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Abstract

In this paper, wavelet basis functions are investigated for their suitability for

processing and analysing diffusion tensor imaging (DTI) data. First, wavelet

theory is introduced and explained by means of 1d and 2d examples (Sections

1.1 – 1.3). General thresholding techniques, which serve as regularization con-

cepts for wavelet based models, are presented in Section 1.4. Regularization

of DTI data can be performed at two stages, either immediately after acqui-

sition (Wirestam et al., 2006) or after tensor estimation. The latter stage of

denoising is outlined in Section 6 together with the incorporation of the posi-

tive definiteness constraint using log-Cholesky parametrization. In Section 3,

the procedure is examined in a simulation study and compared to standard

processing and the space-varying coefficient model (SVCM) based on B-splines

(Heim et al., 2007). In addition, a real data example is presented and discussed.

Finally, an approach is proposed how a space-varying coefficient model could

fairly be adapted to wavelet basis functions. The theoretical parts are based

on books of Gençay et al. (2002, Chap. 1, 4-6), Härdle et al. (1998), Ogden

(1997) and Jansen (2001) if not stated otherwise. For an introduction to dif-

fusion tensor imaging refer to Heim et al. (2007, Chap. 2).

Key words: Wavelets; Varying coefficient model; Diffusion tensor; Brain imag-

ing;



1 Introduction to wavelets

Before defining wavelets and proceeding with their applicability to DTI data, I would like

to reason why the use of wavelets seems to be promising. Without loss of generality, space

will be the location index below, comprising time as special 1d space.

Looking at Fig. 1, the partition of the space-frequency plane is displayed for different

transformations. B-splines, as used in the previous chapter, are only localized in the

space domain (Fig. 1 (a)). For example, zero-degree B-splines are piecewise constants

covering one single interval. Hence, a 1d sequence of DTI signal intensities can fully

be represented by as many zero-degree B-splines as the sequence contains observations.

In contrast, a Fourier analysis using cosine and sine functions offers full resolution in

the frequency domain only (Fig. 1 (b)). Additional coarse localization in space can be

gained by windowing the original series and applying the Fourier analysis across each

window (Fig. 1 (c)). This modification is also known as short-time Fourier transform

or Gabor transform after its originator. However, spatial resolution is increased at the

expense of frequency resolution and spatial localization is still lacking within the fixed

windows. This phenomenon is due to Heisenbergs uncertainty principle, stating that a

particle cannot exactly be described by its position and momentum at the same time.

Wavelet transforms, by contrast, intelligently adapt to the space-frequency plane in that

a narrow space-window is provided to examine high-frequency content, but a wide space-

window is allowed when investigating low-frequency components (Fig. 1 (d)). Due to their

resulting localization in time/space and in frequency the use of wavelets promises local

adaptiveness. In other words, the wavelet transform can be expected to zoom in higher

frequencies when distinctive spikes or sharp edges are met.

The switch to wavelets is furthermore motivated by recent reports about successful wave-

let based filtering of MR images with best contrast rendering between different tissue

types and best spatial adaptivity. A selection of articles on the application of wavelets to

radiological imaging can be found in the special issue of the IEEE Journal on Transactions

in Medical Medicine (March 2003). It was however in the early nineties when Weaver et al.

(1991) initially proposed the removal of random noise from MR images using selective

wavelet reconstruction which Donoho and Johnstone (1994) developed to a full statistical
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Figure 1: Partition of the space-frequency plane by different transforms.

technique. There is also a series of papers using wavelets in order to denoise fMRI data

as well as to enhance the power of statistical analyses, see e. g. Van de Ville et al. (2006)

and the references therein. Substantial contributions to the processing of MR modalities

also stem from the Biomedical Imaging Group (École Polytechnique Fédérale, Lausanne).

See the steadily updated homepage1 for the most recent publications.

1.1 Univariate wavelet basis

With the aim in view to design space-varying coefficient surfaces using 3d wavelet basis

functions, let me launch from the classical, more intuitive one-dimensional case. To give

a first impression, Fig. 2 shows different basis functions of the Daubechies extremal phase

wavelet class.

There is always a pair of so-called father and mother wavelet functions, φ(x) and ψ(x),

1http://bigwww.epfl.ch/
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father wavelet φ(x) mother wavelet ψ(x) = φ(2x)−φ(2x−1)

Figure 2: Principal representatives of the Daubechies extremal phase wavelet class.

respectively. The father wavelet is also called scaling function, while the mother wavelet is

simply entitled the wavelet due to its prototype functionality for an entire set of wavelets.

As most essential condition and kind of wedding ring, father and mother wavelet are

orthogonal to each other. For the Haar family, this can immediately be seen from the

graphic (top row) and, mathematically, by the corresponding definitions of the scaling

function

φ(x) =







1, x ∈ [0, 1)

0, otherwise

(1)

and the wavelet function

ψ(x) = φ(2x) − φ(2x− 1) =







1, x ∈ [0, 0.5)

−1, x ∈ [0.5, 1)

0, otherwise .

(2)

As furthermore obvious from Fig. 2, the representatives differ in (compact) support length

and the degree of smoothness. Apart from the Haar family, asymmetry holds for the

given wavelets and, in general, for most of the known families. Among the tremendous

number, the main families are Daubechies extremal phase wavelets, Daubechies linear

3



phase wavelets (also known as least asymmetric wavelets or simply symlets) and coiflets.

Some other classes involve B-splines such as the Battle-Lemarié and Chui-Wang cardinal

spline families (both explained in Ogden (1997, pp. 23)), and the orthogonal fractional

B-spline wavelets (Blu and Unser, 2003). Interestingly, the Haar wavelet cannot only be

regarded as member of the Daubechies extremal phase but also of the Battle-Lemarié

family. For an excellent description of how to construct wavelet bases see e. g. Härdle

et al. (1998, Chap. 5-6).

Given its simplicity, the Haar wavelet will serve as the toy wavelet throughout this chapter.

Most other wavelet classes do not even possess an explicit space-domain formula and are

only defined implicitly.

There are two formal conditions for a function ψ(x), x ∈ �
, to be a wavelet. The admis-

sibility condition

∫

�
ψ(x)dx = 0

ensures integration to zero and existence of the inverse. It is equivalent to a zero-valued

zeroth moment. Further vanishing moments are reflected by the family attribute number,

e. g. Daubechies-4 wavelets expose four vanishing moments. Seldom the father wavelet

possesses vanishing moments, too, as it is the case for coiflets (Härdle et al., 1998). Note

that some authors let the attribute encode for the length of the mother wavelet which is

twice the number of vanishing moments. As evident from Fig. 2, the smoothness property

is more pronounced for wavelets with larger support, as there is more time/space to die

out to zero.

The second condition, namely the unit energy condition,

∫

�
ψ2(x)dx = 1

constrains ψ(x) to have normalized strength. The term energy refers to the “size” of a

signal. Whenever a signal is imagined as a function of varying amplitude through time,

the area under the curve seems to reason a good measurement of the signal strength.

Since the possibly negative parts do not have less strength than a positive signal of the

same size, energy is defined as the area under the squared signal. Hence the unit energy
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condition forces ψ(x), given its admissibilty, to take on nonzero values for some point

x. As a consequence any wavelet function will oscillate or wave around the abscissa.

The suffix ’let’ comes in from discrete dilation and translation of the mother’s shape,

eventually resulting in baby wavelets

ψj,k(x) =
1√
2−j

ψ

(
x− k2−j

2−j

)

= 2j/2ψ(2jx− k), j ∈ � +
0 , k ∈ � (3)

with support [k2−j, (k + 1)2−j).

Wavelets are thus functions in two parameters. Parameter k accounts for dyadic trans-

lational displacement in the time domain whereas index j constitutes a dyadic change in

frequency. The latter corresponds to compression or stretching of the wavelet on the time

axis as illustrated by selected representatives in Figure 3. The amount of ”localization”

is therefore controlled by the dilation parameter j.

φ0,0

ψ0,0

ψ j = 1 
k = 0

ψ j = 2 
k = 1,3

ψ j = 3 
k = 0,4,6

ψ j = 4 
k = 1,6,7,9

ψ j = 5 
k = 6,15,20,22,30

Figure 3: Selected members of the Haar family.
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Application of these simple operations, namely dilation and translation, to the mother

wavelet and multiplication with a normalization constant 2j/2 naturally leads to an or-

thonormal system

{
{φ0,k}, {ψj,k}, k ∈ � , j ∈ � +

0

}

in L2(
�

), the space of square integrable functions2 (Härdle et al., 1998). The system of

wavelet functions allows to approximate any function f ∈ L2(
�

) aribitrarily well. For

a pre-assigned precision, the system turns into an orthonormal basis for a subspace of

L2(
�

). The shifted versions φ0,k(x) = φ(x− k) guarantee the coverage of
�

. An outline

of the theoretical underpinnings are postponed to the next section.

Orthogonality of the basis functions is achieved via critical sampling of the space-frequency

plane at the nodes in Fig. 1 (d). This way the continuous and redundant partitioning

becomes discrete and orthogonal with a minimum number of discrete points in space k2−j

and discrete frequencies 2−j. Wavelets obtained by Eq. (3) are therefore named discrete

wavelets though being (piecewise) continuous functions.

1.2 Wavelet decomposition and reconstruction

In analogy to the Fourier or the zero-degree B-spline transform, any function f ∈ L2(
�

)

can be approximated by a linear combination of wavelets

f(x) =
∞∑

k=−∞
α0kφ0k(x) +

∞∑

j=0

∞∑

k=−∞
βjkψjk(x),

with cofficients α0k and βjk (Härdle et al., 1998). This discrete decomposition directly

results from the basis of discrete wavelets claimed in Section 1.1 which will roughly be

reasoned in the following. In practice, only a discretized version of the function of interest

is observed and this, in general, under some additional noise. Assume the moreover finite

number of measurements to be equally spaced on the support region of dyadic length, say

[0, n = 2J). This constitutes a square-summable3 function fJ in the space VJ , defined as

VJ = {f ∈ l2( � ) : f is piecewise constant on [k2−J , (k + 1)2−J), k ∈ � }.
2A function f is square integrable or of finite energy if

∫ �
f2(x)dx < ∞.

3A sequence f is square-summable if
∑

x∈ � f2(x) < ∞.
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Here, l2( � ) denotes the space of square-summable functions with integer domain. To gain

a better understanding of how the concept of the discrete wavelet transform is derived

subsequently, consider J = 3 and Figure 4.

An approximation to f J can be generated by a member f J−1 of the subspace

VJ−1 = {f ∈ l2( � ) : f is piecewise constant on [k2−J+1, (k + 1)2−J+1), k ∈ � }.

As the level j, j = 0, . . . , J, decreases, the approximations f j turn coarser with values

on intervals of half the size as those for Vj+1 (see gray-colored basis functions in Fig. 4).

Eventually, the so-called reference space V0 is reached, containing step functions on unit

intervals. The overall sequence of spaces (Vj)j=0,...,J fulfills

V0 ⊂ V1 ⊂ V2 ⊂ . . .

where V0 can be build by the set of integer-shifted versions of the Haar scaling function

{φ0,k = φ(· − k), k ∈ � }. As obvious from Fig. 4, an orthonormal basis for any other

Vj, j > 0, is formally obtained by dilations of the father wavelet: {φj,k = 2j/2φ(2j ·−k), k ∈

V3 V2 V1 V0

W2

W1

W0

V0

Figure 4: Repeated splitting of a vector space into two orthogonal subspaces build the basis for

the discrete wavelet transform.
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� }. As a consequence, the central two-scale relationship can be established:

φj,k(x) =
(
φj+1,2k(x) + φj+1,2k+1(x)

)
/
√

2.

This means that a function at a given level evolves by averaging at the next higher level

(see also Figure 4).

Whenever a function f j is expressed in terms of the next coarser approximation, the

residuals represent the details of f j that are lost due to the approximation. In this case,

the details are constants of the same resolution as the function f j itself and can thus

be written as linear combination of the wavelets ψj−1,k, k ∈ � . As obvious from Figure

3, two wavelets with the same dilation index j but differing k cannot have overlapping

support. Intra-level orthogonality is therefore guaranteed, so that the set of wavelets at

a fixed level j defines a detail space:

Wj = span{ψj,k, k ∈ � }.

In the Haar example, it is easily ascertained that φj,k and ψj′,k′ are orthogonal for j ≤ j ′

(compare black-colored functions in Figure 4). This implies that Wj−1 is the orthogonal

complement of Vj−1 in Vj:

Vj = Vj−1 ⊕Wj−1. (4)

Similar to the two-scale equation, the relationship of Haar father (Eq. 1) and mother

wavelet (Eq. 2) can be generalized:

ψj,k(x) =
(
φj+1,2k(x) − φj+1,2k+1(x)

)
/
√

2.

Hence, the residuals at a fixed level arise from differencing a function at the next higher

level.

Now, mutual orthogonality across levels holds since one of the wavelets is constant in the

shared support region (compare Figure 3). With this inter-space orthogonality between
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Wj and Wj′, j 6= j ′, recursive decomposition in a global approximative part and level

specific details yields

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = . . . = V0 ⊕
j−1
⊕

l=0

Wl. (5)

To be more general, replace V0 with Vj0 in Eq. (5), where j0 < j denotes the primary

decomposition level. It furthermore holds that L2(
�

) =
⋃

j∈ � Vj = V0 ⊕
⊕∞

j=0Wj =
⊕

j∈ � Wj (Härdle et al., 1998).

In conclusion, a finite and noisy signal of dyadic length, x ∈ {1, . . . , n = 2J} ⊂ � , has the

following wavelet expansion:

y(x) = f(x) + ε(x)

=
2j0−1∑

k=0

αj0kφj0k(x) +
J−1∑

j=j0

2j−1∑

k=0

βjkψjk(x) + ε(x), ε(x)
i.i.d.∼ N(0, σ2). (6)

The choice of the initial dilation level j0 determines the quality of the approximation

(Ogden, 1997), but will depend on personal experience and the given data because of

missing binding guidelines. If j0 > 0, one speaks of partial decomposition and, if j0 = 0,

of complete decomposition. In general, the number of vanishing moments of the father

wavelet determines the degree to which a polynomial is still exactly reproducible in V0.

Hence, V0 is equivalent to the null space of the smoothing spline penalty (Hastie et al.,

2001, Chap. 5.9).

Provided the recorded time series is scaled to the unit support interval, the complete

decomposition involves as many wavelet coefficients as there are observations. Namely,

there is the father plus 2j contributions at each level j = 0, . . . , J − 1. Summation of the

geometric sequence leads to 1 +
∑J−1

j=0 2j = 1 + (2J − 1) = n. Note that the coefficient

α0,0 coincides with the sample mean in the Haar case. Since an increase in level entails a

bisection of the wavelet’s support of 2−j on simultaneous doubling of the frequency (Figure

3), the resolution enhances accordingly. Attention should be paid to the notation. Some

authors revert the j-axis so that father and mother do no more lie at level j = 0. Level

j is then rather used in the meaning of decomposition depth. The definition in Eq. 3

changes accordingly. In addition, the technical term scale sometimes replaces level or two

to the power of level.
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(Inverse) discrete wavelet transform

The totality of the coefficients α0k and βjk is called discrete wavelet transform (DWT).

It is determined by the projection of the function f onto the subspaces V0 and Wj, j =

0, . . . , J−1, and reflects the degree of congruity of the function with the wavelets φ0k and

ψjk, respectively. While the α0k’s summarize the general form of the function, the βjk’s

represent local details. In contrast to the Fourier transform, that operates on a single

resolution level, the wavelet transform works on multiple resolution levels (Figure 1).

The multiresolution property constitutes the ability of the wavelet transform to capture

nonstationary events and to map irregulary occurring features. Hence, the recursive

decomposition of an arbitrary function in L2(
�

) in its smooth and rough parts is also

termed multiscale or multiresolution analysis. This becomes also immediately plausible

from the example given in Fig. 4. A formal definition can be found in e. g. Ogden (1997).

Metaphorically speaking, the visual acuity reduces continuously while stepping forward in

the hierachically organized decomposition. For instance, leaving a forest can be compared

to going away from fine structures of tiny leaves over twigs and branches, passing by stems

and whole trees to the entire wood till mere green color remains. The peculiarity of the

wavelet transform arises from the concurrence of the fine and coarse patterns.

Giving an example, Figure 5 depicts the decomposition of an NMR signal of length n =

1024 (Wavelab4) on the left side. The vertical bars correspond by position to the location

and by length to the quantity of the level specific wavelet contributions. The largest

weights emerge from slowly changing features, whereas highly resolved features do not

play a big role for the representation of the NMR signal. Solely, the exclusive hallmark

of the sharp spike is correctly caught by a few high frequency wavelets that have small

support. This ideally demonstrates the adaptivity of wavelet analysis.

To gain further insight into the properties of wavelet decomposition and to introduce the

4Wavelab is a free library of Matlab rountines for wavelet analysis, downloadable from

http://www-stat.stanford.edu/∼wavelab
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Figure 5: Decomposition (left) and denoised reconstruction (right) of an NMR signal using Haar

wavelets.

inverse operation, Eq. (6) is reformulated in matrix notation setting j0 = 0:











y(1)

y(2)
...

y(n)











=











φ00(1) ψ00(1) ψ10(1) ψ11(1) · · · ψJ−1, n
2
−1(1)

φ00(2) ψ00(2) ψ10(2) ψ11(2) · · · ψJ−1, n
2
−1(2)

...

φ00(n) ψ00(n) ψ10(n) ψ11(n) · · · ψJ−1, n
2
−1(n)



























α00

β00

β10

β11

...

βJ−1, n
2
−1

















= Wγ

Solving the corresponding system of normal equations leads to the ordinary least squares

estimate of the wavelet transform:

γ̂ = (W′W)−1W′y

= W′y,

the latter equality being due to the orthogonality of the basis functions in W. In fact,

this decomposition is loss-free, meaning that the information transported by y entirely
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passes into the wavelet domain. Although concentrated in a much smaller fraction of the

components than in the raw data, the wavelet transform maintains the sample variance,

i. e. is energy (variance) preserving :

Var(γ̂) = W′Var(y)W = σ2I = Var(y).

Even though, in the more general case, y might be correlated data with Var(y) = Σ, the

DWT has the ability to dissolve the correlation structure and to produce a sparse covari-

ance matrix Var(γ̂) = W′ΣW. This means the wavelet coefficients exhibit a flat, almost

white spectrum (Gençay et al., 2002, Chap. 5). Hence, the discrete wavelet transform

is esteemed for its decorrelation or whitening property. The fMRI community recently

detected this fundamental feature for their purpose of multiple test-correction: Signifi-

cant clusters of activated voxels can be determined in the wavelet domain by the simple

Bonferroni correction (Van de Ville et al., 2006).

Define the inverse discrete wavelet transform (IDWT) to be

ŷ = Wγ̂.

Again supposing j0 = 0, even perfect reconstruction of the input signal is accomplished:

ŷ = Wγ̂ = WW′y = W′Wy = y.

Here, ’perfect’ is used in the sense of completely recoverable as no information is lost.

Preview on denoised reconstruction

Yet, the analyst’s interest does usually not focus on the recorded measurements but on

strategies to reveal the underlying function. As anticipated previously, the wavelet de-

composition allows to determine basis functions of marginal meaning by their absolute

weight. The left plot of Figure 5 suggests to discard, above all, coefficients at large levels

where extremely localized features of high frequency are mapped. Similar to analysis of

variance, coefficients are considered to be noise or, on the other hand, significantly impor-

tant according to their explanatory strength. Applying an appropriate cut-off value and

12



performing the inverse wavelet transform yields a regularized version of the initial NMR

signal. The result for the Haar basis is depicted on the right side of Figure 5. Particularly

coefficients at large levels vanish, thereby suppressing rapid changes of the input signal.

Though the essential form is clearly worked out, smoother wavelets are obviously required

to meet the nature of the true NMR signal. On the other hand, the characteristic sharp

peak is appropriately reproduced since wavelets concentrate the mass of oscillations on a

small interval. Note the single distinct deflexion in W7 that indicates the singularity of the

original series. In total, a sparse and compressed wavelet representation of the input data

is achieved. This mechanism also underlies the standardized image format JPEG20005

which allows the user to specify a compression rate. If no compression is desired, the loss-

free reconstruction case is given with the same memory amount as required by the object

itself. In the compression case, the use of special decoders leads to considerable memory

reduction storing non-zero coefficients only. Multidimensional wavelets are presented in

Section 1.3, while Section 1.4 deals with different thresholding and shrinkage approaches.

Practical matters

In view of the above, two more practical issues come to mind. First, the Haar basis clearly

adapts to the unit interval, any finite sequence can be scaled to. But wavelets of other

families cannot straightforwardly be forced to have support ⊆ [0, 1). As a consequence,

discontinuities at the interval boundaries can occur when a multiresolution analysis of the

sequence is performed. These might be mitigated by symmetric or periodic expansion

of the signal. Second, if a non-dyadic sampling rate is encountered, zero-padding or

interpolating of the signal up to dyadic length has to be considered beside symmetric and

periodic boundary handling (Ogden, 1997). Some approaches will introduce correlations

among the coefficients. Rather than manipulating the data, other transforms for signals

of unconstrained length seem advisable such as the maximum-overlap discrete wavelet

transform (MODWT) (Gençay et al., 2002), biorthogonal wavelet transforms (Ogden,

1997), or lifting schemes (Jansen, 2001). The MODWT is also known as non-decimated,

redundant, translation-invariant, or stationary wavelet transform.

5JPEG is based on cosine functions; JPEG2000 works with wavelets.
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The fast wavelet transform algorithm

When it comes to implementation of the (inverse) discrete wavelet transform, Mallat’s

pyramidal algorithm is usually employed for its computational efficiency. The core aspect

here is that the decomposition in smooth and rough parts can be interpreted as application

of high- and low-pass filters. Indeed, the low-pass filter coefficients conform with the two-

scale relationship of the scaling function:

lk = < φ, φ1,k >
Haar
=







1√
2
, k = 0, 1

0, otherwise.

By m-times application of filter operator L, represented by the sequence {lk}k∈ � , to the

scaling coefficients at a particular level, represented by αj,· = {αj,k}k∈ � , scaling function

coefficients at the m-times lower level are obtained:

αj−m,· = Lmαj,· = Lm−1

{
∑

i∈ �

li−2kαj,i

}

k∈ �

.

The second equality sheds some light on the downsampling by two, inherent to each

filtering step (compare Figure 6). This is hidden in the indices of {li} that are all offset

by two.

The high-pass filter operator H can be defined by the quadratur mirror relationship (see

e. g. Gençay et al., 2002):

hk = (−1)kl1−k, k ∈ � .

Similar to the relation of father and mother wavelet, unique application of H to the scaling

coefficients at level j leads to the wavelets coefficients at level j − 1:

βj−1,· = Hαj,·.

Combining L and H yields

βj−m,· = HLm−1αj,·.
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Iteratively subsampling every other coefficient in either filter steps gives the pyramidal or

cascade scheme of the decomposition illustrated in Figure 6. The reconstruction follows

the reverse principle. At a particular level, the upsampling step performs zero-padding

and is necessary for the convolution with the filter sequence of double length.

The combination of low- and high-pass filters results in band-pass filters. Specifically, a

band-pass filter over the frequency interval [1/4, 1/2] results from serial application of an

ideal filter pair L and H. For this purpose let L pass the frequencies lower than 1/2 and

H capture frequency dynamics greater than 1/4. Therefore, one says that the pryamidal

algorithm decomposes an input signal into sub-bands. In addtion, this viewpoint allows

the following conclusion: The closer a wavelet filter approaches an ideal filter the less

leakage of frequencies occurs, thus, the better the edge preservation property becomes

(Gençay et al., 2002). Beyond this, the primary decomposition level is often chosen on a

desired low-pass cut-off frequency.

l �

��
↓2

h �

��
↓2

l �

��
↓2

h �

��
↓2

l �

��
↓2

h �

��
↓2

�

��
↑2 l

�

��
↑2 h 6

?h+

�

��
↑2 l

�

��
↑2 h

6

?h+

�

��
↑2 l

�

��
↑2 h

6

?h+

Figure 6: Decomposition (top) and synthesis (bottom) of a signal using the pyramidal algorithm.

The branches refer to convolution with either low-pass ( l ) or high-pass filter coefficients ( h

). The icons ↓2 and ↑2 denote down- and upsampling by two.
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1.3 Multidimensional wavelets decomposition - a 2d example

One-dimensional wavelets can easily be extended to the higher dimensional case via tensor

products (see e. g. Ogden, 1997). Note that consecutive operations on columns, rows, lay-

ers etc of n-dimensional observational arrays generate separable basis functions. It is well

known that these functions are likely to lack isotropy. In contrast, non-separable wavelets

offer more freedom but at the expense of computational cost. Therefore, the discus-

sion limits itself to separable wavelet functions. The decomposition idea is exemplified by

means of 2d wavelets intended to analyze square-integrable 2d functions f(x, y) ∈ L2(
� 2).

Wavelet basis functions in
� 2

To begin with, define the 2d father: φ(x, y) = φ(x)φ(y). As before, translations and

dilations of the father,

{φj,k1,k2
(x, y) = 2jφ(2jx− k1, 2

jy − k2), j, k1, k2 ∈ � }

constitute a basis for V x,y
j = V x

j ⊗V y
j . Deploying the multiresolution property and Eq. (4),

the space V x,y
j+1 of 2d block functions with resolution 2j+1 × 2j+1 can be approximated by

the successive space V x,y
j of twice as coarse squares and the complimentary residual space:

V x,y
j+1 = V x

j+1 ⊗ V y
j+1

= (V x
j ⊕W x

j ) ⊗ (V y
j ⊕W y

j )

= (V x
j ⊗ V y

j ) ⊕
(
(V x

j ⊗W y
j ) ⊕ (W x

j ⊗ V y
j ) ⊕ (W x

j ⊗W y
j )

)

= V x,y
j ⊕W x,y

j .

The rewriting reveals that the 2d space W x,y
j is made up of three orthogonal subspaces,

each of which endowed with a tensor product basis of its components. So define the

corresponding 2d mother wavelets

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y)
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and build the wavelet basis for W x,y
j by means of translation and dilation:

{ψd
j,k1,k2

(x, y) = 2jψd(2jx− k1, 2
jy − k2), d = 1, 2, 3, j, k1, k2 ∈ � }.

Note that the basis functions are tensor products within the same scale. This distin-

guishes the square wavelet transform from the rectangular wavelet transform that in-

volves tensor product across scales (Jansen, 2001). Figure 7 shows the four functions

φ(x, y), ψ1(x, y), ψ2(x, y) and ψ3(x, y) associated with the 1d symlet with two vanishing

moments. The clearly recognizable orientation in space tells us that ψ1 emphazises edges

in the horizontal direction, ψ2 in the vertical and ψ3 in the diagonal direction. These

properties can be understood in view of the low- and high-pass filter analogons and are

most intuitively accessed through the shapes of 2d Haar wavelets (Figure 8). Note also

that the effective support of 2d tensor product wavelets shrinks by 2× 2 when increasing

the dilation parameter by one.

A finite and noisy 2d signal, e. g. an (n1 × n2)-image Y , thus has the following wavelet

Figure 7: Scaling function and mother wavelet functions of 2d symlet with two vanishing mo-

ments.
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Figure 8: Exemplary basis functions of the 2d Haar family, projected onto the xy-plane. The

exponent denotes the level j, while the subscripts correspond to shift parameters k1 and k2.

representation:

Y (x, y) = f(x, y) + ε(x, y)

=

2j0−1∑

k1=0

2j0−1∑

k2=0

αj0,k1,k2
φj0,k1,k2

(x, y) +

3∑

d=1

J−1∑

j=j0

2j−1∑

k1=0

2j−1∑

k2=0

βd
j,k1,k2

ψd
j,k1,k2

(x, y) + ε(x, y),

with ε(x, y) ∼ N(0, σ2), J = log2(min(n1, n2)).

2d decomposition scheme

In analogy to the 1d case, the pyramidal algorithm also adapts to the 2d wavelet de-

composition. In a first step, a pair of low- and high-pass filters runs over the rows, and

afterwards along the columns of the given image. This procedure is repeated on each

purely low-pass filtered output, i. e. the coefficient matrix (αj,k1,k2
) k1=0,...2j

−1

k2=0,...2j
−1

. It is de-

noted by LLj in Figure 9 for pointing out the filter link and filter order. Note that LLJ

encodes for the input image itself. Convolution of the detail wavelets ψ1(x, y), ψ2(x, y) and

ψ3(x, y) with the approximating part LLj+1 results in horizontal, vertical and diagonal

detail components LHj,HLj, and HHj, respectively. Each iteration causes the filtered
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LL J−2 HL J−2

LH J−2 HH J−2

HL J−1

LH J−1 HH J−1

HL J

LH J HH J

Figure 9: Nested two-dimensional signal decomposition on three scales.

output to be downsampled by 2 per direction which establishes the pyramidal structure

and allows for the nested visualization. It also gives the algorithm its speed since in each

step only 1/4 of the number of coefficients needs to be decomposed. The inverse process

of reconstruction is governed by dyadic upsampling.

A black-and-white picture of the Siegestor in Munich serves as subject in Figure 10. Jux-

taposed to the (256×256)-image matrix are two nested steps of the 2d DWT. The decom-

position units exhibit their directional preferences in plain manner: brightness contrasts

on columns (vertical features) are extracted separately from beams (horizontal features)

and perspective alignments (diagonal features). It is worth emphazising that components

including a high-pass filtering step have been adjusted for comparable visualization with

the residual image. Background sprinkles are present, though hardly visible to the human

eye due to poor reproduction quality. They can however be removed in an intermediate

denoising, i. e. thresholding, step before performing the 2d IDWT.

By means of the Siegestor photography and the 2d Haar basis, I would like to elucidate the

successive approximations associated with spaces VJ ⊃ . . . ⊃ V0. Figure 11 demonstrates

how with decreasing level the grey colores contained in a scaling image concentrate on a
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Figure 10: Original greyscaled image and 2d DWT based on Haar wavelets.

”grand mean” value. At the same time, the wavelet’s blocky support reaches the size of

the input image. Subsequent to the third decomposition level, the coefficients do no more

reflect any visual features of the original image. Therefore, an appropriate DWT would

original level 7 level 6

level 5 level 4 level 3

level 2 level 1 level 0

original level 7 level 6

level 5 level 4 level 3

level 2 level 1 level 0

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

Figure 11: Purely low-pass filtered coefficient matrices of different levels (left) with overlaid

normalized histograms (right).
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stop at this specific level, just allowing to sort out features of reasonable frequency. In

particular, variance reduces rapidly during the last four decomposition levels. Hence, a

’kink’ in the curve of the squared sum of scaling coefficients could indicate an adequate

primary decomposition level j0.

Generalization to 3d

With the thorough introduction and examination of 1d and 2d wavelets as well as of

the corresponding decomposition schemes, the extension to the 3d wavelet analysis is

straightforward. In brief, the 3d scaling function φ(x, y, z) and seven wavelets in all cross-

spatial horizontal, vertical and diagonal directions are designed as tensor product of 1d

wavelets:

φ(x, y, z) = φ(x)φ(y)φ(z)

ψ1(x, y, z) = φ(x)φ(y)ψ(z)

ψ2(x, y, z) = φ(x)ψ(y)φ(z)

ψ3(x, y, z) = ψ(x)φ(y)φ(z)

ψ4(x, y, z) = ψ(x)ψ(y)φ(z)

ψ5(x, y, z) = ψ(x)φ(y)ψ(z)

ψ6(x, y, z) = φ(x)ψ(y)ψ(z)

ψ7(x, y, z) = ψ(x)ψ(y)ψ(z).

All operations, such as dilation and translation, orthogonal subspace representation and

the pyramidal filterbank algorithm, can be adapted to the above 3d initial wavelet func-

tions. Finally, the wavelet analysis of square-summable function f(x, y, z) ∈ l2(
� 3) can

be conducted.

1.4 Thresholding and shrinkage

Given the motivating preview on denoising (p. 12), this section serves to state more

precisely what is meant by removing “small” coefficients. Let me derive noise reduction
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procedures from the commonly used additive noise model. To ease readability, the location

parameter is dropped for the moment. Suppose the observations y, y ∈ � n, relate to the

true function f but are corrupted by Gaussian white noise, i. e. the observations are

realizations of independent and identically distributed Gaussian random variables:

y = f + ε, ε ∼ N(0, σ2I).

Due to the linearity of the wavelet transform, the additivity remains unchanged:

W′y
︸︷︷︸

= W′f
︸︷︷︸

+ W′ε
︸︷︷︸

γ̂ = γ + η .

Obviously, the wavelet coefficients of a noisy sample can be regarded as noise contaminated

observations of hidden wavelet coefficients. Moreover, if W is orthogonal, the wavelet

transform of the stationary and white noise will also be stationary and white:

Var(η) = Var(W′ε) = W′Var(ε)W = σ2I = Var(ε). (7)

The wavelet transform creates a sparse signal representation in the sense that most empir-

ical coefficients are zero or close to zero (compare Fig. 5). Only a few distinct coefficients

reflect important signal singularities beyond the overall shape. In other words, the trans-

form preserves the sum of squares (isometry of risks), but concentrated in a much smaller

fraction of the components than in the raw data.

Thresholding rules

The most straightforward method for noise reduction suggests to let the informative co-

efficients survive while rigorously zeroing every “small” coefficient. This “keep-or-kill”

strategy involves a well-chosen threshold λ that demarcates the cutoff between essen-

tial variables (or basis functions) and noise. The method is therefore also called hard

thresholding and can formally be expressed as a function δ:

γ̂λ,i = δH(γ̂i, λ) =







γ̂i, |γ̂i| ≥ λ

0, otherwise.
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Figure 12 displays the corresponding function on the left hand side with λ = 1.

The second well-known denoising approach is soft thresholding :

γ̂λ,i = δS(γ̂i, λ) = sign(γ̂i) (|γ̂i| − λ)+ =







γ̂i + λ, γ̂i < −λ

0, −λ ≤ γ̂i < λ

γ̂i − λ, γ̂i ≥ λ .

The difference to hard thresholding is that, in addition to the truncation at λ, all other

wavelet weights are shrunken by λ. This way soft thresholding becomes a continuous

operation (right side of Fig. 12), offering considerable advantages. For instance, noise

coefficients that have spuriously passed the hard threshold may appear as annoying ’blips’.

Yet, soft thresholding shrinks these false structures and does therefore not suffer as much

from high variability (Hastie et al., 2001). Soft thresholding can be termed a ”high bias

– low variance” solution to the shrinkage problem, whereas hard thresholding is a ”low

bias – high variance” solution.

The denoising mechanisms can be embedded into the general class of non-parametric

regression models. Aiming at regularization, the objective to be minimized is formulated

as trade-off between closeness to the data and sparsity/smoothness, governed by a tuning

−3 −2 −1 0 1 2 3
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,λ
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Figure 12: Classical hard (left) and soft (right) thresholding rules with λ = 1.
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parameter:

‖y − Wγλ‖2
2 + λPen(γλ) −→ min

γλ

. (8)

In the signal processing language, this balance between fidelity to the data and smooth-

ness penalty is described as compromise between ’energy’ and ’entropy’. Energy is an

expression of signal size (compare p. 4) and related to variance. The entropy is a measure

of the disorder of a system and is linked to the information content of that system. On

the one hand, one could say that a high entropy state is information poor because there

is so much disorder, and the disorder is essentially random. On the other hand, one could

argue that a high entropy state is information rich because a truthful description of the

exact state of randomness in all its detail would require lots of information. It is this latter

sense which underlies Shannon’s definition for discrete data: The information entropy is

the log of the number of accessible states, and is dimensionless.Attention has to be paid

to avoid possible confusion because this definition is a measure of the lack of order in a

system. In Fig. 11, the entropy of the scaling image decreases with level until one single

gray value remains. This monochromic state contains the least information according to

Shannon’s entropy. In contrast, a uniformly distributed histogram would have maximum

entropy and maximum information.

To proceed with the topic of smoothing approaches, recapitulate that y = Wγ̂ by per-

fect reconstruction. Then the orthogonality of the wavelet transform allows to replace

the data term by the squared differences between untouched coefficients and thresholded

counterparts:

‖γ̂ − γλ‖2
2 + λPen(γλ) −→ min

γλ

.

The penalty term can take on different forms. For example, using the L2 norm

Pen(γλ) = ‖γλ‖2
2 =

∑

i

γ2
λ,i,

yields a scaled version of the ordinary least squares coefficients:

γ̂λ =
1

1 + λ
γ̂.
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Unless the intercept, i. e. the scaling wavelet coefficients α0k, is left out from penalization,

this corresponds to linear shrinkage of the observed data:

ŷ =
1

1 + λ
y.

The procedure is also known as ridge regression (Hastie et al., 2001, Chap. 3). However,

the L2 norm measures energy rather than sparsity or smoothness: selection does not take

place. Hence consider the use of the L1 norm

Pen(γλ) = ‖γλ‖2
1 =

∑

i

|γλ,i|,

which leads to the same framework as in Eq. (8), also familiar under the name of lasso

regression (Hastie et al., 2001, Chap. 3). Because W is orthogonal, the lasso criterion

results in the simple solution of soft thresholding. The method is highly esteemed for its

adaptivity founded on least absolute shrinkage and selection from the parameter space.

A wavelet fit constrained to the L1 norm represents a non-linear smoothing procedure.

Likewise, hard thresholding turns out to be a non-linear operation. In this case, the

objective consists of the usual residual sum of squares and a penalty term that amounts

to the number of non-zero coefficients:

Pen(γλ) =
∑

i

1[γλ,i 6= 0],

where 1[condition] is an indicator function.

Hard thresholding is said to perform better in spike detection, whereas soft thresholding is

preferred if smoothness is paramount. For a discussion on risk, bias and variance of these

two approaches refer to Jansen (2001, Chap. 5.5). More sophisticated rules are available

such as n-degree garrote or Bayesian thresholding rules (Gençay et al., 2002; Jansen, 2001;

Johnstone and Silverman, 2005). These schemes model the transition between rejected

and shrunken coefficients in a smoother fashion but are computationally more intensive.

Note that also ridge and lasso regression can be viewed as Bayesian estimates with different

priors, either Gaussian or Laplace (e. g. Hastie et al., 2001). In both models, posterior

modes are derived as Bayesian estimates instead of the more commonly used posterior
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means. The equality of posterior mode and mean only holds in case of ridge regression.

The lasso regularization constraint was promoted by Donoho and Johnstone (1995) as

SURE shrinkage (Stein’s Unbiased Risk Estimation). Donoho and Johnstone investigated

optimality properties and contributed seminal work on the choice of the threshold value.

Thresholding values

Regardless of the selection of an available thresholding rule, the cutoff value λ needs to be

chosen with care. If the noise proportion was known, a complete noise removal could be

accomplished by hard thresholding with λ = σ due to Eq. (7). A threshold less than the

true error variance would cause undesired noise relicts while a too loose threshold leads

to information loss. Yet, σ is unknown. A bunch of suitable procedures to determine λ is

published, two of which will be presented here.

On the background of the additive Gaussian white noise model, a straightforward rationale

is to remove all wavelet coefficients that are smaller than the expected maximum of an

assumed i. i. d. normal noise sequence of given size. This approach yields the universal

threshold :

λUNIV = σ
√

2 log(n). (9)

Its name reflects the global validity for all sufficiently smooth signals of length n (Jansen,

2001). It can even be stated that the universal threshold is adaptive to unknown smooth-

ness. The interested reader may consult e. g. Härdle et al. (1998) for more detailed

information on smoothness within the framework of Besov spaces.

The universal threshold operates as an oracle that reveals which coefficients are above σ

but not their exact values. Donoho and Johnstone (1994) showed that, within a loga-

rithmic factor, universal soft-thresholding performs as well as optimal wavelet coefficient

selection which, in turn, is essentially not less powerful than any piecewise polynomial and

spline method. Moreover, λUNIV possesses minimax property, i. e. the minimax thresh-

old asymptotically coincides with the universal threshold. However, instead of balancing

energy and entropy, smoothness comes prior to goodness of fit. This renders the results

visually appealing, leading to the procedure’s synonym VisuShrink.
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The noise level in definition (9) has to be estimated from the data. Donoho and John-

stone (1994) use the median absolute deviation of the wavelet coefficients at the finest level

J = log2(n), divided by 0.6745. As motivated on p. 12, this level mirrors high frequency

features and thus essentially noise. The use of a robust variance measure is intended to

correct the bias due to some isolated signal occuring at that level. The various denoising

techniques apply also to images and image volumes. Yet in the higher dimensional case,

each level has multiple decomposition components, also called orientations (2d: three, 3d:

seven). The question arises whether noise estimation should be based on purely high-pass

filtered coefficients or, whether high- and low-pass filtered output at level J should be

considered equally. Furthermore, n has to be adjusted accordingly.

If minimum risk optimality is paramount, soft-thresholding with the cutoff chosen ac-

cording to Stein’s Unbiased Risk Estimation (SURE) seems more suitable. Donoho and

Johnstone (1995) call this procedure SureShrink. In contrast to the level invariant univer-

sal threshold, the SURE thresholds are independently derived from each resolution level

j = j0, . . . , J = log2(n) by minimizing the level specific risk E‖γ̂λ,j − γj‖2. Depending on

j, the subvector γj = (γj0, . . . γjk, . . . , γj(2j−1))
′ of γ comprises either the coefficients of

the scaling functions or the ones of levelwise wavelets, here uniformly denoted by double-

indexed γjk. In general, most of the wavelet literature formulates SURE shrinkage as a

result in multivariate normal decision theory. Yet, I prefer to stay in the wavelet context

though running the risk of complex notation.

After variance standardization in Eq. (7), the empirical OLS wavelet coefficients are mul-

tivariate normally distributed: γOLS

j ∼ N(γj, I). Stein proved that any (almost arbitrary)

estimator for γj of the form γ̂λ,j(γ
OLS

j ) = γOLS

j + g(γOLS

j ) with g :
� 2j −→ � 2j

weakly

differentiable6 leads to an unbiased estimate of the L2 loss:

Eγj
‖γ̂λ,j

(
γOLS

j

)
− γj‖2 = 2j + Eγj

(
‖g(γOLS

j )‖2 + 2 5 g(γOLS

j )
)
,

where 5g(γOLS

j ) =
∑2j−1

k=0
∂

∂γOLS

jk

gk(γ
OLS

j ). Employing soft thresholding allows the follow-

6 Let g and h be functions defined on the real-line and integrable on every bounded interval. Then g is

weakly differentiable with weak derivative h if
∫

g(t)u′(t)dt = −
∫

h(t)u(t)dt is satisfied for all infinitely

many times differentiable test functions u with compact support (Härdle et al., 1998). Generalization to

the higher-dimensional case is straightforward.

27



ing specification:

gk(γ
OLS

j ) = δS
λ (γOLS

jk ) − γOLS

jk =







λ, γOLS

jk < −λ

−γOLS

jk , −λ ≤ γOLS

jk < λ

−λ, γOLS

jk ≥ λ ,

so that ‖g(γOLS

j )‖2 = ‖min(|γOLS

j |, λ)‖2. Similarly, 5g(γOLS

j ) =
2j−1∑

k=0

(−1)1[−λ≤γOLS

jk
≤λ] =

−#{k : |γOLS

jk | ≤ λ}. To sum up, Stein’s estimate of risk can be rewritten as

SURE (λ,γOLS

j ) = 2j − 2#{k : |γOLS

jk | ≤ λ} + ‖min(|γOLS

j |, λ)‖2.

Recall that the expectation Eγj
SURE (λ,γOLS

j ) is unbiased. The all-dominant and crucial

threshold is given by

λSURE

j = arg min
λ≥0

SURE (λ,γOLS

j ).

In fact, the SURE threshold takes on the value of one of the coefficients |γOLS

jk |, k =

0, . . . , 2j−1. Moreover, one can show that SURE shrinkage is the same as lasso regression

(Hastie et al., 2001).

Risk minimization in the sense of the L2 norm can be regarded as seeking after the

equilibrium between variance and (squared) bias. Without relying on a priori knowledge

about the underlying smoothness, some noise artifacts will eventually sneak in at every

scale. This, however, makes the SURE shrinkage automatically smoothness-adaptive (for

theoretical results see Donoho and Johnstone, 1995). One could say, that the outcome

of universal thresholding is visually attractive while results from SURE shrinkage are

qualitatively convincing: The reconstructions jump where the true object jumps; at the

same time, the fits are smooth where the true object is smooth.

In this category of minimum risk thresholds falls also the minimax estimator itself (named

RiskShrink by Donoho and Johnstone (1994)) and the GCV strategy (Jansen, 2001). In

general, SURE and related procedures are more conservative and are more convenient

when small details of f lie near the noise range. A hybrid approach was conceived in

order to switch from SURE to universal thresholding whenever the level specific signal-

to-noise ratio is very small and the SURE result would be too noisy. Multiple alternative
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threshold criteria are available such as the false discovery rate (FDR) for the multiple

testing problem whether the n wavelet coefficients are significantly zero (Ogden, 1997,

Chap. 8.2). The FDR based threshold yields similarly smooth results as the universal

threshold (Jansen, 2001; Gençay et al., 2002).

1.5 Resolution increment

If wavelets act as smoothing tool, interpolation does not enter the equation. If however

wavelets are to be supposed to act as proper basis functions within the SVCM framework,

interpolation matters. Therefore, let me briefly comment on this issue. Since, in practice,

wavelet analysis uses the repeated application of filter sequences (see Section 1.2, pp. 14),

there exists no such possibility to enhance resolution as for B-splines. This means, we

cannot simply evaluate the basis functions at the desired points and sum over their esti-

mated weight. Yet, different alternatives are conceivable.

The naive approach would be to paste multiple zeros into the level’s j0 filtering output

before reconstruction. This implies a modification of the upsampling step. A more so-

phisticated procedure involves lifting schemes that gradually increase the complexity of

the overall transform (Jansen, 2001). This is achieved by repeated dual (prediction) and

primal (update) lifting steps. Hence, lifting is not only an alternative to classical filter

banks but also offers the wavelet transform to work on non-dyadic and even irregular

grids. In addition, lifting allows the reconstruction to be limited to integers as e. g. de-

sired in digital image processing.

Donoho (1992) discusses several interpolating scaling functions, for instance of the Des-

lauriers-Dubuc wavelet basis or the spline wavelet basis (see also recent work by the

Biomedical imaging group, Lausanne7). It holds that the autocorrelation function of an

orthogonal scaling function is an interpolating scaling function. Even more, the autocor-

relation of a Daubechies scaling function is a Deslauriers-Dubuc scaling function. Image

interpolation is then achieved within the multiresolution analysis (MRA) framework.

Other authors (e. g. Su and Ward, 2006) use bi-orthogonal wavelets and rely on the

smooth reconstruction filter for improved image quality. The given image is considered

7http://bigwww.epfl.ch/publications/
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to be the low-resolution image, from which the detail components can be predicted in a

suitable way. Adding the horizontal, vertical and diagonal edge information to the low-

resolution image yields a high-resolution image of twice the size as the original.

All these interpolation approaches allow image enlargement up to a fixed size. Yet in view

of the application of interest, a fiber tracking algorithm needs to be able to calculate the

desired tensor information at any arbitrary point. These considerations have to be kept in

mind for future work. In this thesis, I will not explore wavelet interpolation schemes but

rather use, on top of voxelwise tensor estimation and wavelet based smoothing, quadratic

interpolation as implemented in the available fiber tracking tool (Gössl et al., 2002).

2 Denoising the diffusion tensor

The discrete wavelet decomposition was reported to successfully denoise diffusion weighted

images in combination with a Wiener filter (Wirestam et al., 2006). The approach follows

the minority of smoothing methods for DTI data which operate right on the complex

signal intensities before the Fourier transformation turns the Gaussian noise into a Rician

distribution, in particular at locally low SNR (Gudbjartsson and Patz, 1995). Attempts

have been made to smooth the magnitude images, too, with the focus on edge-preservation

and statistical robustness (Hahn et al., 2001). In this work, wavelet filtering is performed

on processed data, namely on the array of diffusion tensor estimates. For this purpose,

recall the estimation problem inherent to DTI (Heim et al., 2007, Chap. 2). Formally, it

is a matter of repeated measurement design

y(s) = Xβ(s) + ε(s), ε(s) ∼ N(0, σ2I) (10)

with β(s) = (β1, . . . , βp)
′(s) encoding for the p = 6 unknown elements that determine

the symmetric covariance matrix at position s, s = 1, . . . , n, in 3d space, i. e. the local

diffusion tensor within the brain. Multiplication with the Moore-Penrose matrix inverse

leads to the interpretation that the observed covariance entries y∗(s) are equal to the true
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covariance entries β(s) corrupted by noise:

(X′X)−1X′y(s)
︸ ︷︷ ︸

y∗(s)

= β(s) + ε∗(s), ε∗(s) ∼ N(0, σ2(X′X)−1). (11)

More precisely, the pretended observations y∗(s) are nothing else than the standard voxel-

by-voxel estimates of the tensor elements, i. e. ST1 results. The aim is to recover for each

tensor element the underlying ideal function βj(s), s ∈ � 3, j = 1, . . . , 6, using DWT as

implemented in the fast and memory-saving algorithm of Mallat.

Incorporation of the positive definiteness constraint

Log-Cholesky parametrization (Pinheiro and Bates, 1996) is one possibility to meet the

positive-definiteness constraint of the diffusion tensors. Note that the restriction had not

yet been imposed in the B-spline based SVCM, nor in ST1. Of course, immediate con-

sideration through the estimation process would have been more appropriate. Cholesky

factorization states that if and only if R is upper triangular with non-zero diagonal el-

ements, then R′R will be positive definite. Thus as long as the diagonal entries are

exclusively negative or exclusively positive, the off-diagonal elements of the Cholesky fac-

tor R are unique. Either way, the intended uniqueness of R represents once more a

constrained estimation problem. Yet if the diagonal shall comply with positive values,

the logarithm can serve as auxillary function to alter the parameter space unlimited on

the real line. Hence, ensure positive definiteness of the diffusion tensor D,

D =








β1 β2 β4

β2 β3 β5

β4 β5 β6








= R′R =








r1 r2 r4

0 r3 r5

0 0 r6








′ 






r1 r2 r4

0 r3 r5

0 0 r6








by unique and simultaneously unconstrained log-Cholesky factorization:

ρ = (log(r1), r2, log(r3), r4, r5, log(r6))
′.
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Finally, reparameterize β as vector-valued function in ρ by definition of

β(ρ) =
(
exp(ρ1)

2, exp(ρ1)ρ2, ρ
2
2 + exp(ρ3)

2,

exp(ρ1)ρ4, ρ2ρ4 + exp(ρ3)ρ5, ρ
2
4 + ρ2

5 + exp(ρ6)
2
)′
.

In summary, the initial estimation problem (11) with β(s) being constrained to build

a positive deifinite diffusion tensor can be rendered into an unconstrained estimation

problem using log-Cholesky parametrization:

ρobs(s) = ρtrue(s) + ε](s), ε](s) ∼ N(0, diag(σ2
],j)). (12)

The error term is an approximation in that independence is postulated for the transformed

covariance elements ρj, j = 1, . . . , p. With the log-Cholesky parametrization no further

care is then needed in keeping track of the error term: The 3d wavelet decomposition can

promptly be applied to each 3d field {ρobs,j(s) : s = 1, . . . , n}, where σ2
],j is estimated

from the high-frequency weights of the first decomposition step. Hence, project elements

ρobs,j, j = 1, . . . , p, onto 3d tensor product wavelets:

ρobs,j = Wγj + ε
]
j.

The ordinary least squares estimate of the wavelet coefficient surfaces holds:

γOLS

j = (W′W)−1

︸ ︷︷ ︸

= I

W′ρobs,j.

As explained in Section 1.4, the choice of a thresholding value and rule yields a sparse

(and possibly shrunken) vector of wavelet contributions:

γ̂λ,j = δλ(γ
OLS

j ).

After having run the inverse discrete 3d wavelet transform, the regularized estimate

ρ̂j = Wγ̂λ,j,
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can be reparameterized to:

β̂j = β(ρ̂j) =

















exp(ρ̂1)
2

exp(ρ̂1)ρ̂2

ρ̂2
2 + exp(ρ̂3)

2

exp(ρ̂1)ρ̂4

ρ̂2ρ̂4 + exp(ρ̂3)ρ̂5

ρ̂2
4 + ρ̂2

5 + exp(ρ̂6)
2

















.

Note that the competitive log matrix transformation (Pinheiro and Bates, 1996) is more

stable but does not lead to the desired independence of the parametrized elements either.

Certainly, the assumption of independently distributed errors in Eq. (12) is strong but

indispensable for looping over the six 3d fields of parametrized tensor elements. In con-

trary, spatial correlation could be considered by special wavelet transforms for colored

noise. Also level dependent thresholding is said to be more suitable in such a case.

In conclusion, the bunch of processing steps described above yields an adaptive estimator

for smooth 3d components of positive definite covariance matrices.

3 Simulation study

3.1 Simulation model

The simulation model as presented in Fig. 2 (Heim et al., 2007) is not apt for wavelet

analysis. Of course, a mere resampling would satisfy the demand of dyadic dimensions.

However, the miminum logarithm to the basis 2 of the 3d array size determines the

maximum possible decomposition depth. For this reason, the spiral function is periodically

extended along the z-axis prior to discrete sampling into 32×32×32 voxels. As displayed

in Fig. 13, the resulting imaging volume contains two concentrically nested spirals of five

and twelve centimeters in radius, mimicking fiber bundles. Since each fiber-transit voxel

is considered a fiber voxel, each transversal slice contains enough fiber structure (compare

e. g. the projection on the xy-plane). The overall percentage amounts to 13.87% voxels.

The degree of anisotropy in fiber as well as non-fiber voxels has been kept the same as
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in Heim et al. (2007). Given the simulation model, N = 100 data sets were generated

consisting of six diffusion weighted images corrupted by noise (σ = 10).

• 3d data grid of {32 × 32 × 32} ⊂ � 3 voxels

• 2 × 2 × 4 mm3 voxel size

• six 3d varying coefficient surfaces

• spiral tensors are anisotropic;

background tensors are isotropic

• simulated Gaussian error with σ = 10

Figure 13: Design of the simulation study and geometry of the underlying fiber bundles.

3.2 Study design

The parameter setup of the discrete wavelet analysis involves the wavelet family, the

primary thresholding level j0, the thresholding rule and the threshold itself. Boundary

condition is not up for discussion as the employed R-package waveslim (Whitcher, 2005)

handles border distortions only in a periodic fashion.

Since the basis function should mimic the underlying features of the given object, the

choice of the wavelet family is crucial. Typical criteria are symmetry useful in avoiding

dephasing in image processing, the number of vanishing moments important for compres-

sion purposes, and the regularity to get nice smoothness. Moreover, the length of the

mother wavelet should not exceed the number of available observations. Apart from the

Haar family, no wavelet system satisfies the demands of compact support (among others

preferable for numerical stability) and symmetry at the same time. The latter condi-

tion is however indispensable in imaging if spatial directions are equally likely. Therefore,

Daubechies least asymmetric wavelets with four vanishing moments (LA4) are investigated

in addition to Haar (Haar) and Daubechies extremal phase wavelets (D2) with one and two

vanishing moments, respectively. Also minimum bandwidth wavelets with four vanishing
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moments (MB4) are considered. The MB family is closely related to Daubechies extremal

phase family, i. e. the members coincide for two vanishing moments and are almost the

reverse of each other for more than two vanishing moments (φDaub(x) = −φMB(x)). The

important difference consists in superior frequency-domain properties and, thus, superior

edge-preserving property of MB wavelets compared to Daubechies wavelets given the same

number of vanishing moments (Gençay et al., 2002, Chap. 4.3.3).

The effect of the primary decomposition level was found to be neglibible according to a

pilot study. Complete decomposition (j0 = 0) is therefore performed.

Since hard thresholding can, in principle, be combined with the univeral or SURE thresh-

old and since this seems more natural to a non-statistician (Donoho and Johnstone,

1994), it is taken into account. Thus, the comparison comprises four shrinkage methods:

hard universal (hUNIV), soft universal (sUNIV), hard SURE (hSURE), and soft SURE

(sSURE) thresholding. Every variant includes a noise estimate which, theoretically, can

be level dependent and/or orientation dependent.

A preparatory study aims to investigate the impact of the noise estimation under the

limitation to Haar wavelets. The estimation is either based on the highest resolution level

(sigma1) or depends on each orientation (sigma2), each level (sigma3) or each level and

each orientation (sigma4). As in Heim et al. (2007), the quality is assessed via the error

measures averaged mean squared error (AMSE) of the tensor fit, depending on the voxel

type ’spiral’:

AMSE(i)
sp

=
1

p nsp

∑

s∈spiral

∥
∥
∥β(s) − β̂

(i)
(s)

∥
∥
∥

2

, i = 1, . . . , N ,

or ’background’:

AMSE
(i)
bg =

1

p nbg

∑

s∈background

∥
∥
∥β(s) − β̂

(i)
(s)

∥
∥
∥

2

, i = 1, . . . , N ,

as well as by the voxelwise mean squared error (VMSE) defined as

VMSE
(s)
j =

1

N

N∑

i=1

(

βj(s) − β̂
(i)

j (s)
)2

, s = 1, . . . , n .
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A second study concentrates on the impact of the wavelet type. For this purpose, the DWT

of the simulated data is conducted using wavelets from the Haar (Haar) , the Daubechies

extremal phase (D2), the least asymmetric (LA4), and the minimum bandwidth (MB4)

family. The DWTs are then thresholded according to the above rules hUNIV, sUNIV,

hSURE, and sSURE in combination with the two different noise estimates sigma1 and

sigma2.

3.3 Simulation results

Concerning the preparatory study, Figures 14 and 15 display the results by means of

boxplots. Clearly recognizable is the familiar distribution of smaller errors in background

than in spiral voxels. The discrepancy between these two tissue classes becomes more

pronounced with soft thresholding (second and fourth row from top). Concerning the

noise estimation, level dependent approaches fail as expected from the simulation design

that does not incorporate correlated noise. This is also true for the SURE approach,

although whatsoever less evident when combined with the hard rule (third row from top).

In contrast, the exclusive specification with respect to orientation (horizontal, vertical,

diagonal details) shows hardly an effect compared to the uniform approach sigma1. A

slight improvement in terms of smaller log AMSE errors is visible for the SURE threshold

applied either in a hard or soft way (Fig. 14, bottom rows).

Boxplots resulting from the second study design are not suited for visual inference because

of apparent similarity. Tables 1 and 2 contain instead the principal boxplot statistics

corresponding to the logarithmized average and voxelwise MSE, respectively.

At first glance, the wavelet type plays hardly a role, in particular with respect to the

errors of D2, LA4 and MB4. The resembling behavior points at an oversized filter length

given the scale of the features to be preserved. In view of this, especially the minimum

bandwidth wavelet is not able to develop its superior edge-preserving property. The Haar

wavelet has the shortest support among the examined families and can therefore still

capture substantial structures at finer scales. Not surprisingly, the Haar wavelet performs

best under almost all shrinkage conditions in terms of an overall error measurement (log

AMSE). Regarding the local error (log VMSE), the D2 family outperforms the Haar
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Figure 14: Boxplots of log AMSE for hUNIV, sUNIV, hSURE, and sSURE (top to bottom)

with the noise estimated on the basis of the highest resolution level (sigma1), orientation depen-

dent (sigma2), level dependent (sigma3), orientation and level dependent (sigma4) using Haar

wavelets.
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Figure 15: Boxplots of log VMSE for hUNIV, sUNIV, hSURE, and sSURE (top to bottom)

with the noise estimated on the basis of the highest resolution level (sigma1), orientation depen-

dent (sigma2), level dependent (sigma3), orientation and level dependent (sigma4) using Haar

wavelets.
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family in background voxels but not in spiral voxels.

The performance on these two tissue types is quite similar if hard thresholding is applied.

In contrast, soft thresholding leads to distinctively larger errors in fiber associated regions.

At the same time, the shrinkage entails a smooth and less erroneously reconstructed

background. This holds for all parameter settings and both error measures.

Log AMSE errors obtained with the SURE threshold tend to be smaller than those of

universal thresholding. If the focus is on log VMSE errors, universal hard thresholding

seems to be preferrable over the SURE counterpart.

The choice of the noise estimate does, in general, not affect the MSE ranking of the

wavelet types (compare black and gray prints). This result corroborates the previous

finding obtained from analyses with the Haar wavelet.

3.4 Comparison to standard approaches

Coming back to the goal of improving regularized tensor estimation by modified DTI data

processing, the comparison to previous methods is essential. Figure 16 therefore depicts

the error boxplots of voxelwise regression without (ST1) and with subsequent Gaussian

smoothing (ST2), sequential SVCM with linear B-splines, one knot per 1.28 voxels and

global tuning parameter for first order difference penalties (DXglob-lin), as well as ST1 fil-

tered once based on Haar wavelets combined with universal thresholding (hUNIV-Haar)

and once based on Daubechies wavelets combined with SURE shrinkage (sSURE-D2).

Noise estimation conforms to sigma1.

Clearly, both wavelet transforms convince with satisfactory error reduction. The improve-

ment appears larger from an overall (top row) than from a local perspective (bottom row).

In particular, errors in fiber voxels can be lowered using SURE shrinkage, outperforming

ST2 and the B-splines based SVCM, but not ST1. The voxelwise least squares esti-

mates show approximately the same error distribution regardless the underlying degree

of anisotropy. This can be considered as proof of concept, since globally superimposed

noise prolongates to the same amount into local estimates.

The VMSE errors, collapsed into distributional characteristics in Fig. 16, can alterna-

tively be presented as maps to enable local assignment. For this purpose, log ratios of
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non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-21.99 -21.69 -21.65 -21.55 -20.89 -20.60 -20.61 -20.59
maximum

-22.00 -21.62 -21.59 -21.49 -20.74 -20.37 -20.38 -20.34

-21.98 -21.67 -21.64 -21.54 -20.85 -20.58 -20.59 -20.56
upper hinge

-21.99 -21.62 -21.59 -21.47 -20.71 -20.35 -20.36 -20.31

-21.97 -21.67 -21.64 -21.53 -20.84 -20.56 -20.58 -20.55
hUNIV median

-21.98 -21.61 -21.58 -21.47 -20.71 -20.34 -20.35 -20.30

-21.96 -21.66 -21.63 -21.53 -20.83 -20.55 -20.57 -20.53
lower hinge

-21.98 -21.61 -21.58 -21.46 -20.70 -20.33 -20.34 -20.29

-21.94 -21.65 -21.62 -21.51 -20.80 -20.52 -20.54 -20.49
minimum

-21.96 -21.59 -21.57 -21.45 -20.67 -20.31 -20.32 -20.27

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-22.39 -22.07 -22.00 -21.88 -19.28 -19.14 -19.20 -19.19
maximum

-22.33 -21.96 -21.90 -21.80 -19.08 -18.86 -18.90 -18.87

-22.38 -22.05 -21.99 -21.87 -19.24 -19.11 -19.17 -19.16
upper hinge

-22.32 -21.95 -21.88 -21.79 -19.06 -18.84 -18.88 -18.86

-22.37 -22.04 -21.98 -21.86 -19.23 -19.10 -19.16 -19.15
sUNIV median

-22.32 -21.94 -21.88 -21.78 -19.05 -18.84 -18.88 -18.85

-22.36 -22.03 -21.97 -21.86 -19.22 -19.09 -19.15 -19.14
lower hinge

-22.31 -21.94 -21.87 -21.78 -19.05 -18.83 -18.87 -18.85

-22.35 -22.02 -21.96 -21.85 -19.20 -19.07 -19.12 -19.12
minimum

-22.29 -21.93 -21.86 -21.76 -19.03 -18.82 -18.86 -18.83

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-21.68 -21.59 -21.58 -21.53 -21.16 -21.02 -21.03 -21.02
maximum

-21.70 -21.62 -21.61 -21.56 -21.17 -21.00 -21.01 -20.99

-21.66 -21.57 -21.56 -21.51 -21.14 -20.99 -21.00 -20.99
upper hinge

-21.68 -21.60 -21.59 -21.54 -21.14 -20.98 -20.99 -20.96

-21.65 -21.56 -21.55 -21.51 -21.13 -20.99 -21.00 -20.98
hSURE median

-21.67 -21.60 -21.58 -21.54 -21.14 -20.97 -20.98 -20.95

-21.64 -21.56 -21.54 -21.50 -21.12 -20.98 -20.99 -20.97
lower hinge

-21.67 -21.59 -21.58 -21.53 -21.13 -20.96 -20.97 -20.93

-21.62 -21.53 -21.52 -21.48 -21.10 -20.95 -20.96 -20.91
minimum

-21.64 -21.57 -21.56 -21.51 -21.11 -20.93 -20.94 -20.90

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-22.58 -22.28 -22.22 -22.11 -20.04 -19.82 -19.87 -19.80
maximum

-22.57 -22.27 -22.21 -22.09 -20.04 -19.78 -19.82 -19.74

-22.57 -22.27 -22.21 -22.09 -20.00 -19.76 -19.79 -19.75
upper hinge

-22.56 -22.25 -22.19 -22.08 -20.00 -19.75 -19.76 -19.72

-22.56 -22.26 -22.20 -22.09 -19.99 -19.75 -19.78 -19.73
sSURE median

-22.55 -22.25 -22.19 -22.07 -19.99 -19.73 -19.75 -19.70

-22.56 -22.25 -22.20 -22.08 -19.97 -19.73 -19.76 -19.71
lower hinge

-22.55 -22.24 -22.18 -22.06 -19.97 -19.72 -19.73 -19.68

-22.53 -22.24 -22.19 -22.06 -19.94 -19.70 -19.73 -19.63
minimum

-22.53 -22.23 -22.18 -22.04 -19.94 -19.68 -19.69 -19.65

Table 1: Boxplot statistics of log AMSE for different thresholding rules with either sigma1 (black)

or sigma2 (gray) noise estimation using different wavelet families.
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non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-25.87 -26.97 -26.39 -25.97 -24.49 -24.42 -24.37 -24.22
maximum

-26.20 -27.29 -26.76 -26.14 -24.53 -24.59 -24.39 -24.31

-23.28 -23.23 -23.19 -23.14 -21.95 -21.86 -21.93 -22.00
upper hinge

-23.41 -23.37 -23.32 -23.25 -21.93 -21.80 -21.86 -21.93

-22.75 -22.57 -22.50 -22.33 -21.41 -20.93 -20.98 -21.00
hUNIV median

-22.97 -22.76 -22.67 -22.48 -21.41 -20.83 -20.86 -20.90

-22.07 -21.46 -21.38 -21.20 -20.78 -20.31 -20.35 -20.36
lower hinge

-22.19 -21.47 -21.39 -21.19 -20.72 -20.11 -20.15 -20.15

-18.64 -18.73 -18.45 -18.26 -18.38 -17.90 -17.68 -17.50
minimum

-18.45 -18.28 -18.40 -18.03 -18.06 -17.57 -17.37 -17.10

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-27.48 -28.49 -28.29 -27.56 -27.68 -27.61 -27.63 -27.38
maximum

-27.62 -28.59 -28.45 -27.70 -27.79 -27.72 -27.79 -27.43

-25.45 -25.64 -25.48 -25.35 -21.63 -21.57 -21.66 -21.71
upper hinge

-25.55 -25.74 -25.56 -25.44 -21.58 -21.49 -21.58 -21.60

-24.04 -24.03 -23.87 -23.65 -20.07 -20.06 -20.17 -20.23
sUNIV median

-24.03 -24.05 -23.91 -23.71 -19.88 -19.76 -19.86 -19.84

-22.67 -22.24 -22.25 -22.06 -19.06 -18.83 -18.88 -18.91
lower hinge

-22.60 -22.17 -22.18 -21.99 -18.85 -18.53 -18.56 -18.56

-17.53 -17.74 -17.73 -17.27 -16.31 -16.39 -16.49 -16.23
minimum

-17.53 -17.63 -17.80 -17.23 -16.19 -16.18 -16.31 -16.11

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-24.66 -25.04 -24.53 -24.43 -24.41 -24.86 -24.61 -24.31
maximum

-25.05 -25.14 -24.94 -24.72 -24.72 -25.30 -24.92 -24.57

-23.06 -23.07 -23.07 -23.06 -21.86 -21.84 -21.89 -21.97
upper hinge

-23.22 -23.21 -23.25 -23.26 -21.91 -21.93 -22.00 -22.11

-21.69 -21.69 -21.69 -21.68 -21.21 -21.09 -21.09 -21.09
hSURE median

-21.71 -21.76 -21.75 -21.75 -21.23 -21.11 -21.11 -21.10

-21.26 -21.19 -21.15 -21.05 -20.78 -20.61 -20.63 -20.63
lower hinge

-21.29 -21.23 -21.20 -21.10 -20.79 -20.60 -20.62 -20.62

-19.82 -19.78 -19.59 -19.43 -19.57 -19.19 -18.99 -18.74
minimum

-19.73 -19.54 -19.44 -19.18 -19.50 -18.91 -18.81 -18.55

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-27.52 -28.42 -28.05 -27.84 -27.99 -27.84 -28.00 -27.64
maximum

-27.63 -28.33 -28.14 -28.02 -27.95 -27.95 -27.75 -27.74

-25.13 -25.35 -25.26 -25.14 -21.70 -21.61 -21.69 -21.76
upper hinge

-25.13 -25.31 -25.25 -25.11 -21.74 -21.66 -21.74 -21.82

-23.54 -23.55 -23.46 -23.30 -20.69 -20.53 -20.63 -20.66
sSURE median

-23.54 -23.60 -23.51 -23.33 -20.71 -20.54 -20.63 -20.67

-22.62 -22.20 -22.17 -22.01 -19.89 -19.58 -19.60 -19.57
lower hinge

-22.62 -22.21 -22.19 -22.02 -19.89 -19.56 -19.57 -19.54

-18.20 -18.30 -18.19 -17.74 -16.98 -16.92 -16.96 -16.68
minimum

-18.14 -18.21 -18.08 -17.66 -16.95 -16.85 -16.93 -16.59

Table 2: Boxplot statistics of log VMSE for different thresholding rules with either sigma1 (black)

or sigma2 (gray) noise estimation using different wavelet families.
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Figure 16: Boxplots of log AMSE (top) and log VMSE (bottom) for ST1, ST2, DXglob-lin,
hUNIV-Haar and sSURE-D2.

VMSEmethod 1 and VMSEmethod 2 are build as in Section 4 in Heim et al. (2007). Where pre-

viously results from the B-spline based SVCM were contrasted with those obtained by ST2

(Heim et al., 2007, Fig. 5), wavelet filtered tensor estimates are now related to ST2 and to

each other. Figure 17 contains the maps of log(VMSEhUNIV-Haar/VMSEsSURE-D2) in the up-

per right, log(VMSEhUNIV-Haar/VMSEST2) in the lower left and log(VMSEsSURE-D2/VMSEST2)

in the lower right corner. The interpretation is as follows: Rose colors indicate superiority

of the numerator, while green colors hint to a better performance of denominator method.

As obvious from the rose color dominance, both wavelet approaches outperform the stan-

dard voxelwise regression followed by Gaussian smoothing (bottom subfigures). In the

interspiral space, however, ST2 shows higher accuracy. This becomes particularly evident

when compared to sSURE-D2 (bottom right). The green pattern furthermore gives rise

to the presumption of Gibb’s artifacts caused by sSURE-D2. This phenomenon might

be traceable in the estimates themselves (Fig. 18). In general, the wavelet filters seem

to outperform the B-spline SVCMs with respect to background smoothness. This can be

concluded without explicit comparison of the two methods (B-splines or wavelets), since
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ST2 represents the benchmark in both figures 5 (Heim et al., 2007) and 17. However,

the behavior at ridges is not as stable as in the B-spline case. For example, the wavelet

approaches have difficulties to reproduce signals of low intensity (green spots in the fifth

and sixth column of bottom maps).

As it can be judged from the upper right subfigure, hUNIV-Haar performs better at

edges and yields smoother background in the first and second diagonal element, whereas

sSURE-D2 primarily succeeds better in catching up the signal magnitude at ridges.

original β1 original β2 original β3 original β4 original β5 original β6 β̂1 error−ratio β̂2 error−ratio β̂3 error−ratio β̂4 error−ratio β̂5 error−ratio β̂6 error−ratio
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Figure 17: Template coefficient surfaces (top left) correspond to the six elements of the 3d tensor
field. Log ratio of VMSE is given for both hUNIV-Haar (bottom left) and sSURE-D2 approach
(bottom right) relative to ST2. Top right shows the log ratio of VMSE from hUNIV-Haar versus
sSURE-D2. All subfigures show exemplary middle slices 14 to 18.
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The white cross-shaped pattern hints to the presence of blocking artifacts, i. e. effects at

different scales that are due to the squared support of the Haar wavelet. Blocking artifacts

do not emerge with the D2 wavelet (bottom right).

Facing ambigously informative figures of the error ratios, a look onto the estimated dif-

fusion tensors themselves seems worthwhile. For display feasibility, the focus is limited

on the middle slices 14 to 18 and on the first diagonal tensor element for which error

extremes as well as Gibbs and blocking distortions are both present (see Fig. 17). Figure

18 compares the original noise-free template with the standard approaches, the SVCM

method and the wavelet filters applied to data from one exemplary simulation run.

original ST1 ST2 DXglob−lin hUNIV−Haar sSURE−D2

Figure 18: Surface excerpt (slices 14 to 18) showing the first diagonal diffusion tensor element
as noise-free template (left) and estimated using voxelwise regression (ST1) with subsequent
Gaussian smoothing (ST2) and space-varying coefficient approaches based on B-splines (DXglob-
lin), Haar (hUNIV-Haar) or Daubechies wavelets (sSURE-D2).
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Depending on the printing quality, all method specific drawbacks and advantages are more

or less apparent at a glance:

ST1 Mere voxelwise regression completely lacks spatial smoothness though the signal

magnitude seems to be caught satisfactorily in fiber voxels.

ST2 Consecutive application of a Gaussian kernel with FWHM equal to 0.75 voxels

seriously oversmoothes, in particular in z-direction.

DXglob-lin Space-varying coefficient surfaces designed with penalized B-splines are less

overregulated, contrasts are enhanced compared to ST2. Gibbs-like shadows are

reduced to a minimum using linear basis functions.

hUNIV-Haar Features are correctly mapped regarding brightness and edge location.

Smoothing is manifest but at the expense of blocking artifacts. For instance, partial

failure of the spiral pathway happens at eight o’clock, top row. In the background,

the Haar basis function is even fully recognizable (compare to Fig. 8). Gibbs phe-

nomena are best visible as black voxels neighboring the bright curve segments.

sSURE-D2 For the first time, edge preservation appears satisfactorily balanced to

smoothing. The interspiral space is slightly more turbulent for the D2 than for

the Haar approach. Gibbs artifacts are still present, whereas blocking does hardly

disturb the visual impression.

4 Real life example

In this section, an exemplary DTI data set of the human brain is processed using the

wavelet filter that is rated best in the above simulations. For this purpose, the input data

consists of six measurement repeats, each comprising 16 successive slices of originally

128 × 128 voxels. Although in-plane decomposition can in principle be determined by

j0 = 7, the possible maximum decomposition level in z-direction limits the thresholding

to coefficients at the first four levels. This way, a realistic noise cutoff frequency is met at

least within plane. Given the structural variety and the larger dimensions of real data,

symmlets and minimum bandwidth wavelets serve for re-examination. The analysis is
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therefore conducted with the wavelet families D2, LA4 as well as MB4 together with

SURE shrinkage and level independent noise estimate (sigma1). After tensor estimation,

the volume is resized to the same six slices of 90× 75 voxels as used in Heim et al. (2007,

Chap. 5).

A main difficulty, that did not occur with simulated samples, results from log-Cholesky

parametrization of the voxel-by-voxel estimated tensor data (Eq. (11)). In few voxels,

the Cholesky decomposition is not feasible straight away. Owing to the various sources

of noise in MR imaging or to signal drop, the ST1 based covariance matrices are singular

in about 0.5% of all 40500 voxels. For the locations of the affected voxels refer to Fig. 19.

According to Skare et al. (2000b), negative eigenvalues are more likely with increasing

noise and increasing FA. The latter statement holds for most of the affected voxels that

seem to lie at the boundary to the ventricles where highly organized white matter is

in direct neighborhood (Fig. 19). Hence, ensuring positive definiteness is particularly

important with respect to fiber tracking. As remedy in such cases, small positive amounts

are added on the diagonal elements prior to Cholesky decomposition.

Figure 19: Mask of six middle human brain slices with problematic voxels superimposed in white.
These indicate where the voxelwise estimates of the diffusion tensor are singular.

The problem of visualizing an estimated tensor field is equivalent to the problem of visu-

alizing a vector field along with a scalar function on the same plot. Apart from showing

the principal eigenvectors together with a color-code for the degree of local anisotropy, FA

color-encoded ellipsoids are most intuitive and also somewhat more informative at first

sight. For example, planar-shaped tensors may hint to an underlying fiber crossing or

branching. Figure 20 was generated using the software module ’TensorViewer’ developed

by (Fillard and Toussaint, 2006).

Clearly, ST1 leads to the most speckled impression (Fig. 20 (a)). Interestlingly, the result

is hardly discernible from the filtered version involving D4 wavelets (Fig. 20 (d)). The
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Figure 20: An exemplary slice of the 3d diffusion tensor field estimated from human DTI data
using (a) ST1, (b) ST2, (c) DXglob-lin and (d) sSURE-D4, and displayed as FA color-encoded
ellipsoids. The colorization is related to the principal diffusion direction and, thus, indicates left-
right (red), anterior-posterior (green), or superior-inferior (blue) orientation of the associated
fiber bundle. Intermediate directions are represented by the corresponding combination color.

disturbing effect is triggered by a few ellipsoids of bigger size than average, in particular

present at the slice center and border. These tensors can be assigned to full or partial

volumes of cerebro-spinal fluid (CSF), e. g. to the central ventricles where diffusion is

free. Usually, a mask, built on the basis of the b0 image, is applied to sort out CSF. In

addition, these voxels are often excluded from fiber tractography. Since no masking was

performed prior to estimation, the wavelet approach smears the ventricle compartement

into the splenium of the corpus callosum, i. e. into the green-yellow-red-yellow-green c-

shape. This result is contrary to what is anticipated from wavelet theory and lacks

justification. Also, regularization is hardly given though presumably paramount for fiber
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tractography. The results obtained by LA4 and MB4 wavelets do not differ significantly.

In contrast, the tensor fields in Fig. 20 (b) and (c) convince by apparent smoothness.

However, Gaussian kernel smoothing (Fig. 20 (b)) leads to overblurring in comparison

to the SVCM with penalized B-splines. For example, the red-colored voxels in genu

and splenium of the corpus callosum are less cigar-shaped though this region is highly

anisotropic. Also in red, u-shaped region in grey matter contain more planar ellipsoids.

5 Discussion

Various simulation studies have been conducted accounting for different noise estimates,

the use of different wavelet families and the application of different thresholding values

and thresholding rules. As expected, scale dependent noise estimation proved to be inad-

equate to simulated data imposed with Gaussian white noise. Hard thresholding allows

to reproduce structural aspects in almost full accuracy while uniform regions are still sub-

jected to some error. Soft thresholding generally leads to smoother results, i. e. a correctly

smooth background but also slightly blurred features. Depending on the application of

interest, the soft shrinkage results are clearly to be favored with their moderate and adap-

tive regularization. The use of Haar wavelets should be avoided since undesired blocking

effects are likely to emerge and the outcome equals a (higher-dimensional) step function.

Least asymmetric separable 3d wavelets as well as minimum bandwidth wavelets showed

neither beneficial nor detrimental over the use of Daubechies extremal phase family.

In contrast to former methods such as simple kernel smoothing or the B-spline based

SVCM, the multiscale analysis with wavelets yields significantly less erroneous results

due to the wavelets’ built-in spatial-adaptivity. Space-frequency resolution particularly

matters for the sensitivity to local curvature changes. B-splines (degree > 0), for example,

cannot model aprupt changes due to their wide and overlapping support regions.

However, comparative error maps pointed to Gibbs-like phenomena accompanying wavelet

filtering. Although these Gibbs artifacts are much more damped compared to the output

from B-spline SVCMs, orthogonal wavelet analysis is not able to remedy them completely.

Jansen (2001, p. 120) derives a theoretical explanation for the oscillation causes by looking

at the optimal and experimental thresholding rules. According to (Jansen, 2001), hard
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thresholding is more biased than soft thresholding and, thus, more likely to develop over-

and undershoots near singularities. Yet, in the given simulation study, also the wavelet

reconstruction using SURE shrinkage shows oscillatory behavior at fiber rims. Another

reasoning considers the lack of translation invariance inherent to the DWT as origin of

Gibbs effects (see Ogden (1997, p. 183) and the references therein). The use of the

translation invariant wavelet transform (MODWT) may therefore be recommended.

Rather bizarre appears the fact that an SVCM involving Haar wavelets yields the best

reconstruction in terms of MSE. The discrepancy between the resulting 3d step function

and the intended smooth surface tackles the basic problem of the most relevant mea-

sure of error. Obviously, the “mean of squared errors (MSE) does not correspond to a

human perception of generality. Since our visual system seems to work on a multiscale

basis, a norm based on a multiresolution decomposition might be a better expression of

visual quality” (Jansen, 2001, p. 49). In conclusion, the problem raises the question af-

ter the usefulness of theoretical optimality for experimental setups. Several proposals to

encounter this “paradoxon” are made in Marron and Tsybakov (1995).

Finally, note that smaller errors of the tensor estimates do not necessarily imply smaller

errors of the principal eigenvectors. Due to the non-linearity of the eigen decomposition,

directional information of the main diffusivity could remain stable despite large AMSE

and VMSE errors of the tensor entries. Recall that any tracking algorithm primarily

exploit the eigenvectors. Hence, future studies should at least investigate the angular

distribution between noise-free and reconstructed eigenvectors as well.

Concerning the human brain example, the SVCM on the basis of penalized linear B-

splines yields the best visual result. Gaussian kernel smoothing leads to oversmoothing, as

excepted, and voxelwise tensor estimation is obviously not apt for the ultimate goal of fiber

tracking. Against the theoretical background and the results obtained in the simulation

study, the wavelet approach fails in producing an appropriately regularized tensor field.

Moreover, the edge-preserving property is challenged by unmasked CSF voxels. This

disappointing result calls for further investigation of available wavelet transforms and

thresholding mechanisms. Last but not least, the wavelet procedure needs to be adapted

to the non-unit voxel size that is common in practice. Either the use of an anisotropic
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basis or a scaling step seems advisable.

6 Proposal for a wavelet based SVCM

Ordinary least squares regression represents the standard approach to assess the diffusion

tensor voxel-by-voxel. Subsequent wavelet filtering proved capable to preserve edges,

while a low smoothing effect could be detected from the real life example (Fig. 4). More

experience with this kind of basis functions is therefore needed, in particular in view of

tractography. For the time being, let me sketch a possible solution to the original problem.

The goal is to improve the B-spline based SVCM by substituting B-splines with wavelets.

It has been substantially argued in Heim et al. (2007) that the covariance matrix elements

are preferentially modelled non-parametrically as space-varying coefficient surfaces:

βj = Bγj, j = 1, . . . , p.

The matrix B stands for B-splines and contains the basis functions evaluated at grid

points s, s = 1, . . . , n, as employed previously. A naive proposal would simply exchange

B with the matrix W of wavelet basis functions. This is however hardly recommendable

with Mallat’s efficient pyramidal algorithm at hand (p. 14). Using the filterbank imple-

mentation, merely the wavelet coefficients are computed but not the wavelets themselves.

Also, an analytical expression of the basis functions is often not available. Hence, the

proposal must ”eliminate” the matrix W as pointed out below.

A rearrangement of the r repeatedly measured (n1 × n2 × n3)-dimensional diffusion

weighted images into the vector y,

y = (y1
′, . . . ,yr

′)′ = (y1,1, . . . , yn,1, . . . . . . , y1,r, . . . , yn,r)
′, n = n1n2n3,

causes a swap of the Kronecker product in the joint model (Heim et al., 2007, Eq. (4))

for the n separate regression equations of the standard approach (ST1):

y =

p
∑

j=1

(
X(·, j) ⊗ In

)
βj + ε, ε ∼ N(0, σ2Irn). (13)
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The jth vectorized surface βj, βj = (βj(1), . . . , βj(n))′, is projected onto 3d tensor product

wavelets:

βj = Wγj, j = 1, . . . , p,

where W is (n × n)-dimensional and encodes for the matrix of evaluated wavelet basis

functions. In an image of dyadic dimensions, there are always as many wavelets as grid

points. This allows to restate Eq. (13):

y = (X⊗ W)γ + ε, (14)

with (r × p)-dimensional regressor matrix X and (pn × 1)-dimensional vector of wavelet

coefficients γ. For further reformulation, recall the basic properties of the Kronecker

product (Dierckx, 1993, p. 170), where the vector operator vec(X) returns the columnwise

stacked matrix X:

(A⊗ B)′ = A′ ⊗ B′ (15)

(A⊗ B)−1 = A−1 ⊗ B−1 (16)

(AB) ⊗ (CD) = (A⊗ C)(B ⊗ D) (17)

vec(Xn×m Bm×q) = (B′ ⊗ In)vec(X) (18)
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Subsequently, the OLS estimate of γ is derived from Eq. (14):

γ̂OLS =
(
(X ⊗ W)′(X ⊗ W)

)−1
(X⊗ W)′y

(15)−(17)
=

(
(X′X)−1 ⊗ (W′W

︸ ︷︷ ︸

In

)−1
)
(X′ ⊗ W′)y

(17)
=

(
(X′X)−1X′ ⊗ W′)y

(17)
=

(
(X′X)−1X′ ⊗ In

)
(Ir ⊗ W′)y

=



(X′X)−1X′
︸ ︷︷ ︸

p×r

⊗In












W′y1

...

W′yr








nr×1

(19)

(18)
= vec




(
W′y1| · · · |W′yr

)

︸ ︷︷ ︸

n×r

X(X′X)−1





=








(
W′y1| · · · |W′yr

)
(X(X′X)−1) (·, 1)

...
(
W′y1| · · · |W′yr

)
(X(X′X)−1) (·, p)








=








γ̂OLS

1

...

γ̂OLS

p








Note that the vector in Eq. (19) contains the 3d wavelet transforms, W′yi, i = 1, . . . , r,

of the raw images, thereby “eliminating” W. If thresholding was directly applied to these

wavelet coefficients, the proposal would work in analogy to the approach e. g. considered

in Hahn et al. (2001), where smoothing comes prior to tensor estimation. In Eq. (19),

the tensor model is however fitted in the wavelet domain. Hence, model (14) could

alternatively be stated:

yW = (X ⊗ In)γ + εW,

with yW = (Ir ⊗ W′)y and Var(εW) = Var
(
(Ir ⊗ W′)ε

)
= σ2Irn.

The first approximations γ̂OLS

j to the amplitudes of the space-varying coefficient surfaces

are independently thresholded using rule δ and cutoff value λj, j = 1, . . . , p:

γ̂λj ,j = δλj

(
γ̂OLS

j

)
.
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Finally, smooth estimates

β̂j = Wγ̂λj ,j

can be obtained for the varying coefficient surfaces and thus the 3d diffusion tensor ele-

ments. The thresholding mechanism certainly represents the crucial part of the proposed

wavelet based SVCM since it determines the amount of shrinkage. For example, a sur-

face specific universal threshold could be applied in combination with either hard or soft

thresholding:

λUNIV

j = σj

√

2 log(n).

According to Donoho and Johnstone (1994), the noise level σj is estimated on the basis of

the contributions from the n/8 high frequency components. Assume that these elements

of the wavelet transform are stored on positions 1, . . . , n/8 in vector W′yi. Thus each

of the first n/8 rows of
(
W′y1| · · · |W′yr

)
contains the weights associated with a specific

high frequency wavelet in the r raw images. The final noise estimation would then involve

the linear combinations of those r weights with the jth column of X(X′X)−1 for the given

totality of high frequency wavelets. See Section 1.4 for details on alternative methods.

In conclusion, the outlined SVCM permits to expect reasonable if not even better results

than generated by the B-spline based SVCM. Yet, first endeavors point at concealed

problems. A thorough implementation and investigation of performance is deferred to

future research.
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