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Introducing and evaluating a Gibbs sampler for spatial Poisson

regression models

Susanne Gschlößl Claudia Czado ∗

March 30, 2005

Abstract

In this paper we present a Gibbs sampler for a Poisson model including spatial effects.

Frühwirth-Schnatter and Wagner (2004b) show that by data augmentation via the introduc-

tion of two sequences of latent variables a Poisson regression model can be transformed into

a normal linear model. We show how this methodology can be extended to spatial Poisson

regression models and give details of the resulting Gibbs sampler. In particular, the influence

of model parameterisation and different update strategies on the mixing of the MCMC chains

are discussed. The developed Gibbs samplers are analysed in two simulation studies and ap-

plied to model the expected number of claims for policyholders of a German car insurance

data set. In general, both large and small simulated spatial effects are estimated accurately

by the Gibbs samplers and reasonable low autocorrelations are obtained when the data vari-

ability is rather large. However, for data with very low heterogeneity, the autocorrelations

resulting from the Gibbs samplers are very high, withdrawing the computational advantage

over a Metropolis Hastings independence sampler which exhibits very low autocorrelations

in all settings.

Key words: spatial Poisson count data, Gibbs sampler, data augmentation, model parameteri-

sation, block updates, collapsing
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1 Introduction

The Poisson distribution is a common model for count data. Often, a regression is performed

on the mean of the Poisson model taking covariates into account. If the data are geographically

distributed, spatial effects may be additionally introduced to allow for spatial dependencies.

Consider for example data of policyholders from a car insurance company distributed on J geo-

graphical regions. Since the risk for claims may depend on the region the policyholder is living in,

models for the expected number of claims for each policyholder might be improved by allowing

for spatial effects. In a Bayesian approach, a conditional autoregressive model (CAR), see for

example Pettitt et al. (2002), is a popular spatial prior allowing for a certain spatial dependency

structure.

Since the full conditional distributions of a spatial Poisson regression model do not follow any

standard distribution, usually single component Metropolis Hasting (MH) steps are performed

in a MCMC setting, see for example Gschlößl and Czado (2005). However, this requires the

choice of appropriate proposal distributions in order to achieve reasonable acceptance rates and

a good mixing of the MCMC chains. Advanced independence proposals, like for example a nor-

mal proposal with the same mode and inverse curvature at the mode as the target distribution,

can lead to high acceptance rates and low autocorrelations but involve considerable computa-

tional efforts. Knorr-Held and Rue (2002) discuss efficient block sampling MH algorithms for

Markov random field models in disease mapping, based on the methodology developed in Rue

(2001). Haran et al. (2003) study MH algorithms with proposal distributions based on Struc-

tured MCMC, introduced by Sargent et al. (2000), for spatial Poisson models.

In this paper we describe a straightforward Gibbs sampler for spatial Poisson regression models

based on the approach by Frühwirth-Schnatter and Wagner (2004a) who developed a Gibbs sam-

pler for Poisson regression models for small counts. They show that by data augmentation via

the introduction of two sequences of latent variables a linear normal model is obtained. The basic

idea is to identify Poisson observations as the number of jumps of an unobserved Poisson process.

The first step of the data augmentation consists in the introduction of unobserved inter-arrival

times of the Poisson process as latent variables. Thus, linearity of the observation equation is

obtained, however the resulting model is still non-normal. In a second step the non-normal error

term is approximated by a mixture of normal distributions and the component indicators of

these mixtures are introduced as the second sequence of latent variables. Conditioning on both

the inter-arrival times and the component indicators a linear normal model is obtained and a

Gibbs sampler can be applied.

In Frühwirth-Schnatter and Wagner (2004b) an application of this Gibbs sampler to state space

models is given, in Frühwirth-Schnatter and Wagner (2004a) the same methodology is applied

for standard Poisson regression models and Poisson regression models with overdispersion. Using
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a similar methodology, a Gibbs sampler for logistic models is developed in Frühwirth-Schnatter

and Waldl (2004). In this paper we show that this Gibbs sampler for a Poisson regression model

can be extended to a spatial Poisson regression model in a straightforward manner.

It is well known, that mixing and convergence of the Gibbs sampler depends crucially on sev-

eral implementation issues, see for example Dellaportas and Roberts (2003) for an overview

and Roberts and Sahu (1997) for a detailed discussion. High autocorrelations can be reduced

by updating several parameters in one block or using collapsed algorithms, another important

issue is model parameterisation. Gelfand et al. (1995) discuss the efficiency of centered and non-

centered parameterisation for hierarchical normal linear models, Papaspiliopoulos et al. (2003)

address parameterisation issues for several classes of hierarchical models and introduce partially

non-centered parameterisations. An overview on model parameterisations and efficiency is given

in Frühwirth-Schnatter (2004) with special emphasis on state space models.

We consider both centered and non-centered parameterisations for our model and discuss vari-

ous algorithmic schemes. In a simulation study we examine algorithms updating the parameters

in several blocks as well as collapsed algorithms. In general, the lowest autocorrelations are ob-

tained when a collapsed algorithm is used. The estimation of both small and large simulated

spatial effects is very accurate, the mixing of the Gibbs samplers is reasonable well when the

variability of the data is rather large. However, if the heterogeneity of the data is very low, high

autocorrelations are obtained for all Gibbs sampler schemes, diminishing the computational ad-

vantage in comparison to a single component MH sampler with independence proposal.

This paper is organized as follows. In Section 2 the spatial Poisson regression model is specified

and the two steps of the data augmentation scheme are described for this specific model. Details

for the MCMC update of all parameters and latent variables are given, in particular several

algorithmic schemes are considered for the update of the regression parameters and the spatial

effects using both centered and non-centered model parameterisations. In Section 3 the devel-

oped Gibbs sampler schemes are examined and compared to a single component MH sampler

with independence proposals in two simulation studys. In the first study, the influence of the size

of the spatial effects on the resulting autocorrelations and parameter estimation is addressed,

while the second study considers the influence of the data heterogeneity on the performance of

the Gibbs samplers. We also apply the Gibbs samplers to model the expected number of claims

in a real data set from a German car insurance company. A comparison of the computational

costs of the considered samplers is given in Section 4, Section 5 gives a summary and draws

conclusions.
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2 Data augmentation and Gibbs sampler for spatial Poisson re-

gression models

We assume that observations Yi, i = 1, .., n observed at J regions follow a Poisson model

yi ∼ Poisson(µi). (2.1)

The mean µi is specified by

µi = ti exp(z′iα) := ti exp(x′
iβ + v′

iγ) = ti exp(x′
iβ + γR(i)) (2.2)

where z′i = (x′
i,v

′
i) denotes the covariate vector xi = (1, xi1, .., xip)′ and the incidence vector

vi = (vi1, .., viJ )′ for the regions, i.e. vij =

{
1, if R(i) = j

0 otherwise
, with R(i) ∈ {1, .., J} denoting

the region of the i-th observation. Further α = (β,γ)′ denotes the vector of regression parameters

β = (β0, β1, .., βp) and spatial effects γ = (γ1, ..γJ). By the inclusion of spatial effects we allow

for geographical differences in the J regions. The quantity ti gives the exposure time for the i-th

observation.

We assume a normal prior distribution centered around zero with a large standard deviation for

the regression parameters β, in particular

β ∼ Np+1(0, V0)

where V0 = τ2Ip+1 with τ2 = 100. Here Np(µ,Σ) denotes the p-variate Normal distribution with

mean µ and covariance matrix Σ. For the spatial effects a conditional autoregressive (CAR)

prior based on Pettitt et al. (2002) is used. In particular, we assume

γ|ψ, σ2 ∼ NJ(0, σ2Q−1)

where the elements of the precision matrix Q = (Qij), i, j = 1, .., J are given by

Qij =

⎧⎪⎪⎨
⎪⎪⎩

1 + |ψ| · Ni i = j

−ψ i �= j, i ∼ j

0 otherwise

. (2.3)

We write i ∼ j for regions i and j which are contiguous and assume regions to be neighbours

if they share a common border. Ni denotes the number of neighbours of region i. The spatial

hyperparameter ψ determines the degree of spatial dependence, for ψ = 0 independence of the

spatial effects is obtained whereas for ψ → ∞ the degree of spatial dependency increases. Note,

that this prior is a proper distribution in contrast to the well known intrinsic CAR model in-

troduced by Besag and Kooperberg (1995). Other proper spatial prior distributions have been

considered, see for example Czado and Prokopenko (2004) who use a modification of Model (2.3)
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and Sun et al. (2000).

Therefore, we have a multivariate normal prior distribution for the regression and spatial pa-

rameters α which is given by

α|θ ∼ Np+1+J(0,Σ) (2.4)

with Σ =

(
V0 0

0 σ2Q−1

)
. For the spatial hyperparameters θ = (ψ, σ2) the proper prior distri-

butions

ψ ∼ 1
(1 + ψ)2

and σ2 ∼ IGamma(1, 0.005)

are assumed. The parameterisation of this model described by Observation Equation (2.2) and

Prior Specification (2.4) is called non-centered in the mean, since the intercept β0 appears

in the observation equation, but not in the spatial prior formulation. Other possible model

parameterisations include parameterisations additionally non-centered in the scale and variance

of the spatial prior as well as a centered parameterisation, where the intercept β0 only appears

as the mean of the spatial prior. These parameterisations are summarized in Table 1. For a

summary on existing parameterisation techniques see for example Frühwirth-Schnatter (2004).

Initially, our investigations are based on the non-centered mean parameterisation given by (2.2)

parameterisation spatial prior observation equation

centered γc ∼ N(β0, σ
2Q−1) µi = ti exp(x′

i−0β−0 + v′
iγ

c)

non-centered mean γ ∼ N(0, σ2Q−1) µi = ti exp(β0 + x′
i−0β−0 + v′

iγ)

non-centered mean and scale γ∗ ∼ N(0, Q−1) µi = ti exp(β0 + x′
i−0β−0 + σv′

iγ
∗)

non-centered mean and variance γ∗∗ ∼ N(0, I) µi = ti exp(β0 + x′
i−0β−0 + σv′

iLγ∗∗)

where LL′ = Q−1

Table 1: Spatial prior and observation equation for different model parameterisations, where

xi−0 := (xi1, .., xip)′ and β−0 := (β1, .., βp)

and (2.4). Necessary changes when other parameterisations are used will be indicated specifically.

2.1 Step 1: Introduction of hidden inter-arrival times

As indicated in the introduction, the idea is to regard the Poisson observations yi, i = 1, .., n, as

the number of jumps of an unobserved Poisson process with intensity µi. For each observation

yi we introduce yi + 1 hidden inter-arrival times τij, j = 1, .., yi + 1. From the properties of a

Poisson process, see for example Mikosch (2004), it is well known that the inter-arrival times
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are independent and follow an exponential distribution with parameter µi, i.e.

τij|α ∼ Exponential(µi) =
Exponential(1)

µi
.

Taking the logarithm we obtain

log τij |α = − log µi + εij

= − log ti − z′iα + εij , εij ∼ log(Exponential(1)). (2.5)

Denote by τ = {τij, i = 1, .., n, j = 1, .., yi + 1} the collection of all inter-arrival times. Then

the posterior distribution of α conditional on τ

p(α|θ,y, τ ) = p(α|θ, τ )

is independent of y. Conditional on τ we are now dealing with model (2.5) which is linear in

the parameters α, but still has a non-normal error term.

2.2 Step 2: Mixture approximation for error term

The second step of the data augmentation scheme eliminates the non-normality of model (2.5).

The error term in (2.5) can be approximated by a mixture of R normal distributions with mean

mr, variance s2
r and weight wr, r = 1, .., R, i.e.

p(εij) = exp(εij − exp(εij)) ≈
R∑

r=1

wrfN (εij ;mr, s
2
r),

where fN(·;mr, s
2
r) denotes the density of the normal distribution with mean mr and variance

s2
r. Frühwirth-Schnatter and Wagner (2004b) show that R = 5 is sufficient to obtain a close

approximation to the normal distribution. They also give the corresponding values for mr, s
2
r

and wr. The second step of the data augmentation then consists in the introduction of the

component indicators rij ∈ {1, .., 5} as latent variables. We denote the set of all component

indicators by R = {rij , i = 1, .., n, j = 1, .., yi + 1}. Conditional on R we have

log τij |α, rij = − log ti − z′iα + mrij + εij , εij ∼ N(0, s2
rij

),

i.e.

(log τij + log ti − mrij )|α, rij ∼ N(−z′iα, s2
rij

). (2.6)

Therefore we are dealing with a normal model which is linear in α now. The posterior distribution

of α conditional on τ and R is given by

p(α|θ, τ ,R) ∝ π(α|θ)
n∏

i=1

yi+1∏
j=1

1
srij

exp
[
− 1

2s2
rij

(log τij + log ti − mrij + z′iα)2
]
.
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Since the prior distribution π(α|θ) is normal as well, the resulting posterior distribution is

multivariate normal and a Gibbs sampler can be applied. Note, that by performing this data

augmentation we are no longer dealing with n but with
∑n

i=1(yi + 1) observations. Therefore

this Gibbs Sampler is mainly useful for count data with small counts only, otherwise the data

set might get very large.

2.3 Algorithmic scheme

The algorithmic scheme for the above Gibbs Sampler is the following:

Choose appropriate starting values for the component indicators R and the inter-arrival times

τ .

(1) sample regression and spatial parameters α = (β,γ)′ given τ ,R,θ

(2) sample spatial hyperparameters θ given α

(3) sample the inter-arrival times τij given α,y

(4) sample the component indicators rij given τ ,α

Step (1) consists of sampling from a multivariate normal distribution. This can be done in

one block, however it might be computationally more efficient to perform an update in several

smaller blocks. We will consider several update strategies for step (1) later in more detail.

The spatial hyperparameter ψ is updated using a Metropolis Hastings step, whereas σ2 can be

updated using a Gibbs step. Steps (3) and (4), elaborated in Frühwirth-Schnatter and Wagner

(2004b), are described in the following sections.

2.4 Sampling the inter-arrival times

Given y and α, the inter-arrival times for different observations i = 1, .., n are independent. For

fixed i however, τi1, .., τi,yi+1 are stochastically dependent, but independent of the component

indicators R. The inter-arrival times τi1, .., τiyi are independent of α and only depend on the

number of jumps, whereas τi,yi+1 depends on the model parameters. Using this we have

p(τ |y,α,R) =
n∏

i=1

p(τi1, .., τiyi , τi,yi+1|yi,α)

=
n∏

i=1

p(τi,yi+1|yi,α, τi1, .., τiyi)p(τi1, .., τiyi |yi)

It is well known that, given yi = n, the n arrival times of a Poisson process are distributed as

the order statistics of n U([0, 1]) distributed random variables, see for example Mikosch (2004).

The last inter-arrival time τi,yi+1, given yi, τi1, .., τiyi , is exponentially distributed with mean
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1
µi

= 1
ti exp(z′iα)

truncated at 1 −∑yi
j=1 τij . Therefore the inter-arrival times can be sampled as

follows:

• If yi > 0

– sample yi random numbers ui1, .., uiyi ∼ U([0, 1])

– sort these random numbers: ui,(1), .., ui,(yi)

– define τij as the increments τij = ui,(j) − ui,(j−1), j = 1, .., yi where uj,(0) := 0

– sample τi,yi+1 = 1 −∑yi
j=1 τij + ζi, where ζi ∼ Exponential(µi)

• If yi = 0 sample τi1 = 1 + ζi, where ζi ∼ Exponential(µi)

2.5 Sampling the component indicators

The component indicators R are mutually independent given τ ,α, therefore

p(R|τ ,α) =
n∏

i=1

yi+1∏
j=1

p(rij |τij ,α)

Further

p(rij = k|τij,α) =
p(rij = k, τij ,α)

p(τij,α)
=

p(τij|rij = k,α)p(rij = k)
p(τij,α)

∝ p(τij|rij = k,α)wk (2.7)

since wk = p(rij = k). Since log τij|α, rij ∼ N(− log µi +mrij , s
2
rij

), τij is log normal distributed,

i.e.

p(τij |rij = k,α) ∝ 1
skτij

exp
[
−1

2

( log(τij) + log µi − mk

sk

)2]
.

rij can therefore be sampled from the discrete distribution (2.7) with R = 5 categories.

2.6 Starting values

Starting values for the component indicators rij are obtained by drawing random numbers from

1 to R. For τij starting values are generated according to the sampling procedure described in

Section 2.4. For zero observations we sample ζi ∼ Exponential(0.1), for observations greater

zero ζi ∼ Exponential(yi), as suggested in Frühwirth-Schnatter and Wagner (2004b).

2.7 Sampling α

For α several update schemes are possible and will be discussed in this section. For notational

convenience we define with N :=
∑n

i=1(yi + 1)

τ̃ = (τ̃1, .., τ̃N ) := (τ11, .., τ1,y1+1, τ21, .., τ2,y2+1, .., τn1, .., τn,yn+1),
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ε̃ = (ε̃1, .., ε̃N ) := (ε11, .., ε1,y1+1, ε21, .., ε2,y2+1, .., εn1, .., εn,yn+1),

m̃ = (m̃1, .., m̃N ) := (mr11 , ..,mr1,y1+1 ,mr21 , ..,mr2,y2+1 , ..,mrn1 , ..,mrn,yn+1)

and

s̃2 = (s̃2
1, .., s̃

2
N ) := (s2

r11
, .., s2

r1,y1+1
, s2

r21
, .., s2

r2,y2+1
, .., s2

rn1
, .., s2

rn,yn+1
).

Let t̃ = (t̃1, .., t̃N ) denote the vector where ti is repeated yi + 1 times. Further define

ỹ = (ỹ1, .., ỹN ) := (log τ̃1 − m̃1 + log t̃1, .., log τ̃N − m̃N + log t̃N ).

Using this notation (2.6) is written as

ỹi|α,R ∼ N(−z̃′iα, s̃2
i )

where z̃ =

⎛
⎜⎜⎝

z̃′1
...

z̃′N

⎞
⎟⎟⎠ is a N × (p + 1 + J)-matrix where zi is repeated yi + 1 times.

2.7.1 Joint update of α = (β,γ)′

For a joint update of the regression parameters β and the spatial effects γ in one block we have

to consider the full conditional of α = (β,γ)′ which is given by

p(α|θ, τ ,R) ∝ π(α|θ)
N∏

i=1

exp
(
− 1

2s̃2
i

(ỹi + z̃′iα)2
)

∝ exp
{
−1

2

[
α′Σ−1α +

N∑
i=1

1
s̃2
i

(ỹi + z̃′iα)2
]}

∝ exp
{
−1

2

[
α′Σαα − 2α′µα

]}
,

where Σα := Σ−1 +
∑N

i=1
1
s̃2
i
z̃iz̃′i and µα := −∑N

i=1
1
s̃2
i
z̃iỹi.

Hence,

α|θ, τ ,R ∼ Np+1+J(Σ−1
α µα,Σ−1

α ).

2.7.2 Separate update of β and γ

The calculation of the posterior covariance matrix Σ−1
α in Section 2.7.1 can be computationally

intensive if the number of regression parameters and spatial effects is large. Therefore it might
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be more efficient to update β and γ in two separate blocks. Recall that z̃′ = (x̃′, ṽ′). The full

conditional of β is given by

p(β|γ,θ, τ ,R) ∝ π(β)
N∏

i=1

exp
(
− 1

2s̃2
i

(ỹi + x̃′
iβ + γR(i))

2
)

∝ exp
{
−1

2

[
β′V −1

0 β +
N∑

i=1

1
s̃2
i

(ỹi + x̃′
iβ + γR(i))

2
]}

∝ exp
{
−1

2

[
β′Σββ − 2β′µβ

]}
,

where Σβ := V −1
0 +

∑N
i=1

1
s̃2
i
x̃ix̃′

i and µβ := −∑N
i=1

1
s̃2
i
x̃i(ỹi + γR(i)).

Hence,

β|γ,θ, τ ,R ∼ Np+1(Σ−1
β µβ,Σ−1

β ).

Similarly, we can show that

γ|β,θ, τ ,R ∼ NJ(Σ−1
γ µγ ,Σ−1

γ ),

where Σγ := 1
σ2 Q +

∑N
i=1

1
s̃2
i
ṽiṽ′

i and µγ := −∑N
i=1

1
s̃2
i
ṽi(ỹi + x̃′

iβ).

2.7.3 Joint update of the intercept β0 and γ

Due to the high correlation between the intercept β0 and the spatial effects γ mixing and

convergence is not very good when β and γ are updated in two separate blocks. Better results are

achieved if we perform a joint block update of β0 and γ whereas the remaining parameters β−0 =

(β1, .., βp) are still updated in one separate block. With this setting the posterior distributions

are given by

β−0|β0,γ,θ, τ ,R ∼ Np(Σ−1
β−0

µβ−0
,Σ−1

β−0
)

and

γ, β0|β−0,θ, τ ,R ∼ NJ+1(Σ−1
γβ0

µγβ0
,Σ−1

γβ0
)

with

Σβ−0 := V −1
0β−0

+
N∑

i=1

1
s̃2
i

x̃β−0ix̃′
β−0i, µβ−0

:= −
N∑

i=1

1
s̃2
i

x̃β−0i(ỹi + γR(i) + β0)

and

Σγβ0 :=

(
τ−2 0

0 1
σ2 Q

)
+

N∑
i=1

1
s̃2
i

(1, ṽi)(1, ṽi)′, µγβ0
:= −

N∑
i=1

1
s̃2
i

(1, ṽi)(ỹi + x̃′
β−0iβ−0).

Here V0β−0 = τ2Ip and x̃β−0i = (x̃i1, .., x̃ip).
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2.7.4 Collapsed algorithm for a model parameterisation with a non-centered mean

Another possibility is to use a collapsed algorithm, that is to integrate out particular components

and perform an update based on the marginal distribution. In our context the joint posterior

distribution of β and γ can be written as

p(β,γ|θ, τ ,R) ∝ p(β|τ ,R)p(γ|β,θ, τ ,R)

where p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ is the marginalised posterior density of β with γ inte-

grated out. It is shown in the Appendix that

β|τ ,R ∼ Np+1(Σ−1
colµcol,Σ

−1
col)

with

Σcol := τ−2I +
N∑

i=1

1
s̃2
i

x̃ix̃′
i − (

N∑
i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽix̃′
i)

and

µcol := (
N∑

i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽiỹi) −
N∑

i=1

1
s̃2
i

x̃iỹi,

where A :=
∑N

i=1
1
s̃2
i
ṽiṽ′

i + σ−2Q.

Step (1) in the algorithmic scheme presented in Section 2.3 is then the following for the

collapsed algorithm:

• sample β from Np+1(Σ−1
colµcol,Σ

−1
col)

• sample γ|β,θ, τ ,R as in Section 2.7.2

2.7.5 Collapsed algorithm for a model parameterisation with a non-centered mean

and scale

Up to now, we only considered models with the non-centered mean parameterisation specified

by (2.2) and spatial prior γ|ψ, σ ∼ NJ(0, σ2Q−1). In this section we consider a model where the

prior of the spatial effects is not only non-centered in the mean, but in the scale as well, i.e. the

third model parameterisation given in Table 1. By assuming γ∗|ψ ∼ NJ(0, Q−1), σ appears as

an unknown parameter in the observation equation, in particular we have

µi = ti exp(x′
iβ + σγ∗

R(i)).

For this parameterisation and π(·) denoting the prior distributions the joint posterior of β,γ∗, ψ

and σ is given by

p(β,γ∗, ψ, σ|ỹ, τ ,R) ∝ exp
{
−1

2

n∑
i=1

1
s̃2
i

(ỹi + x̃′
iβ + σṽ′

iγ
∗)2
}
π(β)π(γ∗|ψ)π(ψ)π(σ).
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Following the lines of Section 2.7.4 we obtain for β the marginalized posterior distribution

β|σ, τ ,R ∼ Np+1((Σ∗
col)

−1µ∗
col, (Σ

∗
col)

−1),

where

Σ∗
col := τ−2I +

N∑
i=1

1
s̃2
i

x̃ix̃′
i − (σ

N∑
i=1

1
s̃2
i

ṽix̃′
i)
′(A∗)−1(σ

N∑
i=1

1
s̃2
i

ṽix̃′
i)

and

µ∗
col := (σ

N∑
i=1

1
s̃2
i

ṽix̃′
i)(A

∗)−1(σ
N∑

i=1

1
s̃2
i

ṽiỹ
′
i) −

N∑
i=1

1
s̃2
i

x̃iỹi.

Here A∗ is given by A∗ := σ2
∑N

i=1
1
s̃2
i
ṽiṽ′

i + Q. The full conditional distribution for γ∗ is given

by

γ∗|β, τ ,R, σ, ψ ∼ NJ((Σ∗
γ)−1µ∗

γ , (Σ∗
γ)−1),

with

Σ∗
γ := σ2

N∑
i=1

1
s̃2
i

ṽiṽ′
i + Q and µ∗

γ := −σ

N∑
i=1

1
s̃2
i

ṽi(ỹi + x̃′
iβ).

For the spatial hyperparameter ψ the full conditional distribution is given by

p(ψ|γ∗) ∝ |Q| 12 exp(−1
2
γ∗′Qγ∗)π(ψ).

For this parametrisation we choose a normal prior for σ, in particular σ ∼ N(0, τ2
σ). The full

conditional distribution of σ is then given by

σ|β,γ∗, τ ,R ∼ N((Σ∗
σ)−1µ∗

σ, (Σ∗
σ)−1),

where

Σ∗
σ :=

N∑
i=1

1
s̃2
i

(γ∗
R(i))

2 + τ−2
σ and µ∗

σ := −
N∑

i=1

γ∗
R(i)

1
s̃2
i

(ỹi + x̃′
iβ).

2.7.6 Collapsed algorithm for a model parameterisation with a non-centered mean

and variance

In this section we will consider the model parameterisation non-centered in both mean and

variance, also given in Table 1. In contrast to the non-centered parametrisation in scale only

considered in the previous section, we assume a spatial prior

γ∗∗ ∼ NJ(0, I)

12



here and obtain the observation equation

µi = ti exp(x′
iβ + σv′

iLγ∗∗),

where L is a lower triangular matrix resulting from the Cholesky decompostion Q−1 = LL′. The

resulting joint posterior distribution of β,γ∗∗, ψ and σ is given by

p(β,γ∗∗, ψ, σ|ỹ, τ ,R) ∝ exp
{
−1

2

n∑
i=1

1
s̃2
i

(ỹi + x̃′
iβ + σṽ′

iLγ∗)2
}
π(β)π(γ∗∗)π(ψ)π(σ).

The marginalized posterior distribution of β changes to

β|σ, τ ,R ∼ Np+1((Σ∗∗
col)

−1µ∗∗
col, (Σ

∗∗
col)

−1),

where

Σ∗∗
col := τ−2I +

N∑
i=1

1
s̃2
i

x̃ix̃′
i − (σ

N∑
i=1

1
s̃2
i

L̃′vix̃′
i)
′(A∗∗)−1(σ

N∑
i=1

1
s̃2
i

L̃′vix̃′
i)

and

µ∗∗
col := (σ

N∑
i=1

1
s̃2
i

L′ṽix̃′
i)(A

∗∗)−1(σ
N∑

i=1

1
s̃2
i

L̃′viỹ
′
i) −

N∑
i=1

1
s̃2
i

x̃iỹi.

Here A∗∗ is given by A∗∗ := σ2
∑N

i=1
1
s̃2
i
L̃′viṽ′

iL + I.

The full conditional distribution of γ∗∗ is given by

γ∗∗|β, τ ,R, σ, ψ ∼ NJ((Σ∗∗
γ )−1µ∗∗

γ , (Σ∗∗
γ )−1),

with

Σ∗∗
γ := σ2

N∑
i=1

1
s̃2
i

L′ṽiṽ′
iL + I and µ∗∗

γ := −σ

N∑
i=1

1
s̃2
i

L′ṽi(ỹi + x̃′
iβ).

The full conditional distribution of ψ is given by

p(ψ|β,γ∗∗, σ, τ ,R) ∝ exp
{
−1

2

(
γ∗∗′[σ2

N∑
i=1

1
s̃2
i

L′ṽiṽ′
iL]γ∗∗ + 2σ

N∑
i=1

1
s̃2
i

ṽ′
iLγ∗∗(ỹi + x̃′

iβ)
)}

π(ψ).

For σ again the normal prior σ ∼ N(0, τ2
σ) is assumed and we obtain the following full conditional

distribution for σ:

σ|β,γ∗∗, ψ, τ ,R ∼ N((Σ∗∗
σ )−1µ∗∗

σ , (Σ∗∗
σ )−1),

where

Σ∗∗
σ :=

N∑
i=1

1
s̃2
i

(γ∗∗′(
N∑

i=1

1
s̃2
i

L′ṽiṽ′
iL)γ∗∗ + τ−2

σ and µ∗∗
σ := −

N∑
i=1

v′
iLγ∗∗ 1

s̃2
i

(ỹi + x̃′
iβ).

13



2.7.7 Centered CAR-Model

Alternatively, the centered spatial prior γc|β0 ∼ N(β0, σ
2Q−1) with β0 ∼ N(0, τ2) and β−0 ∼

N(0, τ2Ip) can be used. For this model the posterior distribution for β−0 is the same as in

Section 2.7.3 but with µβ−0
replaced by −∑N

i=1
1
s̃2
i
x̃β−0i(ỹi + γc

R(i)).

The posterior distribution for γc is given by

γc|β0,β−0,θ, τ ,R,y ∼ NJ(Σ−1
γ µcent

γ ,Σ−1
γ )

where Σγ is given as in Section 2.7.2 and

µcent
γ :=

β0

σ2
Q1−

N∑
i=1

1
s̃2
i

ṽi(ỹi + x̃′
β−0iβ−0)

and 1 represents a J × 1 vector of ones.

β0 is updated in an extra Gibbs step, in particular

β0|β−0,γ,θ, τ ,R,y ∼ N(Σ−1
β0

µβ0,Σ
−1
β0

)

where Σβ0 := 1
σ2

∑J
i,j=1 Qij + 1

τ2 and µβ0 := 1
σ2 1′Qγc.

3 Simulation studies and application

We want to use the developed Gibbs sampler to analyse the expected number of claims in a data

set from a German car insurance company. The data consider 16307 policyholders in Bavaria

with full comprehensive car insurance for one year and contain information on several covariates

like age and gender of the policyholders, kilometers driven per year and the geographical region

each policyholder is living in. Bavaria is divided into 96 regions. The variability of these data is

very small, 95% of the observations are zero observations, the highest number of claims observed

is only four. The data have been already analysed by Gschlößl and Czado (2005) who considered

both a spatial Poisson regression model as well as spatial models taking overdispersion into

account. They show that the spatial effects are very small for these data and have no significant

contribution to explaining the expected claim number.

In this section we will first examine the developed Gibbs sampler schemes according to their

mixing and estimation properties on simulated data. Additionally we will also use a Metropolis

Hastings algorithm with an independence proposal where both β and γ are updated component

by component. In particular, we use a t-distribution with 20 degrees of freedom as proposal

which has the same mode and inverse curvature at the mode as the target distribution. We will

consider two studies. In the first study the influence of the size of the spatial effects on mixing

behaviour and parameter estimation is examined, while in the second study the impact of data

heterogeneity is the focus.
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3.1 Study 1: Influence of the size of the spatial effects

We consider two simulated data sets of size 5000 with yi ∼ Poisson(µi), i = 1, .., 5000. For both

data sets the mean µi is specified by

µi = exp(β0 + xi1β1 + xi2β2 + γR(i))

where x1 is an indicator variable and x2 a continuous standardized variable. The exposure is

assumed to be ti = 1 for all observations. We assume a simple spatial structure, namely 100

regions on a 10 × 10 grid. The spatial effects γ are generated according to the CAR prior

γ ∼ N(0, σ2Q−1) with spatial dependence parameter ψ = 3. For the first simulated data set y1

we assume σ2 = 1 resulting in a range of [min(γ)max(γ)] = [−0.86, 0.85] for the spatial effects,

whereas for the second data set y2 we take σ2 = 0.01 resulting in a range of [min(γ)max(γ)] =

[−0.08, 0.08]. For these two data sets we run the Gibbs sampler with the following three update

schemes:

• parameterisation with non-centered mean: γ ∼ N(0, σ2Q−1)

– block update of β−0|β0,γ and (β0,γ)|β−0 given in Section 2.7.3 (block)

– collapsed algorithm given in Section 2.7.4 (collapsed)

• centered parameterization given in Section 2.7.7: γc ∼ N(β0, σ
2Q−1) (centered)

Additionally, a single component Metropolis Hastings sampler with independence proposals is

used. The algorithms are run for 5000 iterations, a burnin of 1000 iterations is taken. For data

set y1 with large spatial effects the estimated empirical autocorrelations for the regression pa-

rameters β = (β0, β1, β2) and the first nine spatial effects (γ1, .., γ9) are plotted in Figure 1 for

the different update strategies, respectively. Except for the intercept β0 the lowest autocorrela-

tions are obtained for the independence sampler. The autocorrelations resulting from the three

Gibbs samplers in general are only slightly higher. Further, the differences between the autocor-

relations of the Gibbs update schemes are very small, suggesting that the mixing properties of

the three algorithms are very similar. However, the autocorrelations resulting form the collapsed

algorithm tend to be slightly lower, especially for β1.

The corresponding plots for data set y2 with small spatial effects are given in Figure 2. Here,

clearly the worst mixing is obtained if the centered parameterization for the spatial effects is

used. This confirms the results given in Gelfand et al. (1995). They show that for a hierar-

chical normal linear model with random effects the centered parameterisation is efficient if the

variance of the random effects dominates the variance in the data. However, if the variance of

the random effects is very small in contrast to the variability of the data (as it is the case in

data set y2), high posterior correlations result. For the Gibbs sampler using the block and the

collapsed update and the MH independence sampler we get similar results as for data set y1.
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Figure 1: Estimated empirical autocorrelations for β = (β0, β1, β2) and (γ1, .., γ9) for data set

y1 using the block, collapsed, centered and independence update strategies

Again, the independence sampler produces the lowest autocorrelations, but, particularly for the

spatial effects, the autocorrelations resulting from the block and collapsed Gibbs sampler are

reasonable small as well. According to the empirical autocorrelations for β again the collapsed

Gibbs algorithm is to be preferred to the Gibbs sampler using a block update of β0 and γ.

In order to compare the four algorithms according to their estimation of the spatial effects we

consider the following sum of squared differences taken over the MCMC iterates j = burnin, .., R

where burnin = 1000 and R = 5000

J∑
i=1

1
R − burnin

R∑
j=burnin

[(β̂j
0 + γ̂j

i ) − (βtrue
0 + γtrue

i )]2. (3.1)

Here β̂j
0 and γ̂j

i denote the MCMC iterates for β0 and γi, i = 1, .., J , respectively. For the centered

parameterisation (3.1) changes to

J∑
i=1

1
R − burnin

R∑
j=burnin

[γ̂cj
i − (βtrue

0 + γtrue
i )]2 (3.2)

since the intercept β0 is the spatial prior mean here and therefore already included in γ̂cj
i . The

resulting values for data sets y1 and y2 are given in Table 2. The magnitude of this quantity is
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Figure 2: Estimated empirical autocorrelations for β = (β0, β1, β2) and (γ1, .., γ9) for data set

y2 using the block, collapsed, centered and independence update strategies

Algorithm: σ2 = 1 σ2 = 0.01

Gibbs block 6.95 0.40

Gibbs collapsed 6.54 0.36

Gibbs centered 6.50 0.41

Independence 7.51 1.44

Table 2: Distance (3.1) for block, collapsed Gibbs sampler and independece MH sampler and

(3.2) for centered Gibbs sampler for data sets y1 (σ2 = 1) and y2 (σ2 = 0.01).

about the same for all algorithms for data set y1 with large spatial effects, indicating that the

estimation of the true spatial effects is very similar for all of the four algorithms. For data set

y2 with small spatial effects however, (3.1) is much higher for the independence sampler, i.e.

estimation of the spatial effects is worse here. To illustrate these results we also present a boxplot

of the MCMC iterates β̂j
0 + γ̂j

i , j = burnin, .., R (for the centered parameterization a boxplot of

γ̂cj
i , j = burnin, .., R is given) for one particular spatial effect γi in Figure 3. These plots show

that the variability of the MCMC estimates for β0 + γi is very similar for all algorithms for the

data set with large spatial effects, for the data set with small spatial effects however the MCMC

iterates resulting from the independence sampler are much more variable.

The variance of the two simulated data sets y1 and y2 takes the values var(y1) = 0.51 and

var(y2) = 0.49. However, the variability of our real data from a car insurance company is very

small, the variance of these data is only 0.05. Therefore we will conduct a second simulation
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Figure 3: Boxplots of β̂j
0 + γ̂j

i , j = burnin, .., R, for the Gibbs sampler using block and collapsed

update and the MH independence sampler and boxplot of γ̂cj
i , j = burnin, .., R for the Gibbs

sampler using the centered parameterisation for one particular spatial effect γi, i ∈ {1, .., J}.
The dotted horizontal line gives the true value β0 + γi.

study where we examine whether the heterogeneity of the data influences mixing as well.

3.2 Study 2: Influence of data heterogeneity

We simulate two data sets based on the design of the real data where, according to Gschlößl

and Czado (2005), eight covariates significant for explaining the expected claim number yi were

observed, i.e. yi ∼ Poisson(µi), i = 1, .., 16307 with

µi = ti exp(x′
iβ + γR(i)).

Here xi = (1, xi1, .., xi8) and xik, k = 1, .., 8 are standardized categorical and metrical covariates.

In this setting we have 96 irregular regions in Bavaria. The spatial effects γ again are generated

according to the CAR prior γ ∼ N(0, σ2Q−1) with ψ = 8 and σ2 = 0.01, that is small spatial

effects with a range of [−0.06 0.08], i.e. spatial effects similar to the ones observed in our real

data set. For the first data set y3 the intercept β0 is taken to be −1, whereas for the second

data set y4 we take β0 = −2.5. For the remaining regression parameters the same values are

assumed for both data sets. The resulting variances of y3 and y4 are V ar(y3) = 0.46 and

V ar(y4) = 0.05, that is data set y4 has very low heterogeneity and is very close to our real

data. The variance of data set y3 is not particularly high either, but in comparison to data set

y4 we will refer to this data set as data set with high heterogeneity. We run the block and the

collapsed Gibbs sampler based on the model parameterisation with non-centered mean and the

Gibbs sampler based on the centered parameterisation for 5000 iterations, taking a burnin of

1000 iterations. For comparison again the MH independence sampler is applied. The estimated
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empirical autocorrelations for β and for nine of the spatial effects γ are given in Figures 4 and

5 for the two data sets. For the high heterogeneity data set y3 similar results as in study 1 are

obtained. This is not surprising, since the heterogeneity in data sets y1 and y2 is about the same

as in data set y3.
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Figure 4: Estimated empirical autocorrelations for β and (γ1, .., γ9) for data set y3 with ’high’

heterogeneity using the block, collapsed, centered and independence update strategies

The estimated empirical autocorrelations for β and γ in data set y4 with low heterogeneity how-

ever are very high for the three Gibbs sampler schemes, especially for the regression parameters.

For this data set the Gibbs sampler is clearly inferior to the MH independence sampler which

has very low autocorrelations again.
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Figure 5: Estimated empirical autocorrelations for β and (γ1, .., γ9) for data set y4 with low

heterogeneity using the block, collapsed, centered and independence update strategies

3.3 Application to car insurance data

Finally we apply the block, collapsed and centered Gibbs sampler as well as the independence

MH sampler on the car insurance data set described at the beginning of this section. The

empirical autocorrelations for β and γ are plotted in Figure 6. Similar results to data set y4

which is very close to our real data, are observed. In particular for the regression parameters,

the autocorrelations resulting from the Gibbs sampler schemes are very high compared to the

good mixing of the MH independence sampler.
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Figure 6: Estimated empirical autocorrelations for β(γ1, .., γ9) and for the real data set using

the block, collapsed, centered and independence update strategies

3.3.1 Parameterisations with non-centered mean, scale and variance

Since neither the centered nor the non-centered mean parameterisations led to satisfying results

for the real data set, we will check, if mixing can be improved by using collapsed algorithms with

parameterisations which are non-centered in the mean, scale and variance discussed in Sections

2.7.5 and 2.7.6. First, we apply collapsed algorithms for these non-centered parameterisation for

the simulated data sets y1 and y2, the resulting estimated empirical autocorrelations for β and

γ1, .., γ9 are given in Figures 7 and 8. Here coll1 denotes the algorithm given in Section 2.7.4,

whereas coll2 and coll3 denote the algorithms for the parameterisations discussed in Sections

2.7.5 and 2.7.6 respectively. For both data sets the three algorithms perform very similary in

general, the mixing is not improved using the parameterisations additionally non-centered in
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scale and variance respectively.
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Figure 7: Estimated empirical autocorrelations for β and γ1, .., γ9 for data set y1 using a collapsed

algorithm for model parameterisations coll1, coll2 and coll3.

The resulting empricial autocorrelations for β and γ1, .., γ9 in the real car insurance data set

are plotted in Figure 9. Here, at least for the spatial effects slightly lower autocorrelations are

obtained when using the non-centered scale and variance parameterisations. For the regression

parameters however, mixing is not improved.

4 Computational costs

Additional to mixing and parameter estimation we also want to compare the computational

costs of the Gibbs sampler schemes and the MH independence sampler. Recall, that by using

the data augmentation scheme described above, we are no longer dealing with n observations,

but with N =
∑n

i=1(yi + 1) latent inter-arrival times τij and mixture component indicators

rij . Both τ and R have to be updated, that is the number of variables to sample from in each

iteration is 2N +J +p+1(+2 hyperparameters) in comparison to J +p+1(+2 hyperparameters)

variables in the MH independence sampler. The MH independence sampler in contrast requires

the calculation of the posterior mode and the inverse curvature at the posterior mode for each

of the J + p + 1 components in every iteration. The posterior mode may be obtained using the

bisection method for example. In our simulation studies the Gibbs sampler is always faster than

the MH independence sampler. However, the computational advantage of the Gibbs sampler
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Figure 8: Estimated empirical autocorrelations for β and γ1, .., γ9 for data set y2 using a collapsed

algorithm for model parameterisations coll1, coll2 and coll3.

depends on the complexity of the model. For the setting in study 1 with 5000 observations, an

intercept and two covariates for example, the MH independence sampler takes 1.5 times as long

as the Gibbs sampler using the block update. For the setting in study 2 the MH independence

sampler even takes 3.6 times as long. For the different Gibbs sampler schemes the computational

effort differs only slightly.

5 Summary and conclusions

We have described a Gibbs sampler for a spatial Poisson regression model using data augmen-

tation and discussed several update schemes for the regression parameters and spatial effects.

Centered and non-centered model parameterisations have been considered.

For data which are not too homogeneous, the Gibbs samplers give reasonable low autocorrela-

tions and a good estimation of the spatial effects. In general, the best mixing is achieved using

a collapsed Gibbs sampler in a model parameterisation with a non-centered mean. Additionally

non-centering the scale or the variance of the spatial prior distribution did not lead to significant

improvement.

However, if the variance of the spatial effects is very small, the centered parameterisation is not

very efficient any more, the Gibbs samplers based on the model parameterisations with non-

centered mean perform much better. For data with low heterogeneity none of the Gibbs sampler
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Figure 9: Estimated empirical autocorrelations for β and (γ1, .., γ9) for the real data set using a

collapsed algorithm for model parameterisations coll1, coll2 and coll3.

schemes gives satisfying results, especially for the regression parameters high autocorrelations

are obtained, compensating the computational advantage of the Gibbs samplers over the MH

independence sampler. The MH independence sampler in contrast, leads to very low autocorrela-

tions for both large and small spatial effects and also works well for low heterogeneity data. The

price for this to pay is the higher computational effort. But, taking the high autocorrelations

of the Gibbs sampler for low heterogeneity data into account, the MH independence sampler

outperforms the Gibbs samplers despite the additional effort. However, the estimation of small

spatial effects is worse for the MH independence sampler and the variability of the MCMC

estimates of the spatial effects is higher than for the Gibbs samplers.
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6 Appendix

For the collapsed algorithm in Section 2.7.4 we consider p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ. We

have

p(β,γ|θ, τ ,R) ∝ exp
{
−1

2

[ N∑
i=1

1
s̃2
i

(ỹi + x̃′
iβ + ṽ′

iγ)2 + γ′σ−2Qγ + β′τ−2Iβ
]}

= exp
{
−1

2

[
β′τ−2Iβ +

N∑
i=1

1
s̃2
i

(ỹi + x̃′
iβ)2

]}

× exp
{
−1

2

[
γ ′
( N∑

i=1

1
s̃2
i

ṽiṽ′
i + σ−2Q

)
γ + 2γ ′

N∑
i=1

1
s̃2
i

ṽi(ỹi + x̃′
iβ)
]}

:= c(β) × exp
{
−1

2

[
γ ′Aγ + 2γ ′a

]}
(6.3)

where A :=
∑N

i=1
1
s̃2
i
ṽiṽ′

i + σ−2Q. Further

exp
{
−1

2

[
γ ′Aγ + 2γ ′a

]}
∝ exp

{
−1

2

[
γ′Aγ + 2γ′A(A−1a) + (A−1a)′A(A−1a) − (A−1a)′A(A−1a)

]}
∝ exp

{
−1

2

[
(γ + A−1a)′A(γ + A−1a) − (A−1a)′A(A−1a)

]}
and therefore∫

exp
{
−1

2

[
γ ′Aγ + 2γ ′a

]}
dγ ∝ (2π)

J
2 |A|− 1

2 exp
{1

2
(A−1a)′A(A−1a)

}
∝ exp

{1
2
(A−1a)′A(A−1a)

}
(6.4)

From (6.3) and (6.4) it then follows that

∫
p(β,γ|θ, τ ,R)dγ

∝ c(β) exp
{1

2
(A−1a)′A(A−1a)

}

∝ exp
{
−1

2

[
β′(τ−2I +

N∑
i=1

1
s̃2
i

x̃ix̃′
i)β + 2β′

N∑
i=1

1
s̃2
i

x̃iỹi − a′A−1a
]}

Finally, with

a′A−1a =
( N∑

i=1

1
s̃2
i

ṽiỹi +
N∑

i=1

1
s̃2
i

ṽix̃′
iβ
)′

A−1
( N∑

i=1

1
s̃2
i

ṽiỹi +
N∑

i=1

1
s̃2
i

ṽix̃′
iβ
)

∝ β′
( N∑

i=1

1
s̃2
i

ṽix̃′
i

)′
A−1

( N∑
i=1

1
s̃2
i

ṽix̃′
i

)
β + 2β′

( N∑
i=1

1
s̃2
i

ṽix̃′
i

)′
A−1

( N∑
i=1

1
s̃2
i

ṽiỹi

)
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it follows that

p(β|τ ,R) ∝ exp
{
−1

2

[
β′
(
τ−2I +

N∑
i=1

1
s̃2
i

x̃ix̃′
i − (

N∑
i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽix̃′
i)
)
β

− 2β′
(
(

N∑
i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽiỹi) −
N∑

i=1

1
s̃2
i

x̃iỹi

)]}
,

i.e.

β|τ ,R ∼ N(Σ−1
colµcol,Σ

−1
col)

with

Σcol := τ−2I +
N∑

i=1

1
s̃2
i

x̃ix̃′
i − (

N∑
i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽix̃′
i)

and

µcol := (
N∑

i=1

1
s̃2
i

ṽix̃′
i)
′A−1(

N∑
i=1

1
s̃2
i

ṽiỹi) −
N∑

i=1

1
s̃2
i

x̃iỹi.
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Frühwirth-Schnatter, S. and H. Wagner (2004a). Data augmentation and Gibbs sampling for

regression models of small counts. IFAS Research Paper Series 2004-04.
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