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Modelling count data with overdispersion and spatial effects

Susanne Gschlößl Claudia Czado ∗

March 12, 2006

Abstract

In this paper we consider regression models for count data allowing for overdispersion in

a Bayesian framework. We account for unobserved heterogeneity in the data in two ways.

On the one hand, we consider more flexible models than a common Poisson model allowing

for overdispersion in different ways. In particular, the negative binomial and the generalized

Poisson distribution are addressed where overdispersion is modelled by an additional model

parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by

an excessive number of zeros are discussed. On the other hand, extra spatial variability in

the data is taken into account by adding spatial random effects to the models. This approach

allows for an underlying spatial dependency structure which is modelled using a conditional

autoregressive prior based on Pettitt et al. (2002). In an application the presented models are

used to analyse the number of invasive meningococcal disease cases in Germany in the year

2004. Models are compared according to the deviance information criterion (DIC) suggested

by Spiegelhalter et al. (2002) and using proper scoring rules, see for example Gneiting and

Raftery (2004). We observe a rather high degree of overdispersion in the data which is

captured best by the GP model when spatial effects are neglected. While the addition of

spatial effects to the models allowing for overdispersion gives no or only little improvement,

a spatial Poisson model is to be preferred over all other models according to the considered

criteria.

∗Both at Center of Mathematical Sciences, Munich University of Technology, Boltzmannstr.3, D-85747 Gar-

ching, Germany, email: cczado@ma.tum.de, susanne@ma.tum.de, http://www.ma.tum.de/m4/
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1 Introduction

A very popular model for count data is the Poisson distribution. However, in the Poisson model

equality of the variance and the mean is assumed which is too restrictive for overdispersed data

where the variance in the data is higher than the expected one from the model. This paper

aims to give an overview over different models for spatially indexed count data allowing for

overdispersion in a Bayesian perspective. We follow two approaches for dealing with the extra

variability in overdispersed data. On the one hand, we consider a wider class of models allowing

for overdispersion, on the other hand spatial random effects are introduced to capture unob-

served spatial heterogeneity in the data.

Overdispersion with respect to the Poisson model can be modelled by introducing an additional

parameter. In particular we consider the negative binomial (NB) distribution and the gener-

alized Poisson (GP) distribution introduced by Consul and Jain (1973). Both models allow an

independent modelling of the mean and the variance by the inclusion of an additional parameter.

When dealing with a data set with an excessive number of zeros, zero-inflated models might be

used, see for example Winkelmann (2003). In contrast to the GP and the NB model, overdisper-

sion in zero inflated models is caused by the occurrence of more zero observations than expected.

Zero inflated models can be used in combination with any model for count data. Additionally to

the zero observations arising from the count data model an extra proportion of zeros is incorpo-

rated. Lambert (1992) introduced the zero inflated Poisson regression model, a Bayesian analysis

of the zero inflated Poisson model is given in Rodrigues (2003). Zero inflated regression models

in combination with the generalized Poisson distribution have been addressed in Famoye and

Singh (2003b) and Famoye and Singh (2003a) using maximum likelihood estimation, a Bayesian

analysis without the inclusion of covariates is given in Angers and Biswas (2003). Agarwal et al.

(2002) use a zero inflated Poisson regression model for spatial count data in a Bayesian frame-

work.

The second approach for modelling unobserved data heterogeneity is the introduction of ran-

dom effects. For spatially indexed data which are the focus in this paper, spatial random effects

associated with each region or site may be used, allowing for the modelling of an underlying

spatial dependency structure.

In this paper, we consider Poisson, NB, GP and zero inflated (ZI) regression models both includ-

ing and without spatial random effects in a Bayesian context. In contrast to classical inference

the Bayesian approach allows to adjust for parameter uncertainty by assigning prior distributions

to the parameters. Further, a spatial correlation structure is easily incorporated in a Bayesian

setting by assuming an adequate prior distribution for the spatial random effects. In this paper

we assume a proper Gaussian conditional autoregressive spatial prior based on Pettitt et al.

(2002) which takes the neighbourhood structure of the data into account and allows for spatial
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dependencies. Since this results in a high dimensional, complex posterior distribution, Markov

Chain Monte Carlo (MCMC) is used for parameter estimation.

We give an application of the considered models to disease mapping. In particular, we analyse

the number of invasive meningococcal disease cases registered in Germany in the year 2004.

Models are compared using the deviance information criterion (DIC) suggested by Spiegelhalter

et al. (2002) and proper scoring rules, see for example Gneiting and Raftery (2004). We observe

a substantial degree of overdispersion in the data which is modelled best by the GP distribution

when spatial effects are neglected. While the addition of spatial random effects gives no or little

improvement to the models allowing for overdispersion, spatial effects turn out to be significant

for the Poisson model. In particular, according to the DIC and the scoring rules a spatial Poisson

models gives the best fit for these data. However, no smooth spatial pattern is modelled. Instead

some isolated regions with high risk are detected by the spatial effects, indicating that the risk

is not sufficiently explained by the incorporated covariates in these regions.

This paper is organized as follows. In Section 2 the negative binomial, the generalized Poisson

and zero-inflated regression models are presented. The conditional autoregressive prior assumed

for the spatial effects is discussed in Section 3, prior assumptions for the regression and model

dependent overdispersion parameters are given in Section 4. The DIC and the used proper scor-

ing rules are reviewed in Section 5. Finally, in Section 6 the presented models are applied to

analyse the number of invasive meningococcal disease cases in Germany is given. Section 7 gives

a summary of the results and draws conclusions. Details about the MCMC algorithms can be

found in the Appendix.

2 Models for count data including overdispersion

A commonly used model for count data is the Poisson model, where equality of mean and

variance is assumed. Since this condition is not satisfied any more if overdispersion is present

in the data, we consider models, which allow the variance to be larger than the mean in this

section. For a detailed study of various count data models see Winkelmann (2003).

2.1 Negative Binomial (NB) distribution and Regression

The density of the negative binomial distribution with parameters r > 0 and µ > 0 denoted by

NB(r,µ) is defined by

P (Y = y|r, µ) =
Γ(y + r)

Γ(r)y!
·
( r

µ+ r

)r

·
( µ

µ+ r

)y

, y = 0, 1, 2, ... (2.1)

with

E(Y |r, µ) = µ and V ar(Y |r, µ) = µ
(

1 +
µ

r

)

.
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The variance is the mean multiplied by the positive factor ϕ := 1+ µ
r

and therefore greater than

the mean, i.e. overdispersion can be modelled in the negative binomial distribution. We call the

factor ϕ dispersion factor. In the limit r → ∞ the NB distribution converges to the Poisson

distribution with parameter µ, see Winkelmann (2003). The negative binomial distribution also

arises from a Poisson distribution where the parameter θ is assumed to be random and to follow a

Gamma distribution with mean E(θ) = µ and variance V ar(θ) = µ2

r
. Therefore, overdispersion

in the NB model can be interpreted by unobserved heterogeneity among observations. In a

regression model with Yi ∼ NB(r, µi) independent for i = 1, .., n, the mean of Yi is specified in

terms of covariates xi and unknown regression parameters β by

E(Yi|xi,β) = µi > 0.

Note, that in the NB regression model the dispersion factor ϕi := 1 + µi

r
takes observation

specific values.

2.2 Generalized Poisson (GP) distribution and Regression

The generalized Poisson distribution has been introduced by Consul and Jain (1973) and is inves-

tigated in detail in Consul (1989). A random variable Y is called generalized Poisson distributed

with parameters µ > 0 and λ, denoted by GP(µ, λ), if

P (Y = y|µ, λ) =







µ[µ(1 − λ) + λy]y−1 (1−λ)
y! exp

[

−µ(1 − λ) − λy
]

, y = 0, 1, 2, ...

0 for y > mwhenλ < 0
(2.2)

where max(−1,− µ
m−µ

) < λ < 1 and m(≥ 4) is the largest positive integer for which µ(1 − λ) +

mλ > 0 for negative λ. Mean and variance are given by

E(Y |µ, λ) = µ and V ar(Y |µ, λ) =
µ

(1 − λ)2
, (2.3)

hence ϕ := 1
(1−λ)2

can be interpreted as an dispersion factor for the GP distribution. For λ = 0,

the generalized Poisson distribution reduces to the Poisson distribution with parameter µ, for

λ < 0 underdispersion can be modelled, whereas for λ > 0 overdispersion is obtained. The focus

in this paper is the modelling of overdispersion, therefore λ is assumed to take only values in

the interval [0, 1) in the remainder of this paper. A regression model for independent GP(µi,λ)

distributed response variables Yi, i = 1, .., n is set up by specifying the mean by

E(Yi|xi;β, λ) = µi > 0

like in the NB model. While the dispersion parameter in the NB regression model depends on

µi leading to a variance function which is quadratic in µi, the dispersion parameter ϕ = 1
(1−λ)2

in the GP regression model is the same for each observation and results in a linear variance

function.
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2.3 Comparison of NB and GP distribution

In order to compare the behaviour of the NB and the GP distribution, we equate the mean and

the variance of a GP(µ, λ) with the mean and the variance of a NB(r, µ) distributed random

variable, i.e.

µ

(1 − λ)2
= µ(1 +

µ

r
)

has to hold and the equation

r =
µ(1 − λ)2

λ(2 − λ)
(2.4)

is obtained. In Figure 1 the NB distribution is plotted in comparison to the GP distribution

with µ and r chosen according to (2.4). For a better visual comparison the densities of these

discrete distributions are presented as line plots. For small values of λ both distributions behave

very similarly. With increasing values of λ slight differences between the two distributions can

be observed which become greater when λ tends to 1. In particular, the negative binomial

distribution gives more mass to small values of y if strong overdispersion is present.
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Figure 1: Comparison of the generalized Poisson distribution with µ = 1, 10, 30 and λ =

0.2, 0.5, 0.9 to the negative binomial distribution with µ = 1, 10, 30 and r = µ(1−λ)2

λ(2−λ) .
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2.4 Zero Inflated (ZI) Models

For count data with an excessive number of zero observations zero inflated (ZI) models can

be used. These models allow for a higher number of zeros than can be explained by standard

models for count data. Additional to the zero observations arising from the supposed count data

distribution, a proportion of extra zeros is assumed. ZI models have been widely used in the

literature, for a short overview see Winkelmann (2003).

Let π(y|θ) be a distribution function for count data with unknown parameters θ. Then a zero

inflated model with extra proportion p ∈ [0, 1] of zeros is defined by (see Agarwal et al. (2002))

P (Y = y|p,θ) =

{

p+ (1 − p)π(y = 0|θ) if y = 0

(1 − p)π(y|θ) if y > 0
(2.5)

Mean and variance are given by

E(Y |p,θ) = (1 − p)Eπ(Y |θ) (2.6)

and

V ar(Y |p,θ) = p(1 − p)[Eπ(Y |θ)]2 + (1 − p)V arπ(Y |θ). (2.7)

The introduction of latent indicator variables Z = (Z1, .., Zn)
′ leads to a model which is easier

to handle in a Bayesian context and in particular allows a Gibbs step for p. Zi takes the value

zi = 0 for all observations with yi > 0. For all zero observations yi = 0, the latent variable takes

the value zi = 0 if observation i arises from the count data distribution π(y|θ) and the value

zi = 1 for extra zeros. Marginally, Zi ∼ Bernoulli(pi). Using the latent variables Z, the joint

likelihood of Y = (Y1, .., Yn)
′ and Z is given by

f(Y,Z|p,θ) =

n
∏

i=1

pzi

i [(1 − pi)π(yi|θ)]1−zi

=
∏

i:yi=0

p
zi

i [(1 − pi)π(0|θ)]1−zi ·
∏

i:yi>0

(1 − pi)π(yi|θ).

In this paper we will focus on the zero inflated Poisson and the zero inflated generalized Poisson

models, which are special cases of the ZI model (2.5). The zero inflated negative binomial

distribution will not be discussed in this paper, since the GP model turned out to be more

adequate than the NB model for the application considered later on.

2.4.1 Zero Inflated Poisson (ZIP) Distribution

Here the Poisson distribution is assumed for the underlying count data distribution, i.e.π(y|θ) :=

π(y|µ) = µy
exp(−µ)

y!
. Mean and variance of the ZIP distribution, denoted by ZIP (p, µ), are

specified by

E(Y |p, µ) = (1 − p)µ and V ar(Y |p, µ) = (1 − p)µ(µp+ 1) = E(Y |p, µ)(µp + 1).

6



For p > 0 the dispersion factor ϕ := µp + 1 of the ZIP model is positive, i.e. the presence of

extra zeros leads to overdispersion.

2.4.2 Zero Inflated Generalized Poisson (ZIGP) Distribution

The ZIGP regression model was already introduced by Famoye and Singh (2003b), in Famoye

and Singh (2003a) a generalisation to k-inflated GP regression models is given. The ZIGP dis-

tribution, denoted by ZIGP (p, µ, λ), is obtained if the density function of the GP distribution

given in (2.2) is chosen for π(y|θ). The mean and the variance of the ZIGP distribution are given

by

E(Y |p, µ, λ) = (1 − p)µ and V ar(Y |p, µ, λ) = E(Y |p, µ, λ)
[

pµ+
1

(1 − λ)2

]

.

The dispersion factor of the ZIGP model is therefore given by ϕ := pµ+ 1
(1−λ)2

. Here, overdis-

persion can both result from the overdispersion parameter λ of the GP distribution and the

extra proportion of zeros p when p > 0.

2.4.3 Zero Inflated Regression Models

In a regression model Yi ∼ ZIP (pi, µi) and Yi ∼ ZIGP (pi, µi, λ), independent for i = 1, .., n,

respectively, a regression can be performed both for p = (p1, .., pn)
′ and µ = (µ1, .., µn). As in

the NB and GP model the parameter µi is assumed to depend on covariates xi and unknown

regression parameters β. For the proportion of extra zeros a logistic link might be chosen, i.e.

pi =
exp(x̃′

i
α)

1+exp(x̃′

i
α)

with covariate vector x̃i and regression parameters α. However, for the data

considered in our application no significant zero inflation is detected. An extension to ZI models

with regression on p therefore seems unnecessary and is not addressed further in this paper.

Alternatively to ZI models hurdle models, see for example Winkelmann (2003) for an overview,

could be used. The most widely used hurdle model is the zero hurdle model which assumes

two separate models for zero and non-zero observations. Attention is however restricted to zero

inflated models in this paper. As mentioned above, the amount of zeros in the data analysed in

Section 6 turned out to be covered sufficiently well by non- zero inflated models and gives no

rise for a separate analysis of zero observations.

3 Spatial effects using a Gaussian conditional autoregressive

model

In addition to covariates we will incorporate spatial random effects in the regression models

in order to account for spatial heterogeneity as well as spatial correlation in the data. We

consider models for data aggregated in regions. A spatial dependency structure is imposed by
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assuming a prior distribution for the spatial effects which takes the neighbourhood structure

of the area under consideration into account. In particular we consider a special case of the

Gaussian conditional autoregressive (CAR) model introduced by Pettitt et al. (2002) . Assume

the data to be distributed on J regions {1, ..., J}. Then the vector γ = (γ1, .., γJ )′ of spatial

effects is assumed to follow a multivariate normal distribution, in particular

γ ∼ N(0, σ2Q−1) (3.1)

where the elements of the precision matrix Q = (Qij), i, j = 1, .., J are given by

Qij =















1 + |ψ| ·Ni i = j

−ψ i 6= j, i ∼ j

0 otherwise

. (3.2)

We write i ∼ j for regions i and j which are contiguous and assume regions to be neighbours if

they share a common border. Ni denotes the number of neighbours of region i. The conditional

distribution of γi, given all the remaining components γ
−i, i = 1, .., J is given by

γi|γ−i ∼ N
( ψ

1 + |ψ| ·Ni

∑

j∼i

γj, σ
2 1

1 + |ψ| ·Ni

)

.

The parameter ψ determines the overall degree of spatial dependence, for ψ = 0 all regions are

spatially independent, whereas for ψ → ∞ the degree of dependence increases. Pettitt et al.

(2002) show that Q is symmetric and positive definite, therefore (3.1) is a proper distribution.

Another convenient feature of this CAR model is that the determinant of Q which is needed for

the update of ψ in a Markov Chain Monte Carlo(MCMC) algorithm can be computed efficiently,

see Pettitt et al. (2002) for details. Many other authors have dealt with conditional autoregressive

models. An overview about CAR models is given in the book by Banerjee et al. (2004) and in

Jin et al. (2004) where also multivariate CAR models are discussed. The most popular model

is probably the intrinsic CAR model introduced by Besag and Kooperberg (1995). The joint

density for γ in the intrinsic CAR model is improper in contrast to model (3.3) described above

which has a proper joint density.

Czado and Prokopenko (2004) consider a modification of model (3.3) which is a proper model as

well but reduces to the intrinsic CAR model in the limit. Another modification of the intrinsic

CAR model leading to a proper prior has been presented by Sun et al. (2000).

4 Bayesian Inference

In order to account for parameter uncertainty and to allow for an underlying spatial structure we

consider the count data regression models discussed in Section 2 in a Bayesian context. MCMC

will be used for parameter estimation. For more information on Bayesian data analysis and
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MCMC methods see Gilks et al. (1996) and Gelman et al. (2004).

Assume the response variables Yi, i = 1, .., n to be observed at J regions. Besides the well

known Poisson regression model Poi(µi) we consider the NB(r, µi), GP (µi, λ), ZIP (p, µi) and

ZIGP (p, µi, λ) model. In each of these models the parameter µi, i = 1, .., n is specified by

µi = ti exp(x′

iβ + γR(i)), (4.1)

where xi = (1, xi1, .., xik) denotes the vector of covariates and ti gives the observation specific

exposure which will be treated as an offset. The vector β = (β0, .., βk) denotes the vector of

unknown regression parameters. Note, that an intercept β0 is included in the model. To allow

for geographical differences in the J regions spatial random effects γ = (γ1, .., γJ ) are introduced,

R(i) ∈ {1, .., J} denotes the region of the i-th observation. For the zero inflated models we assume

a constant p for all observations. The parameters β, γ, λ, p and r, respectively, are taken to be

a priori independent and the following prior distributions are chosen:

• π(β) ∼ N(0, τ2Ik+1), with τ2 = 100

• π(γ|σ2, ψ) ∼ N(0, σ2Q−1) with Q specified as in (3.2)

For the hyperparameters σ2 and ψ the proper priors

• π(σ2) ∼ IGamma(a, b) with a = 1 and b = 0.005

• π(ψ) ∼ 1
(1+ψ)2

are assumed. For the model specific parameters the following prior distributions are chosen:

• GP Regression: π(λ) ∼ U([0, 1])

• NB Regression : π(r) ∼ Gamma(a, b), i.e. π(r) = ba

Γ(a)r
a−1e−rb, where a = 1 and

π(b) ∼ Gamma(c, d), i.e. π(b) ∝ bc−1e−bd with c = 1 and d = 0.005

• ZIP/ZIGP Regression: π(p) ∼ U([0, 1])

The schemes of the MCMC algorithms and details about the chosen proposal distributions for

Metropolis Hastings steps can be found in the Appendix.

5 Bayesian Model comparison

5.1 Deviance Information Criterion (DIC)

Spiegelhalter et al. (2002) suggest to use the following criterion for model comparison in Bayesian

inference. Assume a probability model p(y|θ). The Bayesian deviance D(θ), which is used as a

measure for goodness of fit, is defined as

D(θ) = −2 log p(y|θ) + 2 log f(y)
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where f(y) is some fully specified standardizing term. To measure the model complexity Spiegel-

halter et al. (2002) introduce the effective number of parameters pD defined by

pD := E[D(θ|y)] −D(E[θ|y]).

Finally they define the deviance information criterion (DIC) as the sum of the posterior mean

of the deviance and the effective number of parameters

DIC := E[D(θ|y)] + pD.

According to this criterion the model with the smallest DIC is to be preferred. pD and DIC

are easily computed using the available MCMC output by taking the posterior mean of the

deviance to obtain E[D(θ|y)] and the plug-in estimate of the deviance D(E[θ|y]) using the

posterior means E[θ|y] of the parameter θ.

Bayes factors based on marginal likelihood provide an alternative method for model compari-

son, see Kass and Raftery (1995). Further, Bayesian Model Averaging (BMA), see for example

Hoeting et al. (1999), which is based on Bayes factors, presents a method for model selection

taking model uncertainty into account. However, since the computation of Bayes factors requires

substantial efforts for complex hierarchical models, see Han and Carlin (2001), we use the DIC

for model comparison in this paper.

5.2 Proper scoring rules

Apart from the DIC we use proper scoring rules for categorical variables for comparing models,

in particular we consider the Brier score and the logarithmic score presented for example in

Gneiting and Raftery (2004). While Gneiting and Raftery (2004) use scoring rules for assessing

the quality of probabilistic forecasts, our focus is model comparison based on the posterior

predictive distribution. Under the probability model p(y|θ) a scoring rule assigns a value S(pi, yi)

for each observation yi, i = 1, .., n based on the posterior predictive probability vector pi =

(pi1, pi2, .., pim). Here pij := P (yi = j|y) denotes the posterior predictive probability that the

i-th observation takes the value j which can be estimated by p̂ij := 1
J

∑J
k=1 p(yi = j|θk) where

θk, k = 1, .., J , denotes the k-th MCMC iterate of θ after burnin. For computational reasons we

set pim := 1−
∑m−1

k=1 pik where m−1 gives the highest response value observed in the data. This

ensures that the probability vector pi sums up to 1.

Models are then compared based on the mean score given by

S(θ) =
1

n

n
∑

i=1

S(pi, yi).
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We consider positive oriented scores here, i.e. the model with the highest mean score is to be

preferred. The Brier score first proposed by Brier (1950) is defined by

S(pi, yi) = 2piyi
− 1 −

m
∑

k=1

p2
ik

where piyi
= P (y = yi|θ) denotes the posterior predictive probability for the true value yi under

the considered model. The Brier score corresponds to the expression

−
1

n

m
∑

k=1

n
∑

i=1

(pij − p̂
emp
ij )2

where p̂empij =

{

1 yi = j

0 otherwise
denotes the empirical probability that the i-th observation takes

the value j. Hence, according to the Brier score the model which minimizes the squared difference

between the observed and the estimated probabilities is considered best.

The logarithmic score is defined by

S(pi, yi) = log piyi

and therefore chooses the model which gives the highest probability for observing the true value.

Both scores are proper, i.e. the highest score is obtained for the true model, see Gneiting and

Raftery (2004) for details. Further, when parameter estimation is done using MCMC both scores

are computed easily based on the available MCMC output as indicated above. Ideally, in order

to avoid using the data twice, parameter estimation should be based on about 75 % of the data

only, whereas the scores should be computed for the remaining 25 % of the data. However, since

the data set analysed in the next section is rather small and our focus is on comparing models

rather than prediction, we will use the same data for estimation and computation of the scores.

6 Application

6.1 Data description

In this section the proposed models will be used to analyse the number of invasive meningococ-

cal disease cases reported in Germany during the year 2004. Meningococcal disease is caused

by bacteria and can lead to serious, perilous diseases, like for example meningitis, in which case

we refer to invasive meningococcal disease. In 2004, 600 cases of invasive meningococcal disease

were reported in Germany. Germany is divided into 439 regions, for each of these regions the

number of invasive meningococcal disease cases is given for both men and women. A histogram

of the total number of cases in each region is given in Figure 2. A high proportion (67.2 %) of

the data is equal to zero, on average 1.37 cases of meningococcal disease are observed in each
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region, the maximum number of cases observed in one region is 18. The variance of the data is

3.71 which is substantially higher than the mean and therefore already indicates the presence of

overdispersion in the data. On a higher aggregation level Germany consists in 16 states. Besides
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300

Figure 2: Histogram of the observations yi, i = 1, .., 439.

the modelling of overdispersion in the data, an interesting issue is to detect whether there are

areas with an increased risk of contracting invasive meningococcal disease. In this case, vaccina-

tion could be strongly recommended in these risky regions. Therefore we include the 16 states

as covariates in our model, which will be modelled as factor covariates with state 1 as reference

level. Since we are interested in relative risks, population effects are eliminated by including the

expected number of cases in each region as an offset in the analysis. The expected number of

cases in each region is determined by the population in each region times the overall observed

risk, i.e. the total number of cases divided by the total population.

Extra heterogeneity in the data, which might not be satisfactorily explained by the gender or

the state factors, can be handled by the model specific dispersion parameters in the NB, the

GP and the ZI models. While overdispersion in the NB and the GP model can be interpreted

as unobserved heterogeneity among observations, zero inflated models would assume that part

of the observations equal to zero are extra zeros, i.e. in some regions the occurrence of invasive

meningococcal disease might not have been reported.

On the other hand, heterogeneity in the data might also be taken into account by assuming

a finer geographic resolution, i.e. by including a random spatial effect for each region. We will

assume the CAR prior presented in Section 3 for these spatial effects which allows for a spatial

dependency structure. In contrast to this approach, the effects of the states included as factor

covariates can be seen as unstructured effects on a lower resolution, since no correlation between

states is allowed.

We first analysed the data set in Splus using a Poisson model without spatial effects including

12



an intercept and as covariates the gender and the 16 states as factor covariates. No significant

influence of gender could be detected, therefore we decided to model the total number of cases

without distinguishing between men and women. This means, that we have only one observation

yi, i = 1, .., 439 for each region. The four states Nordrhein-Westfalen, Mecklenburg-Vorpommern,

Sachsen-Anhalt and Thüringen were found to be significant and only the regression indicators

of these states will be included in the following. This model was used as a starting model for

the MCMC algorithms of the models discussed in Section 2.

6.2 Models

The MCMC algorithms for the Poisson, the GP, the NB, the ZIP and the ZIGP regression

models are run for 20000 iterations. The parameter µi, i = 1, .., n is specified for all models by

µi = ti exp(x′

iβ + γi)

with the same covariates included in each model and ti = popi

P

n

i=1
yi

P

n

i=1
popi

where popi denotes the

population in region i. All models are fitted with and without spatial effects. Since we have

only one observation for each region we use the simplified notation γR(i) = γi. The first 5000

iterations of the MCMC samplers are discarded as burnin, convergence is achieved well before

for all models. After convergence the mixing of the samplers is satisfactorily good, the estimated

empirical autocorrelations with lag 5 are in general well below 0.05 for the regression parameters

in all non spatial models and both the regression parameters and the spatial effects in the spatial

GP and ZIGP models. Only in the spatial Poisson, ZIP and NB models a lag of about 20 is

needed in order to obtain autocorrelations of the regression parameters below 0.05, for the spatial

effects the autocorrelations are below 0.05 at a lag of 5 in the Poisson and ZIP models and a

lag of about 10 in the NB model. The estimated posterior means and 90 % credible intervals

for the regression parameters are reported in Table 1 for all models. Estimation of the intercept

slightly differs between the models and also changes when spatial effects are added, especially

for the Poisson and ZIP models where large spatial effects are observed, see below. Estimation

of the state effects is rather similar in all models.

For a comparison of the estimated overdispersion in the different models, we consider the esti-

mated dispersion factors ϕi which are defined by 1+ µi

r
, 1

(1−λ)2
, (pµi+1) and pµi+

1
(1−λ)2

for the

NB, GP, ZIP and ZIGP regression models, respectively. In particular, we compute the mean,

minimum, maximum value and quantiles of the estimated posterior means ϕ̂i := 1
R

∑R
j=1 ϕ̂

j
i

of the dispersion factors in each model, where ϕ̂ji denotes the j-th MCMC iterate for ϕi after

burnin. The results are reported in Table 2. Note, that the dispersion factor in the GP regression

model is the same for all observations, whereas it depends on the parameter µi and therefore is

different for each observation in the other models. Except for the ZIP model, all models exhibit
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Model γ β̂0 β̂1 β̂2 β̂3 β̂4

Poi no -0.17 0.43 0.65 0.56 0.56

(−0.26,−0.09) (0.30, 0.57) (0.28, 1.02) (0.23, 0.87) (0.22, 0.88)

NB no -0.15 0.42 0.67 0.54 0.48

(−0.25,−0.04) (0.23, 0.60) (0.23, 1.10) (0.16, 0.91) (0.09, 0.85)

GP no -0.16 0.42 0.65 0.45 0.50

(−0.26,−0.06) (0.26, 0.58) (0.22, 1.06) (0.05, 0.84) (0.09, 0.88)

ZIP no -0.13 0.43 0.69 0.60 0.59

(−0.23,−0.03) (0.27, 0.59) (0.29, 1.08) (0.25, 0.94) (0.24, 0.95)

ZIGP no -0.15 0.42 0.67 0.47 0.52

(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.05, 0.87) (0.09, 0.92)

Poi yes -0.25 0.40 0.68 0.58 0.47

(−0.38,−0.14) (0.18, 0.61) (0.21, 1.13) (0.19, 0.97) (0.06, 0.86)

NB yes -0.18 0.41 0.68 0.55 0.48

(−0.29,−0.06) (0.20, 0.61) (0.23, 1.21) (0.17, 0.93) (0.08, 0.87)

GP yes -0.16 0.42 0.65 0.45 0.50

(−0.26,−0.06) (0.25, 0.58) (0.21, 1.06) (0.04, 0.84) (0.09, 0.88)

ZIP yes -0.23 0.39 0.68 0.60 0.49

(−0.36,−0.10) (0.16, 0.63) (0.22, 1.14) (0.19, 0.99) (0.07, 0.90)

ZIGP yes -0.15 0.42 0.66 0.48 0.52

(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.06, 0.88) (0.10, 0.92)

Table 1: Posterior means and 90 % credible intervals for the regression parameters (β1, .., β4:

effects for the states Nordrhein-Westfalen, Mecklenburg-Vorpommern, Sachsen-Anhalt and

Thüringen, respectively) in the different models for the meningococcal disease data.

a substantial degree of overdispersion with respect to the Poisson model, regardless whether

spatial effects are included or not. In the non spatial NB model the average of the estimated

posterior means of the dispersion parameter is given by 1.396 and drops to 1.293 when spatial

effects are included. The range of the estimated spatial effects in the NB model, see Table 3, is

considerably smaller than in the Poisson model where unexplained heterogeneity in the data is

captured by the spatial effects alone. However, part of the data variability in the NB model is

explained by spatial effects as well rather than the parameter r alone. This is in contrast to the

GP and ZIGP model, where the estimated spatial effects are all very close to zero. Overdisper-

sion in these models is captured by the parameter λ only, resulting in a high estimated dispersion

parameter. Results are hardly affected by the inclusion of spatial effects. The extension from a

GP to a ZIGP model has almost no influence on the estimation of λ and the average dispersion

parameter ϕi, the proportion of extra zeros p is estimated very close to zero.

In the non spatial ZIP model the proportion of extras zeros p is estimated as 5.6 %, resulting in
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ϕ̂i
Parameter

γ
mean (2.5 %, 97.5 %)

mean min 25% 50% 75% max

r in NB yes 6.433 (2.483, 22.552) 1.293 1.051 1.150 1.205 1.313 5.358

no 3.836 (2.202, 6.864) 1.396 1.064 1.200 1.273 1.428 7.053

λ in GP yes 0.162 (0.098, 0.231) 1.432

no 0.163 (0.098, 0.232) 1.435

p in ZIP yes 0.029 (0.001, 0.087) 1.041 1.007 1.020 1.028 1.044 1.536

no 0.056 (0.006, 0.125) 1.081 1.013 1.041 1.056 1.089 2.226

p in ZIGP yes 0.019 (0.001, 0.064)

λ in ZIGP yes 0.155 (0.088, 0.224)
1.434 1.412 1.421 1.426 1.436 1.819

p in ZIGP no 0.019 (0.001, 0.063)

λ in ZIGP no 0.157 (0.090, 0.227)
1.440 1.417 1.427 1.432 1.442 1.826

Table 2: Estimated posterior means for the model specific dispersion parameters in the considered

models with and without spatial effects, with the 2.5 % and 97.5 % quantiles given in brackets.

Further the mean, range and quantiles of the estimated posterior means of the dispersion factors

ϕ̂i are given.

an average dispersion parameter of about 1.081. According to the large 95 % credible interval

for p however, no significant degree of zero inflation seems to be present. Unobserved hetero-

geneity still present in the data after adjusting for covariates is captured better by the GP and

NB model, whereas the assumptions of extra zeros is obviously not appropriate for this data.

When spatial effects are included to the ZIP model the estimated proportion of extra zeros drops

even further, indicating that unexplained heterogeneity is picked up mostly by the spatial effects

alone like in the Poisson model, the range of the estimated posterior means of the spatial effects

in the ZIP and the Poisson model is almost the same, see Table 3.

The map plot of the estimated posterior means of the spatial effects in the Poisson model, given

in Figure 3 roughly represents the spatial pattern of the observed relative risk in each region
yi

ti
, i = 1, .., n which is plotted in the left panel in Figure 4. The estimated posterior mean and

median of the spatial hyperparameter ψ in the Poisson model, see Table 3 are rather small, the

lower bound of the 95 % credible interval is close to zero, indicating that the overall degree of

spatial dependence is very small. This is reflected in the estimated spatial pattern which is not

particularly smooth. Only some rather isolated regions, which are marked in black in the right

map in Figure 3, have a significant positive spatial effect according to the 80 % credible intervals.

In these regions the observed number of invasive meningococcal disease cases was rather high

and most of them do not lie within the four states included as covariates. Therefore without

spatial effects the risk in these regions is not modelled sufficiently. The estimated posterior means
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Model [minj γ̂j maxj γ̂j ] ψ̂ σ̂2

mean median 95 % CI mean median 95 % CI

Poisson [−0.383, 1.059] 0.394 0.207 (0.011,0.431) 0.541 0.422 (0.149, 0.615)

NB [−0.151, 0.345] 1.223 0.588 (0.015,1.352) 0.227 0.140 (0.012,0.281)

GP [−0.009, 0.020] 2.604 1.194 (0.038,2.199) 0.012 0.005 (0.001,0.011)

ZIP [−0.371, 0.998] 0.329 0.235 (0.013,0.397) 0.477 0.417 (0.169,0.529)

ZIGP [−0.011, 0.019] 1.739 1.154 (0.044,1.905) 0.018 0.011 (0.001,0.027)

Table 3: Range of estimated posterior means of the spatial effects as well as estimated posterior

means, medians and 95 % credible intervals for the spatial hyperparameters in the considered

models for the meningococcal disease data.

of the risk factor µi

ti
are plotted for the non-spatial and spatial Poisson model in the middle and

right panel. In the non-spatial Poisson model geographic differences are modelled by four state

indicators only. Since the risk in two of the states, which are neighbours, is about the same,

visually only three states can be distinguished in this plot. The inclusion of spatial random

effects gives a rather smoothed representation of the true pattern, however the rough structure

is detected reasonable well.

6.3 Model comparison using DIC

In order to compare the presented models the DIC, reviewed in Section 5.1, is considered. In

Table 4, the DIC, the posterior mean of the deviance and the effective number of parameters are

given for each model. Only in the Poisson regression case a well defined normalizing constant

f(y) (see Section 5.1) exists, while in all other models the likelihood of the saturated model

depends on the unknown overdispersion parameters. Therefore we make the choice of setting the

normalizing function f(y) to 0. Consequently E[D(θ|y)] is based only on the unscaled deviance

which cannot be directly interpreted as an overall goodness of fit measure of one specific model.

However, E[D(θ|y)] can be used for comparing the model fit of several models when the number

of parameters is roughly the same.

For the non spatial models the lowest value of the DIC is obtained for the GP model, while the

DIC for the Poisson and the ZIP model takes the highest value. Hence, according to the DIC the

GP model is considered best among the non spatial models, while the Poisson and ZIP model

clearly perform worse. The effective number of parameters pD is close to the true number of

parameters which is five for the Poisson regression model, six for the NB, GP and ZIP regression

models and seven for the ZIGP regression model.

When spatial effects are added, the posterior mean of the deviance and the number of effective

parameters in the GP and ZIGP models hardly change. As mentioned in the previous section
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Figure 3: Maps of the estimated posterior means (left) and 80 % credible intervals (white: 0

included in credible interval, black: strictly negative credible interval) of the spatial effects in

the Poisson regression model for the meningococcal disease data.

Model γ DIC E[D(θ|y)] pD

Poisson no 1291.8 1286.8 5.04

NB no 1273.9 1267.8 6.10

GP no 1265.6 1259.6 6.01

ZIP no 1291.8 1285.9 5.96

ZIGP no 1267.8 1261.5 6.35

Poisson yes 1248.7 1159.1 89.56

NB yes 1270.8 1240.0 30.74

GP yes 1265.7 1258.3 7.32

ZIP yes 1255.4 1175.1 80.31

ZIGP yes 1267.6 1260.2 8.28

Table 4: DIC, E[D(θ|y)] and effective number of parameters pD for the different models.

already, spatial effects are not significant in these models, i.e. after adjusting for covariate in-

formation, there is no further spatial heterogeneity in the data which might be captured by the

spatial effects. Instead any overdispersion present in the data seems to be sufficiently captured

by the model specific dispersion parameter. The DIC for the spatial NB model is slightly better

than for the non spatial one, hence spatial effects improve the model. However, the spatial pat-

tern is rather smooth as can be seen from the effective number of parameters estimated by 30.74.
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Figure 4: Maps of the observed risk yi

ti
(left) and the estimated posterior means of the relative

risk factor µi

ti
in the non-spatial (middle) and spatial (right) Poisson regression model for the

meningococcal disease data.

For the Poisson and ZIP regression model in contrast, a significant drop in the DIC is observed

when spatial effects are taken into account. This shows that there is some extra variability in the

data which is not sufficiently explained by the covariates only in these models. Since the Poisson

model does not allow for overdispersion and the heterogeneity is not of a zero inflated nature,

for these two models the unexplained variability is covered by the spatial effects. According to

the DIC the spatial Poisson model gives the best fit and is to be preferred to a non spatial

GP model. Note, that the DIC must be used with care here, since strictly speaking the DIC is

defined for distributions of the exponential family only, see van der Linde (2005). However, the

posterior mean of the deviance E[D(θ|y)] which can be considered for comparing the model fit

of the non spatial models where the number of parameters is very close, gives the same ranking

of the models as the DIC.

6.4 Model checking using proper scoring rules

Apart from the DIC we also compute the Brier score and the logarithmic score presented in

Section 5.2 for each model, results are reported in Table 5. These scores are based both on the

posterior predictive probabilities and the true observed number of cases and therefore provide a

good measure for checking which model fits the data best. The results support the conclusions

drawn in the previous section. For the non spatial models the GP regression model fits the

heterogeneity in the data best, followed by the ZIGP and NB regression model. The use of a non

spatial ZIP regression model does not seem to be appropriate, the gain in comparison to the non

spatial Poisson model for which the lowest scores are obtained is very small. The scores for the

GP and the ZIGP model hardly change by allowing for spatial effects, indicating that the model
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Model γ Brier score logarithmic score

Poisson no -0.6937 -1.4569

NB no -0.6883 -1.4363

GP no -0.6873 -1.4272

ZIP no -0.6921 -1.4549

ZIGP no -0.6878 -1.4291

Poisson yes -0.6280 -1.2422

NB yes -0.6717 -1.3779

GP yes -0.6863 -1.4243

ZIP yes -0.6481 -1.3251

ZIGP yes -0.6900 -1.4529

Table 5: Brier score and logarithmic score for the considered models with and without spatial

effects.

specific dispersion parameters capture the data heterogeneity well. Again a small improvement

in the NB model is observed when spatial effects are included. The scores for the spatial Poisson

and ZIP model however, are considerably smaller than for the other models. This confirms again,

that spatial effects have a significant influence in these models and that a spatial Poisson model

gives the best fit to the data.

7 Conclusions

We have presented several regression models for count data allowing for overdispersion. Overdis-

persion is either modelled by the introduction of an additional parameter as in the NB and GP

model, by allowing for an extra proportion of zero observations using zero inflated models or by

combining zero inflated models with overdispersed distributions.

Further, additionally spatial random effects are included in the models in order to account for

unobserved spatial heterogeneity in the data. This approach allows for spatial correlations be-

tween observations.

These models were applied to analyse the number of invasive meningococcal disease cases in

Germany in the year 2004. The DIC, the Brier and the logarithmic score were used for model

comparison. The models allowing for overdispersion gave a significantly better fit than an or-

dinary non spatial Poisson regression model. Among these non spatial models, the GP model

fitted the data best, while the overdispersion present did not seem to be caused by the presence

of extra zeros in the data. For the GP and the ZIGP model the inclusion of spatial effects did

not improve the models, in the NB model still some significant spatial variation was detected.
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For the Poisson model which does not allow for overdispersion and the ZIP model which is not

modelling the nature of the overdispersion appropriately, the inclusion of spatial effects led to a

significant improvement. According to the considered criterions the spatial Poisson model is to

be preferred to all other models. But we would like to note that the spatial model fitted shows

no smooth surface structure, it rather indicates isolated specific regions where the covariates

provide no adequate fit.

Instead of analysing the number of cases of invasive meningococcal disease for one year only, it

might be interesting to include data over several years in the analysis. Space-time interactions

could be included in order to examine whether the spatial pattern changed over the years. This

is the topic of future research.

A Appendix

In the following the algorithmic schemes of the MCMC samplers for the discussed models are

summarized. Most update steps are performed using a single component Metropolis Hastings

(MH) step. For the proposal distributions either a symmetric random walk proposal or an inde-

pendence proposal is used. In particular, for the independence proposal we take a t-distribution

with v = 20 degrees of freedom with the same mode and the same inverse curvature at the mode

as the target distribution.

A.1 GP regression model

• Sample λ|y,β,γ

• Sample βj |y, λ,β−j ,γ, j = 0, .., k

• Update of spatial effects

– Sample 1
σ2 |γ, ψ ∼ Gamma

– Sample ψ|γ, σ

– Sample γj |y, λ,β,γ−j, ψ, σ, j = 1, .., J

Since the full conditional of σ2 is Inverse Gamma, σ2 can be sampled directly using a Gibbs step.

For the remaining parameters a MH step is used. In particular, λ, β and γ are updated compo-

nent by component using an independence proposal distribution. The spatial hyperparameter

ψ is updated using a random walk proposal. For the Poisson regression model the algorithmic

scheme is the same, but with λ set fix to 0.
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A.2 NB regression model

• Sample r|y,β,γ

• Sample βj |y, r,β−j,γ, j = 0, .., k

• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y, r,β,γ−j , ψ, σ, j = 1, .., J

In the NB regression model r,β and γ are updated component by component using a MH

step. For r a random walk proposal is used, while γ and β are updated using an independence

sampler.

A.3 ZI models

To avoid convergence problems in the ZI models which arose in simulated data due to corre-

lation between the intercept β0, p and λ, we use collapsed algorithms, in particular β0, p and

λ are updated with the latent variables z integrated out, i.e. based on model (2.5). Doing so

convergence and mixing of the samplers was improved a lot.

A.3.1 ZIP model with constant p

• Updates with z integrated out

– Sample β0|y, p,β−0,γ

– Sample p|y,β,γ

• Sample zi|y, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)

)

∀iwith yi = 0

• Sample βj |y,β−j, z,γ, j = 1, .., k

• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y,β, z,γ−j , ψ, σ, j = 1, .., J

The latent variables z can be updated using a Gibbs step. Since the full conditional of p is log

concave, adaptive rejection sampling (ARS) introduced by Gilks and Wild (1992) is used to

update p. For the parameters β and γ a MH step using an independence proposal distribution

is performed.
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A.3.2 ZIGP model with constant p

• Updates with z integrated out

– Sample β0|y, p, λ,β−0,γ

– Sample p|y, λ,β,γ

– Sample λ|y, p,β,γ

• Sample zi|y, λ, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)

)

∀iwith yi > 0

• Sample βj |y, λ,β−j , z,γ, j = 1, .., k

• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y, λ,β, z,γ−j, ψ, σ, j = 1, .., J

For the ZIGP model the same proposal distributions as in the ZIP model are used. For λ an

independence proposal is taken.
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