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Optimality of the quasi-score estimator in a mean-variance model with
applications to measurement error models

Alexander Kukush, Andrii Malenko

Kyiv National Taras Shevchenko University, Ukraine

Hans Schneeweiss

University of Munich, Germany

Abstract

We consider a regression of y on x given by a pair of mean and variance functions with
a parameter vector θ to be estimated that also appears in the distribution of the regressor
variable x. The estimation of θ is based on an extended quasi score (QS) function. We
show that the QS estimator is optimal within a wide class of estimators based on linear-in-y
unbiased estimating functions. Of special interest is the case where the distribution of x
depends only on a subvector α of θ, which may be considered a nuisance parameter. In
general, α must be estimated simultaneously together with the rest of θ, but there are cases
where α can be pre-estimated. A major application of this model is the classical measurement
error model, where the corrected score (CS) estimator is an alternative to the QS estimator.
We derive conditions under which the QS estimator is strictly more efficient than the CS
estimator.We also study a number of special measurement error models in greater detail.

Keywords: Mean-variance model, measurement error model, quasi score estimator, cor-
rected score estimator, nuisance parameter, optimality property.
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1 Introduction

Suppose that the relation between a response variable y and a covariate (or regressor) x is
given by a pair of conditional mean and variance functions:

E (y|x) =: m(x, θ), V(y|x) =: v(x, θ). (1)

Here θ is an unknown d-dimensional parameter vector to be estimated. The parameter θ
belongs to an open parameter set Θ. The variable x has a density ρ(x, θ) with respect to
a σ-finite measure ν on a Borel σ-field on the real line. We assume that v(x, θ) > 0, for
all x and θ, and that all the functions are sufficiently smooth. Such a model is called a
mean-variance model, cf. Carroll et al. (1995). We want to estimate θ on the basis of an
i.i.d. sample (xi, yi), i = 1, . . . , n.

The remarkable feature of this model is that the parameter θ appears not only in the mean
and variance functions but also in the density function of the regressor. We construct an
estimator of θ that takes this feature into account. We do so by basing the estimator on an
(unbiased) estimating function that depends not only on m and v, but also on ρ; it depends
on m and v via the conventional quasi score function, cf. Carroll et al. (1995), Wedderburn
(1974), Armstrong (1985), Heyde (1997), and on ρ via the log-likelihood of the distribution
of x. This compound estimating function might therefore be called an extended quasi score
(QS) function, but for simplicity, we will just call it the quasi score (QS) function and the
corresponding estimator the QS estimator. The QS estimator turns out to be optimal within
a wide class of so-called linear score (LS) estimators.

A very important special model is given, when θ consists of two subvectors α and β, where
α is a parameter describing the distribution of x. But m and v still depend on the whole of θ,
i.e., on α and β. In this case, we might be mainly interested in the estimation of β, while α is
a nuisance parameter. Again the remarkable trait of this model is that the parameter α not
only determines the distribution of x but also the mean and variance functions, something
that does not occur in an ordinary regression model. However, a model of this type arises
naturally in the context of measurement error models. Measurement error models form a
central part of our paper. The most important LS estimator in a measurement error model,
apart from QS, is the so-called corrected score (CS) estimator, cf. Stefanski (1989), Nakamura
(1990).

As the mean and variance functions depend on α and β, these parameters have to be
estimated simultaneously within the QS approach. This is the main difference of our QS
approach to the more traditional one, which consists in first estimating α separately, using
only the data xi, and then, after substituting α̂ for α in the quasi score function of β, finding
an estimate of β, cf. Carroll et al. (1995). But there are some important models, where α (or
part of α) can, in fact, be estimated in advance, without invalidating the superiority property
of QS vis-a-vis to CS – we say α can be pre-estimated. We study such models, among which
the polynomial model is the most prominent one. Other models are the Poisson, the Gamma,
and the logit model.

We not only can state the optimality of QS within the class of linear scores, but we can
also give conditions under which this optimality is strict in the sense that the difference of
the asymptotic covariance matrices of the estimators is positive definite and not just positive
semidefinite. We also give conditions under which QS and CS are equally efficient.

The present paper is a continuation of a research started in Kukush and Schneeweiss
(2006), where a mean-variance measurement error model was considered under known nui-
sance parameters and the efficiency of the QS estimator (in the usual sense) was compared to
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the LS estimator, thereby extending a similar result of Heyde (1997). In the present paper,
we study the case of unknown nuisance parameters. For that case, Schneeweiss (2005) dealt
with the computation of the asymptotic covariance matrix of the estimator in a polynomial
measurement error model. Shklyar (2006) proved for the log-linear Poisson model with errors
in the variables and nuisance parameters that the QS estimator is more efficient than the CS
estimator, where the unknown mean and variance of the latent variable were pre-estimated by
the empirical mean and empirical variance. He used a direct computation of the asymptotic
covariance matrices. We can derive this result by reasoning from general principles.

We assume regularity conditions, which make it possible to differentiate integrals with
respect to parameters and which guarantee that the considered estimators, generated by un-
biased scores, are consistent and asymptotically normal with asymptotic covariance matrices
that are given by the sandwich formula, see Carroll et al. (1995). These regularity conditions
are discussed in Kukush and Schneeweiss (2005) for a nonlinear measurement error model.
See also the discussion concerning the sandwich formula in Schervish (1995), p. 428.

We use the symbols E to denote the expectation of random values, vectors, and matrices
and V to denote the variance or the covariance matrix. We often omit the arguments of
functions, e.g., instead of ρ(x, θ) we write ρ for simplicity. All vectors are considered to be
column vectors. We use subscripts to indicate partial derivatives, e.g., ρθ = ∂ρ

∂θ . For any
scalar function its derivative with respect to a vector is a column vector and for a vector it
is a matrix. We compare real matrices in the Loewner order, i.e., for symmetric matrices A
and B of equal size, A < B and A ≤ B means that B − A is positive definite and B − A is
positive semidefinite, respectively.

The paper is organized as follows. In Section 2, we introduce the class of linear unbiased
scores. In Section 3, we introduce our new QS estimator. Section 4 contains general results
on the comparison of QS and LS estimators. Section 5 comments on the case of an unknown
dispersion parameter. In Section 6, we specialize our general model to the case of a regression
model with nuisance parameters. Here we also introduce the measurement error model and
the corrected score (CS) estimator as a special member of the class of LS estimators. Section
7 deals with cases where pre-estimation of the nuisance parameters is possible. Section 8
studies strict optimality of QS in various measurement eror models. In Section 9, we present
some examples where QS and CS are equally efficient under restricted parameter points.
Section 10 concludes. Two lemmas and the proofs of the main theorems are given in the
appendix.

2 Class of linear scores

The estimation of θ in the mean-variance model (1) cannot be accomplished by using the
maximum likelihood (ML) approach because the conditional distribution of y given x is by
assumption not known. Instead an estimator of θ is based on an unbiased estimating (or
score) function, which we suppose to be given. A typical example of such an estimating
function is the quasi score function to be introduced in Section 3. It is a member of a general
class of estimating functions. Let L be the class of all unbiased linear-in-y score functions
(for short: linear score (LS) functions):

SL(x, y; θ) := yg(x, θ) − h(x, θ), (2)

where unbiasedness means that ∀ θ ∈ Θ : ESL(x, y; θ) = 0. Here g and h are vector-valued
functions of dimension d, the same dimension as θ. The expectation is meant to be carried
out under the same θ as the θ of the argument.

3



The estimator of θ based on SL is called linear score (LS) estimator θ̂L and is given as the
solution to the equation

n
∑

i=1

SL(xi, yi; θ̂L) = 0.

Under general conditions θ̂L exists and is consistent and asymptotically normal. The as-
ymptotic covariance matrix (ACM) ΣL of θ̂L is given by the sandwich formula, cf. Heyde
(1997),

ΣL = A−1
L BLA−⊤

L , AL = −ESLθ, BL = ESLS⊤

L . (3)

AL is supposed to be nonsingular (identifiability condition).
The condition of unbiasedness of the score function amounts to the statement that E (yg−

h) = 0, which is equivalent to
E (mg − h) = 0. (4)

We want to derive an identity from (4), which we will need later on. Equation (4) can be
written as

∫

R

(mg − h)ρ dν = 0,

Differentiating with respect to θ yields

∫

R

(mg − h)θ · ρ dν +

∫

R

(mg − h)ρ⊤θ dν = 0.

We thus have the identity

E (mg − h)θ + E (mg − h)l⊤θ = 0, (5)

where l := log ρ(x, θ).

3 Heuristic derivation of the QS estimator

We want to construct a special linear score function, which we will call the quasi-score
function and which will play a fundamental role in the following. It is based on the mean
and variance functions (1). To this purpose, we suppose that y|x ∼ N(m, v). We need this
assumption only for the heuristic derivation of the quasi-score function and will discard it
later on after it has served its purpose. The joint density of x and y then equals

f(x, y) =
1√
2πv

e−
(y−m)2

2v ρ,

and the log-likelihood function is

L(x, y) := log f(x, y) = −1

2
log v − (y − m)2

2v
+ l + const.

To construct a score function for θ, we compute

∂L

∂θ
=

(y − m)mθ

v
+ lθ −

1

2

∂

∂θ
log v − (y − m)2

2

∂

∂θ

1

v
.
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Note that the expectation of the sum of the last two terms is zero. So by omitting these two
terms (and thus neglecting the dependence of v on θ), we derive a quasi score function SQ

as follows:

SQ(x, y; θ) :=
(y − m)mθ

v
+ lθ. (6)

It differs from the usual quasi-score function as exemplified, e.g., in Heyde (1997), by the
term lθ. It is obviously unbiased even without the provisional assumption of normality, which
we will discard from now on. We assume that

ESQS⊤

Q = E v−1mθm
⊤

θ + E lθl
⊤

θ

is positive definite. This (identifiability) condition is equivalent to the condition that the d
two-dimensional random vectors

(

lθi

mθi

)

, i = 1, . . . , d, (7)

are linearly independent.
The QS estimator θ̂Q of θ is defined as the solution to the equation

n
∑

i=1

SQ(xi, yi, θ̂Q) = 0. (8)

The quasi-score function (6) belongs to L, therefore the estimator θ̂Q is consistent and
asymptotically normal under regularity conditions.

4 Comparison of QS to LS

We want to derive alternative formulas for the ACMs of the LS estimator θ̂L and of the QS
estimator θ̂Q. These formulas will be useful in comparing ΣQ to ΣL. To this purpose, we
show that

ESLθ = −ESLS⊤

Q . (9)

We first have
ESLθ = E (mgθ − hθ). (10)

On the other hand,

ESLS⊤

Q = E [(mg − h) + (y − m)g]

[

(y − m)mθ

v
+ lθ

]⊤

= E (mg − h)l⊤θ + E gm⊤

θ . (11)

From (10), (11), and (5) we obtain

ESLθ + ESLS⊤

Q = E (mg − h)θ + E (mg − h)l⊤θ = 0,

which yields (9).
Now, (9) implies that the ACM of θ̂L, given by (3), can be written as

ΣL =
(

ESLS⊤

Q

)−1
ESLS⊤

L

(

ESLS⊤

Q

)−⊤

. (12)

As SQ belongs to L, we can apply (12) and obtain for the ACM of θ̂Q

ΣQ =
(

ESQS⊤

Q

)−1
. (13)

We now can state the following theorems.
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Theorem 4.1 (Optimality of QS) Let SL be a score function from the class L and SQ be
the quasi-score function (6). Then

ΣQ ≤ ΣL.

Moreover, ΣL = ΣQ for all θ if, and only if, θ̂L = θ̂Q a.s.

Theorem 4.2 (Strict Optimality of QS) Under the conditions of Theorem 4.1

rank (ΣL − ΣQ) = rank

[(

mgi − hi

vgi

)

,

(

lθi

mθi

)

, i = 1, . . . , d

]

− d, (14)

where rank [·] is the maximum number of linearly independent random vectors inside the
square brackets. In particular,

ΣQ < ΣL

if, and only if, the random vectors in (14) are linearly independent.
If

span

{(

mgi − hi

vgi

)

, i = 1, . . . , d

}

∩ span

{(

lθi

mθi

)

, i = 1, . . . , d

}

=

{(

0
0

)}

,

then

rank (ΣL − ΣQ) = rank

[(

hi

gi

)

, i = 1, . . . , d

]

.

As an immediate consequence, we have the following corollary:

Corollary 4.1 A sufficient condition for ΣQ < ΣL is that the random variables

{(mg − h)i, i = 1, . . . , d, lθj
, j ∈ Bθ} (15)

are linearly independent, where {lθj
, j ∈ Bθ} is a basis of span {lθj

, j = 1, . . . , d}.

Remark 1. The inequality ΣQ ≤ ΣL of Theorem 4.1 can also be obtained as a direct
consequence of identity (9) and Heyde’s (1997) criterion for asymptotic optimality.

5 Estimation of an unknown dispersion parameter

In this section we assume additionally that the conditional variance depends also on an
unknown parameter ϕ ∈ R

+, v = v(x, θ, ϕ), while m(x, θ) does not depend on ϕ, and the
distribution of x does not depend on ϕ either.

This holds, e.g., when the conditional distribution of y|x has a density belonging to an
exponential family with dispersion parameter ϕ > 0.

We introduce an unbiased score function for ϕ,

S(ϕ) = (y − m)2 − v.

(Another option could be the function y2 − m2 − v). The estimators θ̂Q, ϕ̂Q are generated

by the compound score function S
(θ,ϕ)
Q =

(

S
(θ)⊤
Q , S(ϕ)

)⊤

, where S
(θ)
Q is the same as SQ given

in (6). Similarly for the score function SL = S
(θ)
L given in (2) with g = g(x, θ, ϕ) and
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h = h(x, θ, ϕ), we introduce the compound score function S
(θ,ϕ)
L =

(

S
(θ)⊤
L , S(ϕ)

)⊤

and the

corresponding estimators θ̂L, ϕ̂L. By the sandwich formula, the ACM of (θ̂L, ϕ̂L)⊤ equals

Σ
(θ,ϕ)
L =

(

A
(θ,ϕ)
L

)−1
B

(θ,ϕ)
L

(

A
(θ,ϕ)
L

)−⊤

(16)

Since m does not depend on ϕ, we have

E
∂

∂ϕ
S

(θ)
L = E (ygϕ − hϕ) = E (mg − h)ϕ = 0.

The last equation follows from the identity E θ(mg − h) = 0 for all ϕ. Thus the matrix

A
(θ,ϕ)
L = −E

∂

∂(θ, ϕ)
S

(θ,ϕ)
L =:

(

A
(θ)
L 0

∗ A
(ϕ)
L

)

. (17)

is lower block-triangular. In addition, we have

B
(θ,ϕ)
L = ES

(θ,ϕ)
L S

(θ,ϕ)⊤
L =:

(

B
(θ)
L ∗
∗ B

(ϕ)
L

)

, (18)

Σ
(θ,ϕ)
L =:

(

Σ
(θ)
L ∗
∗ Σ

(ϕ)
L

)

.

From (16), (17), and (18) we obtain that

Σ
(θ)
L =

(

A
(θ)
L

)−1
B

(θ)
L

(

A
(θ)
L

)−⊤

,

which coincides with the ACM (3) of θ̂L under known ϕ. Therefore the optimality properties
of θ̂Q, which were established in the previous section, still hold true under unknown ϕ. For
that reason, we assume in the subsequent sections that ϕ is known.

Note, however, that this result depends on the fact that the same S(ϕ) was chosen both
for QS and for LS. For an example of a different choice see Shklyar et al. (2006).

6 Estimation of a nuisance parameter in a regression model

6.1 General regression model with nuisance parameter

In this section we deal with an important special case of our general model. We suppose
that θ is split into two subvectors, θ⊤ = (β⊤, α⊤), β ∈ R

k, α ∈ R
d−k, such that the density

of x depends only on α: ρ = ρ(x, α), whereas the mean and variance functions may still
depend on β and α. In this case, β can be seen as the regression parameter and is usually
the parameter of interest, while α is a nuisance parameter.

The quasi-score function (6) takes the form

SQ =

(

(y − m)v−1mβ

(y − m)v−1mα + lα

)

. (19)

Such a model arises naturally in the context of measurement error models, see Section
6.2. All the previous results hold true.
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It seems reasonable in this case to also restrict the competing linear score estimator to an
appropriate subclass of L. Assume that SL is of the form

SL =

(

yg(x, β) − h(x, β)
{log ρ(x, α)}α

)

, (20)

where now g and h are of dimension k and do not depend on α. Unbiasedness of SL again
means that E(mg − h) = 0 because E lα = 0 anyway. Note that SQ is not a member of this
restricted class. Nevertheless, we can still apply Theorems 4.1 and 4.2 to compare ΣL to ΣQ.
In particular, Theorem 4.2 takes the form:

Theorem 6.1 If θ = (β⊤, α⊤)⊤ and ρ = ρ(x, α) and SL is of the form (20), then

rank (ΣL − ΣQ) + d

= rank

[(

mgi − hi

vgi

)

,

(

0
mβi

)

, i = 1, . . . , k,

(

0
mαj

)

,

(

lαj

0

)

, j = 1, . . . , d − k

]

.

6.2 Measurement error model

The model of Subsection 6.1 typically arises from a measurement error model. This is a model
where the response variable y depends on a latent (unobservable) variable ξ with distribution
ρ(ξ, α). The variable ξ can be observed only indirectly via a surrogate variable x, which is
related to ξ through a measurement equation of the form

x = ξ + δ, (21)

where the measurement error δ is independent of ξ and y and E δ = 0. Additionally, we
assume δ ∼ N(0, σ2

δ ) with σ2
δ known.

The dependence of y on ξ is either given by a conditional distribution of y given ξ or
simply by a conditional mean function supplemented by a conditional variance function:

E (y|ξ) = m∗(ξ, β), V(y|ξ) = v∗(ξ, β). (22)

Note that m∗ and v∗ do not depend on α. From (22) we can derive the conditional mean
and variance functions of y given x:

m(x, β, α) := E (y|x) = E [m∗(ξ, β)|x] (23)

v(x, β, α) := V(y|x) = E [v∗(ξ, β)|x] + V[m∗(ξ, β)|x]. (24)

To compute these, we need to know the conditional distribution of ξ given x, which we can
derive from the unconditional distribution of ξ, ρ(ξ, α), and the measurement equation (21).
An important special case for ρ(ξ, α) is the normal distribution ξ ∼ N(µξ, σ

2
ξ ), σ2

ξ > 0. In

this case, x ∼ N(µ, σ2), µ = µξ, σ2 = σ2
ξ + σ2

δ , α = (µ, σ)⊤, and ξ|x ∼ N(µ(x), τ2) with

µ(x) = Kx + (1 − K)µ (25)

τ2 = Kσ2
δ , (26)

where K = σ2
ξ/σ2 is the reliability ratio, 0 < K < 1.

The subvector lα in the score function SQ takes the special form

lα = (lµ, lσ)⊤ =

(

x − µ

σ2
,

(x − µ)2

σ3
− 1

σ

)⊤

. (27)
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Among the linear score functions, the so-called corrected score (CS) function is of par-
ticular interest. It is given by special functions g and h. Suppose we can find functions
g = g(x, β) and h = h(x, β) such that

E [g|ξ] = v∗−1m∗

β (28)

E [h|ξ] = m∗v∗−1m∗

β . (29)

Then, because of E (yg − h) = E E [(yg − h)|y, ξ] = E (y − m∗)v∗−1m∗

β = 0,

SC :=

(

yg − h
lα

)

is a linear score function within the class L. It is called the corrected score function of the
measurement error model. In a number of important cases such functions g and h can be
found in closed form. But there are also cases where g and h do not exist, Stefanski (1989).

6.3 Regression model without measurement errors

In the typical (linear or nonlinear) regression model without measurement errors we have a
complete separation of θ⊤ = (β⊤, α⊤), β only appearing in the mean and variance functions
and α appearing only in the density function of x: m = m(x, β), v = v(x, β), ρ = ρ(x, α).
The identifiability condition (7) simplifies to the condition that the two systems of random
variables

[mβi
, i = 1, . . . , k] as well as [lαj

, j = 1, . . . , d − k] (30)

are both linearly independent. The linear score functions and the quasi score function, which
is a special case of the former, take the form

SL =

(

yg − h
lα

)

, SQ =

(

(y − m)v−1mβ

lα

)

, (31)

where g and h are of dimension k and are functions of x and β only. We have

ESLθ = E

(

mgβ − hβ 0
0 lαα

)

ESLS⊤

Q = E

(

gm⊤

β (mg − h)l⊤α
0 lαl⊤α

)

.

By (9), this implies the identity

E (mg − h)l⊤α = 0, (32)

which will be useful in comparing ΣL to ΣQ. As the ACM of α̂ is the same submatrix for all
ΣL and since ΣQ ≤ ΣL , the difference of ΣL and ΣQ takes the form

ΣL − ΣQ =

(

Σ
(β)
L − Σ

(β)
Q 0

0 0

)

. (33)

Theorems 4.1 and 4.2 now reduce to

Theorem 6.2 In a regression model with β the regression parameter and α the nuisance
parameter describing the regressor distribution, the following holds:

9



a) For any linear score function (31), Σ
(β)
Q ≤ Σ

(β)
L .

b)

rank
(

Σ
(β)
L − Σ

(β)
Q

)

= rank

[(

mgi − hi

vgi

)

,

(

0
mβi

)

, i = 1, . . . , k

]

− k. (34)

In particular, if span {vgi, i = 1, . . . , k} ∩ span {mβi
, i = 1, . . . , k} = {0}, then

rank
(

Σ
(β)
L − Σ

(β)
Q

)

= rank

[(

hi

gi

)

, i = 1, . . . , k

]

. (35)

c) If the components {(mg−h)i, i = 1, . . . , k} are linearly independent, then Σ
(β)
Q < Σ

(β)
L .

Clearly, Theorem 6.2 also holds if the distribution of the regressor is completely known,
so that there is no nuisance parameter α.

7 Pre-estimation of nuisance parameters

7.1 General model

In the model of Section 6.1 with θ⊤ = (β⊤, α⊤), we could also define a modified QS estimator,
which is based on a score function that instead of (19) consists of the two subvectors (y −
m)v−1mβ and lα, implying an estimator of α which uses the second subvector only. This
means that α would be pre-estimated using only the data xi, not the data yi. We can then
substitute the resulting estimator α̂ in the first subvector, (y − m)v−1mβ , and use this to
estimate β. We might call this estimator of β a QS estimator with pre-estimated nuisance
parameters or simply pre-estimated QS estimator.

Such a two-step estimation procedure is, of course, simpler to apply than the one we
propose, but according to Theorem 4.1 it is at most as efficient and often less efficient than
the latter one.

There are, however, cases where pre-estimation of the nuisance parameter is in accordance
with our QS approach and does not reduce the efficiency of QS. Suppose that

mα = Amβ (36)

with some nonrandom matrix A (which may depend on θ). Then, first of all, the identifiability
condition (7) simplifies to the same condition as in Section 6.3, see (30). Furthermore, the
quasi score function SQ of (19) can be linearly transformed into an equivalent quasi score
function S∗

Q, where the second subvector consists of lα only:

S∗

Q =

(

I 0
−A I

)−1

SQ =

(

(y − m)v−1mβ

lα

)

.

The QS estimator θ̂ based on S∗

Q is the same as the one based on SQ. Using S∗

Q, we see that
α can be estimated independently of β from the second subvector of S∗

Q alone, i.e., it can be
pre-estimated without reducing the efficiency of QS.

The QS estimator of α is the same as the LS estimator. Therefore ΣL −ΣQ is of the form
(33) and Theorem 6.1 reduces to

10



rank (Σ
(β)
L − Σ

(β)
Q ) + d

= rank

[(

mgi − hi

vgi

)

,

(

0
mβi

)

, i = 1, . . . , k,

(

lαj

0

)

, j = 1, . . . , d − k

]

. (37)

An immediate consequence of (37) is the following corollary, which corresponds to Corol-
lary 4.1.

Corollary 7.1 Suppose in a model with nuisance parameters as described in Section 6.1

condition (36) holds, then a sufficient condition for Σ
(β)
Q < Σ

(β)
L is that the two systems of

random variables

{mβi
, i = 1, . . . , k} and {(mg − h)i, i = 1, . . . , k, lαj

, j = 1, . . . , d − k}

are both linearly independent.

For later use, we formulate an extension of Corollary 7.1, which deals with the case where
only part of mα is linearly related to mβ . It can be proved in the same way as Corollary 7.1.

Corollary 7.2 Suppose in a model with nuisance parameters the nuisance parameter vector
α is subdivided into two subvectors α′ ∈ R

r and α′′ ∈ R
(d−k−r) such that mα′′ = Amβ

with some nonrandom matrix A. Suppose further that there exists a nonrandom nonsingular
square matrix B such that l̃α′′ := Blα′′ is a function of x and α′′ only. Let θ′ = (β⊤, α′⊤)⊤.

Then a sufficient condition for Σ
(θ′)
Q < Σ

(θ′)
L is that the two system of random variables

{mβi
, i = 1, . . . , k, mαj

, j = 1, . . . , r} and {(mg − h)i, i = 1, . . . , k, lαj
, j = 1, . . . , d − k}

are both linearly independent.

Note that l̃α′′ can be used to pre-estimate α′′ and α̂′′

Q = α̂′′

L.
In the following subsections, we study some special cases of the measurement error model

of Section 6.2, where the nuisance parameter (µ, σ)⊤ or at least µ can be pre-estimated
without loss of efficiency.

7.2 Pre-estimation of µ

Consider the mean-variance measurement error model of Section 6.2 and assume that the
error free mean function m∗ is a function of a linear predictor in ξ:

m∗(ξ, β) = m̃(β0 + β1ξ), β = (β0, β1)
⊤. (38)

The mean function m = m(x, β, α) can then be computed as follows:

m = E (m∗|x) = E [m̃{β0 + β1(Kx + (1 − K)µ + τγ)}|x] , (39)

where γ ∼ N(0, 1) and γ is independent of x. From (39) we have

mβ0 = E [m̃′|x] (40)

mµ = β1(1 − K)E [m̃′|x], (41)

11



where ′ denotes the derivative. Thus

mµ = β1(1 − K)mβ0 . (42)

According to Section 7.1, SQ is thus equivalent to

S∗

Q =





(y − m)v−1mβ

(y − m)v−1mσ + lσ
lµ



 . (43)

Thus µ can be pre-estimated by using the score function lµ, i.e., by solving the estimating
equation

∑n
i=1

xi−µ
σ2 = 0 with the solution µ̂Q = x := 1

n

∑n
i=1 xi. Thus for such models the

QS estimator of µ is the empirical mean of x.

7.3 Pre-estimation of σ

Continuing with the model of Section 7.2, we now derive conditions under which not only µ
but also σ can be pre-estimated without loss of efficiency.

Starting from (39), we find, in addition to (40) and (41),

mβ1 = (Kx + (1 − K)µ)E
[

m̃′|x
]

+ τ2 E
[

m̃′′|x
]

, (44)

mσ = β1Kσ(x − µ)E
[

m̃′|x
]

+ β1ττσ E
[

m̃′′|x
]

. (45)

Here we used the identity

E
[

m̃′(a + τγ)γ|x
]

= τ E
[

m̃′′(a + τγ)|x
]

.

Indeed, by partial integration,

E
[

m̃′(a + τγ)γ|x
]

=

∫

m̃′(a+ τγ)γq(γ)dγ = τ

∫

m̃′′(a+ τγ)q(γ)dγ = τ E
[

m̃′′(a + τγ)|x
]

,

where q(γ) is the density of the standard normal distribution and a = a(x) is any function
of x.

Now suppose that
m̃′′ = c0m̃

′ (46)

with some constant c0. Then by (40), (44), and (45), and because K > 0,

mσ = d1mβ0 + d2mβ1

with some constants d1 and d2. Thus

mα = (mµ, mσ)⊤ = A(mβ0 , mβ1)
⊤ = Amβ

with some constant (2 × 2)-matrix A, and, according to Section 7.1, µ and σ can be pre-
estimated. The QS estimates of µ and σ are simply the empirical mean and variance of the
data xi:

µ̂Q = x, σ̂2
Q = s2

x :=
1

n

n
∑

i=1

(xi − x)2.

The linear differential equation(46) has the solution

12



m̃(t) = c1e
c0t + c2. (47)

In the log-linear gamma model and the log-linear Poisson model, see Sections 8.2 and 8.3,
respectively, m̃(t) = et. Thus for these models µ and σ can be pre-estimated.

In the logit model, see Section 8.4, m̃(t) = (1 + e−t)−1, which does not satisfy the dif-
ferential equation (46). In this case, σ must be estimated along with the other parameters,
although µ can still be pre-estimated by x. The same is true for the probit model.

7.4 Linear-in-β and polynomial Gaussian model

In this section, we study the possibility of pre-estimating µ and σ in the context of a mea-
surement error model, where the mean function is linear in β. It is given by the equations

y = β⊤Φ(ξ) + ε, β ∈ R
k, Φ(ξ) ∈ R

k (48)

x = ξ + δ,

where ε ∼ N(0, σ2
ε), ε independent of ξ, and ξ and δ are as before. Φ is a known vector-valued

function of ξ. Clearly,
m∗(ξ, β) = β⊤Φ(ξ) (49)

and v∗ = σ2
ε . (σ2

ε corresponds to the dispersion parameter ϕ, which has to be estimated
along with β. For reasons given in Section 5, we can assume σ2

ε to be known when we are
only interested in comparing the ACMs of β̂C and β̂Q). It follows that

m = β⊤ E (Φ|x), mβ = E (Φ|x), mµ = (1 − K)β⊤ E (Φ′|x).

Now suppose that
Φ′(ξ) = D1Φ(ξ), (50)

where D1 is a constant square matrix (which may depend on θ). Then

mµ = (1 − K)β⊤D1mβ .

Therefore, according to Section 7.1, µ can be pre-estimated and µ̂Q = x.
Relation (50) holds, e.g., when Φ(ξ) = (1, ξ, . . . , ξk)⊤ (polynomial model)

or Φ(ξ) = (eλ1ξ, eλ2ξ, . . . , eλkξ)⊤, λi 6= λj , i, j = 1, . . . , k, or Φ(ξ) =
(1, cos(aξ), sin(aξ), . . . , cos(kaξ), sin(kaξ))⊤, a > 0 (trigonometric polynomial model), or
Φ(ξ) = eλξ(1, ξ, . . . , ξk)⊤, λ ∈ R.

Considering the nuisance parameter σ, we have (see the derivation of (45))

mσ = β⊤
(

Kσ(x − µ)E [Φ′|x] + ττσ E [Φ′′|x]
)

.

In the polynomial model, mσ is a polynomial function of x of degree k, while the components
of E (Φ|x), i.e., E [ξj |x], are polynomials of degree j, j = 0, . . . , k. Therefore mσ is a linear
combination of the components of E (Φ|x) (with coefficients depending on θ). Thus mσ =
b⊤mβ with some constant vector b. According to Section 7.1, this implies that not only µ
but also σ can be pre-estimated and σ̂2

Q = s2
x = 1

n

∑n
i=1(xi − x)2, i.e., for the polynomial

model, the estimator σ̂2
Q is just the empirical variance.
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8 Strict optimality of QS as compared to CS in special mea-

surement error models

Hereafter we consider the measurement error model (21), (22), where ξ and δ are normal
independent random variables as described in Section 6.2. We suppose σ2

δ to be known. µ
and σ are nuisance parameters.

8.1 Polynomial model

In the polynomial measurement error model (see Section 7.4), y = β⊤ζ + ε, and x = ξ + δ
with ζ = ζ(ξ) = (1, ξ, . . . , ξk)⊤. The variable ε is independent of ξ and δ, and ε ∼ N(0, σ2

ε).
This model is a special case of model (48) with Φ(ξ) = ζ(ξ), m∗ = β⊤ζ, and v∗ = σ2

ε .
We distinguish the cases of nuisance parameters known and unknown.
Under known nuisance parameters, β is the only parameter to be estimated. The QS and

CS functions are constructed as follows, see Shklyar et al. (2006):

SQ =
(y − m)mβ

v
, SC = yt(x) − T (x)β, (51)

where t(x) = (t0(x), . . . , tk(x))⊤ is such that E (t(x)|ξ) = ζ and T (x) ∈ R
(k+1)×(k+1) such

that T (x)ij = ti+j(x), i, j = 0, . . . , k. The functions tj(x) are polynomials in x of degree j
with leading term xj , j = 0, . . . , k. The mean function m = m(x, β) is given by m = β⊤r(x),
where r(x) = r = (r0, . . . , rk)

⊤, rj = rj(x) being a polynomial in x of degree j with leading
term Kjxj . The variance function v = v(x, β, σ2

ε) is a polynomial in x of degree 2s − 2,
except when s = 0 (where v = σ2

ε). Here s is the true degree of the polynomial β⊤ζ, i.e.,
s = max{j : βj 6= 0}; if β = 0, we set s = 0.

Under unknown nuisance parameters, the QS and CS functions have to be supplemented
by the scores lµ and lσ for the nuisance parameters µ and σ. From Section 7.4, we know
that µ and σ can be pre-estimated on the basis of lµ and lσ alone, yielding the QS as well as
CS estimators x and s2

x, respectively: µ̂C = µ̂Q = x, σ̂2
C = σ̂2

Q = s2
x. The β part of the CS

and QS functions remain unchanged as in (51) except that µ and σ are replaced with their
estimates.

The following theorem summarizes the various cases of an efficiency comparison between
QS and CS in the polynomial model.

Theorem 8.1 In a polynomial measurement error model of degree k with true degree s, the
following relations regarding the ACMs of CS and QS hold.

1. Under known nuisance parameters:

(a) if s = 0, then ΣQ = ΣC ;

(b) if s > 0, then ΣQ < ΣC .

2. Under unknown nuisance parameters:

(a) if s = 0, then ΣQ = ΣC ;

(b) if s = 1, then rank (Σ
(β)
C − Σ

(β)
Q ) = k − 1;

(c) if s = 2, then rank (Σ
(β)
C − Σ

(β)
Q ) = k;

(d) if s ≥ 3, then Σ
(β)
Q < Σ

(β)
C .
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Remark: In particular, in case k = s = 1, Σ
(β)
Q = Σ

(β)
C , which is natural since in a linear

model under unknown nuisance parameters β̂C = β̂Q.

8.2 Poisson model

In the loglinear Poisson measurement error model, y|ξ ∼ Po(λ) with λ = exp(β0 + β1ξ), and
x = ξ + δ. Here m∗ = v∗ = λ.

For QS, we have, cf. Shklyar and Schneeweiss(2005),

m(x, θ) = exp
{

β0 + β1µ(x) + β2
1τ2/2

}

, v(x, θ) = m2(x, θ)(eβ2
1τ2 − 1) + m(x, θ).

with µ(x) and τ2 from (25) and (26), respectively. The β-component of the CS function is,
cf. Shklyar and Schneeweiss (2005),

S
(β)
C = yg − h, g = (1, x)⊤, h = exp

{

β0 + β1x − 1

2
β2

1σ2
δ

}

(1, x − σ2
δβ1)

⊤.

From Section 7.3, we know that µ and σ2 can be pre-estimated and therefore ΣC−ΣQ is of the
form (33). We can apply Corollary 7.1. For β1 6= 0, the variables {(mg−h)0, (mg−h)1, lµ, lσ}
are linearly independent, since the functions

{

1, x, x2, eβ1Kx, eβ1x, xeβ1Kx, xeβ1x
}

are linearly independent. For the same reason, mβ0 and mβ1 are linearly independent under
β1 6= 0:

mβ0 = econst · eβ1Kx, mβ1 = const · eβ1Kx + const · xeβ1Kx.

Thus by Corollary 7.1, Σ
(β)
Q < Σ

(β)
C under β1 6= 0.

8.3 Gamma model

In the loglinear Gamma measurement error model, y|ξ follows a Gamma distribution G(ω, π)
with ω = exp(β0 + β1ξ), π > 0, and x = ξ + δ:

f(y|η) =
1

Γ(π)

(π

ω

)π
yπ−1 exp

(

−yπ

ω

)

, y > 0.

Here m∗ = ω and v∗ = π−1ω2, where π−1 corresponds to the dispersion parameter ϕ, which,
according to Section 5, we can assume to be known. For QS, we have

m(x, θ) = exp
{

β0 + β1µ(x) + β2
1τ2/2

}

,

v(x, θ) =

(

1 +
1

π

)

exp{2β0 + 2β1µ(x) + 2β2
1τ2} − exp{2β0 + 2β1µ(x) + β2

1τ2}.

The β-component of the CS function is

S
(β)
C = yg − h, g = exp

{

−β0 − β1x − 1

2
β2

1σ2
δ

}

(1, x + β1σ
2
δ )

⊤, h = (1, x)⊤,

cf. Kukush et al. (2005). As in Section 8.2, see also Section 7.3, we can apply Corollary 7.1.
For β1 6= 0, the variables {(mg − h)0, (mg − h)1, lµ, lσ} are linearly independent, since the
functions

{

1, x, x2, eβ1(1−K)x, xeβ1(1−K)x
}

are linearly independent. In addition, as in Section 8.2, mβ0 and mβ1 are linearly independent

under β1 6= 0. Thus by Corollary 7.1, Σ
(β)
Q < Σ

(β)
C under β1 6= 0.
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8.4 Logit model

In the logit measurement error model, y is a binary variable following a binomial distribution,
the mean of which is a logistic function of a linear predictor in ξ:

y ∼ B(1, π), π = H(η) = (1 + e−η)−1, η = β0 + β1ξ, x = ξ + δ.

For this model, m∗ = π, v∗ = π(1 − π).
For QS, we need the mean and variance functions of y given x, which are given by

m = E
[

{1 + exp(−β0 − β1(Kx + (1 − K)µ + τγ)}−1|x
]

, v = m(1 − m), (52)

where γ ∼ N(0, 1), and γ is independent of x.
We can then construct the quasi score function (19) for θ = (β0, β1, µ, σ)⊤ with lα from

(27). As y is binary, the QS estimator of θ is just the ML estimator. Note that, according
to Section 7.2, the QS estimator of µ is the empirical mean x. We cannot say the same for
the QS estimator of σ2, see below.

To find the CS estimator, we start from the maximum likelihood score function for β in
the error free model, which is given by

S
(β)
M =

(

y − 1

1 + e−η

)

(1, ξ)⊤.

We construct a modified corrected score (C*S) function for β, as a function S
(β)
C∗ =

S
(β)
C∗ (y, x, β) such that

E (S
(β)
C∗ |y, ξ) = S

(β)
M (1 + e−η) = {y(1 + e−η) − 1}(1, ξ)⊤.

S
(β)
C∗ is of the form S

(β)
C∗ = ygc − hc, where gc and hc are functions of x and β such that

E (gc|ξ) = (1 + e−β0−β1ξ)(1, ξ)⊤, E (hc|ξ) = (1, ξ)⊤.

The solutions to these deconvolution problems are

gc = (1 + ea−β1x, x + (x + β1σ
2
δ )e

a−β1x)⊤, hc = (1, x)⊤, (53)

where a = −β0 − β2
1σ2

δ/2. According to (20), S
(β)
C∗ has to be supplemented by the subvector

lα, which yields the conventional estimators of the nuisance parameters µ and σ2: µ̂C∗ = x
and σ̂2

C∗ = s2
x.

In addition to the QS and CS estimators, we also consider the conditional score (DS)
estimator, cf. Carroll et al. (1995). Let z = x + yσ2

δβ1, η∗ = β0 + β1z. Then

E (y|z) = m∗ := H(η∗ − β2
1σ2

δ/2)

V(y|z) = v∗ := H(1 − H).

The conditional score function for β is then given by, cf. Carroll et al. (1995), S
(β)
D =

(y − m∗)(1, z)t. It is obviously unbiased. By using the fact that y is binary, the conditional

score function can be written as a linear function of y: S
(β)
D = ygd − hd, where

gd = {1 − H(β0 + β1x + β2
1σ2

δ/2)}(1, x + β1σ
2
δ )

⊤ + H(β0 + β1x − β2
1σ2

δ/2)(1, x)⊤,

hd = −H(β0 + β1x − β2
1σ2

δ/2)(1, x)⊤.
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If S
(β)
D is supplemented by the subvector (lµ, lσ)⊤, then DS is a member of the class L of

linear score functions. The conditional score estimators of µ and σ2 are µ̂D = x and σ̂2
D = s2

x.
Now, according to Theorem 4.1,

ΣQ ≤ ΣC∗ and ΣQ ≤ ΣD. (54)

But we can also compare Σ
(β,σ)
C∗ and Σ

(β,σ)
D to Σ

(β,σ)
Q , where these matrices are the ACMs of

the corresponding estimators of (β0, β1, σ)⊤.

Since µ̂C∗ = µ̂D = µ̂Q, we have for the µ-components Σ
(µ)
C∗ = Σ

(µ)
D = Σ

(µ)
Q , and thus by

(54),

rank
(

Σ
(β,σ)
C∗ − Σ

(β,σ)
Q

)

= rank (ΣC∗ − ΣQ) ,

rank
(

Σ
(β,σ)
D − Σ

(β,σ)
Q

)

= rank (ΣD − ΣQ) .

Theorem 8.2 In the logit model, Σ
(β,σ)
Q ≤ Σ

(β,σ)
C∗ and Σ

(β,σ)
Q ≤ Σ

(β,σ)
D . When β1 6= 0, the

inequalities become strict inequalities.

In particular, under β1 6= 0, Σ
(σ)
Q < Σ

(σ)
C∗ and Σ

(σ)
Q < Σ

(σ)
D . This means that in the logit

model σ̂2
Q is an asymptotically more efficient estimator of σ2 than σ̂2

C∗ = σ̂2
D = s2

x.

9 ACMs at a parameter point with constant mean and vari-

ance functions

In the previous sections, we studied the behavior of the ACMs of LS and QS under any θ.
In particular, the second statement of Theorem 4.1 says that if the ACMs of LS and CS are
equal for all θ, then LS and QS give rise to the same estimator: θ̂L = θ̂Q. It can, however,
happen that for some special θ = θ∗ the ACMs of LS and QS are equal even though the
corresponding estimators θ̂L and θ̂Q do not coincide. This can happen, in particular, if the
mean and variance functions are constant at θ = θ∗.

We study this possibility in the context of the measurement error model of Section 6.2
with CS in place of LS.

9.1 Rank condition under constant mean and variance functions

Let us suppose that in the measurement error model of Section 6.2 the mean and variance
functions m∗(ξ, β) and v∗(ξ, β) are constant at some β = β∗:

m∗(ξ, β∗) ≡ m0, v∗(ξ, β∗) ≡ v0.

Then, by (23) and (24), m(ξ, β) and v(ξ, β) are also constant at β = β∗:

m(x, β∗) ≡ m0, v(x, β∗) ≡ v0. (55)

As (55) holds for all µ and σ,
mµ = mσ = 0

at β = β∗.
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In addition, we have, at β = β∗, by (28), (29),

E [(mg − h)|ξ] = m0 E (g|ξ) − E (h|ξ)
= m0v

−1
0 m∗

β − m0v
−1
0 m∗

β = 0

and thus (under regularity conditions), at β = β∗,

mg − h = m(x, β∗)g(x, β∗) − h(x, β∗) ≡ 0. (56)

Now, by Theorem 6.1, (55) and (56) imply

rank (ΣC − ΣQ) = rank

[(

0
gi

)

,

(

0
mβi

)

, i = 0, . . . , k,

(

lµ
0

)

,

(

lσ
0

)]

− (k + 2) (57)

at β = β∗. But at β = β∗ the identifiability condition (7) simplifies to the condition that the
two system of random variables [mβi

, i = 1, . . . , k, ] and [lµ, lσ] are both linearly independent
(just as in Section 6.3). Consequently, (57) simplifies to

rank (ΣC − ΣQ) = rank [gi, mβi
, i = 1, . . . , k] − k (58)

at β = β∗.

9.2 Linear predictor model

We apply the result of Section 9.1 to a linear predictor model as defined in Section 7.2, i.e.,
m∗(ξ, β) = m̃(β0 + β1ξ). In addition, we assume that v∗(ξ, β) = v0 if β1 = 0. We then can
state the following.

Theorem 9.1 Suppose that in a linear predictor model β1 = 0 and that v∗(ξ, β) = v0 at
β1 = 0, then ΣQ = ΣC .

Since several of the special models considered in Section 8 are linear predictor models, we
have the following corollary, which also summarizes the results of Sections 8.2 to 8.4.

Corollary 9.1 1. In both Poisson and Gamma models we have Σ
(β)
Q < Σ

(β)
C under β1 6= 0

and ΣQ = ΣC under β1 = 0.

2. In the logit model we have Σ
(β,σ)
Q < Σ

(β,σ)
C∗ under β1 6= 0 and ΣQ = ΣC∗ under β1 = 0.

10 Conclusion

When one wants to estimate a parametric regression of y on x given by a conditional mean
function E (y|x) = m(x, θ) and supplemented by a conditional variance function V(y|x) =
v(x, θ), the quasi-score (QS) estimator is often the estimator of ones choice. In its traditonal
form, it is based on the QS function (y − m)v−1mθ, which is conditionally unbiased. But
here we assume that the distribution of x with density ρ(x, θ) also depends on θ (or part
of θ). We therefore extend the QS function above so that it incorporates the information
given by ρ(x, θ). For simplicity, we call this extended QS function again the QS function.
It is a member of a wide class of unconditionally unbiased linear-in-y estimating functions
SL(x, y; θ) = yg(x, θ) − h(x, θ), which we call linear score (LS) functions.
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We prove that the QS estimator is most efficient within the class of LS estimators. We
also state conditions under which QS is strictly more efficient than LS.

Linear score estimators appear naturally in the context of measurement error models. The
so-called corrected score (CS) estimator is a linear score estimator. Thus for measurement
error models we have as a corollary to our main result that QS is more efficient than CS.

We study a number of concrete measurement error models in greater detail and present
conditions under which QS is strictly more efficient than CS and also mention when they are
equally efficient.

¿From this study one might get the impression that in a measurement error model QS
is always to be preferred to CS, even in the presence of nuisance parameters. But this
impression can be misleading. It is only true if not only the mean-variance model but also
the distribution of the regressor ξ has been correctly specified. First of all, there are cases
where there is no well-defined distribution for ξ, and then CS is the estimator of ones choice.
In other cases, one may be uncertain about the true distribution of ξ, in particular, that
distribution need not be Gaussian. If one then still uses the QS approach on the wrong
assumption of a Gaussian regressor, the QS estimator will turn out to be (asymptotically)
biased, cf. Schneeweiss and Cheng (2006).
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11 Appendix

11.1 Lemmas

Lemma 11.1 Let A, B ∈ R
d×d. Then

def

(

B A⊤

A Id

)

= def (B − A⊤A).

Where def (A) denotes the defect of a matrix A, i.e., the dimension of its kernel ker(A).

Proof. We have
(

x
y

)

∈ ker

(

B A⊤

A Id

)

iff Bx + A⊤y = 0 and y = −Ax, which is equivalent to x ∈ ker(B − A⊤A) and y = −Ax.
This implies that

dim ker

(

B A⊤

A Im

)

= dim ker(B − A⊤A).

�

Lemma 11.2 Let f and g be two random vectors of the same dimension d, such that
E gg⊤ > 0. Consider the matrix M = E ff⊤ − E fg⊤(E gg⊤)−1 E gf⊤. Then

1) M is positive semi-definite. Moreover, M is the zero matrix if, and only if, f = Hg
a.s., with some nonrandom square matrix H;

2) rankM = rank [fi, gi, i = 1, . . . , d] − d, where the latter rank is the maximum number
of linearly independent random variables in the set {fi, gi, i = 1, . . . , d}.
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Proof. 1) To prove the first statement, let

e = f − E fg⊤(E gg⊤)−1g.

Then E ee⊤ = M ≥ 0, and M = 0 iff e = 0, that is, iff f = Hg with some nonrandom square
matrix H.

2) To prove the second statement, let

F = E ff⊤, g̃ = (E gg⊤)−1/2g, A = E g̃f⊤.

Then M = (F − A⊤A) and by Lemma 11.1

rankM = rank [F − A⊤A] = rank

[

F A⊤

A Id

]

− d.

The latter rank is the rank of the moment matrix of the random vector [f1, . . . , fd, g̃1, . . . , g̃d].
It is therefore equal to the rank of this vector. But due to the definition of g̃,

rank [f1, . . . , fd, g̃1, . . . , g̃d] = rank [f1, . . . , fd, g1, . . . , gd].

�

11.2 Proof of Theorem 4.1

We apply the first statement of Lemma 11.2 to the random vectors g = SQ and f = SL. We
have

E ff⊤ − E fg⊤
(

E gg⊤
)−1

E gf⊤ ≥ 0.

Due to (12) and (13) this is equivalent to ΣL −ΣQ ≥ 0. Equality between ΣL and ΣQ for all
θ holds iff for some nonrandom square matrix H = H(θ), f = Hg, i.e.,

∀ θ : SL = H(θ)SQ a.s.

Because ESLS⊤

Q is nonsingular, H is nonsingular as well. Then the equation for θ̂L,
∑n

i=1 SL(xi, yi; θ) = 0, is equivalent to
∑n

i=1 H(θ)SL(xi, yi; θ) = 0, which is a.s. equivalent

to the equation for θ̂Q,
∑n

i=1 SQ(xi, yi; θ) = 0. Thus θ̂L = θ̂Q a.s.

Vice versa, if θ̂L = θ̂Q a.s., then ΣL = ΣQ for all θ.

�

11.3 Proof of Theorem 4.2

We apply the second statement of Lemma 11.2 with g = SQ, f = SL. By (12) and (13),

rank (ΣL − ΣQ) = rankM = rank [(SL)i, (SQ)i, i = 1, . . . , d] − d

= d − def [(SL)i, (SQ)i, i = 1, . . . , d] . (59)

To find the defect, we form a linear combination of the components of SL and SQ, which
equals zero a.s.:

c⊤1 gy − c⊤1 h +
c⊤2 mθ

v
(y − m) + c⊤2 lθ = 0 a.s.

20



or
(

c⊤1 g +
c⊤2 mθ

v

)

y = c⊤1 h +
c⊤2 mmθ

v
− c⊤2 lθ a.s. (60)

The defect in (59) is equal to the maximum number of linearly independent vectors (c⊤1 , c⊤2 )⊤

which satisfy (60). But (60) is equivalent to

c⊤1 g +
c⊤2 mθ

v
= 0 and c⊤1 h +

c⊤2 mmθ

v
− c⊤2 lθ = 0 a.s. (61)

Indeed in general, a(x)y = b(x) a.s. implies a2(x)v(x) = 0 and therefore a(x) = 0 because
by assumption v(x) > 0. Now, (61) is equivalent to

c⊤1 vg + c⊤2 mθ = 0, c⊤1 (mg − h) + c⊤2 lθ = 0 a.s.

Thus

def [(SL)i, (SQ)i, i = 1, . . . , d] = def

[(

mgi − hi

vgi

)

,

(

lθi

mθi

)

, i = 1, . . . , d

]

,

and (14) follows from (59).

�

11.4 Proof of Corollary 4.1

Suppose the random variables (15) are linearly independent. Then because of the identifi-
ability condition (7), the random vectors in (14) are also linearly independent. Indeed, for
any constant vectors a and b ∈ R

d, the system of equations

a⊤(mg − h) + b⊤lθ = 0

a⊤vg + b⊤mθ = 0

implies first a = 0 because of the independence of the random variables in (15) and then
b = 0 because of (7). According to Theorem 4.2, it follows that ΣQ < ΣL.

�

11.5 Proof of Theorem 6.2

Part a) follows immediately from Theorem 4.1 and (33).
Part b): By Theorem 6.1 and because of (33), the rank equation (37) holds true. But

span

[(

mgi − hi

vgi

)

,

(

0
mβi

)

, i = 1, . . . , k

]

∩ span

[(

lαj

0

)

, j = 1, . . . , d − k

]

=

{(

0
0

)}

because, for any vectors a and b, a⊤(mg−h) = b⊤lα implies E b⊤lαl⊤α = E a⊤(mg−h)l⊤α = 0
by (32) and thus b⊤lα = 0. Therefore, since the lαj

are linearly independent, see (30), equality
(34) follows. (35) is proved in the same way as the last part of Theorem 4.2.

Part c) follows from part b) taking into account that, by (30), the mβi
are linearly inde-

pendent.

�
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11.6 Proof of Theorem 8.1

1) First we assume that the nuisance parameters µ and σ2 are known. Then Σ
(β)
Q = ΣQ and

Σ
(β)
C = ΣC . We have m = β⊤r, g = t, h = Tβ, and mβ = r. By Theorem 6.2, part b),

rank (ΣC − ΣQ) = rank

[(

{(tr⊤ − T )β}i

vti

)

,

(

0
ri

)

, i = 0, . . . , k

]

− k − 1.

First, consider s = 0. Then t r⊤β = Tβ and v = σ2
ǫ and

rank (ΣC − ΣQ) = rank

[(

0
xi + . . .

)

,

(

0
Kixi + . . .

)

, i = 0, . . . , k

]

− k − 1.

The rank of the right-hand side is k + 1 and therefore rank (ΣC − ΣQ) = 0, i.e., ΣQ = ΣC .
Next, consider s ≥ 1. Then v = asx

2s−2 + . . ., as 6= 0 and
(

(tr⊤ − T )β
)

i
= βs(K

s − 1)xi+s + . . . , βs 6= 0, i = 0, . . . , k.

These k+1 functions are linearly independent, and by Theorem 6.2, part b), ΣQ < ΣC . This
proves part 1 of the theorem.

2) Now we suppose µ and σ2 are to be estimated together with β.

In order to compute the rank of Σ
(β)
C − Σ

(β)
Q , we apply Theorem 6.1. The system to be

examined is
[(

((tr⊤ − T )β)i

vti

)

,

(

0
ri

)

, i = 0, . . . , k,

(

0
mµ

)

,

(

0
mσ

)

,

(

lµ
0

)

,

(

lσ
0

)]

.

The polynomials mµ and mσ are of degree not greater than k. Therefore they can be
excluded from the system, which then can be simplified to

[(

((tr⊤ − T )β)i

vti

)

,

(

0
xi

)

, i = 0, . . . , k,

(

x − µ
0

)

,

(

(x − µ)2 − σ2

0

)]

.

Consider s = 0. Writing only the leading terms of the polynomials, the system becomes

[(

0
1

)

, . . . ,

(

0
xk

)

,

(

0
1

)

, . . . ,

(

0
xk

)

,

(

x
0

)

,

(

x2

0

)]

and its rank is k + 3. Thus, according to Theorem 6.1 with d = k + 3, Σ
(β)
Q = Σ

(β)
C and

ΣQ = ΣC .
Consider s = 1. The leading terms of the polynomials in the system are

[(

x
1

)

, . . . ,

(

xk+1

xk

)

,

(

0
1

)

, . . . ,

(

0
xk

)

,

(

x
0

)

,

(

x2

0

)]

and the rank is 2k + 2, and rank (Σ
(β)
C − Σ

(β)
Q ) = k − 1.

Consider s = 2. The leading terms of the polynomials are

[(

x2

x2

)

, . . . ,

(

xk+2

xk+2

)

,

(

0
1

)

, . . . ,

(

0
xk

)

,

(

x
0

)

,

(

x2

0

)]

and the rank is 2k + 3, and rank (Σ
(β)
C − Σ

(β)
Q ) = k.
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Consider s ≥ 3. The leading terms of the polynomials are

[(

xs

x2s−2

)

, . . . ,

(

xk+s

xk+2s−2

)

,

(

0
1

)

, . . . ,

(

0
xk

)

,

(

x
0

)

,

(

x2

0

)]

and the rank is 2k + 4, and rank (Σ
(β)
C − Σ

(β)
Q ) = k + 1. Thus Σ

(β)
Q < Σ

(β)
C .

�

11.7 Proof of Theorem 8.2

The first statement is a direct consequence of Theorem 4.1. So we need only prove the strict
inequalities under β1 6= 0.

First we prove the linear independence of [lµ, lσ, (mgc − hc)0, (mgc − hc)1], then the linear
independence of [lµ, lσ, (mgd − hd)0, (mgd − hd)1], and finally the linear independence of
[mβ0 , mβ1 , mσ], where lµ ∝ x − µ, lσ ∝ (x − µ)2 − σ2. By Corollary 7.2 with α′ = σ and

α′′ = µ, these facts will yield that Σ
(β,σ)
Q < Σ

(β,σ)
C∗ and Σ

(β,σ)
Q < Σ

(β,σ)
D .

Consider the case β1 > 0 (the case β1 < 0 can be treated similarly).
1) From (52), we have

m(x) = E [H(β0+β1ξ)|x] ∼ exp{β0+β1(Kx+(1−K)µ)}E eβ1τγ = const·eβ1Kx as x → −∞.

Together with (53) it follows that

(mgc − hc)(x) ∼ const · eβ1(K−1)x(1, x)⊤ as x → −∞.

Thus the functions lµ, lσ, (mgc − hc)0, (mgc − hc)1 have different asymptotic behavior, as
x → −∞, and are therefore linearly independent.

2) As to the asymptotic behavior of (mgd − hd), we have, as x → −∞,

(gd)0 → 1, (gd)1 ∼ x

(hd)0 ∼ const · eβ1x, (hd)1 ∼ const · xeβ1x,

and thus
(mgd − hd)0 ∼ const · eβ1Kx, (mgd − hd)1 ∼ const · xeβ1Kx.

Again the functions lµ, lσ, (mgd − hd)0, (mgd − hd)1 have different asymptotic behavior as
x → −∞ and are therefore linearly independent.

3) We have, by (52), see also (40), (44), (45),

mβ0 = E [H ′|x] = E [H ′{β0 + β1(Kx + (1 − K)µ + τγ)}|x],

mβ1 = (Kx + (1 − K)µ)E [H ′|x] + τ2 E [H ′′|x],

mσ = β1Kσ(x − µ)E [H ′|x] + β1ττσ E [H ′′|x],

where H(i) = H(i)(β0 +β1ξ). This system of equations can also be written in matrix form:





mβ0

mβ1

mσ



 =





1 0 0
(1 − K)µ K τ2

−β1Kσµ β1Kσ β1ττσ









E [H ′|x]
xE [H ′|x]
E [H ′′|x]



 (62)
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Because of τ2 = Kσ2
δ , see (26), and Kσ 6= 0, the transformation matrix on the right hand

side of (62) is nonsingular if β1 6= 0. By the properties of the logistic function, we have

H ′ = H − H2, H ′′ = H ′ − 2(H2 − H3).

Therefore the vector on the right hand side of (62) is a nonsingular linear transformation of
the vector of functions (f1(x), f2(x), f3(x))⊤, where

f1(x) = E [H − H2|x], f2(x) = xE [H − H2|x], f3(x) = E [H2 − H3|x].

To prove the linear independence of [mβ0 , mβ1 , mσ] it thus suffices to show that [f1, f2, f3] are
linearly independent. But this is guaranteed by the fact that these functions have different
asymptotic behavior, as x → −∞. Indeed, E [Hr|x] ∼ const · erβ1Kx and thus

f1(x) ∼ const · eβ1Kx, f2(x) ∼ const · xeβ1Kx, f3(x) ∼ const · e2β1Kx.

�

11.8 Proof of Theorem 9.1

According to (58), we have for k = 2:

rank (ΣC − ΣQ) = rank (g0, g1, mβ0 , mβ1) − 2.

We evaluate g0, g1, mβ0 , mβ1 . For β1 = 0,

m∗

β0
= m̃′(β0) =: d0

m∗

β1
= ξm̃′(β0) = d0ξ.

It follows that (under regularity conditions)

g = v−1
0 d0(1, x)⊤

for β1 = 0. As, see (39),

m = E [m̃{β0 + β1(Kx + (1 − K)µ + τγ)}|x] ,

we have, for β1 = 0,

mβ0 = E m̃′(β0) = d0

mβ1 = E
[

{Kx + (1 − K)µ + τγ}m̃′(β0)|x
]

= {Kx + (1 − K)µ + τγ}m̃′(β0) =: d1 + d2x.

It follows that, for β1 = 0,

rank (g0, g1, mβ0 , mβ1) − 2 = rank (1, x) − 2 = 0

and thus ΣQ = ΣC .

�
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