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Summary

In this paper we extend the standard approach of correlation structure analysis in order

to reduce the dimension of highdimensional statistical data. The classical assumption of a

linear model for the distribution of a random vector is replaced by the weaker assumption

of a model for the copula. For elliptical copulae a ’correlation-like’ structure remains but

different margins and non-existence of moments are possible. Moreover, elliptical copulae

allow also for a ’copula structure analysis’ of dependence in extremes. After introducing

the new concepts and deriving some theoretical results we observe in a simulation study

the performance of the estimators: the theoretical asymptotic behavior of the statistics

can be observed even for a sample of only 100 observations. Finally, we test our method

on real financial data and explain differences between our copula based approach and

the classical approach. Our new method yields a considerable dimension reduction also in

non-linear models.

Keywords: copula structure analysis, correlation structure analysis, covariance structure analysis,

dimension reduction, elliptical copula, factor analysis, Kendall’s tau, tail copula, tail dependence.

1 Introduction

When analyzing high-dimensional data one is often interested in understanding the de-

pendence structure aiming at a dimension reduction. In the framework of correlation rep-

resenting linear dependence, correlation structure analysis is a classical tool; see Steiger

(1994) or Bentler and Dudgeon (1996). Correlation structure analysis is based on the

assumption that the correlation matrix of the data satisfies the equation RRR = RRR(ϑϑϑ) for

some function RRR(ϑϑϑ) and a parameter vector ϑϑϑ. Typically, a general linear structure model

is then considered for a d-dimensional random vector XXX, i.e. XXX
d
= AAAξξξ, where AAA = AAA(ϑϑϑ) is

a function of a parameter vector ϑϑϑ, and ξξξ represents some (latent) random vector.

The typical goal of correlation structure analysis is to reduce dimension, i.e. to explain

the whole dependence structure through lower dimensional parameters summarized in ϑϑϑ.

One particularly popular method is factor analysis, where the data XXX are assumed to



satisfy the linear model XXX
d
= µµµ + LLLfff + VVVeee, where µµµ = (µ1, . . . , µd)

T , fff = (f1, . . . , fm)T

(m < d) are non-observable and (usually) uncorrelated factors and eee = (e1, . . . , ed)
T is

some noise variables. Further, LLL ∈ R
d×m is called loading matrix and VVV is a diagonal

matrix with nonnegative entries. An often used additional assumption is that (fffT , eeeT ) has

mean zero and covariance matrix III, the identity matrix. Then, describing the dependence

structure of XXX through its covariance matrix yields Cov(XXX) = ΣΣΣ = LLLLLLT + VVV2, i.e., the

dependence of XXX is described through the entries of LLL.

Provided that the data are normally distributed this approach of decomposing the

correlation structure is justified, since dependence in normal data is uniquely determined

by correlation. However, many data sets exhibit properties contradicting the assumption

of normality, see e.g. Cont (2001) for a study of financial data. Further, several covariance

structure studies based on the normal assumption exhibit problems for nonnormal data,

see e.g. Browne (1982, 1984). A modified approach is to assume an elliptical model, and

the corresponding methods can be found for instance in Muirhead and Waternaux (1980)

and Browne and Shapiro (1987). Browne (1982, 1984) also developed a method being

asymptotically free of any distributional assumption, but it was found that acceptable

performance of this procedure requires very large sample sizes; see Hu, Bentler, and Kano

(1992).

Relaxing more and more the assumptions of classical correlation structure analysis as

indicated above, one assumption still remains, namely that XXX
d
= AAA(ϑϑϑ)ξξξ, i.e. XXX can be de-

scribed as a linear combination of some (latent) random variables ξξξ with existing second

moments (and existing fourth moments to ensure asymptotic distributional limits of sam-

ple covariance estimators). For real multivariate data it may happen that some margins

are well modeled as being normal and some are more heavy-tailed (or leptokurtic). More-

over, nonlinear dependence can occur, e.g. in financial portfolios of assets and derivatives.

If this happens, it is hard to believe that some linear model is appropriate. Since the

primary aim of correlation or covariance structure analysis is to decompose and describe

dependence we present a simple method to avoid problems of non-existing moments or

different marginal distributions by using copulae. A copula is a d-dimensional distribution

function with unif(0, 1) margins and, by Sklar’s theorem, each distribution function can

be described through its margins and its copula separately. We will focus on elliptical

copulae being the copulae of elliptical distributions, which are very flexible and easy to

handle also in high dimensions. As a correlation matrix is a parameter of an elliptical

copula, correlation structure analysis can be easily extended to such copulae and we will

call this method copula structure analysis.

In many applications dependence in extremes is an important issue. For example,

financial risk management is confronted with problems concerning joint extreme losses,

and one of its prominent questions is how to measure or understand dependence in the

extremes; see e.g. McNeil, Frey, and Embrechts (2005). This requires a different approach
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and is one of the major issue of this paper. We assess extreme dependence by a concept

called tail copula. For such elliptical copulae, which model extreme dependence, we present

a new structure analysis based on the tail copula. This focusses on dependence structure

in the extremes.

Our paper is organized as follows. We start with definitions and preliminary results on

copulae and elliptical distributions in Section 2. In Section 3 we introduce the new copula

structure model and show which (classical) methods can be used for a structure analysis

and model selection. In Section 4 we show two copula dependence concepts, one based

on Kendall’s tau, one on the tail copula, and develop estimators, which can then be used

for the copula structure analysis. These concepts lead to different estimates of the copula

structure model, and we derive asymptotic results for our estimates.

In Section 5 a simulation study shows that the derived asymptotic results hold already

for a rather small simulated sample. Finally, we fit a copula factor model to real data

based on both our dependence concepts and give an interpretation of the results. Proofs

are summarized in Section 6.

2 Preliminaries

First, we introduce the copula concept. For more technical background information we

refer to Nelsen (1999).

Definition 2.1. A copula C : [0, 1]d → [0, 1] is a d-dimensional distribution function with

standard uniform margins, i.e. C(1, . . . , 1, uj, 1, . . . , 1) = uj, 1 ≤ j ≤ d.

The following theorem shows that each multivariate distribution function can be sep-

arated in its dependence structure, i.e. the copula, and its margins. This important result

is used in essentially all applications of copulae. We shall need the notion of a generalized

inverse function. For a distribution function F the generalized inverse is defined as

F←(y) = inf{x ∈ R | F (x) ≥ y} , y ∈ (0, 1) .

Theorem 2.2 (Sklar’s Theorem (1996)). Let F be a d-dimensional distribution func-

tion with margins F1, . . . , Fd. Then there exists a copula C such that for all xxx ∈ R
d

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) .

The copula C is unique on RanF1 × · · · × RanFd.

If F is a continuous d-dimensional distribution function with margins F1, . . . , Fd, and

generalized inverse functions F←
1 , . . . , F←

d , then the copula C of F is C(u1, . . . , ud) =

F (F←
1 (u1), . . . , F

←
d (ud)).
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We will focus on copulae of elliptical distributions, and we first give some definitions

and state some properties. For a general treatment of elliptical distributions we refer to

Fang, Kotz, and Ng (1990) and to Cambanis, Huang, and Simons (1981). Elliptical copulae

and their properties have also been investigated with respect to financial application by

Embrechts, Lindskog, and McNeil (2003) or Frahm, Junker, and Szimayer (2003).

Definition 2.3. A d-dimensional random vector XXX has an elliptical distribution, if, for

some µµµ ∈ R
d, some positive (semi-)definite matrix ΣΣΣ = (σij)1≤i,j≤d ∈ R

d×d, a positive

random variable G and a random vector UUU (m) ∼ unif{sss ∈ R
m : sssTsss = 1} independent

of G it holds that XXX
d
= µµµ + GAAAUUU (m), AAA ∈ R

d×m, AAAAAAT = ΣΣΣ and some m ∈ N. We write

XXX ∼ Ed(µµµ,ΣΣΣ, G). The random variable G is called generating variable. Further, if the first

moment exists, then EXXX = µµµ, and if the second moment exists, then G can be chosen

such that CovXXX = ΣΣΣ.

Definition 2.4. Let XXX ∼ Ed(µµµ,ΣΣΣ, Φ) with ΣΣΣ = (σij)1≤i,j≤d. We define the correlation

matrix RRR by RRR :=
(
σij/

√
σiiσjj

)
1≤i,j≤d

. If XXX has finite second moment, then CorrXXX = RRR.

Definition 2.5. We define an elliptical copula as the copula of an elliptical random

vector. Let RRR be the correlation matrix corresponding to ΣΣΣ. We denote the copula of

Ed(µµµ,ΣΣΣ, G) by ECd(RRR, G) and call RRR the copula correlation matrix.

The following corollary shows that the notation ECd(RRR, G) of elliptical copulae is rea-

sonable. It is a simple consequence of the definition and the fact that copulae are invariant

under strictly increasing transformations; see Embrechts et al. (2003, Theorem 2.6).

Corollary 2.6. An elliptical copula is characterized by the generating variable G and the

copula correlation matrix RRR. The generating variable G is uniquely determined up to some

positive constant.

Based on elliptical copulae, we can now formulate the copula structure model.

3 Copula structure models

First, we give some notations: let ϑϑϑ ∈ Θ ⊂ R
p be a p-dimensional parameter vector

in some parameter space Θ with dim(Θ) ≤ p. A correlation structure model is then a

function

RRR : Θ 7→ R
d×d, ϑϑϑ → RRR(ϑϑϑ), (3.1)

such that RRR(ϑϑϑ) is a correlation matrix, i.e. RRR(ϑϑϑ) is positive definite with diagonal 111. As

we will later also use vector notation, we denote by vec[·] the column vector formed from

the non-duplicated and non-fixed elements of a symmetric matrix. If a matrix AAA is not
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symmetric, then vec[AAA] denotes the column vector formed from all non-fixed elements of

the columns of AAA. In case of a correlation matrix

rrr := vec[RRR] ∈ R
d(d−1)/2. (3.2)

For a general linear correlation structure model, (3.1) corresponds to the following situa-

tion: let ξξξ ∈ Eq(000, III, G) and let AAA : Θ 7→ R
d×q, ϑϑϑ → AAA(ϑϑϑ), be some matrix valued function

and define

ΣΣΣ : Θ 7→ R
d×d, ϑϑϑ → ΣΣΣ(ϑϑϑ) := AAA(ϑϑϑ)AAA(ϑϑϑ)T .

Then, (3.1) can be written as RRR(ϑϑϑ) = diag[ΣΣΣ(ϑϑϑ)]−1/2ΣΣΣ(ϑϑϑ)diag[ΣΣΣ(ϑϑϑ)]−1/2.

3.1 The model

As by Definition 2.5 a correlation matrix is a parameter of an elliptical copula, we can

extend the usual correlation structure model to elliptical copulae.

Definition 3.1. Let ϑϑϑ ∈ Θ ⊂ R
p be a p-dimensional parameter vector, AAA : Θ 7→ R

d×q a

matrix valued function and ξξξ ∈ Eq(000, III, G) a q-dimensional elliptical random vector with

continuous generating variable G > 0. Further, denote by CAAA(ϑ)ξξξ the copula of AAA(ϑϑϑ)ξξξ ∈ R
d.

We say that the random vector XXX ∈ R
d with copula CXXX satisfies a copula structure model,

if

CXXX = CAAA(ϑϑϑ)ξξξ ∈ ECd(RRR(ϑϑϑ), G), (3.3)

where RRR(ϑϑϑ) := diag[ΣΣΣ(ϑϑϑ)]−1/2ΣΣΣ(ϑϑϑ)diag[ΣΣΣ(ϑϑϑ)]−1/2 and ΣΣΣ(ϑϑϑ) := AAA(ϑϑϑ)AAA(ϑϑϑ)T .

Remark 3.2. (i) Define by FFF←(uuu) := (F←
1 (u1), . . . , F

←
d (ud)) the vector of the inverses

of the marginal distribution functions of XXX and by HHH(xxx) := (H1(x1), . . . , Hd(xd))

the vector of the marginal distribution functions of AAA(ϑϑϑ)ξξξ. Then, (3.3) is equivalent

to XXX
d
= FFF←(HHH(AAA(ϑϑϑ)ξξξ)), where all operations are componentwise. Hence, the copula

model can also be seen as an extension of a correlation structure model for elliptical

data: if not only CXXX = CAAA(ϑϑϑ)ξξξ holds but also HHH = FFF with existing second moment,

then this would be a classical correlation or covariance structure model. For normal

ξξξ it gives back the standard normal model and for elliptical ξξξ the elliptical model

of Browne (1984).

(ii) The classical correlation structure model assumes some (functional) structure for the

correlation matrix of the observed data. In the copula structure model this functional

structure prevails. The only difference lies in the interpretation of the ’correlation’

matrix. In the classical model it represents the linear correlation between the data,

in the copula model it represents a dependence parameter which can be interpreted

as a ’correlation-like’ measure; see Lemma 2.6.
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Example 3.3. For classical factor analysis, (3.3) translates to ϑϑϑ = vec[LLL,VVV], RRR(ϑϑϑ) =

LLLLLLT + VVV2 for some m < d, LLL ∈ R
d×m and a diagonal matrix (with nonnegative entries)

VVV ∈ R
d×d. The corresponding copula structure model assumes that there exists ξξξ ∈

Em+d(000, III, G) such that

CXXX = C(LLL,VVV)ξξξ. (3.4)

We call this identity a copula factor model. An example of this copula factor model is

the Credit Metrics model in the framework of credit risk, see e.g. Bluhm, Overbeck,

and Wagner (2003, Section 2.4). There, a factor model XXX = (X1, . . . , Xd)
T = LLLfff +

VVVeee is assumed for the underlying (latent) variables of a set of credit default indicators(
I{Xi<si}

)
1≤i≤d

and XXX is assumed to be normal. By Frey, McNeil, and Nyfeler (2001,

Proposition 2), the distribution of
(
I{Xi<si}

)
1≤i≤d

is uniquely determined by the single

default probabilities P(I{Xi<si} = 1) and the copula of XXX. Therefore, in this case the

assumption of XXX = LLLfff + VVVeee is equivalent to CXXX = C(LLL,VVV)ξξξ with ξξξ ∼ Nm+d(000, III). The

model extends easily to non-normal XXX.

3.2 Estimation of ϑϑϑ

The next step is to estimate a structure model. Let XXX1, . . . ,XXXn be an iid sequence of

d-dimensional random vectors and denote by R̂RR := R̂RR(XXX1, . . . ,XXXn) an estimator of RRR, a

correlation matrix. This estimator can be the empirical correlation or a copula correlation

estimator or some other correlation estimator. We review some results from the literature,

which we will need for the estimation of the copula structure model later.

Given this estimator R̂RR we want to find some parameter vector ϑϑϑ which fits the assumed

structure RRR(ϑϑϑ) to R̂RR as good as possible. Similarly to (3.2), we define r̂rr := vec[R̂RR] and

rrr(ϑϑϑ) := vec[RRR(ϑϑϑ)].

Estimation of ϑϑϑ is based on the minimization of a discrepancy function D = D(r̂rr, rrr(ϑϑϑ))

which measures the discrepancy between the estimated correlation matrix represented by

r̂rr and rrr(ϑϑϑ). A discrepancy function D has to satisfy

(i) D ≥ 0,

(ii) D(r̂rr, rrr) = 0 if and only if r̂rr = rrr and

(iii) D is twice differentiable with respect to both r̂rr and rrr.

Note that the concept of a discrepancy function (without condition (iii)) is weaker than

the concept of a metric, as a discrepancy function D does not have to be symmetric or

translation invariant in its arguments, nor does it have to satisfy the triangular inequality.

In the following example we present two classical discrepancy functions, for more

details about discrepancy functions, their properties, advantages and drawbacks, we refer
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to Bentler and Dudgeon (1996) and Steiger (1994). For more details about the quadratic

form discrepancy function below see Steiger, Shapiro, and Browne (1985).

Example 3.4. (i) The normal theory maximum likelihood discrepancy function is

DML(r̂rr, rrr(ϑϑϑ)) = ln |RRR(ϑϑϑ)| + tr
(
R̂RR (RRR(ϑϑϑ))−1

)
− ln |R̂RR| − d. (3.5)

This function is the log-likelihood term of RRR(ϑϑϑ) in case of normal data.

(ii) The quadratic form (or weighted least squares) discrepancy function is

DQD(r̂rr, rrr(ϑϑϑ)|ΥΥΥ) = (r̂rr − rrr(ϑϑϑ))T ΥΥΥ−1 (r̂rr − rrr(ϑϑϑ)) , (3.6)

where ΥΥΥ is a positive definite matrix or a consistent estimator of some positive

definite matrix ΥΥΥ∗. Note that DQD(·, ·|ΥΥΥ) is a metric.

Given some discrepancy function D and some estimator R̂RR of the correlation matrix

RRR, we can define a consistent estimator of ϑϑϑ.

Proposition 3.5 (Browne (1984), Proposition 1). Let RRR0 be some correlation matrix,

rrr0 := vec[RRR0] ∈ R
d(d−1)/2 and Θ ⊂ R

p a closed and bounded parameter space. Further

assume that r̂rr is an estimator based on an iid sample XXX1, . . . ,XXXn of d-dimensional random

vectors and let D be a discrepancy function. Assume that r̂rr
P−→ rrr0 as n → ∞ and that

ϑϑϑ0 ∈ Θ is the unique minimizer of D(rrr0, rrr(ϑϑϑ)) in Θ. Assume also that the Jacobian matrix

∂rrr(ϑϑϑ)/∂ϑϑϑT is continuous in ϑϑϑ. Define the estimator

ϑ̂ϑϑ := arg min
ϑϑϑ∈Θ

D(r̂rr, rrr(ϑϑϑ)). (3.7)

Then ϑ̂ϑϑ
P−→ ϑϑϑ0 as n → ∞.

Of course, if we know the true correlation vector rrr0 satisfying the structure model rrr0 =

rrr(ϑϑϑ0) for some parameter vector ϑϑϑ0, then ϑ̂ϑϑ will always be such that rrr0 = rrr(ϑϑϑ0) = rrr(ϑ̂ϑϑ),

independent of the choice of the discrepancy function. We also have D(rrr0, rrr(ϑ̂ϑϑ)) = 0 in

this case. Since in practice we neither know the true rrr0 nor the true structure model, we

need a method to find an appropriate model.

3.3 Model selection

First, we show the asymptotic distribution of a certain test statistic, which will later be

used for model selection.

Definition 3.6. Under the settings of Proposition ??, we define the test statistic

T := nD̂ = nD(r̂rr, rrr(ϑ̂ϑϑ)) = n min
ϑϑϑ∈Θ

D(r̂rr, rrr(ϑ)). (3.8)

The null hypothesis is that the true correlation vector rrr0 satisfies a structure model, i.e.

H0 : rrr0 = rrr(ϑϑϑ0) for some ϑϑϑ0 ∈ Θ. (3.9)
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To obtain the limit distribution of T we use a version of Steiger et al. (1985, Theo-

rem 1), adapted to our situation. We replace the regularity condition (R7) of that article

by the stronger assumption that the null hypothesis (3.9) holds. The equivalent statement

in case of the quadratic form discrepancy function DQD(·, ·|ΥΥΥ) is given in Browne (1984,

Corollary 4.1), where it is additionally required that ΥΥΥ is a consistent estimator of ΓΓΓ, the

asymptotic covariance matrix of r̂rr.

Theorem 3.7. Assume that the conditions of Proposition ?? hold and ϑϑϑ0 is an interior

point of Θ. Further assume that
√

n(r̂rr − rrr0)
d−→ N (000,ΓΓΓ) as n → ∞ and that the Hessian

matrix

2ΨΨΨ0 =
∂2D(rrr, ξξξ)

∂ξξξ∂ξξξT

∣∣∣∣
rrr=ξξξ=rrr0

(3.10)

is nonsingular and satisfies ΨΨΨ0 = ΓΓΓ−1. In case of the quadratic form discrepancy function

DQD(·, ·|ΥΥΥ) defined in (3.6), the assumption (3.10) is replaced by assuming that ΥΥΥ is a

consistent estimator of ΓΓΓ. Also assume that the p × d Jacobian matrix

△ =
∂rrr(ϑϑϑ)

∂ϑϑϑ

∣∣∣∣
ϑϑϑ=ϑϑϑ0

(3.11)

is of full column rank p. Then, under the null hypothesis (3.9),

T = nD̂
d−→ χ2

df , n → ∞ , (3.12)

where df = d(d − 1)/2 − p∗ with p∗ ≤ p is the number of free parameters of ϑϑϑ ∈ Θ ⊂ R
p.

Remark 3.8. Under the conditions of Proposition ??, if ΨΨΨ0 = ΓΓΓ−1 does not hold, the

limiting distribution of T in (3.8) under the null hypothesis (3.9) will not be χ2
df , see

Satorra and Bentler (2001) or van Praag, Dijkstra, and van Velzen (1985). In this case,

T
d−→

df∑

j=1

κjζj , n → ∞ ,

where the ζj are iid χ2
1 distributed and κj are the non-null eigenvalues of the matrix UUUΓΓΓ

with

UUU = ΨΨΨ0 −ΨΨΨ0△(△TΨΨΨ0△)−1△TΨΨΨ0,

where △ is given in (3.11). An example for this situation is DML(σ̂σσ,σσσ(ϑϑϑ)) given in (3.5),

where σ̂σσ is the vector of a covariance matrix estimator, σσσ(ϑϑϑ) is the vector of a covariance

structure model and σ̂σσ has an asymptotic covariance matrix different from the asymptotic

covariance matrix of the empirical covariance estimator under a normal population.

8



From now on we will use the quadratic form discrepancy function D := DQD from

Example 3.4(ii), where ΥΥΥ = Γ̂ΓΓ is an estimator of ΓΓΓ. If Γ̂ΓΓ is consistent, Theorem 3.7 applies

and by Browne (1984, Corollary 2.1), ϑ̂ϑϑ is asymptotically normal with covariance matrix(
△TΓΓΓ−1△

)−1
, where △ is given in (3.11). Note that, if Γ̂ΓΓ is only consistent and does not

have a finite second moment, large sample sizes may be necessary to observe the limiting

χ2-distribution of the test statistic T or the asymptotic normality of ϑ̂ϑϑ.

To select an appropriate structural model, we consider a set of g models (which all

have to satisfy the assumptions of Theorem 3.7)

rrr(i) : Θ(i) → R
d(d−1)/2, ϑϑϑ(i) 7→ rrr(i)(ϑϑϑ(i)), and Θ(i) ⊂ R

p(i)

, 1 ≤ i ≤ g. (3.13)

Further, we require that the g models are nested, i.e. for every 1 ≤ i ≤ g−1 and ϑϑϑ(i) ∈ Θ(i)

there exists some ϑϑϑ(i+1) ∈ Θ(i+1) such that rrr(i+1)(ϑϑϑ(i+1)) = rrr(i)(ϑϑϑ(i)). Next, define the null

hypotheses

H
(i)
0 : rrr0 = rrr(i)(ϑϑϑ0) for some ϑϑϑ

(i)
0 ∈ Θ(i), 1 ≤ i ≤ g,

and assume that some of these null hypotheses are true. Then there exists some j such

that H
(i)
0 does not hold for 1 ≤ i < j and does hold for j ≤ i ≤ g. As we are interested in

a structure model, which is likely to explain the observed dependence structure, and is as

simple as possible and, since the models are nested, we have to estimate j, the smallest

index where the null hypothesis holds. By Theorem 3.7, the corresponding test statistics

T (i) := nD(r̂rr, rrr(i)(ϑ
(i)
0 )) := n minϑϑϑ∈Θ(i) D(r̂rr, rrr(i)(ϑ)) are not χ2 distributed for 1 ≤ i < j

and are χ2
df -distributed for j ≤ i ≤ g with df given in Theorem 3.7. Consequently, we

reject a null hypothesis H
(i)
0 , if the corresponding test statistic T (i) is larger than some

χ2
df -quantile. Hence, j is the smallest number, where H

(j)
0 cannot be rejected.

Remark 3.9. (i) Note that classical estimates of ΓΓΓ rely on the estimation of second

and fourth moments of XXX. For non-normal or, especially, for heavy-tailed data these

estimates often have large sampling variability and in simulation studies it turned

out that large samples are necessary for acceptable performance of the test statistics,

see e.g. Hu, Bentler, and Kano (1992).

(ii) In general, a unique true parameter ϑϑϑ0 need not exist: in the classical factor model

(see Example 3.3, where RRR = LLLLLLT + VVV2), LLL can always be replaced by LLL∗ = LLLPPP

for any orthogonal matrix PPP. By a minor adaption of the parameter space Θ (i.e.

LLLTVVV−2LLL has to be diagonal), ϑ̂ϑϑ can be forced to be unique and Proposition ??

applies, see Lawley and Maxwell (1971, Section 2.3). By Lee and Bentler (1980)

the degrees of freedom in (3.12) are then increased by the number of additional

constraints. For better interpretation, the factors can be rotated after estimation,

e.g. with the varimax method, for details see Anderson (2003, chapter 14).

9



(iii) With the correction for uniqueness in (ii) above, the factor model of Example 3.3

satisfies the regularity conditions of Proposition ?? and Theorem 3.7, see Steiger

et al. (1985, Section 4) and Browne (1984, Section 5).

(iv) In case of the copula factor model (see Remark 3.2(iii)) we only need to estimate the

loading matrix LLL ∈ R
d×m, since diag(VVV2) = 111 − diag(LLLLLLT ). Therefore the number

of free parameters are dm minus the number of the additional constraints to ensure

that LLLTVVV−2LLL is diagonal, i.e. the degrees of freedom of the limiting χ2 distribution

are df = d(d − 1)/2 − dm + m(m − 1)/2.

(v) For the quadratic form discrepancy function D(·, ·| Γ̂ΓΓ), where Γ̂ΓΓ is a consistent es-

timator of ΓΓΓ, it can be shown that T (i), 1 ≤ i < j, has an approximate noncen-

tral χ2
df -distribution with non-centrality parameter nD(rrr0, rrr

(i)(ϑϑϑ
(i)
0 )|ΓΓΓ), see Browne

(1984, Corollary 4.1).

4 Methodology

As we consider a copula structure model, we need an estimator R̂RR of the copula corre-

lation matrix RRR, whose limit distribution is N (000,ΓΓΓ) for some non-degenerate covariance

matrix ΓΓΓ and a consistent estimator of ΓΓΓ. In the following we will introduce two copula

based dependence concepts and their corresponding correlation and asymptotic covariance

estimators (which are also consistent and asymptotically normal).

4.1 Dependence Concepts

A well known dependence concept is (linear) correlation or covariance, which is limited by

the fact that it measures only linear dependence. Further, since correlation is not invariant

under non-linear (strictly increasing) transformations, it is not a copula property. As we

want for our copula structure analysis a dependence concept which is at least related to

correlation we use the following one known as Kendall’s tau.

This copula-based dependence concept provides a good alternative to the linear corre-

lation as a measure also for non-elliptical distributions, for which linear correlation is an

inappropriate measure of dependence and often misleading. Originally, it has been sug-

gested as a robust dependence measure, which makes it also appropriate for heavy-tailed

data; for more details see Kendall and Gibbons (1990).

Definition 4.1. Kendall’s tau τij between two components (Xi, Xj) of a random vector

XXX is defined as

τij := P
(
(Xi − X̃i)(Xj − X̃j) > 0

)
− P

(
(Xi − X̃i)(Xj − X̃j) < 0

)
,

10



where (X̃i, X̃j) is an independent copy of (Xi, Xj). Moreover, we call TTT := (τij)1≤i,j≤d the

Kendall’s tau matrix.

Concerning elliptical copulae the following result is given in Lindskog, McNeil, and

Schmock (2003, Theorem 2).

Theorem 4.2. Let XXX be a vector of random variables with elliptical copula C ∼ ECd(RRR, G)

and continuous generating variable G > 0, then τij = 2 arcsin(ρij)/π.

Considering extreme observations, we need the concept of regular variation. A textbook

treatment of this topic is to be found in Bingham, Goldie, and Teugels (1989), for a

multivariate extension we refer to Resnick (1987, 2004) or Basrak, Davis, and Mikosch

(2002).

Definition 4.3. A random variable G is called regularly varying at infinity with index

−α, 0 < α < ∞, if limx→∞ P(G > tx)/P(G > x) = t−α, for all t > 0. We write

G ∈ RV −α.

In financial risk management, one is often interested only in the dependence of ex-

treme observations. By Sklar’s theorem, the copula is sufficient to describe dependence

in extremes. As C is a uniform distribution on [0, 1]d, extreme values happen near the

boundaries and extreme dependence happens around the points (0, . . . , 0) and (1, . . . , 1).

This can be captured by the following concept.

Definition 4.4. (i) We define the upper tail copula of XXX as

λXXX
upper(xxx) = λXXX

upper(x1, . . . , xd)

= lim
t→0

t−1P (1 − F1(X1) ≤ tx1, . . . , 1 − Fd(Xd) ≤ txd) , (4.1)

for x1, . . . , xd ≥ 0 if the limit exists.

(ii) We define the lower tail copula of XXX as

λXXX
lower(xxx) := lim

t→0
t−1P (F1(X1) ≤ tx1, . . . , Fd(Xd) ≤ txd) . (4.2)

for x1, . . . , xd ≥ 0 if the limit exists.

Remark 4.5. Since by symmetry λXXX
lower(xxx) = λXXX

upper(xxx) =: λXXX(xxx) holds for elliptical

copulae (see Definitions 2.3 and 2.5), we concentrate only on the upper tail copula and

call it tail copula. Of course, by definition, the tail copula is a copula property. For more

details about the tail copula, see Schmidt and Stadtmüller (2005).

Notions like tail copula or tail dependence function go back to Gumbel (1960), Pickands

(1981) and Galambos (1987), and they represent the full dependence structure of the

model in the extremes. If λXXX(xxx) > 0 for some xxx > 000, XXX is called asymptotically dependent

11



and asymptotically independent, otherwise. Assuming elliptical copulae, Hult and Lindskog

(2002, Theorem 4.3) show that XXX is asymptotically dependent if XXX has an elliptical copula

with regularly varying generating variable G ∈ RV −α, α > 0. For a textbook treatment

of multivariate extremes, see Resnick (1987).

By definition, λXXX(xxx) = 0 if λ(Xi,Xj)(xi, xj) = 0 for some i, j and xxx > 000, i.e. XXX is

asymptotically independent if some bivariate margin (Xi, Xj) of XXX is asymptotically in-

dependent. Concerning asymptotic independence we refer to Ledford and Tawn (1996,

1997), and for a conditional modeling and estimation approach allowing for asymptotic

independence in some components and asymptotic dependence in others, see Heffernan

and Tawn (2004). We will use the assumption of asymptotic dependence for modeling and

estimation and therefore we omit further discussions about asymptotic independence.

For estimation of RRR we only need a representation of the bivariate marginal tail cop-

ula (4.1) for elliptical copulae. It follows from Hult and Lindskog (2002, Corollary 3.1),

Klüppelberg, Kuhn, and Peng (2005a, Theorem 2.1) and transformation of variable. A

representation of the full multivariate version is given in Klüppelberg, Kuhn, and Peng

(2005b, Theorem 5.1).

Theorem 4.6. Suppose XXX has copula CXXX ∈ ECd(RRR, G) with generating variable G ∈
RV−α, α > 0, and copula correlation matrix RRR = (ρij)1≤i,j≤d with max |ρij| < 1. Then the

bivariate marginal tail copula of XXX is given by

λXXX
ij (x, y) := λXXX(∞, . . . ,∞, x,∞, . . . ,∞, y,∞, . . . ,∞)

=

(
x

∫ π/2

gij((x/y)1/α)
(cos φ)α dφ + y

∫ π/2

gij((x/y)−1/α)
(cos φ)α dφ

)(∫ π/2

−π/2

(cos φ)α dφ

)−1

=: λ(x, y, α, ρij), (4.3)

where x is the i-th, y the j-th component and gij(t) := arctan
(
(t − ρij)/

√
1 − ρ2

ij

)
.

Remark 4.7. The case of ρ := ρij = 1 can be interpreted as a limit, i.e.

λ(x, y, α, 1) := lim
ρ→1

λ(x, y, α, ρ).

Then

gij(t) = lim
ρ→1

arctan
(
(t − ρij)/

√
1 − ρ2

ij

)
=





+π/2, t > 1,

0, t = 1,

−π/2, t < 1,

and we obtain λ(x, y, α, 1) = x ∧ y. Similarly, λ(x, y, α,−1) = 0.

This bivariate marginal tail copula λXXX
ij given in (4.3) measures the amount of depen-

dence in the upper right quadrant of (Xi, Xj). Note that by Klüppelberg et al. (2005b,
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Theorem 5.1), λXXX is completely characterized by the copula correlation matrix RRR and the

index α of regular variation of G.

By Theorems 4.2 and 4.6 we see that for an elliptical copula the correlation matrix RRR

is a function of Kendall’s tau or of the tail copula with the index α of regular variation of

G. In Sections 4.2 and 4.3 we will invoke this functional relationship for the estimation of

RRR. The two approaches differ in their interpretation: estimating RRR via Kendall’s tau fits a

robust dependence structure of the data to an elliptical copula. Using the tail copula for

estimation of RRR fits only the dependence structure in the upper extremes to an elliptical

copula and does not necessarily fit the dependence of the data in other regions. Of course,

copula structure analysis can be applied to any copula correlation estimator with a certain

limiting behavior as given by Theorem 3.7. Using Kendall’s tau for estimation can then

be seen as a robust extension of the usual correlation structure analysis, whereas using

the tail copula provides a structure analysis of dependence in the extremes. The next two

sections explain the estimation procedures and give asymptotic results.

4.2 Copula correlation estimator based on Kendall’s tau

The first method is based on Kendall’s tau, which can be used for estimating the corre-

lation matrix RRR by Theorem 4.2. For a general treatment of U -statistics see Lee (1990);

the results we use go back to Hoeffding (1948).

Definition 4.8. Given an iid sample XXX1, . . . ,XXXn, XXX i = (Xi,1, . . . , Xi,d)
T , we define the

estimator T̂TT = (τ̂ij)1≤i,j≤d of Kendall’s tau matrix TTT by τ̂ii = 1 for i = 1, . . . , d and

τ̂ij =

(
n

2

)−1 ∑

1≤l<k≤n

sign ((Xk,i − Xl,i) (Xk,j − Xl,j)) , 1 ≤ i 6= j ≤ d.

Estimating the copula correlation matrix via Kendall’s tau yields the following result.

Its proof can be found in Section 6.

Theorem 4.9. Let XXX1,XXX2, . . . be an iid sequence of d-dimensional random vectors with

elliptical copula CXXX ∈ ECd(RRR, G) with continuous G. Further, define

R̂RRτ = (ρ̂τ
ij)1≤i,j≤d := sin

(π

2
T̂TT

)
, (4.4)

where the ’sin’ is used componentwise and define r̂rrτ := vec[R̂RRτ ] and rrr := vec[RRR]. Then,

√
n (r̂rrτ − rrr)

d−→ Nd(d−1)/2(000,ΓΓΓτ ) , n → ∞ ,

holds, where ΓΓΓτ = (γτ
ij,kl)1≤i6=j,k 6=l≤d with

γτ
ij,kl = π2 cos

(π

2
τij

)
cos

(π

2
τkl

)
(τij,kl − τijτkl) and (4.5)

τij,kl = E
(
E

(
sign [(X1,i−X2,i)(X1,j−X2,j)]

∣∣XXX1

)
E

(
sign [(X1,k−X2,k)(X1,l−X2,l)]

∣∣XXX1

) )
.
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By (4.5), an estimator of ΓΓΓτ = (γτ
ij,kl)1≤i6=j,k 6=l≤d can be defined by its empirical version.

Definition 4.10. Given an iid sample XXX1, . . . ,XXXn, XXX i = (Xi,1, . . . , Xi,d)
T , we define the

estimator Γ̂ΓΓτ = (γ̂τ
ij,kl)1≤i6=j,k 6=l≤d, where

γ̂τ
ij,kl := π2 cos

(π

2
τ̂ij

)
cos

(π

2
τ̂kl

)
(τ̂ij,kl − τ̂ij τ̂kl) and (4.6)

τ̂ij,kl :=
1

n(n − 1)2

n∑

p=1

[(
n∑

q=1, q 6=p

sign ((Xp,i−Xq,i)(Xp,j−Xq,j))

)
×

×
(

n∑

q=1, q 6=p

sign ((Xp,k−Xq,k)(Xp,l−Xq,l))

)]
. (4.7)

The following result is also proved in Section 6.

Theorem 4.11. The estimator vec[Γ̂ΓΓτ ] is consistent and asymptotically normal.

4.3 Copula correlation estimator based on the tail copula

The second estimation method is based on the tail copula. If someone is interested in the

dependence structure of the extreme data and assumes an elliptical copula, (4.1) shows

how λXXX can be expressed as a function of RRR and α. By estimation of λXXX one can estimate

RRR and α (i.e. the elliptical structure), which is likely to generate the observed extreme

dependence.

We use an approach closely related to Klüppelberg et al. (2005b); i.e. we use the tail

copula for the estimation of RRR and α. By Theorem 4.6 we need an estimator of α and of

all bivariate marginal tail copulae. We start with an empirical tail copula estimator, for

details see Klüppelberg et al. (2005a, 2005b) (and references therein) and estimate RRR and

α from this.

Definition 4.12. Given an iid sample XXX1, . . . ,XXXn, XXX l = (Xl,1, . . . , Xl,d)
T , we define the

empirical tail copula estimator for xxx = (x1, . . . , xd) > 000 as

λ̂emp(xxx; k) =
1

k

n∑

l=1

I

(
1 − F̂j(Xlj) ≤

k

n
xj, j = 1, . . . , d

)
, (4.8)

where 1 ≤ k ≤ n and F̂j denotes the empirical distribution function of {Xl,j}n
l=1, 1 ≤ j ≤

d. Further, we define the empirical estimator of the bivariate marginal tail copula as

λ̂emp
ij (x, y; k) := λ̂emp(∞, . . . ,∞, x,∞, . . . ,∞, y,∞, . . . ,∞)

:=
1

k

n∑

l=1

I

(
1 − F̂i(Xli) ≤

k

n
x , 1 − F̂j(Xlj) ≤

k

n
y

)
, (4.9)

where x is at the i-th and y at the j-th component, respectively.
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Since λ̂emp estimates the tail copula, the number k should be small in comparison to n.

Setting xj = 1, 1 ≤ j ≤ d, only the k largest observations of Xl,j satisfy 1−F̂j(Xlj) ≤ k/n,

therefore k can be interpreted as the number of the largest order statistics which are used

for the estimation as is typical in extreme value theory.

Immediately by definition (4.1), λXXX is homogenous of order 1, and, for large k and n,

also λ̂emp
ij is (see (4.8)). Consequently, setting θ = arctan(y/x), i.e. (x, y) = (c cos θ, c sin θ)

for some constant c > 0, we have λ̂emp
ij (x, y; k) = λ̂emp

ij (
√

2 cos θ,
√

2 sin θ; k∗) for some

appropriate k∗. Hence, for the estimation, we follow the convention and only consider

points (x, y) = (
√

2 cos θ,
√

2 sin θ), θ ∈ (0, π/2).

For estimation of α we use the approach of Klüppelberg et al. (2005b), which is based

on inversion of the tail copula with respect to α.

Definition 4.13. Define λ←α(·; x, y, ρ) as the inverse of λ(x, y, α, ρ) (given in (4.1)) with

respect to α and, using ρ̂τ
ij given in (4.4) and λ̂emp given in (4.9), define for i 6= j

Q̂ij :=
{

θ ∈
(
0,

π

2

)
: λ̂emp

ij (
√

2 cos θ,
√

2 sin θ; k) <

< λ

(√
2 cos θ,

√
2 sin θ,

∣∣∣∣
ln(tan θ)

ln(ρ̂τ
ij ∨ 0)

∣∣∣∣ , ρ̂τ
ij

)}
,

Q̂∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan θ)| <

(
1 − k−1/4

)
α̃ij(1, 1; k)

∣∣ln(ρ̂τ
ij ∨ 0)

∣∣
}

and

Q∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan θ)| < α |ln(ρij ∨ 0)|

}
,

where for θ ∈ Q̂ij we define α̃ij as the estimator of α based on the empirical bivariate tail

copula (4.9)

α̃ij(
√

2 cos θ,
√

2 sin θ; k)

:= λ←α
(
λ̂emp

ij (
√

2 cos θ,
√

2 sin θ; k);
√

2 cos θ,
√

2 sin θ, ρ̂τ
ij

)
. (4.10)

Further, let w be a nonnegative weight function. Then we define the smoothed estimator

α̂ of α as

α̂(k, w) :=
2

d(d − 1)

∑

1≤i<j≤d

1

W
(
Q̂ij ∩ Q̂∗

ij

)
∫

θ∈Q̂ij∩Q̂∗

ij

α̃ij(
√

2 cos θ,
√

2 sin θ; k) W (dθ), (4.11)

where W is the measure induced by w.

To define an estimator of RRR via extreme observations, we invert the bivariate tail

copula with respect to ρ. Using (4.3) it is straightforward to show the following.

Lemma 4.14. For fixed x, y, α > 0 define ρ∗ := ((x ∧ y)/(x ∨ y))1/α. Then, for all

ρ < ρ∗, ∂
∂ρ

λ(x, y, α, ρ) > 0 holds and the inverse λ←ρ(·; x, y, α) of λ with respect to ρ

exists.
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By Remark 4.7, λ(1, 1, α, 1) = 1 and λ(1, 1, α,−1) = 0 for α > 0. Hence, we can define

ρ̃ij(1, 1; k) := λ←ρ
(
λ̂emp

ij (1, 1; k); 1, 1, α̂(k, w)
)

. (4.12)

Since this estimator only employs information at (x, y) = (1, 1), it may not be very

efficient. Therefore, we define an estimator based on λ̂emp
ij (x, y; k) for other values (x, y) =

(
√

2 cos θ ,
√

2 sin θ) ∈ R
2
+.

To ensure existence and consistency of the estimator, we define the following sets and

give some explanations below:

Ûij :=
{

θ ∈
(
0,

π

2

)
: λ̂emp

ij

(√
2 cos θ,

√
2 sin θ; k

)
<

< λ
(√

2 cos θ,
√

2 sin θ, α̂(k, w), e−| ln(tan θ)|/α̂(k,w)
)}

,

Û∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan θ)| < (1 − k−1/4)α̂(k, w)

∣∣ln
(
ρ̃ij(1, 1; k) ∨ 0

)∣∣
}

and

U∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan θ)| < α |ln(ρij ∨ 0)|

}
.

By Lemma 4.14 there exists a unique ρ such that

λ
(√

2 cos θ,
√

2 sin θ, α̂(k, w), ρ
)

= λ̂emp
ij

(√
2 cos θ,

√
2 sin θ; k

)
, θ ∈ Ûij.

Hence, we can define

ρ̃ij(
√

2 cos θ,
√

2 sin θ; k) (4.13)

:= λ←ρ
ij

(
λ̂emp

ij (
√

2 cos θ,
√

2 sin θ; k);
√

2 cos θ,
√

2 sin θ, α̂(k, w)
)

, θ ∈ Ûij.

Note that, by the definition of ρ̃ij(1, 1; k) in (4.12), it always holds that π/4 ∈ Ûij provided

that λ̂emp
ij (1, 1; k) < 1. Hence, if Ûij = ∅, we can replace it by Ûij := {π/4} and also replace

Û∗
ij := {π/4}. To ensure consistency we further require θ ∈ Û∗

ij. This implies that the true

ρij is smaller than e−| ln(tan θ)|/α̂(k,w) with probability tending to one. The set U∗
ij is then

the true set of θ ∈ (0, π/2), where Lemma 4.14 applies.

Now we can define an estimator for ρij as a smooth version of ρ̃ij:

Definition 4.15. Let w∗ be a nonnegative weight function and W ∗ be the measure induced

by w∗. Then we define for i 6= j and with (4.13)

ρ̂λ
ij(k, w∗) :=

1

W ∗
(
Ûij ∩ Û∗

ij

)
∫

θ∈Ûij∩Û∗

ij

ρ̃ij(
√

2 cos θ,
√

2 sin θ; k) W ∗(dθ). (4.14)

Further, define ρ̂λ
ii(k, w∗) := 1, 1 ≤ i ≤ d, and R̂RRλ(k, w∗) :=

(
ρ̂λ

ij(k, w∗)
)
1≤i,j≤d

.

The next theorem shows the asymptotic properties of R̂RRλ(k, w∗). We use the theory

developed in Schmidt and Stadtmüller (2005) and give a formal proof in Section 6.

16



Theorem 4.16. Suppose the following regularity conditions hold:

(C1) XXX1, . . . ,XXXn are iid with copula CXXX ∈ ECd(RRR, G), G ∈ RV−α for α > 0 and

maxi6=j |ρij| < 1.

(C2) There exists A(t) → 0 such that for i 6= j

lim
t→0

t−1P (1 − Fi(Xi) ≤ tx, 1 − Fj(Xj) ≤ ty) − λ(x, y, α, ρij)

A(t)
= b

(C2)
ij (x, y)

uniformly on S2 := {sss ∈ R
2 : sssTsss = 1}, where b

(C2)
ij (x, y) is some non-constant

function.

(C3) k = k(n) → ∞, k/n → 0 and
√

kA(k/n) → 0 as n → ∞.

Let w∗ be a nonnegative weight function with supθ∈U∗

ij
w∗(θ) < ∞ for all i 6= j, λ′ρ and

λ′α denotes the derivative of λ with respect to ρ and α, respectively, and (λ←ρ)′α denotes

the derivative of λ←ρ with respect to α. Define

B̃ij(x, y) := Bij(x, y) − Bij(x,∞)
∂

∂x
λij(x, y) − Bij(∞, y)

∂

∂y
λij(x, y), (4.15)

Bij(x, y) := B(∞, . . . ,∞, x,∞, . . . ,∞, y,∞, . . . ,∞),

where x is the i-th, y the j-th component and B is a centered tight continuous Gaussian

random field on R
d

with covariance structure

E(B(xxx)B(yyy)) = λXXX(xxx ∧ yyy), xxx,yyy ∈ [0,∞]d, (4.16)

where xxx∧yyy is taken componentwise. Set as before rrr := vec[RRR] and r̂rrλ(k, w∗) := vec[R̂RRλ(k, w∗)],

then

√
k (r̂rrλ(k, w∗) − rrr)

d−→ Nd(d−1)/2(000,ΓΓΓλ) , n → ∞ ,

where Γλ = (γλ
ij,kl)1≤i6=j,k 6=l≤d with

γλ
ij,kl = σα + σij,α + σkl,α + σij,kl, (4.17)

and

σα =
2

d2(d − 1)2W ∗(U∗
ij)W

∗(U∗
kl)

(4.18)

×
∏

J∈{ij,kl}

∫

θ∈U∗

J

(λ←ρ)′α
(
λXXX

J (
√

2 cos θ,
√

2 sin θ),
√

2 cos θ,
√

2 sin θ, α
)

W ∗(dθ)

×
(

∑

1≤p<q,r<s≤d

1

W (Q∗
pq)W (Q∗

rs)

×
∫

θ1∈Q∗

pq

∫

θ2∈Q∗

rs

E
(
B̃pq(

√
2 cos θ1,

√
2 sin θ1)B̃rs(

√
2 cos θ2,

√
2 sin θ2)

)

λ′α(cos θ1, sin θ1, α, ρpq)λ′α(cos θ2, sin θ2, α, ρrs)
W (dθ2)W (dθ1)


 ,
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σij,α =
1

d(d − 1)W ∗(U∗
ij)W

∗(U∗
kl)

∑

1≤p<q≤d

1

W (Q∗
pq)

× (4.19)

×
(∫

θ1∈U∗

ij

∫

θ1∈U∗

kl

∫

θ3∈Q∗

pq

(λ←ρ)′α
(
λXXX

ij (
√

2 cos θ1,
√

2 sin θ1),
√

2 cos θ1,
√

2 sin θ1, α
)
×

×
E

(
B̃pq(

√
2 cos θ3,

√
2 sin θ3)B̃kl(

√
2 cos θ2,

√
2 sin θ2)

)

λ′α(cos θ3, sin θ3, α, ρpq)λ′ρ(cos θ2, sin θ2, α, ρkl)
W ∗(dθ3)W

∗(dθ2)W (dθ1)


 ,

similarly σkl,α (by interchanging the indices ’ij’ and ’kl’), and

σij,kl =
1

2W ∗(U∗
ij)W

∗(U∗
kl)

(4.20)

×
∫

θ1∈U∗

ij

∫

θ2∈U∗

kl

E
(
B̃ij(

√
2 cos θ1,

√
2 sin θ1)B̃kl(

√
2 cos θ2,

√
2 sin θ2)

)

λ′α(cos θ1, sin θ1, α, ρij)λ′ρ(cos θ2, sin θ2, α, ρkl)
W ∗(dθ2)W

∗(dθ1).

Remark 4.17. If condition (C3) in Theorem 4.16 is replaced by

(C3’) k = k(n) → ∞, k/n → 0 and
√

kA(k/n) → b(C3) ∈ (−∞,∞) as n → ∞,

an asymptotic bias occurs in vec[R̂RRλ(k, w∗)]. Using the delta method it immediately follows

that
√

k (r̂rrλ(k, w∗) − rrr)
d−→ Nd(d−1)/2(bbbρ + bbbα,ΓΓΓλ),

where ΓΓΓλ is given in (4.17), bbbρ = vec[(bij,ρ)1≤i,j≤d], bbbα = vec[(bij,α)1≤i,j≤d],

bij,ρ =
1

W (U∗
ij)

∫

θ∈U∗

ij

b(C3)b
(C2)
ij (

√
2 cos θ,

√
2 sin θ)

λ′ρ(
√

2 cos θ,
√

2 sin θ, α, ρij)
W ∗(dθ), i 6= j, and

bij,α =
1

W (U∗
ij)

∫

θ∈U∗

ij

(λ←ρ)′α
(
λXXX

ij

(√
2 cos θ,

√
2 sin θ

)
,
√

2 cos θ,
√

2 sin θ, α
)

W ∗(dθ) ×

× 2

d(d − 1)

∑

1≤p<q≤d

1

W (Q∗
pq)

∫

θ∈Q∗

pq

b(C3)b
(C2)
pq (

√
2 cos θ,

√
2 sin θ)

λ′α(
√

2 cos θ,
√

2 sin θ, α, ρpq)
W (dθ).

Using (4.17), we can define an estimator of ΓΓΓλ.

Definition 4.18. We define the estimator of ΓΓΓλ = (γλ
ij,kl)1≤i6=j,k 6=j by Γ̂ΓΓλ = (γ̂λ

ij,kl)1≤i6=j,k 6=j

with

γ̂λ
ij,kl = σ̂α + σ̂ij,α + σ̂kl,α + σ̂ij,kl, (4.21)

the σ̂ are defined in (4.18)–(4.20), where α, ρij and ρkl are replaced by their estimators

α̂(k, w), ρ̂λ
ij(k, w∗) and ρ̂λ

kl(k, w∗), respectively, the sets U∗ and Q∗ are replaced by their

estimators Û ∩ Û∗ and Q̂ ∩ Q̂∗, respectively, and the covariances E
(
B̃ij(·)B̃kl(·)

)
are

replaced by their estimators Ê
(
B̃ij(·)B̃kl(·)

)
using (4.15) and (4.16) and estimating λXXX

by λ̂emp.
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The asymptotic properties of λ̂emp, α̂, ρ̂λ
ij in combination with the delta method yield

immediately the following result.

Theorem 4.19. Under the regularity conditions (C1)–(C3), the estimator vec[Γ̂ΓΓλ] is con-

sistent and asymptotically normal.

Estimation of dependence in extremes is always a difficult topic, for some methods

of estimation of λXXX
ij (1, 1) and pitfalls we refer to Frahm, Junker, and Schmidt (2005).

The problem of estimating tail dependence lies in its definition as a limit, see (4.1).

Estimators of the tail dependence are based on a sub-sample using the largest (or smallest)

observations. Concerning the optimal choice of the threshold, we refer to Danielsson,

de Haan, Peng, and de Vries (2001), Drees and Kaufmann (1998) and to Klüppelberg

et al. (2005a, 2005b).

Remark 4.20. It may happen that the correlation matrix estimators (4.4) or (4.14) are

not positive definite. In this case we use the approach of Higham (2002), i.e. we replace

R̂RR by the (positive definite) correlation matrix RRR∗ solving

∥∥R̂RR −RRR∗
∥∥

2
= min

{∥∥R̂RR −RRR
∥∥

2
: RRR is a correlation matrix

}
,

where ‖RRR‖2 =
∑

i,j ρ2
ij is the Euclidean or Frobenius norm of a matrix RRR = (ρij)1≤i,j≤d. Let

RRR have spectral decomposition RRR = QQQDDDQQQT with QQQ orthogonal and DDD = diag(κ1, . . . , κd).

By Higham (2002, Theorem 3.1 and 3.2), PU(RRR) := RRR − diag(RRR − III) is the projection of

RRR to the set of symmetric matrices with diagonal 111 and PS(RRR) := QQQ diag(max(κi, 0))QQQT

is the projection of RRR to the set of positive definite matrices, respectively. Then, Higham

(2002, Algorithm 3.3) calculates YYYi converging to RRR∗ with respect to the Frobenius norm

as i → ∞:
△SSS0 − 000, YYY0 = R̂RR

for i = 1, 2, . . .

ZZZi = YYYi−1 −△SSSi−1

XXXi = PS(ZZZi)

△SSSi = XXXi −ZZZi

YYYi = PU(XXXi)

end.

Considering covariance matrices, we do not need the projection PU . Hence, if we observe

not positive definite covariance estimators (4.6) or (4.21), we project them to the set of

positive definite matrices by PS(Γ̂ΓΓ).

5 The new methods at work

Using the estimators (4.4) and (4.6) or (4.14) and (4.21) together with the quadratic form

discrepancy function (3.6), we can now apply copula structure analysis. In the following,
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we consider the copula factor model, i.e. we choose the setting CXXX = C(LLL,VVV)ξξξ, where

LLL ∈ R
d×m, VVV ∈ R

d×d is a diagonal matrix with nonnegative entries and ξξξ ∈ Em+d(000, III, G);

also see Remark 3.2(iii).

As for the test statistic T based on the quadratic form discrepancy function (3.6) we

first compare in a simulation study T to its limiting χ2-distribution. Therefore, we define

by

T τ
QD := n min

ϑϑϑ∈Θ
DQD

(
r̂rrτ , rrr(ϑϑϑ)| Γ̂ΓΓτ

)

the quadratic form test statistic obtained from the Kendall’s tau based estimators r̂rrτ =

vec[R̂RRτ ] and Γ̂ΓΓτ given in (4.4) and (4.6), respectively.

Similarly,

T λ
QD := k min

ϑϑϑ∈Θ
DQD

(
r̂rrλ, rrr(ϑϑϑ)| Γ̂ΓΓλ

)
,

where k is the number of the largest order statistics used for estimation, r̂rrλ = vec[R̂RRλ]

and Γ̂ΓΓλ given in (4.14) and (4.21), respectively. As a weight function we choose a discrete

version of

w(θ) = 1 −
(

θ

π/4
− 1

)2

, 0 ≤ θ ≤ π

2
, (5.1)

both for the estimation of α and RRR given a copula C ∈ EC(RRR, G), G ∈ RV−α and α > 0.

We also compare the copula factor model to the classical factor model XXX = (LLL,VVV)ξξξ,

ξξξ ∈ Em+d(000, III, G). To this end we define

T emp
QD := n min

ϑϑϑ∈Θ
DQD

(
r̂rremp, rrr(ϑϑϑ)| Γ̂ΓΓemp

)
,

where r̂rremp = vec[R̂RRemp] is the vector of the standard empirical correlation estimator with

its asymptotic covariance matrix estimator Γ̂ΓΓemp under normal assumptions, for details

see Browne and Shapiro (1986).

The parameter ϑϑϑ is then estimated also in three different ways, denoted by ϑ̂ϑϑτ , ϑ̂ϑϑλ and

ϑ̂ϑϑemp, by minimizing T τ
QD, T λ

QD and T emp
QD , respectively.

Example 5.1. [Model selection by χ2-tests]

To see the performance of the quadratic form test statistics T τ
QD and T λ

QD, we perform a

simulation study. We choose a d = 10 dimensional setting with m = 2 factors and loadings

as given in Table 1. Then LLLLLLT + VVV2 = RRR is a correlation matrix.

Define a multivariate tα-copula as the copula of the random vector GNNN , where G ∼√
α/χ2

α , α > 0, is independent of NNN ∼ N (000,RRR). Note that the tα-copula is elliptical

and, since G ∈ RV −α, its tail copula satisfies (4.3). Choose α = 3, then GNNN has finite

second moment, but its fourth moment does not exist. Hence, classical factor analysis

cannot be applied to GNNN , see Proposition ?? and Theorem 3.7. Also, if the model with
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component 1 2 3 4 5 6 7 8 9 10

LLL·,1 .9 .9 .9 .9 .9 0 0 0 0 0

LLL·,2 0 0 0 0 0 .9 .9 .9 .9 .9

diag(VVV2) .19 .19 .19 .19 .19 .19 .19 .19 .19 .19

Table 1: Factor loadings of Example 5.1

α < 8 is considered, which has finite fourth moment but non-existing eight moment, the

estimator of ΓΓΓ will only be consistent and large sample sizes may be necessary to observe

the limiting χ2 distribution of the test statistic T . As the test statistics T τ
QD and T λ

QD are

based on the copula of the sample, they are not affected by the existence or non-existence

of moments.

We simulate 500 iid samples of length n = 1 000 of the t3-copula, calculate the

Kendall’s tau based estimators (4.4) and (4.6) and estimate T τ
QD from these. To ensure

uniqueness of the loadings, we use the restriction that LLLTVVV−2LLL is diagonal, hence we

have m(m− 1)/2 = 1 additional constraints, see Lawley and Maxwell (1971, Section 2.3).

Using this restriction and the 2-factor setting, T τ
QD should be (for a large sample) χ2

df

distributed with df = d(d− 1)/2− dm + m(m− 1)/2 = 26 degrees of freedom; see Theo-

rem 3.7. Therefore, we compare the 500 estimates of T τ
QD with the χ2

26-distribution by a

QQ-plot, see Figure 1, left plot. From this plot we see that the distribution of T τ
QD fits the

χ2
26-distribution quite well. Similarly, we estimate T λ

QD based on the tail copula estima-

tors (4.14) and (4.17) with weight function (5.1) using the same samples as for T τ
QD and

based on the k = 100 largest observations; see Figure 1, right plot. Also here we observe

a reasonable fit to the χ2
26-distribution – not as good as before since the estimators are

calculated from a smaller (sub)sample. Note that under the assumption of m = 1 factor

the corresponding T τ
QD’s and T λ

QD’s were always larger than 600, which clearly rejects the

1-factor hypothesis.

Example 5.2. [Oil-currency data]

In this example we consider an 8-dimensional set of data, (oil, s&p500, gbp, usd, chf, jpy,

dkk, sek), i.e. we are interested in the dependence structure between the oil-price, the

S&P500 index and some currency exchange rates with respect to euro. Each time series

consists of 4 904 daily logreturns from May, 1985 to June, 2004. To this data set we fit

a copula factor model using the T emp
QD , T τ

QD and T λ
QD statistics for estimation and model

selection. Estimation of T λ
QD is based on the k = 300 largest observations. The values of

these test statistics, based on different numbers of factors are given in Table 2. To estimate

the number of factors, we use a 95% confidence test, i.e. we reject the null hypothesis of

having a m-factor model if the test statistic T is larger than the 95%-quantile of the

χ2
df -distribution. This yields 4 factors under the empirical, Kendall’s tau based and tail

copula based test statistics.
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Figure 1: QQ-plot of ordered estimates T̂ against the χ2
26-quantiles.

Left plot: T τ
QD obtained from Kendall’s tau based estimators (4.4) and (4.6).

Right plot: T λ
QD obtained from tail copula based estimators (4.14) and (4.17).

number of factors df T emp
QD T τ

QD T λ
QD χ2

df,0.95

2 13 298.5 252.7 52.7 22.36

3 7 33.7 17.4 24.0 14.07

4 2 2.3 3.3 0.9 5.99

Table 2: Test statistics T
emp
QD , T τ

QD and T λ
QD of oil-currency data under different number of

factors.

Applying factor analysis based on the different correlation estimates (and their asymp-

totic covariance estimates) yield different results; see Figure 2. The first four plots show the

loadings of the four factors, obtained from the empirical correlation estimator, Kendall’s

tau based and tail copula based estimator. The last plot shows the loadings of the specific

factors for all three correlation estimators.

We want to emphasize that, although we have plotted the factors in the same figures,

the factors obtained by the three different estimation methods are not known and may

have different interpretations. We call them empirical factors, Kendall’s tau factors and

tail copula factors.

For the first factor all loadings of the different correlation estimators behave very

similar with respect to factor 1, which has a weight close to one for usd. Hence, factor

one can be interpreted as the usd-factor. It also can be seen that this factor has a positive

weight for all currencies, but not for the oil-price and s&p500 (almost 0 or very small

negative), and the largest dependence is observed for gbp, and jpy.

For factor 2 we observe for all correlation estimators a large weight on Swiss Francs

chf, so we call it chf-factor. We observe that the empirical and Kendall’s tau factor has

almost no (or only little) correlation with oil, s&p500, gbp, usd and jpy. The weights on
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dkk and sek are larger and also moderate for gpd for the tail copula factor indicating that

extreme dependence between all European currencies is present.

Considering factor 3, we see for the empirical and Kendall’s tau factor a large loading

for sek and dkk with only little impact on the other components. If scandinavian currencies

were merged, then only a specific factor would remain. The tail copula factor indicates

moderate dependence between oil and gbp.

From factor 4 we observe for the empirical factor a loading close to one for the oil-price

and loadings close to 0 for the rest of the factors. This indicates that a 3-factor model

is sufficient in this case. In combination with the model selection procedure as seen in

Table 2 this indicates that the distribution of T emp
QD is far away from a χ2 distribution. For

the Kendall’s tau factor there is some dependence between the European currencies and

the usd. The tail copula factor behaves different: there is dependence observed between

large positive jumps of s&p500 and large negative jumps of the oil price which would not

be detected when only considering the other correlation estimators.

Finally, we give an interpretation of the specific factors, where we find the correlation

which is not explained through the common factors. For the empirical factor oil is com-

pletely explained by factor 4, which is the specific factor for oil, and s&p500 has a loading

close to one, showing there is (almost) no correlation to oil and the other currencies. For

the Kendall’s tau factor, oil and s&p500 are uncorrelated and uncorrelated from the rest.

Contrary, for the tail copula factor, oil and s&p500 are not uncorrelated from the common

factors. Oil has a rather large specific loading factor, but s&p500 is explained to a large

extend by factor 4.
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Figure 2: Oil-currency data: factor analysis based on 4 factors and different statistics, ”emp”

for the loadings ϑ̂ϑϑemp, ”tau” for ϑ̂ϑϑτ and ”tail” for ϑ̂ϑϑλ.

Upper row: loadings of factor 1 (left) and 2 (right).

Middle row: loadings of factor 3 (left) and 4 (right).

Lower row: specific factors diag(VVV2).
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6 Proofs

Proof of Theorem 4.9: Define t̂tt := vec[T̂TT] and ttt := vec[TTT]. Since t̂tt is a vector of

U -statistics, and, obviously,

E
(
sign ((X1,i − X2,i) (X1,j − X2,j))

2) < ∞, i 6= j,

Lee (1990, Chapter 3, Theorem 2) applies (together with the remark at the end of p.7

therein that all results also hold for random vectors). The covariance structure is stated

in Lee (1990, Section 1.4, Theorem 1), hence

√
n(̂ttt − ttt)

d−→ Nd(d−1)/2 (000, 4ΥΥΥ) , n → ∞ ,

where ΥΥΥ = (τij,kl − τijτkl)1≤i6=j,k 6=l≤d and τij,kl is given in (4.5). Note that the Jacobian

matrix DDD := ∂ (sin (tttπ/2)) /∂ttt is a diagonal matrix with

diag(DDD) =
π

2
cos

(π

2
ttt
)

.

Hence, by the delta method (see Casella and Berger (2001, Section 5.5.4)),

√
n (r̂rr − rrr)

d−→ Nd(d−1)/2

(
000, 4DDDTΥΥΥDDD

)
, n → ∞ ,

and the proof is complete.

Proof of Theorem 4.11: We first consider τ̂ij,kl and rewrite it as a linear combination

of some U -statistics. Define for 1 ≤ a < b < c ≤ n

Φij,kl
2 (xxxa,xxxb) := sign [(xa,i − xb,i)(xa,j − xb,j)] sign [(xa,k − xb,k)(xa,l − xb,l)]

Φij,kl
abc := Φij,kl

abc (xxxa,xxxb,xxxc)

:= sign [(xa,i − xb,i)(xa,j − xb,j)] sign [(xa,k − xc,k)(xa,l − xc,l)] and

Φij,kl
3 (xxxa,xxxb,xxxc) :=

1

6

(
Φij,kl

abc + Φij,kl
acb + Φij,kl

bac + Φij,kl
bca + Φij,kl

cab + Φij,kl
cba

)
.

Hence, Φij,kl
2 and Φij,kl

3 are symmetric in their arguments. Next, define

ûij,kl
2 :=

2

n(n − 1)

∑

1≤a<b≤n

Φij,kl
2 (XXXa,XXXb) and

ûij,kl
3 :=

6

n(n − 1)(n − 2)

∑

1≤a<b<c≤n

Φij,kl
3 (XXXa,XXXb,XXXc),

and note that both are U -statistics. Obviously,

E

((
Φij,kl

2 (XXX1,XXX2)
)2

)
< ∞ and E

((
Φij,kl

3 (XXX1,XXX2,XXX3)
)2

)
< ∞,
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therefore, by Lee (1990, Chapter 3, Theorem 2), the vector of all ûij,kl
2 and ûij,kl

2 is consis-

tent and asymptotically normal. Since

τ̂ij,kl =
1

n(n − 1)2

(
n(n − 1)

2
ûij,kl

2 +
n(n − 1)(n − 2)

6
ûij,kl

3

)
,

τ̂ij,kl is a linear combination of U -statistics and is therefore also consistent and asymptot-

ically normal. The result then follows using the delta method.

Proof of Theorem 4.16: First, by homogeneity,

λ(
√

2 cos θ2,
√

2 sin θ2, α, ρ) =
√

2λ(cos θ2, sin θ2, α, ρ)

holds. Let ’
w−→’ denote weak convergence in the space of all functions f : R

n

+ → R which

are locally uniformly-bounded on every compact subset of R
n

+. Next, extending Schmidt

and Stadtmüller (2005, Theorem 6) from the bivariate to the d-dimensional setting, we

have

√
k

(
λ̂emp(xxx; k) − λXXX(xxx)

)
w−→ B(xxx) −

d∑

i=1

∂

∂xi

λXXX(xxx)Bi(xi),

where Bi(x) = B(∞, . . . ,∞, x,∞, . . . ,∞), x is the i-th component and B is a zero mean

Wiener process with covariance structure E(B(xxx)B(yyy)) = λXXX(xxx ∧ yyy).

To show asymptotic normality we use an extended version of the classical delta-

method, for details see van der Vaart and Wellner (1996, p.374). First, note that for

all i 6= j and for λ defined in (4.3)

inf
θ∈Q∗

ij

|λ′α(
√

2 cos θ,
√

2 sin θ, α, ρij)| > 0,

inf
θ∈U∗

ij

|λ′ρ(
√

2 cos θ,
√

2 sin θ, α, ρij)| > 0 and

sup
θ∈U∗

ij

∣∣∣(λ←ρ)′α(
√

2 cos θ,
√

2 sin θ, α, ρij)
∣∣∣ < ∞.

Next, define T C as the set of all d-dimensional tail copulae. By Schmidt and Stadtmüller

(2005, Theorem 1(iii)) a tail copula is Lipschitz-continuous, hence T C is a subset of a

topological vector space. Abbreviate for λ defined in (4.3) and µ ∈ T C with µij being the

ij-th marginal of µ

α̃ij(θ, µ, ρ) := λ←α
(
µij(

√
2 cos θ,

√
2 sin θ);

√
2 cos θ,

√
2 sin θ, ρ

)
, and

ρ̃ij(θ, µ, α) := λ←ρ
(
µij(

√
2 cos θ,

√
2 sin θ);

√
2 cos θ,

√
2 sin θ, α

)
.
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Next, define for some correlation matrix RRR = (ρij)1≤i,j≤d

α(µ,RRR) :=
1

d(d − 1)

∑

i6=j

1

W (Q∗
ij)

∫

θ∈Q∗

ij

α̃ij(θ, µ, ρij) W (dθ),

ρij(µ,RRR) :=
1

W ∗(U∗
ij)

∫

θ∈U∗

ij

ρ̃ij(θ, µ, α(µ,RRR)) W ∗(dθ), and

rrr(µ,RRR) := vec
[
(ρij(µ,RRR))1≤i,j≤d

]
.

Write α(µ) := α(µ,RRR) and note that α(µ) is Hadamard-differentiable, i.e. let tm
m→∞−→ ∞

and hm
m→∞−→ h ∈ T C such that µ + hm/tm ∈ T C for all m. Then, using Taylor expansion,

lim
m→∞

tm (α(µ + hm/tm) − α(µ))

=
1

d(d − 1)

∑

i6=j

1

W (Q∗
ij)

∫

θ∈Q∗

ij

hij(
√

2 cos θ,
√

2 sin θ)

λ′α
(√

2 cos θ,
√

2 sin θ, α(µ), ρij

) W (dθ)

=: α′
µ(h),

which obviously is a linear map. Analogously, ρij(µ) := ρij(µ,RRR) is Hadamard differen-

tiable, i.e.

lim
m→∞

tm (ρij(µ + hm/tm) − ρij(µ))

=
1

W ∗(U∗
ij)

∫

θ∈U∗

ij

hij(
√

2 cos θ,
√

2 sin θ)

λ′ρ
(√

2 cos θ,
√

2 sin θ, α(µ), ρij

) +

+ α′
µ(h)(λ←ρ)′α

(
µij(

√
2 cos θ,

√
2 sin θ);

√
2 cos θ,

√
2 sin θ, α(µ)

)
W ∗(dθ)

=: ρ′
ij;µ(h),

and similarly for rrr(µ,RRR). Since R̂RRτ −RRR = op(1/
√

k),

ρ̂ij(k, w∗) = ρij

(
λ̂emp(·; k), R̂RRτ

)
,

and similarly for r̂rr(k, w∗), the delta method yields

√
k (r̂rr(k, w∗) − rrr)

w−→ rrr′λXXX (B̃).

The result then follows using

E

((
rrr′λXXX (B̃)

)
ij

(
rrr′λXXX (B̃)

)
kl

)
= σα + σij,α + σkl,α + σij,kl,

with σα, σij,α, σkl,α, σij,kl defined through (4.18)–(4.20).
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