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Poisson regression charts for the monitoring of

surveillance time series

Michael Höhle∗

Abstract

This paper presents a Poisson control chart for monitoring time
series of counts typically arising in the surveillance of infectious dis-
eases. The in-control mean is assumed to be time-varying and linear
on the log-scale with intercept and seasonal components. If a shift in
the intercept occurs the system goes out-of-control. Novel is that the
magnitude of the shift does not have to be specified in advance: using
the generalized likelihood ratio (GLR) statistic a monitoring scheme is
formulated to detect on-line whether a shift in the intercept occurred.
For this specific Poisson chart the necessary quantities of the GLR de-
tector can be efficiently computed by recursive formulas. Extensions to
more general Poisson charts e.g. containing an autoregressive epidemic
component are discussed. Using Monte Carlo simulations run length
properties of the proposed schemes are investigated. The practicabil-
ity of the charts is demonstrated by applying them to the observed
number of salmonella hadar cases in Germany 2001-2006.

1 Introduction

A pleasant development in the design of algorithms for the surveillance of
infectious diseases has been the increased inspiration by statistical process
control (SPC) techniques. Early surveillance methods such as (Stroup et al.,
1989; Farrington et al., 1996) were mainly based on repeated use of confi-
dence intervals – a method which did not take the inane multiple testing
structure of the problem into account. Modern surveillance as described
in e.g. Lawson and Kleinman (2005) rely on knowledge gained in the SPC
literature, e.g. Frisén (1992); Frisén and Wessman (1999); Woodall (2006).
However, in my opinion, time series of counts from surveillance data ex-
hibit special features, which the methods from SPC are not handling and
for which special solutions have to be found.
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An example is the use of cumulative sum (CUSUM) methods, which in
a surveillance context monitor counts or proportions. Here it is impor-
tant to take covariate information into account, e.g. seasonal variations in
the mean, adjustment for at-risk population or other explanatory variables.
Basically what is needed are regression charts based on generalized linear
models (GLMs). Regression charts with normal response are found in the
statistics and engineering literature (Brown et al., 1975; Kim and Siegmund,
1989; Basseville and Nikiforov, 1998; Lai, 1995; Lai and Shan, 1999). Some
attempts to regression charts based on GLMs are found in the SPC liter-
ature (Skinner et al., 2003) and in the surveillance literature (Rossi et al.,
1999; Rogerson and Yamada, 2004a).

The aim of this paper is a pragmatic one: to provide a Poisson regression
chart which takes the seasonal variation in the mean into account. Fur-
thermore and contrary to the traditional surveillance techniques, only the
parametric form of the Poisson-mean after the change-point should be spec-
ified in advance, the necessary parameters are then to be estimated from
data at each instance.

This paper is organized as follows. Section 2 presents the basic seasonal
Poisson regression model and discusses SPC techniques for detecting changes
in the intercept parameter. Crux of the section is an efficient updating
procedure for the so called generalized likelihood ratio scheme. In Sect. 3 the
proposed scheme is tested on German salmonella data. Section 4 discusses
an extensions of the seasonal Poisson model, where the alternative consists
in the addition of an epidemic component as in Held et al. (2005). Finally,
Sect. 5 provides a discussion.

2 Detecting changes in a seasonal Poisson chart

Assume that the observations x1, x2, . . . originate from some parametric dis-
tribution with density fθ such that given the change-point τ

xt|zt, τ ∼
{

fθ0(·|zt) for t = 1, . . . , τ − 1 (in-control)
fθ1(·|zt) for t = τ, τ + 1, . . . (out-of-control).

Here, zt denotes known covariates at time t. More specifically I will in this
paper assume that fθ0 and fθ1 are the Poisson probability mass functions
with respective means µ0,t and µ1,t. The interest is to determine τ on-line –
i.e. new observations are collected until one is convinced that a change has
occurred. A stopping-rule thus determines when enough evidence against
H0 : µt = µ0,t has been collected to stop the sampling.

Mathematically speaking, the following seasonal Poisson-model for the in-
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Figure 1: Realization from the model in Example 1 with a change-point at
τ = 100.

control situation is assumed:

log µ0,t = β0 +
S∑

s=1

(
β2s−1 cos(ωst) + β2s sin(ωst)

)
. (1)

In the above ω = 2π
T and T is the period, e.g. for weekly data T = 52. The

out-of-control situation is characterized by a multiplicative shift

µ1,t = µ0,t · exp(κ), (2)

which corresponds to an additive increase of the mean on the log-scale. In
surveillance applications only increased rates are of interest, hence κ ≥ 0 is
assumed. A motivation of such an increase could be the introduction of a
point-source causing an increased number of cases, e.g. contaminated food.
Letting the increase be additive on the log-scale is – compared to the usual
direct additive increase on mean – computationally advantageous as shown
in Section 2.1.
Example 1: Let S = 1, β = (1.5, 0.6, 0.6), τ = 100 and κ = 0.4, which
roughly corresponds to a 50% increase in the number of cases. Figure 1
shows a realization of m = 120 observations from the model.

Several scenario with respect to the availability of the parameters are imag-
inable as discussed by Hawkins et al. (2003) in case of Gaussian observations.

1. All 2S + 2 model parameters, i.e. (β, κ), are known.
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2. The in-control parameters β are known, while θ = κ is unknown and
has to be estimated during the monitoring.

3. All model parameters are unknown, i.e. θ = (β, κ) has to be estimated.

A typical approach in the SPC and surveillance literature is to use part
of the time series to estimate all parameters and then use a Scenario 1
monitoring scheme, for example the CUSUM stopping rule, which is based
on the likelihood-ratio,

N = inf

{
n ≥ 1 : max

1≤k≤n

[
n∑

t=k

log
{

fθ1(xt|zt)
fθ0(xt|zt)

}]
≥ cγ

}
. (3)

In case of no-covariates the above can be shown to be optimal in the sense
of minimizing the expected delay of detection among all monitoring schemes
with an average run length (ARL) of E(N) = γ when τ = ∞ (Moustakides,
1986). With known θ0 and θ1, (3) can be given in recursive form as

l0 = 0, ln = max
(

0, ln−1 + log
{

fθ1(xn)
fθ0(xn)

})
, n ≥ 1 (4)

with stopping-rule N = inf{n : ln ≥ cγ}.

Scenario 1 schemes, however, ignore any uncertainty originating from the
estimation of the in-control parameters β. Shu et al. (2004) show how
uncertainty from parameter estimation has an effect on e.g. the average run
length in the case of normal distribution and Shewhart or exponentially
weighted moving average (EMWA) control charts.

My interest is nonetheless the Poisson regression chart, where the theory is
not as developed as in the Gaussian case. In a surveillance context, Sce-
nario 3 would be most realistic, but with respect to speed and theoretical
properties this situation is nevertheless the hardest to handle. Thus I settle
on a pragmatic compromise – Scenario 2 based on the so called generalized
likelihood ratio (GLR) scheme (Lai, 1995).

A generalization of the CUSUM scheme to this GLR form is to use the
following stopping rule

NG = inf

{
n ≥ 1 : max

1≤k≤n
sup
θ∈Θ

[
n∑

t=k

log
{

fθ(xt|zt)
fθ0(xt|zt)

}]
≥ cγ

}
. (5)

In the above, a maximization of the log-likelihood has to be carried out over
θ ∈ Θ for each possible change time k between 1 and n. As n grows this
task becomes infeasible: to determine whether NG ≤ m for some specific
data, the worst case number of operations is O(m3). Lai and Shan (1999)
show for the Gaussian case how it is possible to reduce this complexity by
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clever recursive computations of the sums and sups. I will show that this
is also possible for the specific seasonal Poisson chart in (1) and (2). In
more general Poisson setups such a computational reduction is although not
always possible.

Contrary to (3) it is not possible to bring (5) into a recursive form. Pro-
hibitive to the use of (5) is also that no exact or asymptotic methods exist
(at least not to my knowledge) to compute the run length properties of
such a Poisson scheme having time-changing means. Hence I will resort to
Monte-Carlo sampling for the investigation of chart properties.

2.1 Recursive computations for the Poisson GLR detector

When using the seasonal Poisson chart and assuming fixed β, the maxi-
mum likelihood estimator (MLE) of θ = κ in (5) can be found analytically.
Because

log
{

fθ(xt|zt)
fθ0(xt|zt)

}
= κ · xt + (1− exp(κ)) · µ0,t, t = 1, 2, . . . ,

standard derivations show that the MLE for κ based on the observations
xk, . . . , xn is

κ̂n,k = log
( ∑n

t=k xt∑n
t=k µ0,t

)
. (6)

To enforce κ ≥ 0 we will use κ̂+
n,k = max(0, κ̂n,k). Furthermore,

ln,k = sup
θ∈Θ

n∑
t=k

log
fθ(xt|zt)
fθ0(xt|zt)

= κ̂+
n,k

n∑
t=k

xt +
(
1− exp(κ̂+

n,k)
) n∑

t=k

µ0,t.

Thus by recursively computing sx(k, n) =
∑n

t=k xt = sx(k − 1, n) + xk and
sµ(k, n) =

∑n
t=k µ0,t = sµ(k−1, n)+µ0,k we obtain an efficient computation

of κ̂+
n,k and ln,k. This finding resembles the parallel recursive algorithms

by Lai and Shan (1999) in case of Gaussian regression models, though the
recursive computations only work for my one-parameter GLM model. Thus
to determine whether NG ≤ m for the above Poisson intercept chart, a
worst case cost of O(m2) operations are needed. However, it is sufficient
to terminate the computation once the first ln,k > cγ , i.e. the computation
of the maximum in (5) is not really necessary. Even though O(m2) is an
improvement, it is still more expensive than the O(m) operations of the
scheme in (4). The big advantage is however that we are not forced to
specify κ in advance.
Example 2: Application of the GLR-CUSUM procedure with cγ = 5 to the
data from Example 1 is illustrated in Fig. 2. The stopping time occurs the
first time GLR(n) ≥ cγ , where GLR(n) = max1≤k≤n ln,k.
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Figure 2: Plot of GLR(n) as a function of n for the data in Fig.1. The
stopping time with cγ = 5 is NG = 107.

The distribution of NG (i.e. the run-length distribution) for a specific choice
of cγ can be obtained using direct Monte-Carlo simulation. Figure 3 shows
a histogram of 2000 simulations each of length 4000 when cγ = 5. Note that
realizations with NG > 4000 are thus truncated. A Monte-Carlo estimate
of the ARL γ = E(NG) is easily calculated as the mean of these samples,
i.e. γ̂MC = 450.51. The bounds of a (1 − α) · 100% confidence interval for
γ based on normal asymptotics are then given as γ̂MC ± z1−α/2 · ŝe(γ̂MC),
where ŝe(γ̂MC) is the Monte-Carlo estimate of Var(γ̂MC)

1
2 . Superimposed

in the figure is also the density of the Exp(γ̂MC) distribution, as Lai (1995)
shows NG ∼ Exp(γ) as asymptotic result.

By wrapping a root search routine such as the secant-method around the
estimation of E(NG) one can find a cγ such that a desired ARL is approxi-
mately obtained. To compensate for the Monte-Carlo estimation a tolerant
convergence criterion has to be used, e.g. to stop once γ̂MC ± 2 · ŝe(γ̂MC) is
within γ ± 0.05γ.

For comparison, Fig. 4 shows the ARL of the corresponding LR-Detector in
(4) as a function of the pre-specified intercept change parameter κ. These
values have to be compared to the 95% confidence intervals of (431.60, 469.42)
and (5.16, 5.41) for the in-control and out-of-control ARL of the GLR scheme.
This shows that the GLR-detector yields more false-alarms than the LR-
detectors, but the out-of-control ARL of 5.28 is even faster than the LR-
detector for the correct value of κ∗ = 0.4. For the LR-detectors, the out-of-
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the LR-Detector in (4) with cγ = 5 as a function of the pre-specified κ value.
The shaded regions show 95% pointwise confidence intervals. A true value
of κ∗ = 0.4 was used in the out-of-control simulations.
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control ARL is also sensitive to a correct specification of the true κ.

Instead of using the average run length as design constraint for the detec-
tor, Lai (1995) recommends the computationally less demanding false alarm
probability Pθ0(NG ≤ m) as design criterion. Another motivation against
the mean is e.g. shown by Fig. 3: the mean is only a crude summary of the
skew distribution. Especially there exists no guarantee that a large γ also
implies a low probability of false alarm at the initial stages. Furthermore,
to determine Pθ0(NG ≤ m) by Monte-Carlo, a maximum of m operations
are needed, which can be a substantial saving compared to direct simulation
of E(NG). In applications of the seasonal Poisson chart it makes sense to
select m such that m/T is integer. Thus one solution would be to use an
iterative procedure to determine cγ such that Pθ0(NG ≤ m) = φ, where φ is
some acceptable value.

3 Application

During 2006 the German health authorities noted an increased number of
cases due to salmonella hadar compared to the previous years (Robert Koch
Institute, 2006). Figure 5 shows the corresponding weekly number of cases
in Germany for the years 2001-2006 taken from the SurvStat@RKI data-
base (Robert Koch-Institut, 2006). To estimate β in (1) a GLM is fitted
to the data from 2001-2004 resulting in β = (1.16,−0.45,−0.31). The line
shows the expected number of cases µ̂0,t from this estimation. A likelihood
ratio test confirms the necessity of the seasonal component associated with
β1 and β2.

Figure 6(a) shows the connection between cγ and the ARL γ when using the
above β in the Poisson intercept chart. The superimposed line corresponds
to the least-squares fit log(γ̂MC) = 1.17 + 1.00cγ . Instead of a rather costly
secant-search for a cγ resulting in a target of γ = 500 the above interpolation
is used to determine cγ ≈ 5.09. With this value one obtains a stopping time
of N = 227 as shown in Fig. 7, which corresponds to week 19 in the year
2005. Looking at the counts this appears to be a sporadic outbreak. The
traditional way to proceed the monitoring after the first alarm would be to
restart monitoring beginning from time 228. A drawback of this approach
is though, that it might take the chart a while to build up enough evidence
against H0 even if the alternative H1 is also true at the subsequent time
points. Instead the idea of Kenett and Pollak (1983) developed for the
ordinary CUSUM is used: No resetting occurs and alarms are sounded until
(if ever) GLR(n) < cγ again. With this modified procedure the explicit
increase during 2006 is clearly detected.
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Analysis of shadar using seaspois: intercept
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Figure 7: GLR(n) for the salmonella hadar data superimposed on the ob-
served data of 2005-2006. The triangles show all n, where GLR(n) ≥ cγ .

4 Beyond the seasonal Poisson chart

The GLR detector for the Poisson means µ0,t and µ1,t given in (1) and (2)
has the advantage of a fast implementation. However, more involved models
for the shift are imaginable. As an example consider the alternative µ1,t

formulation
µe

1,t = µ0,t + λxt−1, t > 1, (7)

where λ > 0 and µe
1,1 = µ0,1. This is an auto-regressive model in which

past values enter as covariates. It corresponds to a branching process with
immigration and is discussed by Held et al. (2005) as a model for time series
of counts from infectious diseases. A motivation for a shift to λ > 0 could
be due to the appearance of an epidemic component on top of the endemic
component of an infectious disease, see Held et al. (2006) for a discussion.
Example 3: Let S = 1, β = (1.5, 0.6, 0.6), τ = 100 as in Example 1 and
let λ = 0.4. Figure 8 shows a realization of m = 120 observations from the
epidemic model.

If the mean of the alternative is given by (7), no fast recursive updating is
possible anymore. One reason is that for given n no explicit expression is
available for the computation of the MLE λ̂n,k, 2 ≤ k ≤ n. Instead, one
has to resort to iterative procedures to determine the MLE. For example
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Figure 8: Realization from the model in Example 3 with a change-point at
τ = 100.

Newton-Raphson uses the update-rule

λ
(s+1)
n,k = λ

(s)
n,k +

S(λ(s)
n,k)

I(λ(s)
n,k)

, where

Sn,k(λ) =
n∑

t=k

xtxt−1

λxt−1 + µ0,t
−

n∑
t=k

xt−1, and

In,k(λ) =
n∑

t=k

xtx
2
t−1

(λxt−1 + µ0,t)2

until convergence. As starting value for the computation of λ̂n,k one can
use λ

(0)
n,k = λ̂n,k+1. From this starting point convergence usually occurs in

just a few update-steps. To enforce the constraint λn,k > 0 the optimization
is done using φn,k = log λn,k with corresponding changes in the Newton-
Raphson update formula.

Another hindrance is that the likelihood ratios are not amenable to recursive
updating anymore, because (7) inserted in (5) yields

ln,k =
n∑

t=k

xt log
(

λ̂n,k
xt−1

µ0,t
+ 1

)
− λ̂n,k

n∑
t=k

xt−1.

As the λ̂n,k change for each k, the first sum now has to be computed for all
terms k ≤ i ≤ n; the second term can still be computed recursively, though.
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Analysis of shadar using seaspois: epi
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Figure 9: GLR(n) for the epidemic Poisson chart superimposed on the ob-
served salmonella hadar cases of 2005-2006. The triangle shows the first
time GLR(n) ≥ cγ .

Without the possibility of recursive updating, one solution in case of large
n is to use a so called window-limited GLR scheme as originally proposed
by Willsky and Jones (1976). Here the maximization is not performed for
all 1 ≤ k ≤ n, but only for a moving window of k ∈ {n−M, . . . , n−M̃ +1},
where 0 ≤ M̃ < M . The minimum delay M̃ is the minimal required sample
size to obtain sufficiently reliable estimate of θ1. In the univariate setup of
the Poisson intercept chart with θ1 = κ, M̃ = 1 is sufficient; similarly for
the epidemic chart.
Example 4: Using M̃ = 1, M = 20 and cγ = 6 a probability of Pθ0(ÑG <
3 · 52) = 0.0490 is computed for the epidemic Poisson chart with fixed
β = (1.16,−0.45,−0.31). Applying this detection scheme to the hadar data
yields results as shown in Fig. 9 – specifically the first alarm is sounded
at N = 281, which corresponds to week 21 in the year 2006. Again, no
resetting occurs after the first alarm and all subsequent GLR(n) ≥ cγ are
flagged as alarms. Compared to the results of the intercept chart in Fig. 7,
the epidemic model does not sound an alarm for the sporadic increase at
N = 227. This is explained by its autoregressive nature focusing on person-
to-person transmission rather than sudden spikes.

Instead of the rather specific mean structure in the seasonal Poisson chart
from Sect. 2 one might consider the general form log µ0,t = βzt and log µ1,t =
log µ0,t + κzt,j , where zt,j is the j-th component of the covariate vector zt.
Such a Poisson chart is a model, where the influence of the j-th component
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is shifted from time τ . A closed-form expression for κ̂n,k as in (6) is then
only possible if the covariate zt,j is not time-varying, i.e. zt,j = zj . Other-
wise an iterative scheme, similar to Newton-Raphson described above, has
to be used to compute the MLE. Likewise, the ln,k can not be computed
recursively anymore and window-limited GLR schemes appear as a way to
obtain computationally feasible schemes.

5 Discussion

This paper introduced two Poisson regression charts to monitor time se-
ries of counts originating in the surveillance of infectious diseases. Based
on a seasonal model for the mean of the Poisson distribution two types of
changes were considered. Firstly, an additive shift in the mean on the log-
scale motivated by point source outbreaks. Secondly, a sudden addition of
an auto-regressive component motivated by e.g. person-to-person transmis-
sion of infectious diseases. A feature of the charts was a repugnance to
specify more than the parametric form of the alternative. Using ideas from
the engineering literature, efficient schemes were presented which makes the
resulting parameter-estimation at each time instance feasible.

In applications, the Poisson distribution might not adequately address the
vast over-dispersion found e.g. due to reporting bias. Here, the negative-
binomial provides a more flexible framework (Held et al., 2005). Similarly,
the cyclic regression with exponentiated harmonics used in (1) can be prob-
lematic and different models such as piecewise exponential curves might be
better (Andersson et al., 2006). However, all these extensions are still possi-
ble within the GLM framework. Another aspect in the above developments
is the potential to use the charts as basis for the surveillance of multivariate
time series of counts as described e.g. by Rogerson and Yamada (2004b)
or Sonesson and Frisén (2005). In particular it appears feasible to extend
the proposed Poisson charts to the multivariate modelling described in Held
et al. (2005).

One important issue left is a more theoretical investigation of the optimality
and characteristics of the proposed schemes. Literature exists on the asymp-
totic optimality of the GLR detector and its window-limited versions in the
Gaussian case (Lai, 1995, 1998). Attempts have been made to generalize
these results to the exponential family, however, additional complications
arise when moving beyond the independent and identically distributed set-
ting by the addition of covariates.

The direct Monte-Carlo estimation of ARLs utilized in this paper becomes
problematic when γ is large. Techniques such as using control variates or
importance sampling schemes known from ARL simulations for identical and
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independent random variables (Jun and Choi, 1993; Lai and Shan, 1999) are
not immediately applicable. A computationally easier quantity is therefore
to use the failure rate Pθ0(NG ≤ m)/m. However, if this required probability
is very small the precision of direct Monte-Carlo estimation can be very poor.
Suggestions exists to use importance-sampling to substantially improve the
precision – even in the non-Gaussian case (Lai and Shan, 1999; Chan and
Lai, 2003). Work is although required to adapt this work to the presented
charts.

At this point I would like though to emphasize the pragmatism of the pre-
sented approach: to combine ideas from engineering and SPC in order to
develop a surveillance algorithm tailored for the specifics of infectious dis-
eases. The data and surveillance methods presented in this paper have been
implemented in the R-package surveillance available from the Comprehen-
sive R Archive Network1. As the package also provides an implementation
of classical surveillance methods, e.g. Farrington et al. (1996) or Rossi et al.
(1999), it is straightforward to compare with the proposed Poisson charts
using e.g. simulation studies.
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Held, L., Hofmann, M., Höhle, M., and Schmid, V. (2006). A two component
model for counts of infectious diseases. Biostatistics, 7:422–437.
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