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It has become popular recently to apply the multifractal formalism of statistical physics (scaling
analysis of structure functions and f(α) singularity spectrum analysis) to financial data. The
outcome of such studies is a nonlinear shape of the structure function and a nontrivial behavior of
the spectrum. Eventually, this literature has moved from basic data analysis to estimation of
particular variants of multi-fractal models for asset returns via fitting of the empirical τ(q) and f(α)
functions. Here, we reinvestigate earlier claims of multi-fractality using four long time series of
important financial markets. Taking the recently proposed multi-fractal models of asset returns as
our starting point, we show that the typical ‘scaling estimators’ used in the physics literature are
unable to distinguish between spurious and ‘real’ multi-scaling of financial data. Designing explicit
tests for multi-scaling, we can in no case reject the null hypothesis that the apparent curvature of
both the scaling function and the Hölder spectrum are spuriously generated by the particular fat-
tailed distribution of innovations characterizing financial data. Given the well-known overwhelming
evidence in favor of different degrees of long-term dependence in the powers of returns, we
interpret this inability to reject the null hypothesis of multi-scaling as a lack of discriminatory power
of the standard approach rather than as a true rejection of multi-scaling in financial data. However,
the complete ‘failure’ of the multi-fractal apparatus in this setting also raises the question whether
results in other areas (like geophysics) suffer from similar short-comings of the traditional
methodology.
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 I. MULTI-SCALING AND MULTI-
FRACTALITY IN ASSET

RETURNS

Mandelbrot, Calvet and Fisher [1],
Mandelbrot [2] and Calvet and Fisher [3]
have proposed a compound model
consisting of a multi-fractal time
transformation θt and an incremental
Brownian motion BH as a new model of
financial returns (rt):

rt = BH [θ(t)] (1)

The major new innovation of this model
is the use of a multi-fractal cascade as a
transformation of chronological time into
‘business time’. Put differently, one might
also simply interpret the multi-fractal
component as a process governing
instantaneous volatility. In their original
form, multi-fractal cascades are operations
performed on probability measures. The
‘cascade’ starts with assigning uniform
probability to the interval [0,1]. In the
elementary case of a so-called Binomial
cascade, this interval is first split up into
two subintervals of equal length, which
receive a fraction m0 and 1 - m0,
respectively, of the total probability mass.



In the next step, each subinterval is again
split up into two subintervals, which again
receive fractions m0 and 1 - m0 of the
probability mass of their ‘mother’
intervals. In principle, this procedure is,
then, repeated ad infinitum. While the
probabilities m0 and 1 - m0 are constant
over the evolution of the cascade in the
Binomial model, a straightforward
modification is using random numbers
rather than the same constant values in
each iteration. The Log-normal model is
one example along these lines using
random numbers from an appropriately
scaled Lognormal distribution [4]. One
may conveniently define its multipliers,
say M, via  ),(N~log 2

2 σλ− M .
Conservation of average mass in each
iteration implies E[M] = 0.5, and translates
into a restriction on the location and
variance of the underlying Normal
distribution: )2ln(/)1(22 −λ=σ .

The major attraction of this new model
is its ability to generate various degrees of
long memory in different powers of returns
– a feature that has been found to
characterize virtually all financial prices
(e.g., Deng, Engle and Granger [5]; Lobato
and Savin [6]) but which is absent in
traditional volatility models like GARCH
and stochastic volatility models as well as
in their long-memory variants (e.g.,
FIGARCH), cf. Mills [7].

The varying degree of long memory of
this process is equivalent to nonlinear
scaling of the moments under time
aggregation. In fact, as pointed out in
Calvet and Fisher [3], multi-fractal
measures are characterized  by a non-linear
scaling function of moments:

( ) 1)q(q tqc])t([E +τθ∆⋅==∆θ , (2)

with c() a “prefactor” depending on the
depth of the cascade and τθ(q) the
nonlinear scaling function of moments
depending on the particular variant of
multi-fractal process used as the time

transformation θ(t). As shown by
Mandelbrot, Calvet and Fisher [1], the
scaling behavior of the multi-fractal time
transformation carries over to returns from
the compound process (1) which would
obey a scaling function τr(q) = τθ(q H).
For many popular multi-fractals, their τθ(q)
function can be solved analytically and
estimation of the multi-fractal parameters
is often done by matching the empirical
τ(q) function to its theoretical counterpart.
The traditional approach in the physics
literature consists in extracting  τθ(q) or
τr(q) from a chain of log-log fits of the
behavior of various moments q for a
certain selection of time aggregates ∆t.
One, therefore, uses linear fits to the
temporal scaling of powers q:

)tln(aarEln 10
q

t,t ∆⋅+=





∆ (3)

and fits the empirical τr(q) curve (for a
selection of discrete q) to the hypothesized
analytical one. Alternatively and perhaps
even more widespread in the literature, one
would use the so-called Legendre
transformation of the scaling function

  fθ(α) = )]q(q[minarg
q

θτ−α . (4)

and estimate parameters of the
underlying multi-fractal model by
matching the empirical and hypothetical
spectrum of so-called Hölder exponents
fθ(α) which for most common multi-
fractals can also be derived analytically.
Again, the shape of the spectrum carries
over from the multi-fractal time
transformation to returns in the compound
process via a simple relationship: fr(α) =
fθ(α/H).

Two particular cases discussed in the
above papers are the Binomial and
Lognormal multi-fractals whose
multipliers are chosen from either a
Binomial distribution with probabilities mo
and 1-mo, or from a Lognormal distribution



with scale parameter λ (because of the
restriction for the variance σ2 outlined
above, the Lognormal model effectively
also has only one parameter). For these
simple cases, the pertinent τ(q) and f(α)
functions are obtained as follows:

)mm(log)q( q
0

q
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(5)
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with )m(log 02min −=α  and
)m1(log 02max −−=α  for the Binomial

model and:
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(6)

fL(α) = 1 
)1(4

)( 2

−λ
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for the Lognormal model.

The estimation of particular compound
multi-fractal models for financial returns
via (5) or (6) is a new contribution of
Mandelbrot, Calvet and Fisher [1], and
Calvet and Fisher [3], but interpretation of
a non-linear shape of the empirical τ(q)
and f(α) functions alone as evidence for
multi-fractality is much more widespread.
Papers in this vein include, for example,
Ghasghaie, S. et al., [8], Vandewalle and
Ausloos [9,10], Schmitt, Schertzer and
Lovejoy [11], Pasquini and Serva [12],
Breymann et al. [13] and Muzy et al. [14].
Our criticism below, therefore, also
extends to these more general, data-
analytical approaches for detecting multi-
scaling as a time series property of
financial data.

 II. THE SIGNIFICANCE OF THE
‘SCALING ESTIMATOR’: A TEST

WITH SURROGATE DATA

 One interesting (but neglected) aspect
of these estimation procedures is that they
do not only provide a point estimate, but
that they could also be interpreted as a test
for multi-scaling (non-linear scaling of
moments) of the pertinent data set against
the alternative hypothesis of uni-scaling
(linear behavior). Namely, both the
Binomial and Lognormal case have a uni-
fractal limiting case. In the former case
this limit is obtained with mo = 0.5, in the
later case it is given by λ = 1. For the
Binomial model, it is easy to see that with
a split of mass with probabilities 0.5 no
differentiation of the measure (and, hence,
no transformation of time) is obtained so
that eq. 1 simply boils down to fractional
Brownian motion. In the Lognormal case,
the same occurs via the dependence of the
variance on λ: in the case of λ = 1, the
variance vanishes and we also end up with
a flat measure which transforms time only
in a trivial way. In terms of the scaling
function and Hölder spectrum, we would
end up with linear scaling τ(q) = q H – 1,
the well-kown uni-fractal relationship
characterizing fractional Brownian motion
(and  scaling τ(q) = q/2 – 1 for the case of
Wiener Brownian motion) which translates
into a degenerate Hölder spectrum with
f(α) = 1 if α = H and 0 elsewhere.

Typically, simulations of uni-fractal
processes would neither give rise to
perfectly linear τ(q) functions1 nor
perfectly degenerate f(α) spectra. Some
slight, spurious curvature would have to be
expected in both of these functions.
Although in extant literature, typically any
estimate of the multi-fractal parameters

                                                          
1 Berthelsen et al. [16], Bouchaud et al. [17],

LeBaron [18] and Venziano et al. [19] have
already pointed out the possibility of
obtaining spurious multi-scaling for
particular stochastic processes.



(or, in the more data-analytical approaches:
any degree of non-linearity of the scaling
functions) has been accepted as evidence
of multi-scaling, one would rather prefer to
have a criterion for estimates that are
sufficiently far away from the borderline
cases mo = 0.5 and λ = 1 to accept the null
hypothesis of ‘true’ (as opposed to
spurious) multi-fractality.

As no theoretical results are available on
the distribution of estimates from the
scaling estimators derived from τ(q) and
f(α) functions, we pursue a bootstrap or
surrogate data approach in dealing with
this issue. In order to do so, we may even
allow for a generalization of the model (1)
proposed by Mandelbrot et al. in that we
do not have to postulate any particular
distribution of the innovations. Our null
hypothesis is absence of multi-fractality,
i.e. m = 0.5 or λ = 1, while at the same
time we allow ourselves to be totally
agnostic about the incremental distribution.
Our null hypothesis, thus, implies absence
of any temporal structure in the data
brought about by the multi-fractal time
transformation. To arrive at an assessment
of the distribution of the mo and λ
estimates, we, then simply have to repeat
our estimation procedure sufficiently often
for randomized data and compare the
original estimate with the ensemble of
estimates from the shuffled series. At
significance level x, we would reject the
null hypothesis if our original estimate
would be further away from mo = 0.5 (λ =
1) than x percent of the estimates from the
synthetic data. Note that this is a one-sided
test design as our null-hypothesis holds
that the randomized data are characterized
by absence of multi-scaling.

In fact, the similarity between the
original scaling functions and scaling
functions obtained for shuffled data has
already been noted by Matia et al. [15].
Their visual comparison might serve to
raise doubts about the reliability of any
inference on ‘true’ underlying multi-
scaling to be drawn from such analyses.

Nevertheless, they did not question the
usual conclusion drawn from the non-
linearity of the τ(q) and f(α)  functions, but
conjectured that some part of it may be
attributed to a broad probability
distribution. What we attempt in the
following is a somewhat sharper
conclusion in the form of a statistical test
for the presence of multi-scaling.

Below we report the results from
applying this test design to various
financial data sets. Our data are: two stock
market indices (the New York Stock
Exchange Composite Index and the
German DAX), an exchange rate
(Deutsche Mark/U.S$), and the daily price
of gold from the London Precious Metal
Exchange. All time series extend over
relatively long time horizons. Time
intervals and number of observations are:
for the DAX the period 10/59 - 12/98 (n =
9818), for the NYCI: 01/66 - 12/98 (n =
8308), for US$-DM: 01/74 - 12/98 (n =
6140), and for the Gold price: 01/78 -
12/98 (n = 5140). The time series have
been demeaned and autocorrelation at the
first lag has been filtered out before
estimating the multi-fractal parameters.

Tables 1 and 2 about here

Tables 1 and 2 show empirical estimates
together with minima and maxima of
estimates from 1,000 reshuffled series, and
the rank the empirical estimates would
occupy within the reshuffled ones.2 These

                                                          
2 It is interesting to compare the estimates for λ

in the case of the U.S.$-DEM with the one
reported by Calvet and Fisher [3]: while our
estimate from the τ(q) function is identical
with theirs (which is, however, obtained
from a fit of the f(α) function), the one we
get for the f(α) function is much lower.
However, note that data sources and time
periods are different which could, in
principle, explain this discrepancy.
Furthermore, the scaling estimator is
characterized by a large standard error which
sometimes generates large discrepancies



experiments have been carried out for both
the Lognormal and Binomial model with
both the τ(q) and f(α) functions used for
estimation of the multi-fractal parameters
(cf. Tables 1 and 2, respectively). All
results are clearly insignificant at any
traditional level of significance, and we,
therefore, cannot reject the null hypothesis
of absence of multi-scaling (or a Binomial
or Lognormal multi-fractal time
transformation) in any of the four time
series under consideration. In none of these
eight cases do we find an estimate for the
original series that is particularly far in the
right tail of the bootstrapped estimates
(say, beyond rank 900 of 1,000). Hence,
the apparent multi-scaling might well be
generated as a spurious result from the
particular incremental distribution found in
the data. One may note that often the entire
distribution of estimates from the shuffled
data is placed considerably far from its
expected value, e.g. in the interval
[0.77,1.00] for the τ(q) estimates of the
Binomial model when applied to NYCI
data. Figs. 1 and 2 provide illustrations of
original τ(q) and f(α) functions together
with a random selection of those from
reshuffled data which shows that there are,
in fact, no apparent differences between
both the original data and typical
randomized data sets. 3

                                                                                   
between estimates obtained for slightly
different set-ups (cf., Lux [20]).

3 Besides our general caveat against taking
curvature of f(α) and τ(q) plots as
convincing evidence of multi-scaling, it
might be interesting to point out some
perplexing regularities in Tables 1 and 2:
First, the ranking of the four markets in
terms of deviations from the benchmarks mo

= 0.5 and λ = 1 is the same in all four cases.
Since higher mo (or λ) means more
pronounced bursts, this might be viewed as a
ranking in terms of volatility persistence.
Second, along with the inter-market ranking,
the ranking of the original estimates within
their shuffled counterparts is also extremely
consistent within markets, across the four
different sets of experiments.

Figs 1 and 2 about here

 III. CONCLUSIONS

A surrogate data test like the one
pursued above can usually be interpreted
as testing whether certain features of the
data can be explained by a rather simple or
uninteresting model. This is exactly what
we have found: the apparent nonlinear
scaling from the very popular τ(q) and f(α)
approaches can be accounted for by
spurious multi-scaling typically obtained
with financial data after randomization of
their temporal structure. Note that inability
of rejection of the null hypothesis (absence
of multi-scaling) might either occur
because the null hypothesis is indeed true
or because the discriminating statistics fails
to have sufficient power against the
alternatives present in the data. The overall
conclusion is, therefore, not necessarily
that we have demonstrated the absence of
multi-fractality altogether, but could also
be that the power of the traditional
approaches for detecting this behavior is
small at least when confronted with typical
financial data. In fact, taking into account
the overwhelming evidence in favor of
different degrees of long-term dependence
in various powers of returns (Deng, Engle
and Granger [5]; Lobato and Savin [6]), we
are rather inclined to follow the later
interpretation of our results. It is also worth
pointing out that our results are in harmony
with findings of spurious curvature of the
τ(q) and f(α) functions in experiments with
some fat-tailed distributions (Nakao [21]).
They also square well with the finding that
the scaling estimates suffer from large
biases and standard errors (Lux [20];
Yamasaki [22]).

The failure of the traditional scaling
approach when confronted with financial
data raises the question whether results in
other areas found in the literature are
similarly meaningless. It, therefore, seems
worthwhile to reinvestigate typical



applications of the multi-fractal apparatus
such as, e.g., turbulent flows or
geophysical data using the bootstrapping
approach advocated in this paper. Future
work should also investigate whether new
methods for estimating multi-fractal
models(Lux [20], Calvet and Fisher [23])
would yield more clear-cut evidence for
multi-fractality under a surrogate data
perspective.
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Table I: Reshuffle Test for Significance of Log-Normal and Binomial Multi-Fractal
Estimates from Scaling Estimator – τ(q) fit

Empirical data Reshuffled data (1,000 runs)

Data
λ̂  from τ(q) Min λ̂ Max λ̂ Rank of empirical λ̂

NYCI 1.226 1.086 1.300 705

DAX 1.180 1.150 1.248 844

US$-DEM 1.109 1.050 1.233 166

Gold 1.140 1.059 1.260 322

0m̂  from f(α) Min 0m̂ Max 0m̂ Rank of empirical

0m̂

NYCI 0.961 0.774 1.000 731

DAX 0.893 0.659 0.977 848

US$-DEM 0.762 0.667 0.977 159

Gold 0.818 0.657 1.000 308

Note: The scaling estimator is implemented in the following way: 25 time increments ∆t ranging from ∆t = 5 to
∆t = T/5 (T the length of the time series) have been used which are equally spaced in logs (i.e. the next ∆t is
computed as ∆t’ =  exp(ln(∆t) + ln(T/5)/25), only positive moments are used, q = 0.1, 0.2…(0.1)…3, 3.5,.
(0.5),… 10, and the estimates of λ and m0 are found by minimizing the squared deviation between the theoretical
and empirical scaling function at the above q values.

The time intervals and number of observations are:
DAX: 10/59 - 12/98 (n = 9818),
NYCI: 01/66 - 12/98 (n = 8308),
US$-DM: 01/74 - 12/98 (n = 6140),
Gold price: 01/78 - 12/98 (n = 5140).



Table II: Reshuffle Test for Significance of Log-Normal and Binomial Multi-
Fractal Estimates from Scaling Estimator – f(α) fit

Empirical data Reshuffled data (1,000 runs)

Data
λ̂  from f(α) Min λ̂ Max λ̂ Rank of empirical λ̂

NYCI 1.240 1.033 1.549 751

DAX 1.140 1.011 2.162 816

US$-DEM 1.031 1.007 2.644 130

Gold 1.076 1.009 2.582 401

0m̂  from f(α) Min 0m̂ Max 0m̂ Rank of empirical

0m̂

NYCI 0.811 0.607 0.870 738

DAX 0.741 0.554 0.990 844

US$-DEM 0.616 0.501 0.992 153

Gold 0.675 0.554 0.992 341

Note:  Same time intervals, number of observations, and implementation of the scaling estimator as in Table
1, but here the estimates of λ and m0 are found by minimizing the squared deviation between the theoretical
and empirical spectrum at the α coordinates of the empirical spectrum.



Fig 1: τ(q) function for New York Stock Exchange Composite Index returns (solid line) and
twenty reshuffled series (dotted lines). The broken line gives the scaling behavior τ(q) = q/2
– 1 of Gaussian random variables.



Fig. 2: f(α) spectrum for New York Stock Exchange Composite Index returns (solid line) and
twenty reshuffled series (dotted lines).
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