

In our applications we will see that stationary ARMA(p,q) tets work quite well forj =

2,-.-,J—1. Theregression formulation of a Gaussian ARMA(p,q) modedealej € {1,...,J}

is given by
p q
(18) [k = Z ajittih—i + Gk + Z bj,iCjk—i» Cik ~ N(0,07) did.
i=1 i=1
fork =1,... ,Nj. Letaj(L) =1- aj’lL — e = aj,pr, bj(L) =14+ bj’lL + -+

b; (L9, whereL denotes the backshift operator. We assume that the polat®mi(x) and
b;(x) have no common zeros. Furthermore, the roots;(f) lie outside the unique circle. As
shown in Brockwell and Davis (1991) these are sufficient @wrgs for the ARMA(p,q) process
to be causal. This property is useful for computation of theovariance function needed for
initialization of the first state vectoW ; ;. Hamilton (1994) shows that a sufficient condition
for the ARMA(p,q) process to be identifiable is that the raaftd;(x) lie on or outside the unit
circle. There are several linear state space versions oRMAmodel, see for example Durbin

and Koopman (2001) and Brockwell and Davis (1991). Paramé&bebe estimated are

(19) Y= (al, coey Gp, b, oo, by, 02)’-

For initialization we assum® ;,; ~ N (0, =}"), where the variance-covariance mati}’; is

obtained as discussed in Brockwell and Davis (1991).
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4.2.2 1(1) Specification with stationary ARMA(p,q) hoise

Forj = 1 andj = J we allow the transition noise to follow a trend modeled withilategrated

model of order 1, denoted bf(1), and stationary ARMA(p,q) noise:

Hjk+1 = Hjk + Vjk

(20) P a

Vik = Z a;iVjk—i+ ik + Z biljk—is Cik ~ N(0,07) iid.
i=1 i=1

fork = 1,...,N;. The assumptions fa;(x) andb;(x) and the parameters to be estimated

remain the same as for the ARMA(p,q) specification. For exapfprp = 1 andq = 1 the

corresponding state space representatio®Mof, = (u;, vk, bj1¢) for k = 1,...,N; is
given by

11 0 0
(21) Wikii=|0 aj; 1| Wik+| 1 | ¢uasrandGy ~ N(0,07) did.

0 0 0 b

On the first scalg = 1 we consider a diffuse initialization of the form

1 0 0
Wii:=10]|0+ |1 0|ni0 mo~Na(0,0ar(n,)),
(22)
0 0 1

dx ~ N(0,k), 5K2>5, K — 00,

where 2 denotes convergence in distribution. A detailed treatnoérdiffuse initialization is
given in Durbin and Koopman (2001) and in Koopman and Durb@98). Onscaleg=2,...,J
we use the non-diffuse initialization fqr;; with ;. ~ N (0,var(v;;)) and wherey;; is
assumed to be independent of the other element® of.

For both, the ARMA(p,q) and the I(1) specification with statiry ARMA(p,q) noise we
defineG; so thaty;, = G;W;; holds. It is shown in Chapter 6 of Hogn (2005), that the
parameters to be estimated are identifiable under certaimrgstions which are satisfied for the

graphs considered in our application.

5 Linear State Space Representation of Time Series Mod-

els using Directed Acyclic Graphs

We give now the main result of the paper:



Theorem 1. Model (7) - (12) on a two-parents scale-to-scale graph G° has a linear state space

representation given by

(23) Transition equation: X1 = Ap Xy + Ty,

(24) Observation equation: Zy = CpXy,

for k = 1,..., Ny, with the following assumptions for the system and the observation noise in
(23) - (24):

Xl ~ N(l'l‘la Z:1) and Nk ~ N(Oan)a

e L X1, L (k#1).

(25)

Proof: See appendix.

There is not a unique linear state space representationréVetaware of standard software
to capture this, therefore our aim was to find a linear stadeespepresentation, which is not too
difficult to implement. The second aim was that computatibage to be done efficiently and
requiring little memory. The derivation of state space espntation (23) - (24) is very technical
and therefore given in the appendix. Once a state spacesegpiation has been found, we apply
the Kalman filter and smoothing algorithms as discussed Xamgle in Durbin and Koopman
(2001) and Harvey (1987). Using the Kalman filter, the ldglihood of the observationg ™~
can then be computed by the so called prediction error degsitim. Fork = 1,..., Ny, let
E(Zg|z1,...,21) denote the conditional mean &k, given the realizations o, ..., Z; ;.
Innovationsfy, k = 1,..., Ny, are defined a8, := Z, — E(Z;|Z1, ..., Zx—1) With Ay :=
var(0y) = var(Zy|Zy,...,Zk—1), Which can be computed from the Kalman filter. The log-

likelihood value for a specific value of the parameter vegidp be estimated is then given by
Ny N 2
N 1 1 0
L Ny Vg _ 1 _ 1t k
(26) log L(¢;27) = 5 log 27 5 ];—1 log Ay 5 ,;_1 AL

wheref;, andA; depend onp. Maximum likelihood (ML) estimation can then be conducted u
ing iterative procedures. In our applications we have usethfs the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) algorithm, see for example Fletcher (1983an alternative, one can conduct
ML estimation using an EM algorithm as discussed in Chaptefr Bogn (2005). Since its rate
of convergence near the maximum is slower than numericaimrmaation we prefer numerical
maximization. A further advantage of this representatgrthiat missing observations can easily
be handled. For a missing observatigp, k& € {1,..., N;}, one set9, := 0 andA := 0, while

the system equation for the corresponding state veXtpremains unchanged.
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6 Applications to Financial Time Series

We discuss now the overlapping interval arrangement fotitiear stochastic Model (7) - (12)
over a two-parent scale-to-scale graphused in our application. The sample period lasts from
February 2002 to October 2002 with regular trading betwier30 a.m. and4 : 00 p.m. from
Monday until Friday each week excluding holidays.

Huang et al. (2002) introduce the so-called mass balancey $how that the mass bal-
ance results in a very restrictive correlation structuréhefdataZ,. Therefore we consider now
overlapping intervals, where mass balance does not needldo For this we introduce some
adjustments to weeks, trading days and hours as follows:

On scalej = 1 we consideradjusted weeksdefined by: Monday until Friday, excluded
holidays, plus half a regular trading day befoi@ ¢ 45 - 4 : 00 p.m.) and the first half of the
following trading day (9 : 30a.m. -12 : 45 p.m.). Therefore weeks overlap and we call them
adjusted weeks resulting iN; = 39 adjusted weeks.

On scalej = 2 we consideradjusted trading daysdefined by: Actual trading plus one hour
(3:00-4:00p.m.) the trading day before plus one hot® ¢ 30 - 10 : 30a.m.) the following
trading day resulting iV, = 189 adjusted days.

On scalej = 3 we consideradjusted hours defined by: adjusted hour= one hour+
10min. before+ 10min. after giving/N3 = 1229 adjusted hours.

Onthefinest scalg = 4 =: J we considepverlapping five minute intervals. Each 5 minute
interval overlaps with the consecutive 5 minute intervaloyninutes, yieldingV, = 24570
overlapping intervals. As discussed in Andersen et al. 1208 shorter intervals the distortions
related to market microstructure effects may become toersev

As observations we use the trading duration time weighteds@es of log-prices over the five
minute intervals defined in (1). We disregard opening andintpeffects by removing for each
regular trading day the first 30 minutes and the last 15 m@ufbe data corresponding to the five
minute intervals that lie within this time span are then ad&i®d as missing observations. This
leaves a sample size of 21933 observations, enumeratédebyK . Figure 2 shows the corre-
sponding averages over adjusted weeks and over overlafipinginute intervals. We see, that
the main dynamics in the trend are already captured comsidaading duration time weighted
averages over adjusted weeks. Therefore, a diffuse indt&dn of the state vectors is used only

on scalej = 1 and a non-diffuse initialization is used on the further esal

11



Trading Duration Time Weighted Averages of log-prices over Adjusted Weeks
Feb. Mar. Apr. May June July Aug. Sep. Oct.

45

Weighted Av. of log-prices
4.3

4.1

Begin of Calendar Weeks

Trading Duration Time Weighted Averages of log-prices over Five Minute Intervals
Feb. Mar. Apr. May June July Aug. Sep. Oct.

44 46

Weighted Av. of log-prices
4.2

4.0

Begin of Calendar Weeks

Figure 2: Trading Duration Time Weighted Averages of Log@s over Adjusted Weeks and Over-

lapping five Minute Intervals

As a starting model we consider the following specifications

e scale 1: (1) model with stationary ARMA(1,1) noise and akf initialization as given in
(22),

e scale 2: stationary ARMA(1,1) model,

e scale 3: stationary ARMA(1,1) model,

e scale 4: 1(1) model with stationary ARMA(1,1) noise and a-uiffuse initialization.

The variance parametet on the third scale corresponding to adjusted hours was @tthtlose

to zero. This indicates that the third scale can be omittduchvwas done for the models to
follow. For model comparison we apply the Akaike informaticriterion (AIC) (see for example
Harvey (1987)). Since our observations k£ = 1,..., Ny, are univariate the AIC is given by
AIC := —2log L(gﬁ; 2Ny + 2n., Wheren,, denotes the number of parameters to be estimated.
Models with more parameters obtain a larger penalty. A muadll a smaller value of the AIC

is preferred. We summarize now the estimated models, wher) with ARMA(1,1) noise on
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scale 1 and the ARMA(1,1) specification on scale 2 are held faxal on scale 4 1(1) models with
ARMA(p,q) noise for several orders pfandq are considered. HeréIC;(n,,) denotes the AIC

value of model with n,, parameters to be estimated:
e Model 2: 1(1) model with ARMA(1,1) noised1C5(9) = —255330.
e Model 3: 1(1) model with ARMA(2,1) noised1C5(10) = —255660.
e Model 4: 1(1) model with ARMA(1,2) noised1C,(10) = —256654.
Sinceby ; is estimated close tbwe set for the following models; ; := 1.
e Model 5: I(1) model with ARMA(2,2) noiséy,; := 1, AIC5(10) = —256768.
e Model 6: I(1) model with ARMA(3,2) noiséy,; := 1, AICs(11) = —256830.
e Model 7: I(1) model with ARMA(1,3) noisely ; := 1, AIC;(10) = —256700.
e Model 8: I(1) model with ARMA(2,3) noiséy,; := 1, AICg(11) = —256768.
The AIC values for the different fitted models do not vary vamych. However, the model with

the lowest AIC is Model 6 witlp = 3 andq = 2. The estimated parameters for Model 6 are on

scalesj = 1,2

a1,1 = 0.677, bi,1 = 0.950, 52 =3.618-1077,

do1 = —0.068,  bo;=—0.969 52 =6.886-107".
and on scalg = 4:
da1 = 0.072, 4o = 0.014, d43 = 0.107, byy = 0.590, 67 = 4.537 - 107",

For a diagnostic checking of Model 6 we use the estimatedlatdized innovations of the state

space representation (23) - (25) defined as

N 0
27) 0; = ——, k € Ko,

VA,

whereék(Ak) is the innovatiord;, ( the variance of),) evaluated at the estimated parameters.
Using the independence of the system noise it follows {tﬁ@;k € Ko} ~ N(0,1) i.id..
The diagnostic plots for Model 6 are given in Figure 3. In thmeet series panel (top left), a
value greater than 2 or smaller than -2 (horizontal lined)ciates that this value is not a real-
ization of theN (0, 1) distribution at thed5% confidence level and therefore the corresponding

observation cannot be appropriately represented by theelhuwmdler consideration. The normal
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Figure 3: Diagnostic Plots for Standardized Innovationslotlel 6

quantile-quantile (QQ) panel (top right) shows that the ieicgd distribution of the standardized
innovations is symmetric but heavy tailed. The ACF panettfio left) with approximate 95 %
confidence intervals (dotted lines) gives evidence thaethpirical autocorrelation of the stan-
dardized innovations is negligible. The squared standaddinnovations may be viewed as as
a measure for the second order moment of the standardizedaitions. An autocorrelation in
the squared standardized innovations (bottom right) thditates that the variance conditional
on its past history may change over time and giving rise tatidy clustering. Moreover, the
autocorrelation decays only slowly. Therefore the assiompmif a time invariant variance on the

finest scalg = 4 may not be appropriate and the following model extensiohlwelconsidered.

6.1 fIEGARCH-specification of Transition Variance on finest $ale
DefineAj := Ak Following the approach in Koopman and Bos (2004) we pararizet the
T4

log-likelihood (26) forNp := card Ko as

N, 1 92
logL(’lpvgla,9N4):_7010g(27r)—§ Z <logaz+10gAlt+022*)
k€EKo 4=k
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Applying the concept of conditional Gaussian state spaceefsaliscussed in Harvey (1987) to
the state space representation (23) - (25) allows for degperedof the system noisg on obser-
vationsZ* 1 := (Zy,...,Z,_1)". Using (21) we get thaly 1 € V4 and from (68) it follows
thatVy,, € ny, k = 1,..., Ny — 1. Therefore we have thdt ;. € n, and we assume that
Cak|Z"1 ~ N (0,Q(Z%71)), where the notatio®,(Z*~") indicates dependence &'
Since the observations are assumed to be normally disidlibie innovationg,, is a linear func-
tion of Zy,..., 7, for k € Ko we can write equivalently{4,k|0’“‘1 ~ N (0,02’,6) , k€ Ko,
whereo? , := Var(¢s x| Z"~") depends 08" " := (61,...,6; 1)'.

To allow for long memory indicated by the slow decay of theoaotrelation of the squared stan-
dardized innovations we consider a fiEGARCH(1,1) (fracibnintegrated exponential GARCH)
specification fOfIik, as introduced by Bollerslev and Mikkelsen (1996), where= log(oik) is
modeled in terms of a fractionally integrated ARMA(1,1) pgss. There are several ways to write

a IEGARCH model. We use the following parameterization giveZivot and Wang (2003):

Or = o4 r/Af €k, € ~ N(0,1) iid.,
(1= ¢)(1 = L)y, = m + @(lex—1| + yep—1).

Herey € R is a leverage parameter to accommodate an asymmetrioretsiween innovations

and volatility, m is a parameter for the overall mean/of and

(1= ¢)(1 = L)%y = (1 = L)hy = $(1 = L) hy,1.

Ford > —1 the fractional integration operat¢t — L)? is defined as

S L(d+1)
(28) lz; Ll+1)0(d-1+1)

HereT'(-) denotes the gamma function. With, := (¢, ¢,v,d, m)’ the parameter vector to
be estimated is now given as" := (¥, v, %4, ¥ ). For this we maximize the conditional

likelihood given the initial conditions, discussed below:

N, 1 07
(29) log L(y*; 0N | Fy) = —70 log(2m) — 3 Z <log oy +log Ap + A*) .
kKo Tik

For estimation the truncation of the infinite distributeddan (28) is necessary. Since the frac-
tional differencing operator is designed to capture thgoremory feature of the process, trun-
cating at too low a lag may destroy important long-run depengks. Bollerslev and Mikkelsen

(1996) propose the truncation lag to b@d0. Fy is then given by the pre-sample valugs:=
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0, hy :=log(6%), k = —1000,...,0, wheres? is obtained from the fitted Model 6. The param-
eters of Model 6 with a iIEGARCH(1,1) specification were estied to be on scales 1,2:

a1,1 = 0.678, b1, = 0.950, 52 = 3.618 - 107,

dg1 = —0.068, by = —0.969, 62 =2115-1075,
and on scalg = 4 with by ; := 1:
da1 = 0.156, 449 = —0.021, a43 = 0.136, byo = 0.654, 67 = 1.476 - 1077,

and the parameters for the IEGARCH(1,1) extension:

= —0.353, ¢ = 0.092, ¢ = 0.243, 4 = —0.028, d = 0.530.

The log-likelihood of the fitted model isg L. = 131 682.3 giving an AIC value for 15 parameters
of ATC(15) = —263 306.3, which is clearly lower than the AIC value for Model 6. Comipar
the parameter estimates for both models without and withiE@ARCH(1,1) extension we see
on scales 1,2 only minor changes, exceptddr The estimated parameters relating to scale 4
change distinctly. In particulag? decreases when considering the iIEGARCH(1,1) extension.

For diagnostics we utilize the standardized residualsgibye

ékG = 7016 , k€ Ko,
54,1:\/?2
which should again be i.i.d. standard normally distributetjure 4 shows a time series plot of
the standardized residuals and the estimated standaraltidesi on the finest scale= 4, 64,
k € Ko. A comparison to the normal QQ plot given in Figure 5 &F and 6, k € Ko,
exhibits an improvement in the tail behavior but the emplridistribution ofé,? is still heavy
tailed. Moreover, the distinct autocorrelation of the ggdainnovations almost vanishes after

applying the iIEGARCH extension (see Figure 6).

7 Summary and Conclusions

In this paper we have introduced time series models withredltransition noise over a directed
acyclic two-parents scale-to-scale graph. We have deaveattar Gaussian state space represen-
tation for these models which allows for efficient computatof the likelihood and for easy treat-

ment of missing observations. We have applied these modétading duration time weighted
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Standardized Residuals with FIEGARCH
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averages of log-prices over overlapping five minute intsrfar IBM shares traded at the New

York Stock Exchange from February until October 2002. Stheestandardized innovations cor-
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Figure 6: ACF of Squared Standardized Residéglsvith fIEGARCH(1,1) Extension

responding to a linear Gaussian model are heavy tailed anshjiared standardized innovations
exhibit a distinct and slowly decaying autocorrelation, have allowed the transition variance
relating to the finest scale to follow a IEGARCH-process.slibads to a conditionally Gaussian
state space representation. The tail behavior of the stdimdd residuals was improved though
they remain heavy tailed. Therefore, the standard normmal elistribution of the iIEGARCH
specification may be replaced by a more heavy tailed studdistribution. However, for this case
the corresponding state space model is not conditionallys&an. As a consequence, the predic-
tion error decomposition given in (26) and (29) is not valiy anore. One common approach is
quasi maximum likelihood estimation, where the state spaadel is still taken to be Gaussian.
Instead of a IEGARCH specification a stochastic volatilitydal as introduced by Taylor (1986)
may be used. The corresponding state space model is nat Ikhg@assible approach for param-
eter estimation is then maximum likelihood evaluation gsimportance sampling as discussed
in Durbin and Koopman (2001), Durbin and Koopman (2000) andbih and Koopman (1997).
As an alternative, a Bayesian point of view may be considdeadling to estimation by Markov
Chain Monte Carlo (MCMC) methods (see for example ShephaddRitt (1997) and Bos and
Shephard (2004)).

Moreover, explanatory variables can be incorporated instate space specification of the
transition noise. On the finest scale one may consider exfdgnvariables relating to the market
microstructure, such as functions of the bid-offer sprétaelfrading volume and the trading dura-

tion time. On a coarser scale other explanatory variabdtating to the specific company or the
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branch to which the specific firm corresponds to, as well aisatorrs for the general economical
development may be used.

In our applications, we considered one specific intervaragement, but there are far more
possibilities. For example, the length of sub-intervalaniindividual scale can be chosen in many
different ways and the scale-wise structure allows foredéht ways of combinations. Therefore,
the question arises whether there is an optimal intervahgement and a corresponding graph in
terms of model fit. The model fit will also depend on the sta&cspspecifications used for the
transition noise related to an individual scale.

An open guestion is, whether the parameter estimates amgéatjcally normally distributed.
As discussed in Harvey (1987), Subsection 4.5.1, a firstnaision is that the state space repre-
sentation has time invariant system matrices. The statmsppresentation derived in Section 5,
however, has time varying system matrices. It may not bégsifarward, to find a time invariant
state space representation.

Concerning our applications we have restricted oursetvasmall class of state space models
on individual scales. The general formulation of the modara given graplg® allows for a

much broader class of models and a wide variety of model sidns.
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A Proof of Theorem 1

We discuss a quite general procedure to transform Model (I2) on a two-parents scale-to-
scale graphg® into linear state space form given by (23) - (25). For siniflive restrict our
proof toJ = 4, since in our application this is the maximum number of scakepplication of
the following methods foJ < 4 and.J > 4 is straightforward. To ease notation we make two
assumptions fog° concerning the construction of the first state veckor: The node(j, 1) has

the unique parenty — 1,1), j = 2, 3, 4. Therefore (8) can be written fér= 1 as

(30) Yii=Y_i 1 +GW;i, j=2,....4

(31) (7,1) has at least three childrép + 1,1), ( + 1,2),(j + 1,3) forj = 1,2, 3.

Restrictions (30) and (31) are satisfied for the grgghconsidered in our application but relax-

ations are possible.

A.1 Initializations

We construct now the first state vectl; and its variance-covariance matd for known 2]W1

j =1,...,4. Let0, denote a zero column vector of dimensionn € N. To simplify the

construction of¥; we define

Wi Wi Wi Wi

Om}/V Wi Wi Wi

0 Y1 Y1 Yo1

0 0 Y22 Y2

(32) X _g:= ’ , X_ = ’ , Xoi= Y , X = Yo
0 0 0 Y32

0 0 0 Y1

Wa W o W3 Wa 3

W3 Wit W30 W33

Wi Wiy Wiy Wi
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For the remainder of this paper we omit the dimensions of ioestf and I to ease notation.

Using (10) the variance-covariance matrixXf_, has a block diagonal form given by

=, 0o o 0 0
0 0 0 0 0
(33) Y _si=var(X_2)=| o 0 Eg‘,’l 0 0

o o o = o

o o o o =

SinceZ; =Y}, the first observatiorZ; is directly related to state vectaf; by
(34) Z1=(0 000O0O0OT1TO0O0 0)X1=:C‘X1.

We show that transition fronX  to X1, k = —2, —1,0 can be expressed in the forX; ,; =

A, X + Tyn,. Consider first the transition frodX _, to X _;. Using (12) we have
(35) Wis=Bi W1 +T11Via.

From (8) together with (30) it follows with, ; := 1 andY; ; = G1 W ; that

(36) You=Yi1+ G W31 =G Wi+ G Wy,.

Using (12) gives

(37) Wsoo =By Wy +T9:1Va;.

Combining Equations (35) - (37) and noting tHaf, ;, W3, and W, ; are elements oX _,

and X _; then gives the matrix equation

(38) X_1 =1 A_9X_9+TI'_9n_, with explicit form
Wi I o0 o0 0 o 0 0
Wi
Wi Bii 0 0 0 o iy O
0
Yo1 G 0 G- 0 0 0 0
0 Via
0 =l o 0 o0 0 0 +] o 0
W1 Vai
W o 0o o0 B> 0 O 0 Ta
W3
Wi 0O 0 O I o 0 0
Wi
Wi 0 0 O o I 0 0
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Transition fromX _; to X is constructed in a similar manner. Note tHat; ;, W » and
W, are elements of state vect&f_;. Restriction (31) then implie€l, 1) = Ipa(1,2,2) and it

follows that(Y11 U Y12) 2 (Yipa(1,2,2) YU Yipa1,2,2)), Where we seBs » := 0 if node (1, 2) has

the unique paren(l, 1). Using (8) then yields

(39) Yoo = aooY11 + fooY10+ Ga W

Using (30) yields

(40) Y31 =Y21+GsW3,

whereY, ; andW 3 ; are elements oK _;. Applying (12) we get

(41) Woz=DByoWoo+T99Voo, Wio=B3 W31 +I3:V3,

whereW; ; € X _;. Combining (39) - (41) and noting th3 4 ; is element ofX _; and X, we

get the matrix equation

(42) Xo=A X | +T n , with explicit form
Wi I 0 0 0 O 0 0| (Wi, 0 0
Wi 0 I 0 0 o0 0 of|wWiy 0 0
Y21 0 o I 0 © 0 o0 Ya1 0 0
Ya,2 22 ,32,2 0 0 Go 0 0 0 0 0
Vao
Y31 |[=] O 0 1 0 0 G: 0 o [+] o 0
Va1
0 0 0 0 0 O 0 o0 0 0 0
W3 0 0 0 0 By 0 0 W o Ts» 0
Wi 0 0 0 O 0 B3 0| W3, 0 T3,
Wy 0 0 0 0 O 0o I/\wy, 0 0

For transition fromX to X; we note that (30) give¥y; = Y31 + G4W 4 ;. In a similar

manner as before we get the matrix equation

(43) X = Ay X + Tgn, with explicit form
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Wi I o o 0O 00 0 0 O 0 Wi
0 0
Wio 0o I o 0O 00 0 O0 O 0 Wi,
0 0
Ya,1 0o 0o I 0O 0 0 0 0O O 0 Yo1
0 0
Y22 0 0 O I 0 0 0 0 O 0 Y22
0 0
Y31 0 0 © 0O I o o0 0 O 0 Y31 \E
= +] o 0
Y3,2 0 0 3.2 ﬂ3,2 0 0 0 0 G3 0 0 V4,1
0 0
Ya1 0 0 O 0O 1 0 0 0 O G4 0
0 0
Wi 0 0 O 0O 00 0TI o 0 W3
s> O
Wiss 0 0 © 0 0 0 0 0 Bsp 0 W32
0 | V]
Wy, 0 O 0 0 0 0 0 O 0 By Wi

Now we consider the variance-covariance matrix®df, X, and X,. From (38), (42) and (43)

we have
Vi Voo V3o
N-2 = » N-1 = » Mo *=
Vai Vi Vau
SinceV;, L Wj1,....,W;, forj=1,...,4 and since the transition noise on different scales is

mutually independent it follows thaf, L X, £ = —2,—1,0, andn_,, n_;, ny are mutually
independent. Applying (38), (42) and (43) we therefore get

B =var(X 1) = A 38 A, + T qvar(n )T,
(44) 2o =var(Xo) =A 18 A +T var(n )T,
) = var(X ) = AgB A, + Tovar(ng)Ty,

where

v 0 Yo 0 Y3 0
var(n_y) = ,var(n_y) = , var(ng) =
0 Yvo 0 Yvs 0 vy

In the remainder of this section we consider at first the srecof the further state vectors for the
linear Gaussian state space representation. In SubsécBone construct system matrices,,

T,, and system noisg,,, n = 1,..., N, — 1, so that we can apply transition equations (7), (8)
and (12) to the stochastic model over a given two-parenedcacale Grap®. In Subsection
A.4 we show that the independence assumptions given in (3thte space models are also
fulfilled for the derived state space representation of Mdde- (12) over a given two-parent

scale-to-scale Graph?®.
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A.2 Structure of State Vectors of the Linear Gaussian State ace
Representation

For further construction of the state space representafidfodel (7) - (12) we proceed scale by

scale, starting with = 4. At first we require
(45) Y4’kEXk, k=1,...,Ny.

Therefore (45) determines the number of state vectors togbaldo N,. The state vectors
Xs,..., X, will have a similar structure aX; defined in (32). For a precise definition we
define general relationships between the{det.., N4} and set{1,...,N;}, j = 1,...,4, as

follows: For eac € {1,..., Ny} there is a number

kY (n) € {1,...,N; — 1} such that’, yw (), W v ()11 € X,

Y .
(46) kj (n) € {1,...,N; — 1} such thayj,k}’(n)’yj,k}/(n)—kl €X,, j=23,
ki (n) € {1,..., Nu} such tha® ;v () € X,

k}"(n) € {1,...,N;} such that; w () € Xn, j =2,3,4.

Using (45) it follows in particular, that) (n) = n,n = 1,..., Ny. Forn = 1,..., N, the exact
values fork} (n), j = 1,2,3 andk}" (n), j = 1,..., 4 will be given later. Note that for a given

kY (n) andk}" (n) depend om. For givenn € {1,..., N,} we define the nth state vectaf,, by

@47 x.= (W Y,

Q,kQY(n)’YM;’(n)H oY

kY W

!
1,k}4f(n)’W1,k}’V(n)+1’ 2,kgV(n)""’W4,kW(n)) :

Note that allX ,, have the same dimensionality. For example, we have ferl
KU = k(1) =k (1) =k (1) =1, k3 (1) = k3" (1) =3, k' (1) = 2.

Conversely, the inverse relationships betweer{sgt.., N;},j =1,...,4,and sef1,..., Ny}
are defined fok = 1,..., N; by the index sets
nY (k) :={ne{l,...,Ny}:Yjp € Xy},

(48) '
nyv(k) ={ne{l,...., Ny} : W, € X,}.

Since the state vectaK,, is defined by sub-vectors, we need to be able to identify iddal

components. For a matrixf with m rows and an index sé& C {1,...,m} let M[S] denote the

rows of M with indicesi € S. We define index setd (j), i3 (j) andi" () of row indices of

26



sub-vectors ofX,,, n = 1, ..., Ny, by
(49) Xliz (1)] =Ygy (ny 10 J = 2.3,

X[ ()] = Wy d=1...,4
For example;} (2) is the row index onQ’kg(n) in state vectorX,,, n = 1,..., Ns. The index
sets in (49) can be computed recursively. Recalloﬂaﬁ’t denotes the dimension of random vector
W in (7), (8) forj = 1,...,4andk = 1,..., N,. Thereforei} (j), i () andi"V (5) do not
depend om. Let max[i} (j)] denote the maximum of index sgt(j), max[id (5)] denote the

maximum ofi} () andmax[i"V (5)] denote the maximum at¥ (), respectively. Using (47) we

get
it (1) ={L,...,m{"}, i (1) == {m{" +1,....2m{"},
iV (2)=2mlV + 1,4 (2) =iV (2) + 1,
50 i (3) =iy (2)+ 1,4 (3) =4 (3) +1,
i (4) =13 (3) + 1,
i (2) = {iY (4) +1,...,i) (4) + mdV},
i (j) = {max[i" (j — )]+ 1,...,max[i" (j — 1)] + m}"}, j = 3,4.

We want to incorporate (7), (8) into the state space reptaten. Therefore, it’;, € X,, andY;;, ¢

X1 then we require foy € {2,...,4}, k€ {1,...,N;}andn € {2,..., Ny} that

(51) Wire X1,
(52) Yipa(i=1.3,k): Yrpa(i—1,3.k) € Xn-1-
In the remainder of this section we consider how to specifsmsﬁ(k) andn]W(k), j=1,...,4,

k = 1,...,N;. Thisis equivalent to the specification bf (n) and k" (n) for j = 1,...,4,
n=1,..., Ny. We start withj = 4 and proceed scale by scale foe 3,2, 1.

Scale 4:

The index sen) (k), & = 1,..., Ny is specified through (45), i.en) (k) = {k}. Note that
W2 € X . Using (45) together with (51) then gives

(53) Xp 1[IV (4)] =Wy, n=2,...,Ny.

Let Wy n, € Xy, thenwe haver)’ (k) =k —1, k=1,...,Ny — 1, n}(N4) = Ny. Scales
3,2,1

27



For the scaleg = 3,2, 1 we proceed in a recursive manner. We need some additioratiorot
and definitions. For any se¥t let card M denote the cardinal number ¢#. We define for

i=234andj=1,...,i—1

k
(54) c(i,5,0) =0, c(i,j, k) := card{U de(i,j,l)} ,k=1,...,Nj.
=1

Recall thatde(i, j, 1) denotes the set of descendants on scafenode(s, 1) in GraphG®. There-
fore c(i, j, k) is the cumulative number of descendants on scafenodes(s, 1),..., (4, k). Def-

inition (54) implies
c(iyj k) = maz {I: (i,1) € de(i,5,k)}, j=1,...,3, i=j+1,...,4, k=1,...,N;.
Moreover,
(55) mlj, k] :==min{n € {I,... ., Ny} :nen)  (k)}, k=1,...,Nj.
This meansin[j, k] gives indexn of the first state vectaX,, with Y; , € X, i.e.
(56) Yjr € Xn=n>mlj k]

Note, that it follows from (45) thain[4,k] = k, k = 1,..., N,. Now we consider the specifi-
cation ofn}’(k), k =1,...,N;. Condition (52) requires in particular that¥f; ; € X, and
Y}—I—l,k ¢ X,,_1 then

(57) Yipa(jj+1,6)s Yrpa(jj+1,k) € Xn—1, k=1,..., Njp1, n=2,..., Ny.
We consider a sufficient condition for (57). Note that (54plies

(Y51 UY52) 2 (Vipa(jj+1.6) Y YepaGij+im)s k=1, ¢G + 1,5, 1).

Furtherlpa(j,j + 1,k) = rpa(j,j + 1,k) for k = 1 and may hold for somé € {2,...,¢(j +
1,5.1)}. Using (54) we havéj + 1. k) ¢ de(j +1,5,1), k=c¢(j+1,5,1) +1,..., Nj;1. Note
that(j,2) = lpa(j,j7 + 1,k) for (j +1,k) € de(j + 1,4,2) \ de(j + 1,4,1). Since a node can

have up to two parents we get that

(Yj2UY)3) 2 (Yipa(ij+1.6) Y Yopa(ij+1,))s K =c(i +1,5,1) +1,...,¢e(j + 1,4, 2).
More generally, we write fok; = 2,...,N; — 1
G+ 1kjr1) @ de(i+ 1,5,k — 1), kjp1 = c(G+1Ldokj — 1) +1,..., Njy1,
58) (4. k;) = pa(G, 5 + L kjp1) for (5 + 1,kjy1) € de(s + 1,4,k;) \ de(d + 1,5,k; — 1),
(Yik; UYj41) 2 VipaGitt,kj1) Y Yrpa(i+1,kj41)) fOr

kj+1 = C(] + 19j:kj - 1) + 1:-":C(j + 19]:k])
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Recall that nod€j + 1,%;41) with k11 = ¢(j + 1,7, k;) is the child of node(j, k), k; =
1,...,N;, such that

(.7+ 1ak) € de(j + 1ajakj) =k < C(j + 1ajakj)

holds. Therefore, we may say that naqge-1, k;.1) with ;11 = ¢(j+1, , k;) is the last child of
node(y, k;). Note thatm[j +1,c(j +1, j, k;)] denotes the lowest indexof state vectoiX,, with
Yiii,e(i+1.5k;) € Xn- Moreformally,Y; i oji1jk;) € Xn = n>ml[j+1,c(j+1,5.k;)]. To
meet Condition (57) we set therefore
Xaliy ()] = Yja, Xnaliy ()] :=Yjo, ;n =2, .m[j +1,¢(j + 1.4, 1)),
X i} ()] = Yk, Xnaliy (3)] := Yig; 41,
(59) n=mlj+Lc(j+1,5,k -] +1,...,m[j+1,¢c(5+1,7,k),
kj=2,...,Ny -2,
Xnalit ()] = Yin-1, Xn-alis ()] = Y,
n=mlj+1,c(j+1,5,N; —2)]+1,...,Ny+1.
Note that (59) specifies}”(k), k =1,...,N; and thereforen[j, k]. m[j, k] then gives index.

of the first state vectoX ,, with Y ,, € X, i.e.
(60) Yjr € Xn=n>mlj k]
In particular, we have fon = m[j, k], k =3,..., Nj,

Xnoaliy ()] = Yjk—j» Xnoaliy ()] = Yje-1,

X[i} ()] = Vig—1, Xali} ()] = Y-

(61)

Using (58) and (59) it follows that

62) { Xt i (DU X0t lil (D1} D (Yipats1y 000 Yipatit 1540 )+ 7 = 2500 Na.
By (51) and (55)W ;;, € X, has to hold fom = m[j, k|, k = 3,..., N;. This is ensured by
setting
Xl (§)] =Wz, n=2,...,m[j,4] - 1,
(63) Xy a[iV(5) = Wig, n=mlj,kl,....m[i,k+1] -1, k=4,...,N; -1,
X[ (5)] == Win,, n=ml[j,N;],..., Ny

Note that (63) specifies} (k), k =3, ..., N;.

29



A.3 Construction of System Matrices and System Noise for thein-
ear Gaussian State Space Representation

In this subsection we consider the construction of the systatricesAd,,, n = 1,..., N,. With
A,, given, system noisg,, and matrixT',, are also specified. Similar to the previous subsection
we proceed scale by scale, starting with sgate 4.

Scale 4:

Using (45) and (57) we havg, , € X, andYjp,(3.4,n): Yrpa3,am) € Xn-1, n = 2,..., Ny. If
Ipa(3,4,n) # rpa(3,4.n) thenay,, B, are given by (11)p =1,..., Ny.

If Ipa(3,4,n) = rpa(3,4,n) we set

64 Ban = 01if Ipa(3,4,n) = rpa(3,4,n) andn < ¢(4,3, N3 — 1),

4 Ban = 11if Ipa(3,4,n) = rpa(3,4,n) andn > c(4,3, N3 — 1).

Note that forn > ¢(4, 3, N3 — 1) it follows using (8) that nod¢3, N3) is the only parent on scale
j = 3 of node(4,n). From (53) it follows that, ,, € X, _1,n = 2,..., N4. Using (62), (64)

and defining fom = 2,..., N,

(65) A, fiy (4)] = (0 0 00 cup Pun 0 0 O G4)

then gives

(66) A 1Y ()] Xt = Y3y (no1) F BanYspy (nm1)41 + GaWan = Y.

Using (12) withj = 4 we haveW 4 ,, = B4, 1 Wy -1 +T4-1V4n—1. Therefore (53) implies
forn=1,...,N;—1

(67) An[iW(4)}=<0 00000O0GOTO OO B4,n),
(68) V4,n€nn,

’ —
(69) (0oo0o000000T,) el
Scale 3:

We consider now the construction of the sub-matrides 1 [i1 (3)] and A,,_[i3 (3)] of the sys-
tem matricesAd, ;. Note that (32) together with (55) imphn[3,1] = m[3,2] = 1. Us-
ing (59) we get forn = 2,...,m[3,k] — 1 andk = 3,...,N3 thatYs;; ¢ X, and in par-
ticular X, 1[iY (3)] = X,[iY (3)], Xn_1[id (3)] = X,[i3(3)]. Therefore we set fon =
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2,....,m[3,k] —1andk =3,..., N3

A, [iY(3)] = (0 0 00100TO0TO0O 0),
(70)

A, iy (3)] = (0 000010000 0) .
Sincen = m([3, k] is defined as the first index of state veci&y, with Y3, € X,,, (59) and (55)
imply for n = m[3, k|

Xnoali} 3)] =Yap—2,  Xnoaliy (3)] = Va1,

Xnli} (3)] = Yap—1, X, [iY (3)] = Ya

)

and we set fon = m[3,k] andk = 3,..., N3

A, iV (3)] := (0 0000TUO0O0OQ 0),
(71)
A

4, 13 =(0 0 agx fax 0 0 0 0 Gy 0.

If Ipa(2,3,k) # rpa(2,3, k) thenas ,, andfs ;, are given as in (11). Wpa(2,3, k) = rpa(2, 3, k)

in G° then we set

72) B3k := 0if Ipa(2,3,k) = rpa(2,3,k) andk < ¢(3,2, Ny — 1),
72
BS,k =1if k> 6(3, 2, Ny — 1)

Note that fork > ¢(3,2, Ny — 1) it follows using (8) that nod€2, N,) is the only parent on
scalej = 2 of node(3, k). Forn = m[3, N3],..., Ny we have using (593 n,-1, Y3 n, € X .
ThereforeA,,_1[iY (3)] and A,,_[iY (3)] for n = m[3, N3] + 1,..., N, are given by (70).

Now we consider the construction of sub-mateky,_;[i"V(3)]. Equation (63) requires for

n=m[3,k] —1,k=4,..., N3,
(73) Ap[i"(3)] = (0 000000 O Bz, 0) :
Equation (73) also requires far= m[3.k] — 1,k =4,..., N3,

(74) V3,k—1 € MNn—1»

’ —
(75) (00000000 Iy 0)cln
This gives forn = m[3,k] — 1,k =4,..., N3,

Ay i X 1+ T m, 1 = B3g_1Wag1 + T35 1 Va1 = Way,
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and thereforeX ,,[i" (3)] = Wy, n = m[3,k] — 1, k = 4,..., N3, as required by (63). For
n#m[3,k] — 1,k =4,..., N3, we then set

(76) A, [V (3)] = (0 0000GO0G 0T O I 0).

Modifications for the scaleg = 2, 1 are obvious and are not given explicitly.

A.4 Independence Assumptions of the Linear Gaussian Statgp&ce
Representation

So far we have shown that the transition frd, to X ,, .1 has the form of (23). Since Model (7)-
(12) over a two-parent scale-to-scale Grgphis Gaussian, the state space representation derived

in this section is also Gaussian. Recalling tHat, = 7, for k = 1,...,4 we get

Zk:<000000I000>Xka

which has the form of (24). We discuss now that Assumptiory (@r the linear Gaussian
state space model are also satisfied. Since system nois® yectn = 1,..., Ny — 1, in the
state space representation contains d#ily, of Model (7) - (12) over a two-parent scale-to-
scale Graplg® we get using (14), thafn,,, n =1,..., Ny — 1} is serially independent. Fur-
thermore, sincV,;,7 = 1,...,4,k = 1,..., N;} is jointly normally distributed the family
{m,, n=1,..., Ny — 1} is also jointly normally distributed. From (13), (15), (1&)d (17) it

follows thatn,, L X, n=1,..., N4 — 1. Therefore, Assumptions (25) are satisfied.

32



