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Abstract

Replicator dynamic modelling (rdm) is used to discuss industrial evolution

problems with heterogeneous agents. However, some of the models tend to be

very complex and, therefore, analytical solutions cannot be obtained. Hence,

the paper proposes to start with a relatively simple model and check its stability

of the equilibria before expanding the model. This strategy is more effective

than relying on simulation based studies where instability cannot be ruled out

ex ante. Thus, the aim of this paper is to introduce a stability check for rdm,

especially, if one ore more real Eigenvalues with value zero occur. Besides

the (Strogatz, 1994) and (Hilborn, 1994) local stability theorem, this method

provides an alternative and more flexible procedure for stability analysis for

rdm. To apply this approach, an industrial replicator dynamic model containing

three differential equations is set up.
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1 Motivation

One of the most used techniques to study evolutionary based models is the system

dynamics approach. Within this approach it is possible to study the evolution of

complex system over time. Usually, this conception make use of so called positive or

negative feedback loops, stocks and delays regarding time which sway the behaviour

of the system. Due to the fact that the system dynamics approach is based on

repeating behavioral patterns, it is possible to simulate different socio economic

scenarios, such as the introduction of a specific tax in a macro model or the launch

of a specific product in a corresponding diffusion model, and to compare the resulting

effects of the entire system.

The replicator dynamics approach is not only closely related, but is an application

of the system dynamics approach. (Fisher, 1930) made use of Charles Darwin‘s

“survival of the fittest” thesis and formulated the so called replicator equations.

Originally, the replicator dynamics approach was used in research fields such as

biology and ecology. But today, this tool is widely spread in economic fields and

amends some classic disciplines within the economic research agenda. An example

is the evolutionary game theory which is based on this approach.

The charm of using the replicator dynamics is, on the one hand, a conceptual one:

Evolutionary economics is mainly based on the assumption of heterogeneity con-

cerning agents. Heterogeneous ideas or more precisely the realization of ideas in

strategies are of major interest to answer the question about the fitness of strategies

in a given strategy pool. The implication is that superior and inferior strategies

exist and superior strategies eliminate inferior strategies. On the other hand, it is

a computational one because of the improvement of the computer capacities, which

allow to evaluate highly complex systems computationally.

A mass of papers has been published using replicator dynamics in various fields.

(Cantner and Hanusch, 1998), for instance, built a simple market model to simulate

industrial dynamics, (Noailly et al., 2003) exploited this approach to deduce evo-

lutionary harvesting strategies. Some of the models tend to be very complex and,

therefore, analytical solutions cannot be obtained. For that reason, one should first
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start with a relative simple model and check its stability. Afterwards, the model

can be expanded in several ways. This strategy is more effective than only relying

on simulation based results where instability cannot be ruled out ex ante. With the

exception of (Noailly et al., 2003), who give a explicitly proof for a two dimensional

system, or (Noailly, 2008), it is not common to check robustness of derived equilibria

within the replicator dynamics approach in the relevant literature.

And so, the aim of this paper is to introduce a robustness check for replicator

dynamic modelling, especially for the case if more than one Eigenvalue with value

zero occur. If two or more real Eigenvalues with value zero appear and all other

resulting Eigenvalues are negative, then it is a priori not possible to say if this system

is stable or not. (Strogatz, 1994) and (Hilborn, 1994) have pointed out for a system,

containing three differential equations, that a steady state is locally asymptotically

stable if all resulting eigenvalues of the Jacobian have negative real parts, or two of

the three Eigenvalues are negative and one has value zero. Obviously, for this case,

the local stability criterion theorem defined by (Strogatz, 1994) and (Hilborn, 1994)

cannot be applied.

It is straightforward to see, that the probability of the occurrence of two ore more

real Eigenvalues rises with the dimension of the replicator dynamics system. Thus,

the stability analysis based on the Eigenvalue criterion is performed not for the

common and widely discussed two dimensional case, but for the more complex three

dimensional case.

To apply this approach, we set up an industrial dynamic model with an endogenous

production process. The production depends on a regenerative but exhaustible

resource. Additionally, we integrate technological progress, which reduces the cost

of production. Both, the evolution of the resource and the integrated technological

progress influence the evolution of the market share. As a result, we obtain a model

that consists of three differential equations which has to be solved. Besides the

contribution of (Noailly, 2008)‘s recent paper, this paper is one of the very few

considering more than two dimensions. In addition, in the model we distinguish

between constant, increasing and decreasing returns to scale, and so we create a
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direct link to “Schumpeterian I”1 and “Schumpeterian II”2 hypothesis. Moreover,

this model integrates some ideas of (Cantner, 1997), (Cantner and Hanusch, 1998)

and (Noailly et al., 2003).

The paper is structured as follows: In the first subsection, we formulate the produc-

tion sector, where we mainly focus on the production process, which is constraint

by using a regenerative, but exhaustible resource as input factor. The next sub-

section deals with the evolution of the market share. Subsection 2.3. introduces

agent specific heterogeneity within the cost reducing process, which is accelerated

by technological progress. After setting up the model, we discuss the dynamic be-

haviour (subsection 2.5.) followed by an extended stability analysis of the resulting

equilibria (subsection 2.6.). The paper closes with Section 3, which gives a short

summary of the derived results.

2 Resource constraints and industrial dynamics

In this section, we introduce a simple model of the competition of selection, which is

widely used in the evolutionary context. This model is based on the seminal work of

(Dosi, 1982), who introduced the so called paradigm-trajectory-approach and hereby

identified stylized facts for the evolution of an industry.

First, we formulate and introduce the production sector, which is, for example,

missing in the work of (Cantner and Hanusch, 1998). Afterwards, we make some

comments concerning the modelling of the market structure evolution followed by a

motivation of technological progress, which is not included in the work of (Noailly

et al., 2003).

2.1 Production sector

In the model economy, we make the assumption that a set of agents or firms B ex-

ists, who produce under usage of n strategies with i = {1, 2, ..., h− 1, h, h+1, ..., j−
1For instance refer to (Acs and Audretsch, 1987), (Malerba and Orsenigo, 1993) and (Malerba

et al., 1997).
2Refer to (Cantner and Hanusch, 1998) or (Malerba and Orsenigo, 1993).
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1, j, j+1, ..., n−1, n}. To keep the model simple, we further assume that every agent

with strategy i produces with a linear production technique with the only input Nt.

Hereby Nt can be considered as a regenerative but exhaustable resource3 which is

growing with a certain exogenous and time independent degree ξ in every period t,

t ∈ T .

In contrast to the old neoclassical theory, we do not assume a production technique

which uses input factors available ad infinitum in extremum. It is more realistic that

the production decision depends on scarce resources, especially in the short run.

The reason for this assumption is to endogenize the production decision which is

directly linked to the resource dynamics via the cost of production. We refer to this

point later on.

In this way, we follow (Noailly et al., 2003), with the exception that we give a wider

definition of the evolution of the input factor Nt. It is worth mentioning that one

has to harvest the resource before using it as the input factor. 4

For this reason, we assume that the agents harvest a specific stock Nt of a natural

resource in every period of time t. The maximum carrying capacity of our resource is

defined byM , which is obviously time independent and exogenously given, obviously.

As usual in resource economics, we consider a logistic growth of our resource Nt as

follows:

dNt

dt
= ξNt

[

1 − Nt

M

]

− ψE(Nt). (1)

Equation 1 is often called the ”Schaefer equation”, which is gathered from the

Gordon-Schaefer model (Gordon, 1954), which is often used to discuss issues stem-

ming from resource economics. As we can see from equation 1, we assume that a

3See for instance (Dasgupta and Heal, 1979).
4The cost of harvesting are not considered in this model.
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fixed quantity of the natural resources is removed in every period of time, for example

in every year. Furthermore, ξ represents the exogenous growth rate of the resource

as mentioned before and E(Nt) represents the aggregate harvesting function, which

depends on the stock Nt. ψ represents the exogenous catchability coefficient, which

is of no further interest.

To make the discussion easier, we restrict ourselves in the following on the two

strategy case i = {h, j} without loss of generality. In this manner, we create a

channel to introduce agent specific heterogeneity (Noailly et al., 2003).

The two strategies can be formulated as follows: the first strategy h we label the

”green strategy”, which means that this strategy is less productive but less resource

intensive than the strategy j, h 6= j. The other strategy j we call the ”black

strategy”, because it is more resource intensive but more productive than the first

one. Hence, one can conclude that

E(·)hC(·)h > E(·)jC(·)j (2)

must hold. In equation 2, Ci stands for the cost of production and Ei stands for the

effort of strategy i, which is given exogenously.5

We further assume that we can use the resource as input factor directly, which

means that we do not include an intermediate good production sector in the model.

The implication of this assumption is that the cost of production must include the

cost of harvesting and furthermore, the cost of harvesting must equalize with the

cost of production since we do not include other costs of production in our analy-

sis. Subsequently, in the following we only use the terminology “cost of production”.

As mentioned before, we assume a linear production function with input Nt. Thus,

one can write for the production in period t, ∀t:

5Unless it is necessary, we leave the time index t for convenience.
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Ft(Nt)
i = EiNt, i = {h, j} ,∀t (3)

As usual in resource economics, we define the cost per product as cit(Nt) ≡ Ci
t

Nt+1 ,

which implies the more resource intensive the production, the more expensive is the

extraction of a fraction of the stock Nt in the next period. We, therefore, assume an

implicit forward looking agents behavior. Of course, if Nt = 0, then Cit(0) = 0, ∀ t
per assumption. Consequently, Nt has to be treated as a necessary input factor for

production. Again the reader has to bear in mind that the only purpose of the above

mentioned assumption is to endogenize the production decision via endogenous cost

of production.

With the above mentioned assumption it is now possible to deduce the profit per

period t of the agents strategies i = {h, j} which depends exclusively on the stock

of the resource Nt, as one easily can derive from the next equation:

Πi
t ≡ EiNt(p− ci), i = {h, j}. (4)

From that equation it is easy to obtain the profit per unit of strategy i in period t

πit as follows:

πit ≡
[

Πi

F tt

]

= p− ci, (5)

where p stands for the exogenous price level.

Additionally, we assume similar to (Noailly et al., 2003) that the aggregate harvest-

ing function is a convex combination of the single harvesting functions Fi. If we

assume during a certain period of time a fraction β of the total population B , β ⊆ B
explicitly decide to use the strategy i with

∑

i si = 1 we can formulate the aggregate

harvesting function as

E(Nt) =
∑

i

siβFi(Nt). (6)
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si stands for the market share of using strategy i.6 With the last paragraph we have

described the production sector totally.

To sum up, the main purpose of this section is to describe the dependence of the

evolution of the scarcer resource N in the production sector and the influences of

the evolution of Nt on the cost of production Ci under usage a certain strategy i

from a pool of strategies n. In the next section, we proceed with some comments

concerning the market evolution in the model.

2.2 Evolution of the market share

To expand the dynamic dimension in the model, we assume that the market share si

under usage of strategy i will change over time. Therefore, we have to acknowledge

the time aspect in the expression of si. To model the dynamic dimension of si,

we recur to some facts of the field of population genetics, on which evolutionary

economics is mainly based.

In the year 1908, (Hardy, 1908) published a striking article, which can be treated

as a cornerstone for mathematical orientated population genetics. In his article he

assume that

• some genetic frequencies, which he labelled (q, p) of two allele of a certain

gene position have not to be unchanged by reproduction over the generations,

belong to a certain population. The implication of this assumption is that the

possibility of selection is excluded.

• the probabilities of belonging to a certain genotype (x, y, z) is exclusively de-

fined by the initial co-generation in the way that: x = p2, y = 2pq, z = q2.

(Fisher, 1930) formulated a general equation of population genetics which bases on

the ideas of (Hardy, 1908):7

6One can set the B = 2 so that one strategy i corresponds to one agent in our two strategy case

h = i, j.
7In the following paragraph we use i and j for the generations of genotypes.
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ẋi = xj

(

∑

i

ωijxj −
∑

r,s

ωr,sxrxs

)

, (7)

with
∑

i ωijxj as the fitness of reproduction of all genotypes AiAj , ω as the advantage

of survival and
∑

r,s ωr,sxrxs as the average fitness for all other genotypes from

Ar, As,∈ H , {r, s} 6= j. The expression
∑

j ωijxj −
∑

ωr,sxrxs can be interpreted

as the advantage of survival, as a consequence.

Next, we adopt the ideas of the (Fisher, 1930) equation on our problem of how to

model the market share evolution. From the above gained facts, we can conclude

that si depends solely on the comparison between the fitness fi and the average

fitness f̄ of the chosen strategy i of an agent.

In general, fitness depends on a n-dimensional vector s which contains the relative

frequency of all possible replicators. Accordingly, one can write:

ṡi = si[fi(s) − f̄(s)]. (8)

Now we are able to adopt this general equation for our purpose. If we assume

that the rate of capacity enlargement gi corresponding to the usage of strategy i is

positive related to the profit per unit πit, we can write:

gi = γπi = γ(p− ci) = γ

[

p− Ci

N + 1

]

(9)

with the reaction coefficient γ > 0.

Next we define the average cost per product as c̄ =
∑

n sici, the average capacity

enlargement rate or the average growth rate of the population of firms using a

profitable strategy as ḡ =
∑

n sigi and set fi(s) = gi(s). Together with the derived

equation we can write

ṡi = si(gi − ḡ). (10)
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After doing some algebra, we can rewrite equation 10 together with equation 8 and

equation 9 for strategy h for instance as follows:

ṡh = γsh(c̄− ch) = γsh

(

C̄ − Ch

N + 1

)

= (1 − sh)

(

Cj − Ch

N + 1

)

, (11)

whereas we set in the last step without loss of generality γ = 1. What can we gain

from this last derived equation? First, the market share sh of using strategy h is

directly linked to the cost of production Ci under usage strategy i for i = {h, j}.
We can conclude that:

ṡh



















> 0

< 0

= 0



















for



















Ch < Cj

Ch > Cj

Ch = Cj



















. (12)

This holds also for ch, as one can easily demonstrate.

Second, by a given stock of Nt the evolution of strategy si depends only on the cost

relation to a competing strategy j. If the cost difference ∆(C) ≡ Ch−Cj = 0, then,

the agents should be indifferent between these two strategies from the pool n by a

given level of Ei or the agents have no incentive to change their strategy. Otherwise

we have a strictly dominating strategy sh ≻ sj for ∆(C) ≡ Ch − Cj < 0 et vice

versa.

Third, one can derive the following relationship of sh and Ch for a given stock of

Nt:

∂ṡh

∂Ch
< 0 (13)

and

∂ṡh

∂Cj
> 0. (14)

Subsequently, for a steady state of sh, s
∗

h (which means that ṡh = 0) we can conclude:

ṡh = 0 ⇔ s∗h = 1 ∧ C∗

h = C∗

j for s∗h ∈ (0, 1). (15)
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Fourth, it is worth deducing a relationship between the evolution of the market share

ṡh and the stock of Nt:

∂ṡh

∂Nt



















< 0 for Cj > Ch

> 0 for Cj < Ch

= 0 for Cj = Ch



















. (16)

The main purpose of this section was to give an guess on how the evolution of the

market share si depends on the resource Nt and the cost of production Ci. Until

now, we have an imagine about the market structure and the production sector. In

the next section, we want to introduce technological progress in the model. Thus,

we set the main focus on the evolution of the cost structure Ċi.

2.3 Technological progress and market selection

As mentioned before, we model agent specific heterogeneity via different cost regimes

at the beginning of the production period in t = 0. It is plausible to assume that

agents invest in a less cost intensive producing technology.

In this way, we give a further dimension of what we call the structural dynamic

aspect in the model. It is easy to see why. For a moment let us assume that

an agent uses a strategy h with cost of production tending zero in the long run.

Compared to a competing strategy j it is straightforward that this strategy j is

ruled out of the strategy field of all agents which are producing in the market if

Cj 7→ C̄ > 0 for t 7→ ∞. Hence, we have, looking at our previous results, a strictly

dominating strategy h which monopolized the market. Consequently, the market

itself is monopolized because the market share sh by using strategy h tends to the

value 1 in the long run. That‘s exactly the link between the existence of technology

progress and how it influences the market structure in the long run. Of course, in

the short run one can imagine some turbulences a propos the market evolution. This

observation covers the industry life cycle assumptions (Malerba and Orsenigo, 1993).

Herewith, we want to create a direct link from the model to some ideas of Schumpeter
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on the subject of the dimension of structural dynamics and volatility. A wide known

thesis proposed by Schumpeter is that creative destruction is a necessary condition

for innovative firms. Of course, such firms have to dispose of financial potential to

invest in R&D. Schumpeter assumes that the financial potential of firms is positive

correlated to the market power of the firm. Thus, we realize a process of creative

destruction mainly driven by R&D investments of innovative firms. The implication

is that monopoly power is a necessary condition to create incentive for investments

into in a technology which itself drives technological progress. (Neumann et al.,

1982) conclude “that larger firms ... acquire smaller firms in order to exploit the

innovative potential originated in these firms”8.

It is also obvious that a trade off between the static and dynamic characteristics

of competition exists. On the one hand one can realize extra rents from monopoly

power which ensure growth, on the other hand, we have to acknowledge an allocative

loss of efficiency. Consequently, the size of firms, the degree of concentration and

innovativeness are positive correlated. From this follows that a higher degree of

concentrated industries must exhibit higher growth rates (Schumpeter, 1942). The

“Schumpeterian hypothesis II” is a major element in the frame work of the models

of endogenous growth, which are mainly promoted by (Aghion and Howitt, 1992).

On contrary, (Arrow, 1962) showed in his article that the incentive of investing in

R&D is negative correlated with the market power of an industry. He compares the

gain of a cost reduction process innovation in a competitive world with the additional

gain of cost reduction process innovation in a concentrated industry. He shows that

the increase of profit in a competitive world is larger than in a monopoly.

The implication of the above mentioned is that many and small firms are more

innovative in a competitive world, while few but large firms are more innovative in

a concentrated world.9

It is short mentioned that a mass of literature exists which aims to test the Schum-

peter hypothesis empirically.10

8(Neumann et al., 1982), p. 135.
9Refer to (Acs and Audretsch, 1987).

10For the relationship between the size of firms, the degree of concentration and innovativeness
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The question arise how we can integrate some facts of the Schumpeter hypothesis in

our model? If one recalls our formulation of equation 11, we can derive a direct link

between market share development and the degree of concentration. It is straight-

forward that the higher the market share si is the more successful the strategy i

must be. On that account, we can suppose that the incentive to invest in a more

successful strategy i is higher compared to an inferior strategy j. It follows that

the size of a firm and the power of investment are striking factors for the market

structure and as well for the evolution of the market share si. Therefore, they both

are positive correlated to the success of a strategy i.

The implication is, if we follow (Phillips, 1971), that the positive correlation of

the firm size and the innovativeness follows a “success-breeds-success” hypothesis.11

This implies that a positive dependence of successful innovation activity in the cur-

rent period and investment endeavours in the next periods exists. Following (Cant-

ner and Hanusch, 1998) or (Malerba and Orsenigo, 1993) this interpretation is in

line with the so called “Schumpeterian II” hypothesis. On the other site, one could

argue that smaller firms are more innovative because their behaviour regarding to

investment decisions is more flexible (Malerba et al., 1997). This view equivalent to

the “Schumpeterian I” hypothesis.12

It is worth noting that the “Schumpeterian I” and the “Schumpeterian II” hypothesis

are common patterns which can occur both through the industry lifecycle, whereas

the early stage is characterized by the “Schumpeterian I” hypothesis, while the later

periods are more in line with “Schumpeterian II”. The implication is that a Schum-

peter we regime should be more volatile than the “Schumpeterian II” hypothesis

but stable. It is common measuring the stability with a so called “instability index”

refer to (Cohen and Levin, 1989) and (Kamien and Schwartz, 1975) and for the relationship between

the firm size and innovativeness refer to (Frisch, 1993). For German data refer to (Neumann et al.,

1982), (Entorf, 1988), (Kraft, 1989), and to (Bertschek and Entorf, 1996) for Belgian, German and

French data.
11See for instance (Flaig and Stadler, 1994) who have found an empirical confirmation of the

success-breeds-success hypothesis for West-Germany using a German panel data set.
12For instance refer to (Acs and Audretsch, 1987), (Malerba and Orsenigo, 1993) and (Malerba

et al., 1997).
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(Hymer and Pashigan, 1962) which is defined as:

ℑ =

n
∑

i

|sit − sit−1|, (17)

with sit as the market share of strategy i at time t.

To catch this interesting ideas, we follow (Malerba and Orsenigo, 1993), (Malerba

et al., 1997) and (Cantner and Hanusch, 1998) and create a direct link from the

“Schumpeterian I” hypothesis to increasing returns of investing in a new, less cost

intensive, technology. Instead of the “Schumpeterian I” hypothesis, the “Schumpete-

rian II” hypothesis is directly associated with the assumption of decreasing returns

of investing in a new cost reduction technology. Additionally, we incorporate the

case of constant returns to scale for the sake of completeness. The latter case is

extensively discussed by (Metcalfe, 1994). Before we proceed, we have to point out

that we model technological progress in the sense of total cost reduction over time,

not in the sense of (Metcalfe, 1994). In contrast to (Metcalfe, 1994), the cost of

production Ci are endogenous in this case.

In this way, it is quite easy to give an idea of how the evolution of the cost of

production Ci for period t should be modeled:

Ċi =



















−θCi
−θCisi

−θCi(1 − si)

. (18)

Please note that θ ∈ (0, 1) represents the rate of technological progress in cost

reduction. We make the assumption that the more one invests in the technology the

faster the cost reduction progress associated with an large value of θ proceeds. The

progress is fastest for θ tending to 1. As one can see from equation 18, the first line

represents the case of constant returns to scale, the second line the case of increasing

returns to scale and the last line the case of decreasing returns to scale. In the next

chapter, we give the formulation of a model of market selection which is driven by

structural dynamics.
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2.4 Setup of the model

After describing the ideas of integrating technological progress in the model, we am

now able to formulate a comprehensive model which integrates the following three

aspects:

1. Resource dynamics Nt, which influence

2. the selection of a producing strategy si via an endogenous cost structure Ci,

3. which is itself driven by technological progress θ in the cost structure.

These three points can be summarized in a more mathematical manner as follows:











































Ṅ = ξN
[

1 − N
M

]

− ψβ [
∑

n siFi(N)]

ṡi = si(ci − c̄)

Ċi =



















−θCi
−θCisi

−θCi(1 − si)

. (19)

Again, the first line of the system of equations 19 represents the evolution of the

resource Nt, the second equation gives an impression of how the market share si is

influenced by using strategy i. Whereas the last line distinguish between the different

kinds of returns to scale respective to the investment into a new cost reduction

technology.

After we have a created the setup of our model, the next step is to solve it and to

examine its behaviour especially in the short run. The emerging question is how to

study the dynamic of such a system. As can be seen from above, we are confronted

with an systems containing non-linear differential equations. Therefore, in the next

section we have to add some comments in respect of the dynamic behaviour of such

a system.
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2.5 Dynamic behaviour of the model

To discuss the dynamic behavior of our system, we have first to investigate, whether

a steady state in the sense of a long run equilibrium exists. This is equivalent to

the postulation that the partial derivatives over time of Ṅt, ṡt and Ċt must be zero.

Hence, we can formulate the following proposition:

Proposition 1 : On behalf of the assumption that the partial derivatives of Ṅt, ṡt

and Ċt exist and that Ṅt = 0, ṡt = 0 and Ċt = 0 hold simultaneously ∀t, the system

19 has a unique steady state vector S, which contains N∗, s∗i and C∗

i in the long

run.�

Next, we give a brief sketch of how to proof of proposition 1.

Proof 1 : An optimal steady state vector exists, if and only if Ṅ = ṡi = Ċi = 0

holds. This is realized, if











































ξN∗
[

1 − N∗

M

]

= ψβ [
∑

n s
∗

iFi(N
∗)]

0 = s∗i (c
∗

i − c̄)

0 =



















−θC∗

i

−θC∗

i s
∗

i

−θC∗

i (1 − s∗i )

. (20)

As one can see from the system of equations 19, the equation for the evolution of Ci

is influenced only by si but not by N for the increasing and decreasing returns to

scale case each. For the constant returns to scale case the evolution of Ci is purely

autonomous in the sense that it is not influenced by Nt or si. As a consequence the

value of θ is an important determinant for the market structure evolution si. Thus,

we can find the following:

1. Assume now, that a value of θ exists which is greater than a threshold value of

θ, θ̃ and near to a maximum value of θ, called θmax so that θmax > θ ≫ θ̃ holds.

Then, speed of cost reduction is very fast and as a result after a short period

of time ṡi = 0. Additionally, from the second and third line of the steady state

system follows immediately that C∗

h = C∗

j = 0 and s∗i ∈ (0, 1), for every case

of returns to scale assumption. We obtain N∗ = M
[

1 − ψβ[
P

n Eis
∗

i ]
γ

]

.

16



2. Further, assume that a smaller value of θ exists which is near to the minimum

value of θ, called θmin, and smaller than the threshold value θ̃. Then θ̃ ≫ θ >

θmin holds, obviously. Accordingly, technological progress is very slow. For

Ch(0) > Cj(0)13 in t = 0 follows

(a) for the constant returns of scale case: C∗

h = C∗

j = 0 which means that

s∗h = 0. In addition, we obtain N∗ = M
[

1 − ψβEj

γ

]

.

(b) for the increasing returns to scale case: C∗

h ∈ R+ ∧ C∗

j = 0 which means

that s∗h = 0. Once again, we obtain N∗ = M
[

1 − ψβEj

γ

]

.

(c) for the decreasing returns to scale case with the further assumption that a

ǫ 7→ 0 exists, for which one assume that ǫ < ǫ̃ ≡ |θ−θmin|: C∗

j ∈ R+∧C∗

h =

0 which means that s∗h = 0. Once more, we obtain N∗ = M
[

1 − ψβEj

γ

]

.

From point 2 of proof 1 follows that θ̃ ≫ ǫ ≫ ǫ̃ must hold. For that

reason, we obtain N∗ = M
[

1 − ψβ[
P

n Eis
∗

i ]
γ

]

for s∗i ∈ (0, 1).

3. If 1 or 2 of proof 1 holds, then ∃N∗ ∈ R+ \ {0}.

4. If one assumes N∗ = 0, then a set I of degenerated equilibria is realized for

s∗i ∈ (0, 1) and C∗

h = 0 because ane degree of freedom is left to set s∗i .

�

Hence, we have several steady states values or a set of steady state values to take

into consideration, which could all exist. But what follows from proof 1 intuitively?

First, the dynamic is only driven by the parameter θ, which is purely exogenous per

assumption. Consequently, we obtain different scenarios regarding to our market

structure depending only on the parameter of technological progress which is not

explained by our model.14

Second, if one sets θ = 0 we obtain a two dimensional system consisting only in the

development of Nt and si.

13Of course, one can assume Ch(0) < Cj(0). If Ch(0) = Cj(0) we cannot observe any dynamic of

si and Nt right from t = 0. Then si(0) = s∗i follows.
14Technological progress falls like “manna from heaven”. See for instance (Frenkel and Hemmert,

1999), p. 113.
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Thus, this model can be described as a variant of the model of (Noailly et al., 2003).

On the other hand, if we handle Nt as constant Nt = N, ∀t, we obtain a market

structure model similar to (Cantner and Hanusch, 1998).

Now we will proceed with the stability analysis of the model.

It does not make sense to discuss further topics on a underlying a model which is

not stable, of course.

2.6 Stability analysis

As mentioned before, our system 19 consists in non linear differential equations. To

deduce the local stability of our economic variables of interest Nt, si and Ci, we

should linearize the system 19 around the steady state values N∗, s∗i and C∗

i .

To make some comments concerning to the dynamical behavior of our system 19,

we have to derive the Jacobi-Matrix and its corresponding Eigenvalues.

As a first step, it is common to write for an n-dimensional non linear system in

general:

ẋ = F (xt,vt). (21)

Hereby F(·) is a (n× 1)-dimensional vector containing n vectors fn(·) of non linear

functions, ẋ is a (n × 1)- dimensional vector which contains the partial derivatives

of x with respect to t and vt is a (n × 1)-vector of time dependent values. For our

purpose we set vt = 0 without loss of generality. Therefore, we can rewrite equation

21 and obtain15:
















ẋ1

ẋ2

...

ẋn

















=

















f1(x1, x2, ..., xn)

f2(x1, x2, ..., xn)
...

fn(x1, x2, ..., xn)

















. (22)

To discuss the dynamic behaviour of our system in a ǫ-neighbourhood of the steady

state values x∗ = [x∗1, x
∗

2, ..., x
∗

n]
′, we have to linearize our system around its steady

state vector x∗ using a Taylor expansion or approximation, respectively.

15We set the subscripts t in notational form to indicate time dependent variables.
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The intuition behind a first order Taylor expansion is to express the deviations ∆

of the variables of interest x from their steady state values x∗. Thus, we get:

ẋ1 = f1(x∗) + f1
x1

(x∗)(x1 − x∗1) + ...+ f1
xn

(x∗)(xn − x∗1) + ϑ1, (23)

...
...

...

ẋn = fn(x∗) + fnx1
(x∗)(xn − x∗1) + ...+ fnxn

(x∗)(xn − x∗n) + ϑn.

If |x − x∗| → ǫ then ϑi = 0, i = {1, 2, ..., n}. The advantage of the Taylor approxi-

mation in the neighbourhood of the steady state is that the first elements of every

equation i vanish because of the existence of a steady state. The implication is that

ẋi = 0 ,∀ i.
In matrix algebra we can write:

∂∆x

∂t
= F (x∗ + ∆x). (24)

Or, if we apply the Taylor expansion on F (·) around the steady state values x∗, one

can derive:

∂∆x

∂t
= F (x∗) +

∂F (·)
∂x

|x=x
∗ [x − x∗] + ϑ(∆x), (25)

whereas the residual vector ϑ(∆x) can be treated as a redundant variable, as men-

tioned before. It is easy to see that we have to compute n-partial derivatives for

each fi(·) such we get at all together n×n derivatives for the matrix F(f1, f2, ..., fn).

Subsequently, we may concentrate our facts and write in matrix algebra in a more

convenient manner:

ẋ = Ax (26)

with x ≡ x − x∗. Here we define

A ≡
[

∂F (·)
∂x

|x=x
∗

]

=

















∂ẋ1

∂x1

∂ẋ1

∂x2
. . . ∂ẋ1

∂xn

∂ẋ2

∂x1

∂ẋ2

∂x2
. . . ∂ẋ2

∂xn

...
...

. . .
...

∂ẋn

∂x1

∂ẋn

∂x2
. . . ∂ẋn

∂xn

















. (27)
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One can verify that in expression 27 A is called the Jacobian of the system. Here-

with, we have transformed a non linear system into a linearized non linear system,

which is not homogeneous. It is known that for linear systems stability can be

proofed applying the Jacobian and their corresponding Eigenvalues. This strategy

is also valid for linearized homogeneous systems. But before we proceed, we have

to make a proposition with respect to the relationship between homogeneous and

inhomogeneous systems to proof stability.

Proposition 2 : All solutions, which can be derived from a linearized inhomoge-

neous system, are stable or attractive or even asymptotically attractive, if and only if

the trivial solution of the corresponding homogeneous system is stable or attractive

or even asymptotically attractive.�

The proof is rather short and requires nothing else then some facts of variation

computation. We note down the proof for an n-dimensional case16:

Proof 2 : All solutions µ : (T,∞) → R
n of an system ẋ = Ax+b consist in the same

differential equation of defective movement ẏ = [A(y+µ)+b]−[Aµ+b] = Ay, which

is the same analytical expression as for the corresponding homogeneous differential

equation ẋ = Ax. �

On the basis of the proposition 2 we know that is always possible to check the sta-

bility of a inhomogeneous system by its homogeneous counterpart. Thus, we can

refer to the matrix A in equation 27.

Furthermore, we have to make a proposition on the subject of the Eigenvalues con-

ditions regarding their stability. Consequently, we have to formulate an additional

proposition 3 for this purpose:

Proposition 3 : All solutions of a homogeneous system ẋ = Ax are

a) stable, if all Eigenvalues, which can be derived from a matrix A, are real ≤ 0

and those Eigenvalues who are zero must be semisimple.

b) asymptotically stable, if all Eigenvalues have an negative real part. If ρmax

is the maximum of the real part of the Eigenvalues, then, a constant C =

16One can refer to (Aulbach, 2004) for the 1 × 1-scalar case.
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C(α) ≥ 1 with ||exp(At)|| ≤ K exp(−αt) ,∀t ≥ 0 exists for every positive α

with ρmax < −α < 0.

�

Unlike of proof 1 or proof 2, it is not easy to give a similar simple proof for proposition

3. We, therefore, refer to (Aulbach, 2004), p. 331. It is straightforward that

proposition 3 has to be considered as a striking element of our analysis.

Now we are prepared mathematically and can apply the above derived system to

our equations of interest in 19. In the following, we set x = [x1, x2, x3] ≡ [N, s1, C1],

i = {h, j} = {1, 2} and A ≡ Jac. One should notice and, for that reason, we have

to point out that this system is necessary to describe our model for the two strategy

case i = {1, 2}. We must not include s2 because
∑

i si = 1 on aggregate and in

consequence one can derive C2 easily. As a result, we have reduced our problem

from the space dim [5 × 5] to the space dim [3 × 3].

After the linearisation of our system of equations 19 the following Jacobi-Matrix

results:

Jaccrs ≡











∂Ṅ
∂N

∂Ṅ
∂s1

∂Ṅ
∂C1

∂ṡ1
∂N

∂ṡ1
∂s1

∂ṡ1
∂C1

∂Ċ1

∂N
∂Ċ1

∂s1

∂Ċ1

∂C1











=

=











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

−s∗1
(C∗

1
−C2)∗(s∗

1
−1)

(N∗+1)2
(C∗

1
−C∗

2
)(2s∗

1
−1)

N∗+1

[

s∗
1
−1

N∗+1

]

s∗1

0 0 −θ











. (28)

Next, we have to evaluate the Jacobian at their steady state values for N∗, s∗1, C
∗

1

and C∗

2 for θ ∈ (0, 1). It is easy to verify that we have to check the stability for

every case of returns to scale. That work is done in the following.

First, we examine the constant returns to scale case. Refering to point 1, 2a) and

4) of proof 1 we can conclude that we get three different versions of the Jacobian

Jacuf
17 matrix:

17The subscript f denotes to the numeration of proof 1, whereas the superscript u denotes to

the cases of returns to scale: crs stands for the constant returns to scale case, irs stands for the

increasing returns to scale case and drs stands for the decreasing returns to scale case.
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Jaccrs1 =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0 0
[

s∗
1
−1

N∗+1

]

s∗1

0 0 −θ











(29)

Jaccrs2a) =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0 0 0

0 0 −θ











(30)

Jaccrs4 =











0 0 0

0 0 (s∗1 − 1)s∗1

0 0 −θ











. (31)

To see whether the equilibria points are stable or not we have to deduce the char-

acteristic vector of the Eigenvalues for each equilibrium point. For convenience, we

stack the Eigenvalues in a vector Ψu
f
18 each. Hence, one get

Ψcrs
1,2a) ≡











λ1

λ2

λ3











=











0

−γ N
M

−θ











and

Ψcrs
4 ≡











λ1

λ2

λ3











=











0

0

−θ











.

The first thing to notice is that we only obtain real Eigenvalues for the constant

returns to scale case. Consequently, complex Eigenvalues are ruled out because of

proposition 4 which is presented right below.

18The subscript f denotes to the numeration of proof 1, whereas the superscript u denotes to

the cases of returns to scale: crs stands for the constant returns to scale case, irs stands for the

increasing returns to scale case and drs stands for the decreasing returns to scale case.
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Proposition 4 : Assume that λ3 + [−tr(Jac)]λ2 + Ωλ + (−|Jac|) = 0 with Ω ≡
∣

∣

∣

∣

∣

∣

∂ẋ22

∂x22

∂ẋ23

∂x23

∂ẋ32

∂x23

∂ẋ33

∂x33

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∂ẋ11

∂x11

∂ẋ13

∂x13

∂ẋ31

∂x31

∂ẋ33

∂x33

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∂ẋ11

∂x11

∂ẋ12

∂x21

∂ẋ21

∂x21

∂ẋ22

∂x22

∣

∣

∣

∣

∣

∣

of the dim [3× 3] case holds. Then,

a necessary and sufficient condition for two imaginary Eigenvalues with real part

zero (±ωi, i =
√
−1ω, ω 6= 0) of the characteristic equation is:

1. Ω > 0 and

2. Ω[−tr(Jac)] + |Jac| = 0.

�

A proof of this proposition can be found in (Asada and Semmler, 1995).

Second, the Eigenvalues for the first two equilibria coincide because the steady state

values for C∗

1 and C∗

2 must reach the value 0 in each case, if we assume a cost

reduction driven by a technological progress. Additionally, as can be seen from the

Jacobian a multiplicative relationship between the cost difference ∆C ≡ C∗

1 -C∗

2 and

s∗1 exists.

Refering to proposition 3 b), we have to know whether the Eigenvalues are semisim-

ple. Here we give the following two definitions:

Definition 1 : If λ is called a i-time root of a characteristic polynomial i ∈ n,

then ba(λ) ≡ i is called the algebraic multiplicity of the Eigenvalue. The dimen-

sion bgeo(λ) of the corresponding Eigenspace, which means the maximum number

of orthogonal Eigenvectors, is called the geometric multiplicity of the Eigenvalue.

Therefore, the relation 1 ≤ bgeo(λ) ≤ ba(λ) ≤ n must hold. If ba(λ) = bgeo(λ), then,

the Eigenvalue is called semisimple.

If one is familiar with linear algebra, it is quiet obvious that we need a definition of

the Eigenspace before we continue because its dimension is the geometric multiplicity

of the Eigenvalue.

Definition 2 : If A ∈ C
n×n and if λ is a Eigenvalue of A, then the kernel N (A−λI)

is called the Eigenspace of λ and its dimension is called the algebraic multiplicity ℘

of λ. It follows that: ℘ ≡ ba(λ) = dim [N (A− λI)] = n−Rank(A− I).
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Definition 2 is only valid for the complex space ex ante. Because of that, we have to

make some remarks on the case of real Eigenvalues, if we want to apply proposition

3 b) to our problem.

Two annotations:

• If λ ∈ R, and because of A ∈ R
n×n we obtain real Eigenvalues from (A−λI)x =

0 and the base of an Eigenspace regarding to λ can be obtained from ℘ real

Eigenvectors.

• If Im(λ) 6= 0, then, all Eigenvectors are real complex. With λ, another vector

λ̄ is a valid Eigenvalue because it follows from ΨA(λ) = 0 that ΨA(λ) =

ΨA(λ̄) = 0 because ΨA is treated as a real polynomial.

Next, we can use some useful facts from linear algebra concerning the relationship

of the Jacobian and the Jordan block form notation. This will help us to proof the

Semisimplicity of the Eigenvalues.

Proposition 5 : Assume that a given vector of real Eigenvalues exists. Further

assume that the Jacobi-Matrix can be expressed by the Jordan normal form: J =

diag(J1, ..., Jp), whereas Ji
19 represents the matrix containing all p Jordan blocks for

the i-th Eigenvalue λi for i = {1, ..., p}. Then, a real Eigenvalue is called semisimple,

if and only if the so called Jordan block J can be represented as a diagonal matrix

or more precisely, for a real Eigenvalue λi one can write Ji = diag(λi, ..., λi). Thus,

D = T−1Jac T must equal J .�

A proof of this proposition can be found in (Aulbach, 2004), p. 241. Note, that for

a pair of real Eigenvalues λi we obtain Ji ∈ R
ba(λ)×ba(λ).

As we can see from the system 29 to system 31, we cannot directly apply proposition

5, because Jac is not compatible with the Jordan normal form, obviously.

But we can easily transform the matrix A into a Jordan normal form. That implies

that every symmetric Matrix A is diagonizable, if a regular matrix T exists, so

that one can find a diagonal matrix D = T−1AT. The matrix T consists of linear

independent Eigenvectors which can be derived from the solution of the system

19Here we use the subscript i for the i-th real Eigenvalue.
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(A− λI) = 0.

We just have to make the transformation D = T−1Jac T and apply proposition 5

to D.

It is good to know the following definition:

Definition 2 : If all Eigenvalues λi of a given matrix A are semisimple, then, the

matrix A is called semisimple or diagonizable, which means that a matrix D exists.

In the following, we show that D exists using definition 2. If we apply proposition 5

again to our 29 to system 31, we can see that the proposition holds. We exemplify

this for the constant returns to scale case: The resulting Jordan blocks are obviously

scalar for the equilibrium f = 1 and f = 2a). For equilibrium f = 4 we obtain for

instance Jui,f = Jcrs1,4 =





0 0

0 0





20 and J2,4 = −θ.

As a result, bgeo(λ1) = ba(λ1) = bgeo(λ2) = ba(λ2) = 2 because ℘ = dimN (A −
λ1I) = n − Rank(A − λ1I) = dimN (A − λ2I) = n − Rank(A − λ2I) = 2 and

bgeo(λ3) = ba(λ3) = 1 because ℘ = dimN (A − λ3I) = n − Rank(A − λ3I) = 1.

Thus the Eigenvalues are semisimple. From equilibrium f = 4 we know that 0 is

a double root and −θ is a single root. Consequently, it follows that Df = D4 =










0 0 0

0 0 0

0 0 −θ











21 exists.

One can conclude that proposition 3 b) and 2 hold each. The result is that our system

is stable, but not asymptotically stable for the constant returns to scale case. But it

is not barred that the system converges before infinity, given it converges de facto.

For this purpose it is sufficient to know that the system converges by a certain period

of time t ∈ {0, 1, ..., T}.
Next, we have to do the same computations for the decreasing and increasing returns

to scale case. Again, for this cases it can be shown that the system is stable, but

20The subscript f denotes to the numeration of proof 1, i denotes to the i-th real Eigenvalue,

whereas the superscript u denotes to the cases of returns to scale: crs stands for the constant returns

to scale case, irs stands for the increasing returns to scale case and drs stands for the decreasing

returns to scale case.
21The subscript f denotes to the numeration of proof 1.
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not asymptotically stable22 by applying the above mentioned toolbox.

The Jacobian for increasing returns to scale is

Jacirs ≡











∂Ṅ
∂N

∂Ṅ
∂s1

∂Ṅ
∂C1

∂ṡ1
∂N

∂ṡ1
∂s1

∂ṡ1
∂C1

∂Ċ1

∂N
∂Ċ1

∂s1

∂Ċ1

∂C1











=

=











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

−s∗1
(C∗

1
−C2)∗(s∗

1
−1)

(N∗+1)2
(C∗

1
−C∗

2
)(2s∗

1
−1)

N∗+1

[

s∗
1
−1

N∗+1

]

s∗1

0 −θC∗

1 −θs∗1











. (32)

If we evaluate the Jacobian at her steady state values for N∗, s∗1 and C∗

1 for θ ∈ (0, 1),

again, we obtain three different versions of the Jacobian matrix Jaci, which each of

them represent another equilibrium i:

Jacirs1 =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0 0
[

s∗
1
−1

N∗+1

]

s∗1

0 0 −θs∗1











(33)

Jacirs2b) =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0
−C∗

1

1+N∗
0

0 −θC1 0











(34)

Jacirs4 =











0 0 0

0 0 s∗1(1 − s∗1)

0 0 −θs∗1











. (35)

Once more, we define a column vector Ψu
f which contains the Eigenvalues for the

first equilibrium as follows:

Ψirs
1 ≡











λ1

λ2

λ3











=











0

−γN∗

M

−s∗1θ











.

22One can easily see that equilibrium 2b) for the decreasing returns to scale case is saddle path

stable. The stability depends on the chosen starting values.
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In the same way we stack the Eigenvalues for the second equilibrium in a column

vector: Ψirs
2b) ≡











λ1

λ2

λ3











=











0

−γN∗

M

− C∗

1

1+N∗











.

And for the degenerated equilibrium we get: Ψirs
4 ≡











λ1

λ2

λ3











=











0

0

−s∗1θ











.

If we now apply the pertinent propositions, which have been explained before, then,

one can show that the equilibria obtained are stable for the increasing returns to

scale case.

The Jacobian for decreasing returns to scale is

Jacdrs ≡











∂Ṅ
∂N

∂Ṅ
∂s1

∂Ṅ
∂C1

∂ṡ1
∂N

∂ṡ1
∂s1

∂ṡ1
∂C1

∂Ċ1

∂N
∂Ċ1

∂s1

∂Ċ1

∂C1











=

=











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

−s∗1
(C∗

1
−C2)∗(s∗

1
−1)

(N∗+1)2
(C∗

1
−C∗

2
)(2s∗

1
−1)

N∗+1

[

s∗
1
−1

N∗+1

]

s∗1

0 θC∗

1 −θ(1 − s∗1)











. (36)

The evaluation of the Jacobian at her steady state values for N∗, s∗1 and C∗

1 for

θ ∈ (0, 1) results in:

Jacdrs1 =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0 0
[

s∗
1
−1

N∗+1

]

s∗1

0 0 −θ(1 − s∗1)











(37)

Jacdrs2c) =











−γ(N∗

M
) −ψβN∗(E1 − E2) 0

0
C∗

2

1+N∗
0

0 0 −θ











(38)
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Jacdrs4 =











0 0 0

0 0 −(1 − s∗1)s
∗

1

0 0 −θ(1 − s∗1)











. (39)

Finally, we obtain three vector Ψu
f containing the Eigenvalues of the three equilibria:

Ψdrs
1 ≡











λ1

λ2

λ3











=











0

−γ(N∗

M
)

−(1 − s∗1)θ











Ψdrs
2c ≡











λ1

λ2

λ3











=











−γ(N∗

M
)

C∗

2

1+N∗

−θ











Ψdrs
4 ≡











λ1

λ2

λ3











=











0

0

(s∗1 − 1)θ











.

As we can see from our results for the decreasing returns to scale case equilibria

1 and 4 are both stable. Equilibrium 2c) is called saddle path stable, since two

Eigenvalues are negative and one Eigenvalue is positive23. The results regarding to

the algebraic and geometric multiplicity of the Eigenvalues are also drawn in table

1, which summarizes the stability discussion for all three cases.

23The stability of a saddle path stable equilibrium depends on the chosen starting values.
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Case λ1 λ2 λ3

ba(λ1) bgeo(λ1) ba(λ2) bgeo(λ2) ba(λ3) bgeo(λ3)

Constant returns to scale (crs)

Equilibrium 1 1 1 1 1 1 1

Equilibrium 2a) 1 1 1 1 1 1

Equilibrium 4 2 2 2 2 1 1

Increasing returns to scale (irs)

Equilibrium 1 1 1 1 1 1 1

Equilibrium 2b) 1 1 1 1 1 1

Equilibrium 4 2 2 2 2 1 1

Decreasing returns to scale (drs)

Equilibrium 1 1 1 1 1 1 1

Equilibrium 4 2 2 2 2 1 1

Table 1: Geometric and algebraic multiplicity of the obtained real Eigenvalues
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3 Conclusion

The motivation for this contribution is based on the observation, that is not common

to discuss the stability of equilibria in replicator dynamic modelling, especially, if

this technique is employed in an evolutionary economic context.

As shown in this paper, often more than zero real Eigenvalues with value zero oc-

cur. From a technical point of view, this is a very interesting event. Unfortunately,

the local stability criterion theorem defined by (Strogatz, 1994) and (Hilborn, 1994)

cannot be applied to prove stability. To solve this problem, one can rely on the

Semisimplicity of the Eigenvalues to proof, if the resulting equilibria are at least

stable or not. Besides the (Strogatz, 1994) and (Hilborn, 1994) local stability the-

orem, this method provides an alternative procedure for stability analysis for rdm.

Particularly, its application does not depend on the number of Eigenvalues. Theo-

retically, this approach can be applied for systems of degree > 3. But one has to

bear in mind that stability checks difficulties may rise with the order of the system.

Consequently, the rdm approach is limited for complex scenarios.

The paper proposes a strategy to set up a tractable model, where it is possible

to discuss the stability of the resulting equilibria via the widely known Eigenvalue

criterion. This seems more plausible, then to setup a very complex model right from

the beginning without knowing ex ante if the resulting equilibria are stable or not.

One has to note that by using this argument asymptotically stability cannot be

shown. But this is not a restriction because the system can converge before time goes

to infinity. In this paper we have shown by using a replicator dynamic model that

the resulting equilibria for the case of constant, increasing and decreasing returns

to scale are stable or saddle path stable, which is true for only one equilibrium.

Thus, the focus of the is to expand the toolbox for discussing equilibria stability in

replicator dynamics models, based on differential equations, notably for the case of

more than one zero real Eigenvalues.
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