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Zero-inflated generalized Poisson models with regression effects
on the mean, dispersion and zero-inflation level applied to patent
outsourcing rates

Claudia CZADO, Vinzenz ERHARDT1 and Aleksey MIN

Center for Mathematical Sciences

Munich University of Technology

Boltzmannstr. 3

D-85747 Garching, Germany

Abstract

This paper focuses on an extension of zero-inflated generalized Poisson (ZIGP) regression models

for count data. We discuss generalized Poisson (GP) models where dispersion is modelled by an

additional model parameter. Moreover, zero-inflated models in which overdispersion is assumed

to be caused by an excessive number of zeros are discussed. In addition to ZIGP regression

introduced by Famoye and Singh (2003), we now allow for regression on the overdispersion and

zero-inflation parameters. Consequently, we propose tools for an exploratory data analysis on

the dispersion and zero-inflation level. An application dealing with outsourcing of patent filing

processes will be used to compare these nonnested models. The model parameters are fitted

by maximum likelihood. Asymptotic normality of the ML estimates in this non-exponential

setting is proven. Standard errors are estimated using the asymptotic normality of the estimates.

Appropriate exploratory data analysis tools are developed. Also, a model comparison using AIC

statistics and Vuong tests (see Vuong (1989)) is carried out. For the given data, our extended

ZIGP regression model will prove to be superior over GP and ZIP models and even ZIGP models

with constant overall dispersion and zero-inflation parameters demonstrating the usefulness of

our proposed extensions.

Keywords: maximum likelihood estimator; overdispersion; patent outsourcing; Vuong test; zero-inflated

generalized Poisson regression; zero-inflation
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1 Introduction

This paper considers zero-inflated generalized Poisson (ZIGP) regression models. The general-

ized Poisson distribution has first been introduced by Consul and Jain (1970). ZIGP models

have recently been found useful for the analysis of count data with a large amount of zeros (see

e.g. Famoye and Singh (2003), Gupta et al. (2004), Joe and Zhu (2005), Bae et al. (2005) and

Famoye and Singh (2006)). It is a large class of regression models which contains zero-inflated

Poisson (ZIP), generalized Poisson (GP) and Poisson regression (for ZIP, see e.g. Lambert

(1992), for GP see e.g. Consul and Famoye (1992) and Famoye (1993)). The interest in this

class of regression models is driven by the fact that it can handle overdispersion and/or zero-

inflation, which count data very often exhibit. In this paper we now allow for regression not only

on the mean but on the overdispersion and zero-inflation parameters. The aim is to improve

model fit in those cases in which overall dispersion or zero-inflation parameters are insufficient.

At the same time, we are interested in keeping the model complexity in terms of additional

parameters low.

Since the ZIGP distribution does not belong to the exponential family, the regression model

is no generalized linear model (GLM). Thus, we cannot rely on asymptotic properties known

for GLM’s. We develop the appropriate asymptotic theory and investigate the small sample

properties of the maximum likelihood estimates.

Also, a comparison of nine models extending the regular Poisson GLM by dispersion and

zero-inflation parameters will be facilitated. We will illustrate that these models need not have

nested design matrices and therefore cannot be compared on the basis of partial deviance or

likelihood ratio tests. Therefore, we use the Akaike Information Criterion and Vuong tests (see

Vuong (1989)).

The usefulness of our model extensions will be demonstrated in an application dealing with

patent outsourcing. We investigate make-or-buy decision drivers for the patent filing process.

This dataset has already been examined by Wagner (2005) who used a negative binomial regres-

sion approach. Currently, there are only basic studies on the general determinants of outsourcing

available. Sako (2005) states that offshoring even of services such as medical diagnosis, patent

filing, payroll and benefits administration has become easy with the growth of information tech-

nology. Abraham and Taylor (1996) name possible reasons for outsourcing behaviour, such as

wage and benefit savings or availability of specialized skills. We will focus on firm specific at-

tributes such as the R&D spending per employee or patent. On the other hand, as suggested

by Grossman and Hart (1986), an incitement for vertical integration might be the control over

actions of the executing patent attorney. This will be corroborated by our results. Also, Amit

and Schoemaker (1993) recommend that a company’s decision should depend on the value of the

corporate tasks and hence the resources necessary for the provision of these tasks. To analyse

this complex dataset, we develop tools for exploratory data analysis for overdispersion and zero-

inflation. We will see that heterogeneity is high and strongly depends on a company’s industry.

We will illustrate step-by-step that all model enhancements are useful for the analysis of this

dataset. A graphical interpretation of the model will be performed comparing our results with

those obtained by Wagner (2005).

This paper is organized as follows: Section 2 introduces our regression model. The necessary

asymptotic theory is discussed in Section 3. Section 4 gives an overview of possible model

extensions of the Poisson GLM and summarizes AIC and the Vuong test for model selection.

Tools for an exploratory data analysis will be proposed in Section 5.1 and applied to our data
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afterwards. Section 6 investigates covariate effects on the mean response and the coefficient of

variation as well as interprets the results. We conclude with a summary and discussion.

2 ZIGP (µi, ϕi, ωi) regression

Famoye and Singh (2003) introduced a zero-inflated generalized Poisson ZIGP (µi, ϕ, ω) regres-

sion model. The generalized Poisson GP (µ, ϕ) distribution was first introduced by Consul and

Jain (1970) and subsequently studied in detail by Consul (1989). We refer to its mean parame-

terisation. One particular property of the GP distribution is that the variance is greater than,

equal to or less than the mean according to whether the second parameter ϕ is greater than,

equal to or less than 1. A ZIGP distribution is defined analogously to a zero-inflated Poisson

(ZIP) distribution (see Mullahy (1986)) with an additional zero-inflation parameter ω. Thus,

this distribution has three parameters µ, ϕ and ω and will be denoted by ZIGP (µi, ϕ, ω). Mean

and variance of the ith observation Yi of the ZIGP distribution are given by

E(Yi|X = xi) = (1 − ω)µi (2.1)

and σ2
i := V ar(Yi|X = xi) = E(Yi|X = xi)

(

ϕ2 + µiω
)

. (2.2)

One of the main benefits of considering a regression model based on the ZIGP distribution is

that it is allowing in two ways for overdispersion by using an additional overdispersion parameter

ϕ and a zero-inflation parameter ω. In particular, it reduces to Poisson regression when ϕ = 1

and ω = 0, to GP regression when ω = 0 and to ZIP regression when ϕ = 1.

In some data sets a constant overdispersion and/or constant zero-inflation parameter might

be too restrictive. Therefore, we now extend the regression model of Famoye and Singh (2003)

by allowing for regression on ϕ and ω. We denote this model as a ZIGP (µi, ϕi, ωi) regression

model with response Yi and (known) explanatory variables xi = (1, xi1, . . . , xip)
t for the mean,

wi = (1, wi1, . . . , wir)
t for overdispersion and zi = (1, zi1, . . . , ziq)

t for zero-inflation, i = 1, . . . , n.

For individual observation periods, we allow exposure variables Ei, which satisfy Ei > 0 ∀ i.

1. Random components:

{Yi, 1 ≤ i ≤ n} are independent with Yi ∼ ZIGP (µi, ϕi, ωi).

2. Systematic components:

Three linear predictors ηµ
i (β) = xt

iβ, ηϕ
i (α) = wt

iα and ηω
i (γ) = zt

iγ, i = 1, . . . , n influence

the response Yi. Here, β = (β0, β1, . . . , βp)
t, α = (α0, α1, . . . , αr)

t and γ = (γ0, γ1, . . . , γq)

are unknown regression parameters. The matrices X = (x1, . . . ,xn)t, W = (w1, . . . ,wn)t

and Z = (z1, . . . , zn)t are called design matrices.

3. Parametric link components:

The linear predictors ηµ
i (β), ηϕ

i (α) and ηω
i (γ) are related to the parameters µi(β), ϕi(α)

and ωi(γ), i = 1, . . . , n as follows:

(i) Mean level

E(Yi | β) = µi(β) := Eie
xt

iβ = ext
iβ+log(Ei) > 0

⇔ ηµ
i (β) = log(µi(β)) − log(Ei) (log link), (2.3)

(ii) Overdispersion level

ϕi(α) := 1 + ewt
iα > 1

3



⇔ ηϕ
i (α) = log(ϕi(α) − 1)) (modified log link), (2.4)

(iii) Zero-inflation level

ωi(γ) :=
ezt

iγ

1 + ezt
iγ

∈ (0, 1)

⇔ ηω
i (γ) = log

(

ωi(γ)

1 − ωi(γ)

)

(logit link). (2.5)

We would like to note that a ZIGP regression model is not a generalized linear model (GLM).

We denote the joint vector of the regression parameters β, α and γ by δ, i.e. δ := (β t,αt,γt)t,

and its maximum likelihood (ML) estimate by δ̂. Additionally, the following abbreviations for

i = 1, . . . , n will be used throughout the paper:

µi(β) := ext
iβ+log(Ei),

bi(α) := ewt
iα, ϕi(α) := 1 + bi(α),

ki(γ) := ezt
iγ , ωi(γ) := ki(γ)

1+ki(γ)

and P 0
i (δ) := exp

(

−Ei·e
xt

iβ

1+e
wt

i
α

)

.

For observations y1, . . . , yn, the log-likelihood l(δ) of a ZIGP (µi, ϕi, ωi) regression can be written

as

l(δ) =

n
∑

i=1

1l{yi=0}

[

log

(

ezt
iγ + exp

(

−Ei · ext
iβ

1 + ewt
iα

))

− log(1 + ezt
iγ)

]

+1l{yi>0}

[

− log(1 + ezt
iγ) + log(Ei) + xt

iβ + (yi − 1)

× log(Ei ext
iβ + ewt

iαyi) − log(yi!) − yi log(1 + ewt
iα)

−Ei ext
iβ + ewt

iαyi

1 + ewt
iα

]

. (2.6)

Second, the score vector, i.e. the vector of the first derivatives of l(δ), has the following repre-

sentation:

sn(δ) = (s0(δ), . . . , sp(δ), . . . , sp+r+1(δ), . . . , sp+r+q+2(δ))t , (2.7)

where

sm(δ) :=
∂

∂βm
l(δ) =

n
∑

i=1

xim

(

1l{yi=0}

[−P 0
i (δ)µi(β)/ϕi(α)

ki(γ) + P 0
i (δ)

]

+1l{yi>0}

[

1 +
(yi − 1)µi(β)

µi(β) + bi(α)yi

− 1

ϕi(α)
µi(β)

]

)

, for m = 0, . . . , p, (2.8)

sp+1+m(δ) :=
∂

∂αm
l(δ) =

n
∑

i=1

wimbi(α)

(

1l{yi=0}

[

P 0
i (δ)µi(β)/ϕi(α)2

ki(γ) + P 0
i (δ)

]

+1l{yi>0}

[

(yi − 1)yi

µi(β) + bi(α)yi
− yi

ϕi(α)
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+
µi(β) − yi

ϕi(α)2

]

)

, for m = 0, . . . , r, (2.9)

sp+r+2+m(δ) :=
∂

∂γm
l(δ) =

n
∑

i=1

zimki(γ)

(

1l{yi=0}

[

1

ki(γ) + P 0
i (δ)

]

− 1

1 + ki(γ)

)

, for m = 0, . . . , q. (2.10)

To compute the ML estimate δ̂, we simultaneously solve the equations obtained by equating the

score vector (2.7) to zero. The Fisher information is needed for the variance estimation of the

ML estimates. It is calculated in the appendix.

3 Asymptotic Theory and small sample properties for

ZIGP (µi, ϕi, ωi) regression models

In this section, we will prove consistency and asymptotic normality of the ML estimates. In

analogy to Fahrmeir and Kaufmann (1985) we will use the Cholesky square root of the Fisher

information matrix to norm the ML estimator. The left Cholesky square root A1/2 of a positive

definite matrix A is given by the unique lower triangular matrix A1/2(A1/2)t = A, which has

positive diagonal elements. We write At/2 := (A1/2)t. In addition to that, let λmax(A) and

λmin(A) be the largest and smallest eigenvalues of A, respectively. For vectors we use the L2

norm ‖ · ‖2, for matrices the spectral norm ‖A‖2 = λmax(AtA)1/2 = sup
‖u‖2=1

‖Au‖2. The vector

δ0 :=
(

βt
0,α

t
0,γ

t
0

)t
consists of the true - yet unknown - model parameters. In addition, we define

a neighborhood of the true parameter vector δ0 by Nn(ε) := {δ : ‖F t/2
n (δ0)(δ − δ0)‖ ≤ ε} for

ε > 0. Also, let ∂Nn(ε) = {δ : ‖F t/2
n (δ0)(δ − δ0)‖ = ε}. For simplicity, we omit the arguments

δ0, β0, α0 and γ0. Then, we write µi instead of µi(β0), ϕi instead of ϕi(α0), ki for ki(γ0)

and P 0
i for P 0

i (δ0). Admissible sets for β, α and γ are B,A and G. We assume deterministic

compact regressors. Further assumptions for the theorem are:

(A1) (Divergence) Let n
λmin(F n) ≤ C1 ∀ n ≥ 1, where C1 is a positive constant,

(A2) (Compact regressors)

{xn, n ≥ 1} ⊂ Kx, where Kx ⊂ R
p+1 is a compact set,

{wn, n ≥ 1} ⊂ Kw, where Kw ⊂ R
r+1 is a compact set and

{zn, n ≥ 1} ⊂ Kz, where Kz ⊂ R
q+1 is a compact set as well.

(A3) (ZIGP (µi, ϕi, ωi) regression)

Link functions are used as introduced for ZIGP (µi, ϕi, ωi) regression. Moreover, let δ0 be

an interior point of B × A × G, where B ⊂ R
p+1, A ⊂ R

r+1 and G ⊂ R
q+1 are open sets.

Theorem 1 (Consistency and Asymptotic Normality of the ML estimates). Given (A1) - (A3),

there is a sequence of random variables δ̂n such that

(i) P (sn(δ̂n) = 0) → 1, for n → ∞ (asymptotic existence (AE)),

(ii) δ̂n
P→ δ0, for n → ∞ (weak consistency (WC)),
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(iii) F
t/2
n (δ̂n − δ0)

D⇒ Np(0, Ip+r+q+3), for n → ∞ (asymptotic normality (AN)).

A sketch of the proof can be found in the appendix.

Further, we investigated the convergence speed of the ML estimates by generating sets of

ZIGP random vectors in different settings (i.e. different designs for µi, ϕi and ωi) and adapting

ZIGP regression models on them afterwards. We generated sets of 100 random vectors of length

n for each setting and assessed their estimated biases and mean squared errors. For each of the

three parameters we used linear predictors consisting of an intercept and an additional equidis-

tant regressor. Increasing sample size n or increasing the µi range both improved convergence

speed. The results for the sample size are as expected. For the mean we saw that for smaller

means the zero-probability grows, which, however, might also arise from high overdispersion or

zero-inflation. Therefore, we needed larger sample sizes n to achieve similar results as for smaller

means. In our setting, the detection of overdispersion required medium sample sizes of n ≥ 200.

Another result was that increasing dispersion or zero-inflation lowers convergence speed. This

is due to higher heterogeneity in the generated data. Details can be found in Erhardt (2006,

Sec. 2.4, Fig. 2.1 - 2.4).

4 Model Comparison

4.1 Comparison of several zero-inflated and overdispersed Poisson regression

models

As illustrated above, we enhance the Poisson GLM by an overdispersion parameter and a zero-

inflation parameter. Models which allow regression on a parameter are denoted by parameter

index i. The tree in Fig. 1 sketches an evolution of nine models starting from Poisson regression

to (9) ZIGP (µi, ϕi, ωi) regression described in Section 2.

(1) Poi(µi)

��

''OOOOOOOOOOOOOOOOOO

wwoooooooooooooooooo

(2) ZIP(µi, ω) (1)

wwoooooooooooooooooo

--[[[[[[[[[[[[[[[[

��

(4) GP(µi, ϕ) (2)

''OOOOOOOOOOOOOOOOOO

qqcccccccccccccccc

��

(6) ZIGP(µi, ϕ, ω) (1),(2)

wwoooooooooooooooooo

''OOOOOOOOOOOOOOOOOO

��

(3) ZIP(µi, ωi)

--[[[[[[[[[[[[[[[[
(5) GP(µi, ϕi)

qqcccccccccccccccc

(7) ZIGP(µi, ϕ, ωi)
(2)

''OOOOOOOOOOOOOOOOOO
(8) ZIGP(µi, ϕi, ω) (1)

wwoooooooooooooooooo

(1)ω ∈ [0, 1]

(9) ZIGP(µi, ϕi, ωi)
(2)ϕ ∈ [1,∞)

Figure 1: Overview of model enhancements of the Poisson GLM

A covariate being significant in terms of the Wald test (e.g. in the mean design of Poi(µi))

can be insignificant in another model (say ZIGP (µi, ϕ, ω)). The same holds for dispersion and
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zero-inflation designs. Therefore, all variables chosen in an exploratory data analysis have to be

checked for significance and need to be eliminated sequentially. As their design matrices may

thus be different, these models need not be nested. With nonnested models, we cannot make

use of partial deviance or likelihood ratio tests for model comparison. Therefore, we use the

Akaike Information Criterion (AIC) (see e.g. Heiberger and Holland (2004, p. 572)) and the

Vuong test for nonnested models (see Vuong (1989)).

The AIC is given by AIC := −2 l(δ̂) + 2k, where δ̂ is the vector of parameter estimates

and k is the number of its components. The smaller the AIC, the better the model is assumed

to fit the data. It balances model fit as measured by the log likelihood with model complexity

measured by the number of parameters.

Vuong tests compare two regression models which need not to be nested (see Vuong (1989)

and Clarke (2003, pp. 3f)). The Kullback–Leibler information criterion KLIC (Kullback and

Leibler (1951)) is a measure for the ’distance’ between two statistical models. We have

KLIC := E0[log h0(Yi|xi)] − E0[log f(Yi|vi, δ̂)], (4.1)

where h0(·|·) is the true conditional density of Yi given xi (i.e., the true but unknown model),

E0 is the expectation given the true model, and δ̂ is an estimate of δ in model with f(Yi|vi, δ̂)

(which is not the true model). Generally, the better of two models is the one with smaller

KLIC, for it is closer to the true, but unknown, specification. If model 1 is closer to the true

specification, we have

E0[log h0(Yi|xi)] − E0[log f1(Yi|vi, δ̂
1
)] < E0[log h0(Yi|xi)] − E0[log f2(Yi|wi, δ̂

2
)]

⇔ E0 log
f1(Yi|vi, δ̂

1
)

f2(Yi|wi, δ̂
2
)

> 0. (4.2)

Vuong defines statistics mi := log

(

f1(yi|vi,δ̂
1
)

f2(yi|wi,δ̂
2
)

)

, i = 1, . . . , n. Then m = (m1, . . . ,mn)t is a

random vector with mean µm
0 = (µm

1 , . . . , µm
n )t := E0(m), if h0 is the true probability mass

function. Hence, we can test H0: µm
0 = 0 against H1 : µm

0 6= 0. In other words: ’both models

are equally close to the true specification.’ Mean µm
0 , however, is unknown. Further, Vuong

defines a test statistic ν and shows that under H0

ν :=

√
n[ 1

n

∑n
i=1 mi]

√

1
n

∑n
i=1(mi − m̄)2

D→ N(0, 1), (4.3)

where m̄ := 1/n
∑n

i=1 mi. This allows to construct an asymptotic α-Level test of H0: µm
0 = 0

versus H1: not H0. It rejects H0 if and only if |ν| ≥ z1−α
2
, where z1−α

2
is the (1 − α

2 )–quantile

of the standard normal distribution. The test chooses model 1 over 2, if ν ≥ z1−α
2
. This is

reasonable since significantly high values of ν indicate a higher KLIC of model 1 compared to

model 2 according to formula (4.2). Analogously, model 2 is chosen, if ν ≤ −z1−α
2
.

5 Application: Outsourcing of patent applications

5.1 Data description and exploratory data analysis

The dataset consists of patent information of the European Patent Office. It has been examined

and amended with corporate information by Wagner (2005) of INNO-tec (Institut für Innova-

tionsforschung, Technologiemanagement und Entrepreneurship). Wagner (2005) points out that

7



there are two ways of filing a patent application: a company’s internal patent department can

undergo the application process itself or the company may delegate it to an external patent

attorney. Wagner (2005) examines decision drivers using negative binomial panel regression.

The survey considers 107 European companies (i = 1, . . . , 107) over a period of eight years

from 1993 to 2000. Since data for each company is aggregated over one year, we expect the

a company’s correlation over years to be small in comparison to a trend effect. Table 1 gives

an overview of all influential variables used. A more detailed description can be found in Wag-

ner (2005). Moreover, we used standard exploratory data analysis tools to investigate main

effects and two-dimensional interactions on the mean level. In particular, we grouped the data

and calculated group means of log observations standardized by their exposure ignoring possible

zero-inflation. For details, see Erhardt (2006, Fig. 4.2 - 4.6). The four strongest two-dimensional

interactions were LN.COV ∗ BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA ∗ SQRT.EMP

and RDmiss ∗ CHEM.PHA (see Erhardt (2006, Fig. 4.11)). We assume independent observa-

tions and therefore write Yi instead of Yit, Ei for Eit. We collect all observations in a data vector

Y := (Y1, . . . , Y856) = (Y1,1, Y1,2, . . . , Y1,8, Y2,1, . . . , Y2,8, Y3,1, . . . , Y107,8)
t. The observation year

will be taken into account by using YEAR as a covariate.

There is no established method for finding covariates that have significant influence on the

overdispersion parameter. We now propose such a method based on the modified log link (2.4)

and ignore zero-inflation. We assume Yi ∼ GP (µi, ϕi) = ZIGP (µi, ϕi, ωi = 0). Then for a class

j, j = 1, . . . , J with nj members, we have σ2
i = µi · ϕ2

i ⇔ ϕi = +
(−)

√

σ2
i /µi for i ∈ j. With

ϕi = 1 + ewt
iα we get

wt
iα = log

(

√

σ2
i

µi
− 1

)

=: fi(µi, σ
2
i ). (5.1)

We estimate fi(µi, σ
2
i ) for observations i ∈ class j by fj(µ̂j , σ̂

2
j ), where µ̂j := 1

nj

∑

i∈j Yi and

σ̂j := 1
nj−1

∑

i∈j(Yi − µ̂j)
2. Now we calculate these values for each category of categorical

covariates and for each scoring class of metric covariates. If there were no overdispersion in class

j, mean and variance would be identical and the fraction σ2
j /µj would be 1. Before taking the

logarithm in (5.1), all values would be close to 0. In fact, if we look at the fractions separated

by year and industry, the fractions range from 4.8 to 443. Thus, we can use fj(µ̂j , σ̂
2
j ) as an

overdispersion indicator.

In order to determine appropriate covariates for zero-inflation modelling, we calculate em-

pirical logits. This approach arises from binary regression: the event ’observation Yi is zero’ is

a binary random variable. Then

ω̂j :=
#{Yi = 0, δij = 1}

#{Yi = 0} , where δij :=

{

1 i ∈ class j

0 else
, (5.2)

and ˆlogit(ω̂j) := log

(

ω̂j + 1
2

1 − ω̂j + 1
2

)

, i = 1, . . . , 856. (5.3)

A shift of 1/2 is used in (5.3) to assure calculation also for cases in which a class has not a single

observation Yi = 0. If scoring classes are determined by quantiles, the numbers of observations

nj in each class are expected to be roughly equal. Hence, a covariate X with J scoring classes

having no influence on the number of zeros in Y is expected to have around 1/J of Y -zeros in

every class.
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Variable Description

Y Response Y represents the number of patents being filed by a company in

one year by an external patent attorney. The values lie in [0, 953], where zero

occurs 129 times.

E This exposure is the yearly total of a company’s applications regardless of

the application procedure. We have Ei > 0 ∀ i.

COV This metric covariate is the coefficient of variation of a company’s number

of applications referring to the past five years. For mean modelling we use a

log transformation LN.COV.

BREADTH Metric covariate BREADTH is a measure for the number of scientific fields

a company has handed patent applications in for. High values correspond

to broad areas of research. On dispersion level, dummy BREADTH.49.72

indicates if BREADTH is in (0.490, 0.721] (0) or not (1), where 0.490 is the

20%, 0.721 the 60% quantile of the observations. For zero-inflation modelling

dummy BREADTH.06 indicates if a company has a higher (0) or lower (1)

BREADTH than 0.642 (40% quantile).

EMP A company’s number of employees. For the mean level we use the square root

of EMP denoted by SQRT.EMP. On dispersion level, dummy EMP.11291

indicates if a company has more (0) or less (1) than 11 291 employees (40%

quantile). On zero-inflation level, dummy EMP.2023.11291 indicates if EMP

lies in (2023, 11291] (1) or not (0), which are the (20%, 40%] quantiles.

RDP The average amount spent for a patent in MN Euros is given by RDP. It

describes the average research and development (R&D) cost per patent. On

the mean level, we transform RDP by using its inverse INV.RDP. For zero-

inflation modelling, dummy RDP.34 indicates if a company has a higher (0)

or lower (1) RDP than 3.353 (67% quantile).

RDE Covariate RDE is the average R&D cost per employee in 1000 Euros. Hence,

it is a measure for the research intensity. For mean modelling we try the

linear, quadratic and cubical transformations, i.e. RDE1, RDE2 and RDE3.

On dispersion level, dummy RDE.63 indicates if RDE ≥ 6.3 (0) or RDE <

6.3 (1) (67% quantile).

RDmiss Dummy variable RDmiss indicates if R&D data is missing (1) or not (0).

CHEM.PHA

ELEC.TEL

ENGINEER

CAR.SUPP

MED.BIOT

OTHER

These are six industry dummies: Chemical / Pharma, Electro / Telecom-

munication, Engineering, Cars and Suppliers, Medtech / Biotech and other

industries. We also use industry group dummies ELEC.TEL.OTHER,

CAR.SUPP.OTHER and CHEM.PHA.ENGIN.

YEAR This is the observation year with values from 1993 to 2000.

Table 1: Description of variables considered in the regression models for the patent data
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So, high deviation of the empirical logit from log
(

1/J+1/2
1−1/J+1/2

)

indicates high influence of X

on zero-inflation. Table 2 shows empirical logits of EMP, where class 2 has the highest deviation

of the reference value ˆlogit(0.2) = log
(

0.2+0.5
1−0.2+0.5

)

= −0.62.

Class 1 Class 2 Class 3 Class 4 Class 5

Interval [0, 2020] (2020, 11320] (11320, 30249] (30249, 75322] (75322, 466938]

nj 172 171 171 171 171
ˆlogit(ω̂j) -0.48 -0.21 -0.72 -0.83 -0.9

Table 2: Empirical logits of five scoring classes of EMP calculated according to (5.3)

For mean, dispersion and zero-inflation regression we select the following covariates accord-

ing to the above strategies. For the mean level, they are INTERCEPT, LN.COV, BREADTH,

SQRT.EMP, INV.RDP, RDE1, RDE2, RDE3, RDmiss, CHEM.PHA, ELEC.TEL.OTHER, YEAR,

LN.COV ∗ BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA ∗ SQRT.EMP and RDmiss ∗
CHEM.PHA. For overdispersion we select INTERCEPT, ENGINEER, CAR.SUPP.OTHER,

MED.BIOT, YEAR, BREADTH.49.72, EMP.11291 and RDE.63. For regression on zero-inflation

the chosen covariates are INTERCEPT, EMP.2023.11291, BREADTH.06, RDP.34 and

CHEM.PHA.ENGIN. By sequential elimination on an α-level of 5%, however, we get the follow-

ing regression equations given in Table 3. All covariates have been centered and standardized

for numerical stability.

Model comparison for our data is carried out by using the methods discussed in Section 4.

Models (1) thru (9) can also be found in Table 4 listed in rows (I) and columns (II). Entries of

this lower triangular matrix show the results of Vuong tests for every model combination of a

(I) with a (II) model. We choose a significance level of α = 5%, so z1−α
2

= 1.96. In the first line

of each cell, the Vuong statistic ν is given. In the second row the decision of the Vuong test is

shown, i.e. if model (I) or (II) is better. Next to that we see the p-values of ν. For example, the

most upper left cell refers to model (I) = (2) ZIP (µi, ω) compared to (II) = (1) Poi(µi). The

Vuong statistic is ν = 4.2, which implies that Vuong prefers model (I) ZIP (µi, ω) (see line 2).

The p-value of ν is < 10−4.

We now discuss the consequences of the Poisson GLM enhancements.

Adding a zero-inflation parameter: Taking zero-inflation into a model, the AIC de-

creases. Comparing (1) Poi(µi) with model (2) ZIP (µi, ω), the AIC decreases from 23 896 to

19 183 (see Table 3). The Vuong test also prefers the ZIP model with a test statistic of ν = 4.2

(see Table 4).

Adding a dispersion parameter: Adding a dispersion parameter has the strongest posi-

tive impact on model quality. The AIC for (1) Poi(µi) is 23 896, whereas for (4) GP (µi, ϕ) it is

already 6 852, a drop of 71%. The Vuong statistic is very high, it is ν = 10.8. This is a strong

indication that our data is in fact overdispersed.

Regression on the zero-inflation parameter: If we allow regression on the zero-inflation

parameter, the AIC decreases again. For instance, comparing model (2) ZIP (µi, ω) with (3)

ZIP (µi, ωi), the AIC falls from 19 183 to 19 110. Further, ν = 4.32, so Vuong prefers model (2)

ZIP (µi, ω), too. The p-value is < 0.01.
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Model Model Equation µ Model Equation ϕ Model Equation ω l(δ̂) p +

r+ q

AIC

(1) Poi(µi) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i ωi = 0 ∀i -11 931.9 16 23 896

(2) ZIP (µi, ω) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i ωi = ω ∀i -9 574.6 17 19 183

(3) ZIP (µi, ωi) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i 1 + BREADTH.06 +

EMP.2023.11291

+ RDP.34 +

CHEM.PHA.ENGIN

-9 533.8 21 19 110

(4) GP (µi, ϕ) offset(E) + 1 + BREADTH + SQRT.EMP

+ INV.RDP + RDE1 + RDE2 + RDE3 +

CHEM.PHA + ELEC.TEL.OTHER

ϕi = ϕ ∀i ωi = 0 ∀i -3 416.1 10 6 852

(5) GP (µi, ϕi) offset(E) + 1 + BREADTH + SQRT.EMP +

INV.RDP + RDE1 + RDE2 + RDE3 + RDmiss

+ CHEM.PHA + ELEC.TEL.OTHER + RDmiss *

CHEM.PHA

1 + CAR.SUPP.OTHER

+ MED.BIOT + YEAR

+ BREADTH.49.72 +

EMP.11291 + RDE.63

ωi = 0 ∀i -3 356.8 18 6 750

(6) ZIGP (µi, ϕ, ω) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + RDmiss +

CHEM.PHA + ELEC.TEL.OTHER + YEAR +

LN.COV * BREADTH + RDmiss * CHEM.PHA

ϕi = ϕ ∀i ωi = ω ∀i -3 308.6 14 6 645

(7) ZIGP (µi, ϕ, ωi) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + CHEM.PHA

+ ELEC.TEL.OTHER + LN.COV * BREADTH

ϕi = ϕ ∀i 1 + BREADTH.06 -3 298.5 12 6 621

(8) ZIGP (µi, ϕi, ω) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + RDE1 + RDmiss + CHEM.PHA +

ELEC.TEL.OTHER + LN.COV * BREADTH

1 + CAR.SUPP.OTHER

+ YEAR + EMP.11291 +

RDE.63

ωi = ω ∀i -3 269 15 6 568

(9) ZIGP (µi, ϕi, ωi) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + CHEM.PHA

+ ELEC.TEL.OTHER + LN.COV * BREADTH

1 + ENGINEER +

CAR.SUPP.OTHER +

YEAR + EMP.11291 +

RDE.63

1 + BREADTH.06

+ RDP.34 +

CHEM.PHA.ENGIN

-3 245.2 19 6 528

Table 3: Model equations and AIC for each of the nine models after sequential elimination of non-significant covariates
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(II) (1) Poi(µi) (2) ZIP (3) ZIP (4) GP (5) GP (6) ZIGP (7) ZIGP (8) ZIGP

(I) (µi , ω) (µi, ωi) (µi, ϕ) (µi, ϕi) (µi , ϕ, ω) (µi, ϕ, ωi) (µi, ϕi, ω)

(2) ZIP ν = 4.2

(µi , ω) V: (I) < 10−4

(3) ZIP ν = 4.27 ν = 4.32

(µi , ωi) V: (I) < 10−4 V: (I) < 10−4

(4) GP ν = 10.8 ν = 9.94 ν = 9.88

(µi , ϕ) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22

(5) GP ν = 10.8 ν = 10.1 ν = 9.99 ν = 3.94

(µi , ϕi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4

(6) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 4.21 ν = 2.08

(µi , ϕ, ω) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4 V: (I) 0.04

(7) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 4.29 ν = 2.32 ν = 1.88

(µi , ϕ, ωi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4 V: (I) 0.02 V: none 0.06

(8) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 5.15 ν = 4.01 ν = 3.1 ν = 2.16

(µi , ϕi, ω) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−6 V: (I) < 10−4 V: (I) < 0.002 V: (I) 0.03

(9) ZIGP ν = 10.8 ν = 10.3 ν = 10.3 ν = 5.69 ν = 4.73 ν = 4.28 ν = 3.91 ν = 2.9

(µi , ϕi, ωi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−6 V: (I) < 10−4 V: (I) < 10−4 V: (I) < 10−4 V: (I) < 0.004

Table 4: Model comparison using the Vuong test
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Regression on the dispersion parameter: Comparing model (4) GP (µi, ϕ) with model

(5) GP (µi, ϕi), we see a drop in AIC from 6 852 to 6 750. The Vuong statistic is ν = 3.94.

All in all, model (9) ZIGP (µi, ϕi, ωi) seem to be the ’best’ for our data in terms of AIC

and Vuong. By eliminating non-significant covariates in Poi(µi) and adding overdispersion and

zero-inflation regression, the AIC falls from 23 896 to 6 528. That is a AIC drop of 73%. Vuong

applied to these two models has the highest test significance of all models compared, its statistic

is ν = 10.8.

6 Model interpretation

We will now interpret model (9) ZIGP (µi, ϕi, ωi). Parameter estimates and their estimated

standard errors together with the p-values of the corresponding Wald tests can be found in

Table 5.

Estimate Std. Error p-value

MEAN REGRESSION

INTERCEPT -0.951 0.059 0.000

log(COV) 0.031 0.036 0.384

BREADTH 0.041 0.032 0.195

EMP1/2 -0.394 0.027 0.000

RDP−1 -0.123 0.033 0.000

RDE 0.124 0.033 0.000

Chemical / Pharma -0.272 0.099 0.006

Electro / Telecommunication / Other 0.306 0.066 0.000

log(COV) * BREADTH -0.104 0.034 0.003

OVERDISPERSION REGRESSION

INTERCEPT 1.968 0.086 0.000

Engineering -0.426 0.171 0.013

Cars / Suppliers / Other -0.488 0.096 0.000

YEAR 0.161 0.042 0.000

1l{EMP < 11 291} -0.587 0.103 0.000

1l{RDE < 6.3} -0.305 0.096 0.002

ZERO-INFLATION REGRESSION

INTERCEPT -4.282 0.586 0.000

1l{BREADTH < 0.642} 2.271 0.578 0.000

1l{RDP < 3.353} -1.241 0.522 0.017

Chemical / Pharma / Engineering 1.085 0.413 0.009

Mean range µ̂ [0.18, 446.3]

Overdispersion parameter range ϕ̂ [2.41, 10.15]

Zero-inflation parameter range ω̂ [0.00, 0.28]

Table 5: Summary of model (9) ZIGP (µi, ϕi, ωi) using centered and standardized covariates

First of all, we see that RDmiss has been dropped during the sequential elimination of non-

significant variables, which is in line with Wagner (2005, p. 27), whose model has insignificant
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RDmiss as well. This is comforting since RDmiss indicates missing R&D data. Otherwise, we

would have a significant systematic error. We now want to perform an analysis of the impact of

mean, overdispersion and zero-inflation regressors. Thus, we calculate mean, overdispersion and

zero-inflation functions of these covariates and fix all remaining covariates. For metric covariates

we use their mode or mean, for categorical covariates we compare their categories. Exposure E

will also be replaced by its mode.

6.1 Outsourcing rate as a function of covariates influencing the mean level

We are interested in outsourcing rates E(Yi)/Ei rather than absolute ’outsourced’ patent num-

bers. In order to find modes of metric variables, we used empirical density estimates. The mode

in terms of transformed but unnormed values for SQRT.EMP is 58.35, for INV.RDP it is 2.824

and RDE1 has −0.0153. The common mode of the interacting covariates (LN.COV, BREADTH)

is (−1.000, 0.7769). The exposure mode will be denoted as EM and is calculated to be 13.36.

Since we are interested in seeing the effects of the covariates on the original scale we have to

reverse any centering and scaling and any covariate transformation used. For details, again see

Erhardt (2006, p. 129).

For all outsourcing functions we have to separate between the three industry groups Chemical

/ Pharma, Electro / Telecommunication / Others and all remaining industries. Fig. 2 shows

the resulting outsourcing rates as functions of covariates EMP, RDP and RDE.
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Figure 2: Influence of EMP, RDP and RDE on the outsourcing rate while fixing other covariates

by their modes

The resulting outsourcing rates range between 1.5% and 12% depending on the setting.
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Again, these figures are related to a fixed exposure. Hence, we can interpret their relation

among each other rather than the absolute rates. Increasing firm size in terms of employees

reduces the share of outsourced applications. As Wagner (2005, p. 28) explains, ’larger firms

are more likely to have their own IP-department and hence more likely to process a higher share

of the workload internally’. For RDP, we get a fairly small coefficient β̂4 = −0.123. Also, for

very small values RDP< 10 the outsourcing share is low. For larger values, it is high and quite

constant. A reason for that is that 262 observations have no R&D information and hence have

RDP= 0. These companies, however, have an average of only 20 000 employees, whereas the

overall average is 50 000. It seems like smaller companies (which we know show higher tendency

to contract out) are likely to be unable to provide R&D data. Whether or not expensive R&D

preceded a patent (high RDP) has minor impact on the outsourcing rate. This is in line with

Wagner (2005, p. 28). Our model predicts that for higher R&D intensity, companies are likely to

file their patents themselves. Wagner (2005, p. 28), who obtains a positive influence of RDE as

well, stresses that a negative development would have been more plausible: the higher spending

on R&D per employee, the greater a company’s focus on research. These companies are more

likely to have their own patent departments.
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Figure 3: Common influence of COV and BREADTH on the estimated outsourcing rate

µ̂(COV,BREADTH)/EM per industries

Fig. 3 shows projected outsourcing rates affected by both COV and BREADTH. The de-

flection arises from the interaction of these two effects. The higher BREADTH or COV as

singular effects, the less patents are outsourced. Interaction effects strongly decrease our out-

sourcing projection if both variables have low values. There are only few companies having low

BREADTH and COV at the same time. Their low outsourcing rates seem to arise from their

unique situation. Schneider Electronics for instance had to face severe losses throughout the

nineties and therefore had to cut their R&D activities way below the industry average. Filing

patents themselves might arise from expenditure reasons. Heidelberger Druckmaschinen, how-

ever, is the world market leader and went public in 1997. Market leaders are known to trust

their own patent departments more than external attorneys.

Finally, we look at industry differences. The only industry dummies left are those for Chem-
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ical / Pharma and for Electronics / Telecommunication / Other. Chemical / Pharma companies

have the lowest outsourcing rates (3.11%). Especially for pharmaceutical companies, one sin-

gle and very complex patent protects one product, e.g. a drug. An important part of each

patent application is thorough research if a similar patent has already been filed. Chemical /

Pharma companies were among the first ones to establish internal patent databases to ensure

quick and reliable research for equal or similar patents. Thus, it makes sense to have an internal

department undergo the whole application process. Electro / Telco & Other have a predicted

outsourcing share of 5.54%. The reason is the different role patents play for them. Applications

in the Electronics industry are mainly driven by semiconductor manufacturers, which file a lot

of ’small’ patents. In many cases, companies confederate and create a common unique prod-

uct standard (crossover licenses). Therefore, an existing patent may be replaced by a common

patent. This is often done by common (external) patent attorneys. For all remaining industries

we predict an outsourcing rate of 4.08%.

6.2 Overdispersion and zero-probability as functions of regression covariates

According to (2.1) and (2.2) the coefficient of variation of a random Yi ∼ ZIGP (µi, ϕi, ωi) is
V ar(Yi)
E(Yi)

= ϕ2
i + µiωi. There are only categorical covariates for overdispersion:

w := (1, ENGINEER, CAR.SUPP.OTHER, YEARs, EMP.11291, RDE.63), whereas YEARs

stands for centered and standardized YEAR values. With the modified log link we get an

overdispersion function ϕ̂(w), which is defined as

ϕ̂(w) := 1 + exp
(

α̂0 + w1 · α̂1 + . . . + w5 · α̂5

)

. (6.1)

We can use this to estimate V ar(Y )
E(Y ) = ϕ2 + µ · ω by

ˆV ar(Y |X = x,W = w,Z = z)

Ê(Y |X = x,Z = z)
:= ϕ̂(w)2 + µ̂(x) · ω̂(z). (6.2)

Companies are interested in a prediction of their zero-probability P (Y = 0) rather than their

zero inflation ω̂. This is the probability that a company has filed every patent in a certain year

itself. A zero can arise from the binary zero-inflation process or from the GP variable, thus we

predict

P̂ (Y = 0|X = x,W = w,Z = z) := ω̂(z) + (1 − ω̂(z)) · exp
(

− µ̂(x)

ϕ̂(w)

)

. (6.3)

Zero-inflation will be regarded as a function ω̂(z) of covariate z, where

z := (1, BREADTH.06, RDP.34, CHEM.PHA.ENGIN). Then we get

ω̂(z) =
exp(γ̂0 + z1 · γ̂1 + . . . + zq · γ̂q)

1 + exp(γ̂0 + z1 · γ̂1 + . . . + zq · γ̂q)
(6.4)

We see that for estimating V ar(Y )
E(Y ) and P (Y = 0), we need both ϕ̂(w) and ω̂(z) (see (6.2)

and (6.3)). Consequently, we have to define common parameters, i.e. a union of the categorical

settings for overdispersion and zero-inflation regression. As we are only looking at grouped

industries, we can define four new common groups as ’Cars / Supplier / Other’, ’Medtech /

Biotech / Electro / Telco’, ’Engineering’ and ’Chemical / Pharma’. Remaining dummies are
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EMP.11291 and RDE.63 for overdispersion and RDP.34 and BREADTH.06 for zero-inflation.

Therefore, we have to consider sixteen settings for each of these four industry groups, i.e. 64

different classes. We investigate, however, only the 14 cases with the most observations, which

account for 63 of the 107 companies. These classes can be found in Table 6 denoted by j.

Columns µ̄j thru ω̂j are estimates of µj, ϕj and ωj, where ϕ̂j is calculated as in (6.1), ω̂j as in

(6.4). We will look at year 2 000 since it should be most interesting. For both overdispersion

and zero-inflation, we need an estimate of the mean µ̂. In order to get appropriate values for

class j, we use means µ̄j of the fitted values for µ for those companies in class j. They are given

by µ̄j := 1/nj
∑

i∈Ij
µ̂i, where µ̂i = µ̂(xi,wi, zi). Column

ˆV ar(Y |x,w,z)

Ê(Y |x,z)
lists results from formula

(6.2), P̂ (Y = 0|x,w, z) from (6.3).

The quotes
ˆV ar(Y |x,w,z)

Ê(Y |x,z)
range between 11 and 136 and indicate high overdispersion. For

large companies in terms of employees, overdispersion is especially high. For example, class

7 has high EMP while class 11 has low. All other parameters are equal. Here,
ˆV ar(Y |x,w,z)

Ê(Y |x,z)

increases from 39.4 for small EMP to 135.9 for high EMP. This is mainly driven by the higher

mean µ̄7 = 277.8 compared to µ̄11 = 19.5. Additionally, we have a higher range in employee

numbers and therefore higher heterogeneity for large EMP.

The same holds for RDE: overdispersion rises as R&D intensity increases. An example are

classes 1 and 2, where the coefficient of variation increases from 26.7 to 44.3. While R&D

intensity with RDE ∈ [0; 6.344) is quite compact, RDE ∈ [6.344; 215.17] is a broad range.

Industry Engineering has the lowest overdispersion, Cars / Suppliers and Other are second.

All remaining industries show high overdispersion. For Engineering we can state that it is typical

for this industry that a large number of patents are developed. The number of patents filed is

often regarded as a mean to boost the company’s competitive position. Thus, the management

works with patent number objectives the R&D departments have to fulfil. Accomplishing these

aims is easier for an industry which needs many patents as they might just file minor inventions

as patents. Often, this results in a ’precision landing’ as far as patent numbers are concerned.

Also, the number of patents filed the year before is often regarded as a minimum goal for the

current year. These effects decrease the application variance and hence overdispersion.

Fig. 4 shows the influence of the observation year on the coefficient of variation per industry.

The legend lists the classes in descending order. We predict a positive super-linear develop-

ment. Again, Engineering shows lowest overdispersion with
ˆV ar(Y |x,w,z)

Ê(Y |x,z)
in [14.3, 14.5]. Highest

overdispersion occurs in ’Medtech / Biotech / Electro / Telco’ which have values in [37.1, 135.9].

The zero-probabilities range between 0.4% and 34%. A small BREADTH has a strong

positive impact on P̂ (Y = 0|x,w, z). See for example classes 5 and 6, where P̂ (Y = 0|x,w, z)

rises from 1.37% to 18.77%, as BREADTH decreases. This is evident since small research areas

make it easier for companies to have their patent activity covered by internal patent attorneys.

Engineering is likely to have high zero-probability, see for instance class 13, where P̂ (Y =

0|x,w, z) = 33.68%. Chemical / Pharma show very low zero-probability. Especially pharmaceu-

tical companies have developed own patent databases and therefore are likely to file all patents

themselves.

If we compare high RDP with low ones, we predict a higher zero-probability for the first

setting (compare for instance classes 1 and 4). Here, P̂ (Y = 0|x,w, z) rises from 0.85% to

4.43%. Expensive patents (high RDP) are likely to be filed exclusively by internal departments.

It seems like in crucial situations, companies trust their own patent departments more than
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Figure 4: Influence of YEAR on the coefficient of variation while fixing other covariates by their

modes; legend in descending order

external patent attorneys.

7 Conclusions and Discussions

We introduced a ZIGP (µi, ϕi, ωi) regression model, which not only extends the known Poisson

GLM by overdispersion and zero-inflation parameters but also allows for regression on these

parameters. Further, we developed the necessary asymptotic theory for these models, thus

filling a theoretical and practical gap in this research area. In particular, we showed that there

exists a sequence of random variables, whose representations are solutions of the score equations

for each n. These solutions converge in probability to the true model parameter vector. In

addition to that, we showed the asymptotic normality of these score solutions. The detection of

overdispersion requires medium sample sizes of n ≥ 200.

Moreover, we carried out a comparison of different models based on the Poisson model using a

dataset investigating the determinants of patent outsourcing. We illustrated that every extension

of our ZIGP (µi, ϕi, ωi) regression model improved model fit in terms of the AIC statistic for

the given application. Vuong tests have been used to compare these nonnested models. Both

AIC and Vuong tests chose the introduced ZIGP (µi, ϕi, ωi) regression model as the one fitting

our data best. All in all, the AIC decreased by 73% as compared to the Poisson GLM.
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Class defining covariates

Class dispersion covariates zero-inflation covariates

j nj Industry EMP RDE RDP BREADTH µ̄j ϕ̂j ω̂j
ˆV ar(Y |x,w,z)

Ê(Y |x,z)
P̂ (Y = 0|x, w, z)

1. 6 Cars / Suppl. / Other ≥ 11 291 < 6.3 ≥ 3.353 ≥ 0.642 18.0 5.14 1.36% 26.7 4.34%

2. 5 Cars / Suppl. / Other ≥ 11 291 ≥ 6.3 ≥ 3.353 ≥ 0.642 36.4 6.62 1.36% 44.3 1.77%

3. 5 Cars / Suppl. / Other ≥ 11 291 ≥ 6.3 ≥ 3.353 < 0.642 18.6 6.62 11.81% 46.0 17.08%

4. 5 Cars / Suppl. / Other ≥ 11 291 < 6.3 < 3.353 ≥ 0.642 27.8 5.14 0.40% 26.6 0.85%

5. 5 Cars / Suppl. / Other < 11 291 < 6.3 ≥ 3.353 ≥ 0.642 33.8 3.30 1.36% 11.4 1.37%

6. 5 Cars / Suppl. / Other < 11 291 < 6.3 ≥ 3.353 < 0.642 8.4 3.30 11.81% 11.9 18.77%

7. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 ≥ 6.3 ≥ 3.353 < 0.642 277.8 10.15 11.81% 135.9 11.81%

8. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 ≥ 6.3 < 3.353 ≥ 0.642 350.3 10.15 0.40% 104.5 0.40%

9. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 < 6.3 ≥ 3.353 ≥ 0.642 43.8 7.75 1.36% 60.6 1.71%

10. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 < 6.3 ≥ 3.353 < 0.642 14.1 7.75 11.81% 61.7 26.18%

11. 4 Medt. / Biot. / Elec. / Telc. < 11 291 ≥ 6.3 ≥ 3.353 < 0.642 19.5 6.09 11.81% 39.4 15.39%

12. 4 Medt. / Biot. / Elec. / Telc. < 11 291 ≥ 6.3 < 3.353 < 0.642 14.4 6.09 3.73% 37.6 12.76%

13. 4 Engineering < 11 291 < 6.3 ≥ 3.353 < 0.642 9.0 3.45 28.38% 14.5 33.68%

14. 4 Chemical / Pharma ≥ 11 291 ≥ 6.3 ≥ 3.353 ≥ 0.642 61.6 10.15 3.93% 105.5 4.15%

Table 6: Estimated coefficient of variation and probability of no outsourced patent application for 14 classes which have the largest numbers of

observations in year 2000

19



A model interpretation confirmed insights of former work on the given dataset from an

economic point of view. We added an analytical and economic interpretation for overdispersion

and zero-inflation drivers. The expected outsourcing rate is driven by the industry a company

belongs to. Electronic and Telecommunication companies show particularly high, Chemical

/ Pharma companies low outsourcing shares. The number of employees has a strong negative,

R&D costs per employee a positive influence. Overdispersion, in terms of the predicted coefficient

of variation of the outsourcing shares, strongly depends on the industry as well. Engineering

companies are likely to have low overdispersion. Large companies with high R&D spending per

employee are predicted to have high overdispersion. Zero-probability (i.e. the probability of

no outsourcing of patent applications whatsoever) grows with the observation year. Low R&D

breadth and high R&D expenditures per patent have a positive influence on zero-probability.

Although correlation should be low, for a more complex model including a parameter for time

correlation see for instance Hausmann et al. (1984). Time dependency may also be modelled

through Generalized Estimating Equations (GEE), see e.g. Hardin and Hilbe (2003) and will

be the subject of further research.

Appendix

Hessian matrix and Fisher information

The Hessian matrix Hn(δ) in the ZIGP regression may be partitioned as

Hn(δ) =













∂ln(δ)

∂ββ
t

∂ln(δ)

∂βαt

∂ln(δ)

∂βγt

∂ln(δ)

∂αβt
∂ln(δ)
∂ααt

∂ln(δ)
∂αγt

∂ln(δ)

∂γβ
t

∂ln(δ)
∂γαt

∂ln(δ)
∂γγt













, (7.1)

where ∂ln(δ)

∂ββ
t ∈ R

p×p, ∂ln(δ)

∂βαt
∈ R

p×r, ∂ln(δ)

∂βγt
∈ R

p×q, ∂ln(δ)
∂ααt ∈ R

r×r, ∂ln(δ)
∂αγt ∈ R

r×q and ∂ln(δ)
∂γγt ∈

R
q×q. Entries hlm(δ)’s of Hn(δ) can be straightforwardly computed. For instance, entries of the

matrix ∂ln(δ)

∂ββ
t are given by

hlm(δ) :=
∂ln(δ)

∂βlβm

= −
n
∑

i=1

1l{yi=0}xilximµi(β)

×−P 0
i (δ)2/ϕi(α) +

(

µi(β) − ϕi(α)
)

/ϕi(α)2P 0
i (δ)ki(γ)

(ki(γ) + P 0
i (δ))2

−
n
∑

i=1

1l{yi>0}xilximµi(β)

[

(ϕi(α) − 1)(yi − 1)yi

(µi(β) + (ϕi(α) − 1)yi)2
− 1

ϕi(α)

]

(7.2)

for l,m = 0, . . . , p.

Now set Hn(δ) := −Hn(δ). It is well known (see for example Mardia et al. (1979), p.98)

that under mild general regularity assumptions, which are satisfied here, the Fisher information
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matrix Fn(δ) is equal to EδHn(δ). Thus, entries of Fn(δ) are given by

fl,m(δ) = fm,l(δ) = −
n
∑

i=1

xilximµi(β)

×
(

−P 0
i (δ)2/ϕi(α) +

(

µi(β) − ϕi(α)
)

/ϕi(α)2P 0
i (δ)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

+
bi(α)µi(β)

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
− 1 − P 0

i (δ)

ϕi(α)(1 + ki(γ))

)

,

for l,m = 0, . . . , p; (7.3)

fl,p+1+m(δ) = fp+1+m,l(δ) = −
n
∑

i=1

xilwimµi(β)bi(α)

×
(

−P 0
i (δ)/ϕi(α)3µi(β)ki(γ) + P 0

i (δ)/ϕi(α)2(ki(γ) + P 0
i (δ))

(ki(γ) + P 0
i (δ))(1 + ki(γ))

− µi(β)

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
+

1 − P 0
i (δ)

ϕi(α)2(1 + ki(γ))

)

,

for l = 0, . . . , p, m = 0, . . . , r; (7.4)

fl,p+2+m(δ) = fp+2+m,l(δ) = −
n
∑

i=1

xilzim
P 0

i (δ)/ϕi(α)µi(β)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

,

for l = 0, . . . , p, m = 0, . . . , q; (7.5)

fp+1+l,p+1+m(δ) = fp+1+m,p+1+l(δ) = −
n
∑

i=1

bi(α) wil wim

×
(

P 0
i (δ)µi(β)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

[

µi(β)bi(α)ki(γ)

ϕi(α)4

+

(

1

ϕi(α)2
− 2

bi(α)

ϕi(α)3

)

(

ki(γ) + P 0
i (δ)

)

]

+
µi(β)2

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
+

µi(β)

1 + ki(γ)

×
[ −2

ϕi(α)2
+

ϕi(α) − P 0
i (δ)(1 − bi(α))

ϕi(α)3

])

,

for l,m = 0, . . . , r; (7.6)

fp+1+l,p+2+m(δ) = fp+2+m,p+1+l(δ)

= −
n
∑

i=1

wil zim bi(α)
−P 0

i (δ)/ϕi(α)2µi(β)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

,

for l = 0, . . . , r, m = 0, . . . , q, and (7.7)

fp+2+l,p+2+m(δ) = fp+2+m,p+2+l(δ) = −
n
∑

i=1

zilzimki(γ)

×
(

P 0
i (δ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

− 1

(1 + ki(γ))2

)

,

for l,m = 0, . . . , q. (7.8)
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Proof of Theorem 1

The proof follows Fahrmeir and Kaufmann (1985) and Czado and Min (2005). A detailed

German version can be found in Erhardt (2006, Sec. 2.3). First, we will derive a useful property.

Lemma 1 (Convergence and Continuity). Given (A1)-(A3), for all ε > 0,

max
δ∈Nn(ε)

‖V n(δ) − Ip+r+q+3‖ P→ 0, (7.9)

where V n(δ) := F
−1/2
n Hn(δ) F

−t/2
n is the normed information matrix.

Proof. [Sketch] The proof can be found in Czado and Min (2005, Lemma 6), where entry

hp,p(δ) of the Hessian matrix has to be replaced according to (7.2). In addition, we use the

compactness not only of xn but also of wn and zn when finding upper boundaries.

For proving Theorem 1 (i), we first derive an equivalent representation of the asymptotic exis-

tence. Fahrmeir and Kaufmann (1985) state that (AE) is equivalent to (AE∗): for every η̃ > 0

there is a ε > 0 and n1 so that

(AE∗) P {ln(δ) − ln(δ0) < 0 for all δ ∈ ∂Nn(ε)} ≥ 1 − η̃. (7.10)

Instead of proving (AE), we can now show (AE∗).

Proof. [(AE) ⇔ (AE∗) (Sketch)] Let λ = 1
εF

t/2
n (δ − δ0), then the Taylor expansion of the log

likelihood becomes

ln(δ) − ln(δ0) = ελtF−1/2
n sn − ε2

2
λtF−1/2

n Hn(δ̃)F−t/2
n λ, (7.11)

where δ̃ lies between δ and δ0. Note that for δ ∈ ∂Nn(ε) we have λtλ = ‖F
t/2
n (δ̂n−δ0)‖2

ε2 = 1.

Using ‖F−1/2
n sn‖ := sup

‖λ‖=1
λtF

−1/2
n sn, we recognize that it is sufficient to show that for any

η̃ = η1 + η2 > 0:

P







⋂

λ:‖λ‖=1

{

ω : ε‖F−1/2
n sn‖ <

ε2

2
λtF−1/2

n Hn(δ̃)F−t/2
n λ

}







≥ 1 − η̃ (7.12)

or equivalently

∆1(n) := P







⋃

λ:‖λ‖=1

{

ω : ε‖F−1/2
n sn‖ ≥ ε2

2
λtF−1/2

n Hn(δ̃)F−t/2
n λ

}







< η̃. (7.13)

For further details, see Erhardt (2006, p. 50).

In order to prove weak consistency in Theorem 1 (ii), we need (A1) and (AE∗).

Proof. [Theorem 1 (ii)] Assumption (A1) implies that the neighborhoods Nn(ε) shrink to δ0

and δ̂ ∈ Nn(ε). Hence, (AE∗) implies (ii). In particular, Nn(ε) shrinks to δ0 because with

n → ∞, λmin(Fn) is growing according to (A1) ( n
c1

≤ λmin(Fn)). Since λmin(Fn) · ‖δ̂n −
δ0‖2 ≤ (δ̂n − δ0)

tFn(δ̂n − δ0) = ‖Ft/2
n (δ̂n − δ0)‖2 < ε2 a.s., we get δ̂

p→ δ0 a.s. from the last

inequation.
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For the proof of the asymptotic normality of the solutions of the score equations we need

the asymptotic normality of the score equations themselves.

Lemma 2 (Asymptotic normality of the score equations). Given (A1) - (A3),

F
−1/2
n sn

D⇒ Np+r+q+3(0, Ip+r+q+3), for n → ∞. Here, Np+r+q+3(0, Ip+r+q+3) is the (p+r+q+3)

- dimensional normal distribution with mean 0 and covariance matrix I p+r+q+3.

Proof. [Sketch] The proof can be found in Czado and Min (2005, Lemma 5), where the di-

mension of the identity matrix has to be replaced by (p+ r + q +3). Further, when showing the

boundedness of maxi=1,...,n E|sr,i|3 for the Lyapunov condition, we now have individual values

ϕi and ki for each observation. Here, we use the compactness of the regressors wn and zn to

find an upper boundary.

The proof of the asymptotic normality of δ̂n in Theorem 1 (iii) follows the line of arguments

in Fahrmeir and Kaufmann (1985, Theorem 3) and uses Lemmas 1 and 2. For details, see

Erhardt (2006, pp. 56f).

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 386

Statistical Analysis of Discrete Structures. We would like to thank INNO-tec for providing the

data and especially Stefan Wagner for the helpful discussion of our results.

References

Abraham, K. G. and S. K. Taylor (1996). Firms’ Use of Outside Contractors: Theory and

Evidence. Journal of Labor Economics 14 (3), 394–424.

Amit, R. and P. J. H. Schoemaker (1993). Strategic Assets and Organizational Rent. Strategic

Management Journal 14 (1), 33–46.

Bae, S., F. Famoye, J. T. Wulu, A. A. Bartolucci, and K. P. Singh (2005). A rich family of

generalized Poisson regression models. Math. Comput. Simulation 69 (1-2), 4–11.

Clarke, K. A. (2003). A Simple Distribution-Free Test for Nonnested Hypotheses. Department

of Political Science, University of Rochester, Harkness Hall.

Consul, P. C. (1989). Generalized Poisson distributions, Volume 99 of Statistics: Textbooks

and Monographs. New York: Marcel Dekker Inc. Properties and applications.

Consul, P. C. and F. Famoye (1992). Generalized Poisson regression model. Comm. Statist.

Theory Methods 21 (1), 89–109.

Consul, P. C. and G. C. Jain (1970). On the generalization of Poisson distribution. Ann.

Math. Statist. 41, 1387.

Czado, C. and A. Min (2005). Consistency and asymptotic normality of the maximum like-

lihood estimator in a zero-inflated generalized Poisson regression. (http://www.stat.uni-

muenchen.de/sfb386/papers/dsp/paper423.ps).

23



Erhardt, V. (2006). Verallgemeinerte Poisson und Nullenüberschuss- Regressionsmodelle mit
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