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1 Introduction

The volatility dynamics of financial returns are an inexhaustible source of in-
spiration for the development of stochastic processes that match their stylized
facts. After the seminal proposals of GARCH and stochastic volatility models
with additive structure of their volatility dynamics models with multiplicative
structure have been introduced recently under the heading of multifractal mod-
els. Multifractal models (henceforth, MF) conceive volatility as a hierarchical
product of heterogeneous components with different lifetimes. The essential
new feature of MF processes is their ability of generating different degrees of
long-term dependence in various powers of returns - a feature pervasively found
in empirical financial data, cf. Granger and Joyeux (1980), Lo (1991), Ding et
al. (1993), Lux (1996), Labato and Savin (1998) and Zumbach (2004). While
the development of the multifractal approach goes back to Benoit Mandelbrot’s
work on the distribution of turbulent dissipation in the 1970s, its adaptation in
finance got started only in the late nineties, cf. Mandelbrot et al. (1997).

So far, the development of multifractal models has been confined mostly to
univariate settings. However, for many important purposes in empirical research
multivariate settings are preferable. In particular, it is now well accepted that
financial volatility exhibits strong comovements over time across assets and mar-
kets. This is particularly important when considering asset allocation, value-at-
risk statistics and portfolio hedging strategies. Secondly, since the information
on the source of long memory in the volatility process is quite limited, multi-
variate settings may provide additional insights into the factors responsible for
long-term dependence. Motivated by these considerations, we propose a new
multivariate multifractal model as an alternative to the one previously studied
by Calvet et al. (2006). Although we confine ourselves to the bivariate case in
this paper, extensions to more than two simultaneous series are, in principle,
straightforward.

The rest of this paper is organized as follows: Section 2 provides a short
introduction to multifractal models in finance. Section 3 introduces our new
parsimonious bivariate multifractal process and compares it to the previously
proposed alternative bivariate MSM model by Calvet et al. (2006). Section 4
provides details on parameter estimation (maximum likelihood and simulated
likelihood) for both models and assesses the small sample performance of these
estimators for the new model via Monte Carlo simulations. Empirical applica-
tions for risk management purposes of our bivariate MF process are reported in
Section 5. Section 6 provides some concluding remarks.

2 Review of Univariate Multifractal Models

Financial markets display some similarities to fluid turbulence. For example,
both turbulence and financial fluctuations are characterized by intermittency
at all scales. A cascade of energy flux is known to occur from the large scale
of injection to the small scale of dissipation, cf. Mandelbrot (1974) and Harte
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(2001). In statistical physics, such “cascades” are modeled by multiplicative
operations on probability measures. Mandelbrot et al. (1997) first introduced
the multifractal apparatus into finance, adapting the approach of Mandelbrot
(1974) to an asset-pricing framework. This multifractal model of asset returns
(MMAR) assumes that asset returns rt follow a compound process, in which
an incremental fractional Brownian motion is subordinate to the cumulative
distribution function of a multifractal measure. Calvet and Fisher (2002) have
developed methods of statistical inference for this approach.

However, the practical applicability of MMAR suffers from its combinatorial
nature, i.e. the non-causal nature of the time transformation and from its
non-stationarity due to the inherent restriction to a bounded interval. These
limitations have been overcome by the development of an iterative version of
the MF model, the Markov-switching multifractal model (MSM), cf. Calvet and
Fisher (2001, 2004) and Lux (2008). Both the model of Calvet et al. (2006)
and the new one to be detailed in the next section, are bivariate extensions of
the univariate MSM. In the univariate setting, asset returns rt are given by:

rt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ut, (1)

with ut drawn from a standard Normal distribution N(0, 1) and instanta-
neous volatility being determined by the product of k volatility components

or multipliers M
(1)
t , M

(2)
t ..., M

(k)
t , and a constant scale parameter σ. Each

volatility component is renewed at time t with probability γi depending on its
rank within the hierarchy of multipliers or remains unchanged with probability
1−γi. Calvet and Fisher (2001, 2004) propose to specify transition probabilities
as:

γi = 1− (1− γ1)
(bi−1), (2)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞). This specification guarantees
convergence of the discrete-time multifractal process to a limiting continuous-
time version with random renewals of the multipliers. Estimation of this model,
then, involves the parameters γ1 and b, the scale factor σ as well as the param-

eters characterizing the distribution of the volatility components M
(i)
t .

Using the iterative version of the multifractal model instead of its combina-
torial predecessor and confining attention to unit time intervals, the resulting
dynamics of eq. (1) can also be seen as a particular version of a stochastic
volatility model. With this rather parsimonious approach, one preserves the hi-
erarchical structure of MMAR while dispensing with its restriction to a bounded
interval. While this model is asymptotically “well-behaved” (i.e. it shares all
the convenient properties of Markov-switching processes) it is still capable of
capturing some important properties of financial time series, namely, volatil-
ity clustering and the power-law behaviour of the autocovariance function of
absolute moments:

Cov(|rt|q, |rt+τ |q) ∝ τ2d(q)−1. (3)
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Note, however, that the power-law behavior of the MSM model holds only
approximately in a preasymptotic range. Rather than displaying asymptotic
power-law behavior of autocovariance functions in the limit t → ∞ or diver-
gence of the spectral density at zero, the Markov-switching MF model is rather
characterized by only ‘apparent’ long-memory with an approximately hyper-
bolic decline of the autocorrelation of absolute powers over a finite horizon and
exponential decline thereafter. In particular, approximately hyperbolic decline
as expressed in eq. (3) holds only over an interval 1 ¿ τ ¿ bk with b the param-
eter of the transition probabilities of eq. (2) and k the number of hierarchical
levels. Eq. (3) also implies that different powers of absolute returns have differ-
ent decay rates in their autocovariances, i.e. different degree of (pre-asymptotic)
long-term dependence. One should note that it is this characteristic that distin-
guishes MF models from other long memory processes, such as FIGARCH and
ARFIMA models, which belong to the category of unifractal models, i.e. they
have the same decay rate d for all moments q.

Although the multifractal model is a rather new tool in financial economics,
various approaches have already been explored to estimate its parameters. The
parameters of the combinatorial MMAR have been estimated via an adaptation
of the scaling estimator and Legendre transformation approach from statistical
physics. However, this approach has been shown to yield unreliable results, cf.
Lux (2004). A broad range of more rigorous estimation methods have been
developed for iterative MF processes. Calvet and Fisher (2001, 2004) propose
maximum likelihood (ML) whose applicability is, however, confined to the case
of discretely distributed multipliers. Lux (2008) proposes a Generalized Method
of Moments (GMM) approach, which can be applied not only to discrete but
also to continuous distributions of the volatility components. Calvet, Fisher
and Thompson (2006) have introduced a Markov-Chain Monte Carlo method
to estimate the parameters of a bivariate extension of the MSM model.

3 Bivariate Multifractal Models

Multivariate settings provide relatively more information for portfolio and risk
management, so that there is a natural tendency to generalize volatility models
from the univariate case to multivariate specifications. Multivariate GARCH
models are available in a number of different specifications (cf. Bauwens et
al., 2006), and multivariate stochastic volatility models have gained increasing
attention recently (e.g. Liesenfeld and Richard, 2003). A certain drawback
of these approaches is that they are highly parameterized. In particular, in
a general specification of a multivariate GARCH model, that allows for a full
set of links between covariances, the number of parameters increases with the
fourth power of the number of time series to be modelled. Of course, such
an approach becomes unpractical beyond a small number of simultaneous time
series. Various restrictions of this general framework have been proposed such
as the conditional constant correlation model (CCC) of Bollerslev (1990) that
only requires to estimate the parameters of N (number of time series) univariate
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GARCH models.
The entirely different formalization of volatility correlations in the new type

of multifractal models might provide an alternative avenue to parsimonious
multivariate volatility modelling. Calvet et al. (2006) were first to propose a bi-
variate MF specification, which has also been used in Idier (2008). However, as
with other processes, there are different ways to expand the baseline univariate
models. We present here a second parsimonious alternative. Essentially, Calvet
et al. (2006) assume that the same hierarchical volatility process with k individ-
ual components applies to both time series, but obeys a different specification
(in the sense of different realizations of distributional parameters) for each one of
them. Our approach, in contrast, assumes that there is only a limited number of
joint volatility components together with additional ones whose realizations are
independent across time series. The joint components, however, are assumed to
also have identical parameters. The detailed presentation of both formalizations
will emphasize the difference between these non-nested alternatives.

To set the stage, we consider two financial returns series rn,t (for n = 1, 2),
and assume that instantaneous volatility is composed of heterogenous frequen-
cies. We model the bivariate asset returns rt as

rt = σ. ∗ [g(Mt)]
1/2

. ∗ ut. (4)

Here, rt, σ, and ut are all bivariate vectors: rt =

[
r1,t
r2,t

]
, σ =

[
σ1

σ2

]
, ut =

[
u1,t

u2,t

]
, and .∗ denotes element by element multiplication. σ is the vector of

constant scale parameters (the unconditional standard deviation); ut is a 2× 1
vector whose elements follow a bivariate standard Normal distribution, with an
unknown correlation parameter ρ, and g(Mt) is the vector of the products of
multifractal volatility components, i.e.

g(Mt) =

[
g(M1,t)
g(M2,t)

]
, (5)

with each g(Mq,t) defined as in the univariate case:

g(Mq,t) =

k∏

i=1

M
(i)
n,t, (6)

as the product of volatility components for series n, M
(i)
n,t denoting the volatility

component at frequency i of series n:

M
(i)
t =

[
M

(i)
1,t

M
(i)
2,t

]
. (7)
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Bivariate model specification by Calvet, Fisher and Thompson
(CFT, 2006):

In the CFT model, theM
(i)
t are drawn from a bivariate Binomial distribution

M = (M1, M2)
′, with M1 taking values m1 ∈ (1, 2) and 2−m1, and M2 taking

values m2 ∈ (1, 2) and 2−m2.
While the framework by CFT allows for variation of the correlation (say, ρm)

between components M1 and M2, they report that a correlation ρm equal to
one is never rejected in their empirical applications. We, therefore, restrict this
parameter to unity to economize on the number of parameters to be estimated.

In addition, whether or not certain volatility components (new arrivals) are
updated for the individual MF processes is governed by the transition proba-
bilities γi, which are specified as in the univariate version, cf. eq. (2). The
correlation of arrivals between the two series is characterized by a parameter
λ ∈ [0, 1], i.e., the probability of a new arrival at hierarchy level i for one time
series given a new arrival in the other time series is (1− λ)γi + λ. New arrivals
are independent if λ = 0 and simultaneous if λ = 1.

Alternative bivariate specification (Liu/Lux):
In the following section, we introduce a simple alternative to the specifica-

tion of CFT (2006) with a more parsimonious setting. It assumes that two time
series share a certain number of joint cascade levels while the remaining ones are
drawn independently of each other, i.e., the above parameter λ is not the same
for all hierarchical levels, but is equal to one for a range of low-frequency compo-
nents and equal to zero for the remaining high-frequency entries. The economic
intuition is that part of the correlation between assets is due to joint common
factors such as the stage of the business cycle and long-term macroeconomic
indicators, while the high-frequency components might have more idiosyncratic
sources.

In our alternative model, we, therefore, assume for the column vector g(Mt)
that

g(Mn,t) =

j∏

i=1

M
(i)
n,t ·

k∏

l=j+1

M
(l)
n,t, with M

(i)
1,t = M

(i)
2,t for 1 < i ≤ j (8)

that means, both time series share a number of j joint cascades that govern the
strength of their volatility correlation. Consequently, the larger j, the higher the
correlation between them. After j joint multipliers, each series has additional
independent multifractal components. In contrast to CFM, we assume that both

M
(i)
1,t , M

(i)
2,t are drawn from the same binomial distribution M

(i)
n,t ∼ {m0, 2 −

m0}. As a consequence, there is only one parameter to be estimated for the
distribution of multipliers, m0.

Furthermore, to constrain the space of parameters further, a restriction
for the specification of the transition probabilities is imposed for both mod-
els. Namely, we impose the simple specification γi = 2−(k−i) , i = 1, . . . , k.
Lux (2008) reports that the univariate MSM model possesses sufficient flexibil-
ity in the remaining parameters so that its empirical performance is relatively
little hampered by fixing these parameters.
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Figure 1: Simulation of the bivariate multifractal (Binomial) model. Specifica-
tion and parameters are: k = 20, j = 8, m0 = 1.4, ρ = 0.5, σ1 = σ2 = 1.

Figures 1 and 2 show simulations of this new bivariate multifractal model
(j = 4, k = 20) with Binomial distribution of its multipliers together with the
pertinent autocorrelation functions (ACF). The simulation apparently shares
some of the stylized facts of financial time series, namely volatility clustering and
hyperbolical decay of the autocorrelation function. One also easily recognizes
the correlation of the volatility processes of both time series.

4 Parameter Estimation

Following Calvet and Fisher (2001,2004), Calvet, Fisher and Thompson (2006)
and Lux (2008) we can adopt maximum likelihood, simulation-based likelihood
and the generalized method of moments (GMM) for estimating the parameters
of our new model. For further comparability with CFT, we restrict ourselves
to ML and SML estimation in this paper, but we also note that the much less
computationally demanding GMM approach has already been implemented as
well in Liu (2008).
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Figure 2: ACF for the simulations of the bivariate MF (Binomial) model of
Figure 1.

4.1 Maximum Likelihood Estimation

Both multifractal models described above fall into the class of Markov-switching
processes which makes maximum likelihood estimation feasible. As an advan-
tage against more conventional Markov-switching models, MSM allows for very
large state spaces without having to estimate large numbers of parameters. Since
the state spaces are finite when the multipliers follow a discrete distribution (e.g.
a Binomial distribution), the likelihood function can be obtained explicitly, cf.
Calvet et. al (2006). For a sample size T , the likelihood function of both types
of bivariate MSM models can, then, be written as:

L(r1, · · · , rT ; θ) =

T∏
t=1

f(rt|r1, · · · , rt−1) (9)

=

T∏
t=1


f(rt|Mt = mi) ·

4k∑

i=1

P (Mt = mi|r1, · · · , rt−1)




=

T∏
t=1

f(rt|Mt = mi) · (πt−1A) .
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The likelihood function contains the following components: θ is the set of
parameters to be estimated. The transition matrix A is composed of the condi-
tional probabilities:

Aij = P(Mt+1 = mj |Mt = mi). (10)

On the right-hand side of eq. (10), Mt denotes the realization at time t of
the bivariate Markov-switching process of the multipliers and mi is an element
of an ordered list of all possible realizations. Note that i, j = 1, 2. . . 4k as there
are 4k different combinations of the realization of the multipliers of the bivariate
model so that the transition matrix A has the dimension of 4k × 4k.1

The density of the innovation rt conditional on Mt is:

f(rt|Mt = mi) =
FN

{
rt./

[
σq. ∗ η1/2

]}

σq. ∗ η1/2
. (11)

FN{·} denotes the bivariate standard Normal density function, ./ represents
element-by-element division, and η = g(Mt). The last unknown element in the
likelihood function is πt, which is the vector of conditional probabilities, defined
as πi

t = P (Mt = mi|r1, · · · , rt). By Bayesian updating, we get

πi
t =

f(rt|Mt = mi). ∗ (πt−1A)∑
i

f(rt|Mt = mi). ∗ (πt−1A)
. (12)

In order to get an impression of the performance of the ML estimator for
sample sizes typical for financial data, we have implemented the ML estimation
for the Liu/Lux model with k = 6 and j = 4, and parameter values of m0 = 1.4,
ρ = 0.5, σ1 = 1, σ2 = 1. We conducted 400 simulations with sample sizes of
2, 000, 5, 000 and 10, 000. Table 1 reports key statistics for these simulations.
As can be seen, the average bias of the Monte Carlo estimates is close to zero
throughout different sample sizes. FSSE (finite sample standard error) and
RMSE (root mean squared error) are quite small even for the small sample size
N = 2000, and they are decreasing with increasing sample size. Simulations
with different settings for m0,..., ρ, j and k (within the limits of fensibility for
the overall number of components, k) are pretty similar and overall results
are also quite similar to those reported for the CFT model.2 Unfortunately,
applicability of the ML approach is constrained by its computational demands:
first, it is not applicable to models with an infinite state space, i.e. continuous
distributions of the volatility components, such as the Lognormal distribution.
Second, even for discrete distributions, current computational limitations make
choices of cascades with a number of steps k beyond about 6 unfeasible because
of the implied evaluation of a 4k × 4k transition matrix in each iteration.

1Some of these have a probability of occurrence of zero in our new model because of the
assumption of identical realizations for both series at levels ≤ k. This feature also makes if
computationally somewhat less burdensome than CFT.

2Liu (2008) also compares the performance of ML and SML estimations for both specifi-
cations and finds very similar small-sample performance.
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Table 1: ML estimation for the Liu/Lux model

N1 N2 N3

Bias

m̂0 0.012 0.009 0.002
σ̂1 0.016 0.012 0.006
σ̂2 0.009 -0.013 0.005
ρ̂ 0.011 -0.003 -0.007

FSSE

m̂0 0.03 0.017 0.006
σ̂1 0.033 0.023 0.011
σ̂2 0.035 0.021 0.012
ρ̂ 0.026 0.017 0.007

RMSE

m̂0 0.032 0.017 0.007
σ̂1 0.034 0.022 0.014
σ̂2 0.035 0.022 0.014
ρ̂ 0.029 0.018 0.008

Note: Simulations are based on the Liu/Lux model with the number of cascade levels k = 6
and j = 4, other parameters are m0 = 1.4, ρ = 0.5, σ1 = 1, σ2 = 1. Sample lengths are
N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000. 400 Monte Carlo simulations have been carried
out for each setting.

4.2 Simulation-Based Maximum Likelihood

Given the limitations of full maximum likelihood, it seems worthwhile to ex-
plore the performance of approximations to it that reduce the computational
demands. One alternative proposed for CFT is a simulated ML approach using
a particle filter algorithm. This seems particularly promising as the simulated
particles can also be used to obtain a projection of the density into the future.
We, therefore, proceed by adopting this SML approach for our alternative MSM
model.

Here, we use a so-called particle filter, which is a class of simulation-based
filters that recursively approximate the filtering of a random variable by a finite
number of particles, i.e. discrete realizations sampled from the prior.

The conditional state probabilities can, then, be approximated by the aver-
age of B independently sampled particles:

πi
t ∝ f(rt|Mt = mi)

1

B

B∑

b=1

P (Mt = mi|Mt−1 = m(b)), (13)

with m(b) the state of particle b, b = 1, . . . , B. To generate the particles, we
adopt the sampling/importance resampling (SIR) algorithm proposed by Pitt

and Shephard (1999). This algorithm generates {M (b)
t }Bb=1 recursively. Denote

by M
(b)
t the bivariate realizations of the volatility components of particle no. b.
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Given the population of particles of the previous period {M (b)
t−1}Bb=1, and new

information on returns, rt, one first generates B realisations M̂
(1)
t , . . . M̂

(B)
t ,

drawing random numbers q from 1 to B with probabilities of

P (q = b) =
f(rt|M̂ (b)

t−1)∑B
i=1 f(rt|M̂ (i)

t−1)
. (14)

Table 2: Simulation-based maximum likelihood estimation

SML
b=250 b=500 b=1000

N1 N2 N3 N1 N2 N3 N1 N2 N3

Bias

m̂0 0.002 -0.013 -0.006 -0.012 -0.006 0.004 -0.005 0.005 0.003
σ̂1 0.013 0.011 0.004 0.011 0.01 0.005 0.011 0.005 -0.003
σ̂2 0.009 0.01 -0.006 0.01 -0.012 0.006 0.016 -0.01 -0.004
ρ̂ -0.015 -0.007 0.008 -0.007 0.007 -0.002 -0.006 -0.01 -0.001

FSSE

m̂0 0.033 0.017 0.008 0.03 0.018 0.007 0.03 0.017 0.006
σ̂1 0.038 0.026 0.014 0.035 0.024 0.012 0.034 0.022 0.01
σ̂2 0.04 0.028 0.013 0.038 0.026 0.012 0.035 0.026 0.012
ρ̂ 0.028 0.016 0.008 0.025 0.016 0.007 0.026 0.016 0.007

RMSE

m̂0 0.034 0.019 0.009 0.032 0.017 0.009 0.031 0.016 0.007
σ̂1 0.038 0.027 0.015 0.036 0.025 0.013 0.035 0.023 0.013
σ̂2 0.041 0.027 0.014 0.038 0.025 0.014 0.036 0.025 0.012
ρ̂ 0.031 0.019 0.009 0.027 0.018 0.007 0.028 0.017 0.008

Note: Simulations are based on the Liu/Lux model with the number of cascade levels k = 6
and j = 4, other parameters are m0 = 1.4, ρ = 0.5, σ1 = 1, σ2 = 1. Sample lengths are
N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000. 400 Monte Carlo simulations have been carried
out for each set of parameters.

Subsequently, one iterates these particles M̂
(b)
t applying the matrix of transi-

tion probabilities to obtain M
(b)
t = M̂

(b)
t , b = 1, . . . , B. This procedure replaces

the extremely high dimensional state space evaluation of eq. (9) by a smaller
number of Monte Carlo draws.
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Table 3: Simulation-based maximum likelihood estimation

k=8, j=6
b=250 b=500 b=1000

N1 N2 N3 N1 N2 N3 N1 N2 N3

Bias

m̂0 0.011 -0.010 -0.013 -0.007 -0.004 -0.009 -0.013 -0.009 -0.015
σ̂1 -0.013 0.008 0.008 -0.012 -0.008 0.010 -0.008 0.013 -0.008
σ̂2 0.009 0.013 -0.007 0.021 0.015 -0.008 0.008 -0.007 -0.010
ρ̂ -0.014 -0.008 0.010 -0.008 -0.009 0.010 -0.012 0.010 -0.011

SD

m̂0 0.047 0.023 0.012 0.038 0.020 0.011 0.035 0.020 0.008
σ̂1 0.053 0.039 0.019 0.043 0.034 0.017 0.041 0.030 0.015
σ̂2 0.054 0.037 0.019 0.046 0.032 0.018 0.045 0.031 0.016
ρ̂ 0.035 0.020 0.014 0.030 0.018 0.010 0.030 0.017 0.009

RMSE

m̂0 0.048 0.025 0.012 0.039 0.020 0.012 0.035 0.021 0.009
σ̂1 0.054 0.040 0.019 0.045 0.034 0.018 0.042 0.031 0.016
σ̂2 0.054 0.038 0.021 0.046 0.032 0.019 0.044 0.030 0.016
ρ̂ 0.037 0.021 0.013 0.031 0.018 0.009 0.031 0.017 0.010

k=8, j=4
b=250 b=500 b=1000

N1 N2 N3 N1 N2 N3 N1 N2 N3

Bias

m̂0 -0.012 -0.016 -0.007 0.009 -0.007 -0.005 0.012 -0.010 -0.011
σ̂1 0.008 0.013 0.006 -0.011 0.007 0.012 0.009 -0.005 -0.007
σ̂2 -0.011 -0.003 0.011 -0.012 -0.005 0.005 -0.007 -0.011 -0.004
ρ̂ -0.007 -0.008 -0.010 -0.005 -0.008 -0.009 -0.018 -0.010 -0.010

SD

m̂0 0.048 0.024 0.011 0.037 0.021 0.012 0.035 0.020 0.009
σ̂1 0.055 0.039 0.020 0.043 0.033 0.018 0.042 0.030 0.016
σ̂2 0.054 0.038 0.020 0.045 0.033 0.018 0.044 0.031 0.015
ρ̂ 0.036 0.021 0.014 0.032 0.018 0.009 0.030 0.017 0.010

RMSE

m̂0 0.050 0.028 0.014 0.040 0.021 0.011 0.036 0.021 0.010
σ̂1 0.054 0.041 0.020 0.044 0.034 0.017 0.043 0.031 0.016
σ̂2 0.055 0.038 0.023 0.045 0.032 0.019 0.043 0.030 0.016
ρ̂ 0.038 0.021 0.012 0.032 0.018 0.009 0.030 0.016 0.011

Note: Simulations are based on the bivariate MF model with the number of cascade levels
k = 8 and j = 6(4), other parameters are m0 = 1.4, ρ = 0.5, σ1 = 1, σ2 = 1. Sample lengths
are N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000. 400 Monte Carlo simulations have been
carried out for each set of parameters.

We have also implemented the above SML algorithm in simulations along the
lines of the previous ML evaluation. We first implemented the simulation-based
ML with the same parameter settings used for the previous ML estimation
exercise and the same time series so that all differences from the results in
Table 1 are due to the different estimation methods. Again, 400 simulations
and estimations were carried out with 100,000 observation generated in each
simulation, of which, three different sizes of sub-samples (N1 = 2000, N2 = 5000,

12



and N3 = 10000) were randomly selected for estimation, and different numbers
of particles B = 250, B = 500, B = 1000 were employed to implement the
SIR algorithm. The pertinent Monte Carlo results are reported in Table 2. In
addition, SML has also been tested with a larger number of cascade levels of
k = 8 to explore the performance in cases that are not practically accessible
for full ML estimation. Table 3 provides results for different numbers of joint
cascade levels: j = 6, and j = 4, respectively. We observe that the bias is minor
throughout different sub-sample sizes. FSSE (finite-sample standard error) and
RMSE (root mean squared error) are relatively moderate and are decreasing
with increasing sub-sample sizes. The major insights to be drawn from these
experiments are the following: First comparing Tables 1 and 2, we see that
even for only 250 particles, the loss in efficiency from SML against full ML is
very small. Increasing the number of particles to 1000, there is practically no
noticable difference in the performance of both algorithms any more. This nice
behavior of SML is confirmed by the results exhibited in Table 3. Although
one might intuitively expect a certain sensitivity of the particle filter to the
number of possible states, there is hardly any noticable deterioration for higher
k. Although the number of states is larger than the number of particles, the
known potential inefficiencies of the particle filter (reduction of effective size of
the swarm or ‘sample impoverishment’ due to the large weights of few particles)
appear of little concern for our application. Further experiments with a large
number of alternative settings confirm that Tables 2 and 3 are typical for the
performance of the SML algorithm in our framework.

Note, however, that our Monte Carlo experiments have been conducted un-
der the assumption of known numbers of joint and overall volatility components,
j and k. Of course, in practice, these numbers are not known but also have to
be estimated. Since different j and k imply comparison of non-nested models
with very similar observational features, the problem of optimal determination
of those parameters is a relatively hard task. Calvet and Fisher (2004) develop
a test of the statistical significance of likelihood differences, but only find sig-
nificant results for alternatives that are far apart from each other (in terms of
k). Lux (2008), however, indicates that misspecification of k beyond some rela-
tively high numbers might provide little practical harm to parameter estimation
and applications in volatility forecasting and risk management. The reason is
that for increasingly higher k, the additional components would have a rela-
tively long mean life time (compared to the sample size) and would, therefore,
be almost constant for the sample size under consideration. Indeed, parameter
estimates typically show saturation and do not change anymore when increasing
k of univariate MSM models beyond about 10. Both Lux (2008) and Lux and
Morales-Arias (2010) report that for most practical purposes, the MSM model
is insensitive towards misspecification with too high numbers of cascades.

In our case, the task of model selection is complicated by the fact that we
have to make a choice of both j (number of joint cascades) and k (overall number
of cascades. For the sake of computational feasibility, we fix the latter at k = 8.
For selection of j we adopt a heuristic approach that will be detailed in the next
section.

13



4.3 Model Selection

As has been mentioned, discrimination between different MF specifications on
the base of explicit tests (like the likelihood ratio test applied in Calvet and
Fisher, 2004) often remains inconclusive. Unlike for many other classes of mod-
els, there is also no general principle of parsimonious model selection that could
be adopted for MSM models. Whereas, for example, a lower number of lags
would lead to a large saving in terms of parameters to be estimated for GARCH
or VAR models, this is not so for the number of multipliers in our MSM frame-
work. Indeed, the number of parameters one has to estimate remains exactly the
same for all choices of j and k. Hence, the standard information criteria are not
applicable to our case. In light of these problems, we have turned to a heuristic
model selection algorithm, that focuses on the proximity of the chosen model to
important empirical characteristics of financial data. In particular, we believe
that it should be crucial for practical applications to get a close approximation
to the pattern of dependence of the data. Our proposed approach to subset
model selection, therefore, focuses on this aspect. While k = 8 is predetermined
for reasons of computability, the submodel for the number of joint cascades j
is chosen depending on a comparison of the decay factor of the autocorrelation
function of a portfolio of two assets with the pertinent statistics obtained from
simulations. Our algorithm proceeds in the following way:

(1) we estimate our bivariate models for a range of joint cascade levels
j = 1, . . . , 7. Based on the empirical estimates of the different submodels, 200
simulations are conducted for each asset,

(2) for each bivariate time series, we take its equal-weighted portfolio and
using the GPH approach of Geweke and Porter-Hudak (1983), estimate the

empirical long memory decay parameter d̂ for the absolute value of returns of
the portfolio,

(4) we also compute the long memory parameter d̂i, i = 1, . . . , 200 for each
simulated equal-weighted portfolio. We then select the number of joint cascades,
j, as the one for which the mean value of the 200 d̂i’s, is closest to the empirical
one.
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Table 4: Empirical estimates (in sample data)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
Dow/Nik

m̂0 1.365 1.335 1.392 1.371 1.331 1.324 1.315
(0.018) (0.019) (0.017) (0.014) (0.013) (0.017) (0.019)

σ̂1 0.974 0.952 1.032 0.947 0.954 0.937 1.021
(0.019) (0.019) (0.021) (0.018) (0.025) (0.023) (0.025)

σ̂2 0.994 1.093 1.071 1.093 1.094 0.998 1.047
(0.026) (0.020) (0.024) (0.029) (0.030) (0.031) (0.030)

ρ̂ 0.162 0.141 0.153 0.160 0.156 0.150 0.143
(0.017) (0.014) (0.014) (0.016) (0.018) (0.018) (0.015)

d̂ 0.230 0.244 0.252 0.257 0.253 0.235 0.239
(0.019) (0.022) (0.020) (0.022) (0.021) (0.019) (0.022)

US/DM

m̂0 1.440 1.459 1.473 1.521 1.505 1.487 1.499
(0.022) (0.022) (0.024) (0.029) (0.027) (0.022) (0.022)

σ̂1 0.790 0.745 0.778 0.780 0.744 0.739 0.785
(0.019) (0.022) (0.019) (0.020) (0.015) (0.021) (0.021)

σ̂2 0.694 0.713 0.690 0.693 0.698 0.708 0.707
(0.019) (0.019) (0.017) (0.022) (0.021) (0.017) (0.022)

ρ̂ 0.322 0.323 0.302 0.314 0.309 0.310 0.291
(0.015) (0.017) (0.012) (0.018) (0.018) (0.016) (0.017)

d̂ 0.168 0.163 0.179 0.188 0.183 0.194 0.216
(0.020) (0.018) (0.021) (0.020) (0.019) (0.021) (0.021)

TB2/TB1

m̂0 1.561 1.633 1.610 1.602 1.592 1.610 1.685
(0.024) (0.021) (0.025) (0.025) (0.028) (0.027) (0.031)

σ̂1 0.310 0.305 0.306 0.290 0.282 0.316 0.323
(0.019) (0.021) (0.021) (0.012) (0.013) (0.017) (0.020)

σ̂2 0.345 0.358 0.363 0.356 0.307 0.380 0.369
(0.031) (0.027) (0.027) (0.028) (0.028) (0.029) (0.021)

ρ̂ 0.880 0.869 0.858 0.844 0.812 0.845 0.858
(0.029) (0.023) (0.023) (0.022) (0.026) (0.026) (0.026)

d̂ 0.155 0.141 0.145 0.137 0.126 0.139 0.138
(0.017) (0.017) (0.015) (0.018) (0.016) (0.020) (0.019)

Note: Empirical estimates are obtained via a particle filter with B = 500. Each column
corresponds to estimates with different joint numbers of cascade levels j (k = 8); d̂ is the
mean value of 200 simulated GPH estimates on the base of Monte Carlo simulations of the
model with pertinent estimated parameters, and numbers in parenthesis are standard errors.
The empirical GPH estimator d̂ of Dow/Nik is 0.245; the empirical GPH d̂ of US/DM is

0.177; the empirical GPH d̂ of TB2/TB1 is 0.129.
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5 Empirical Applications

5.1 Parameter Estimation and Model Selection

In this section, we report our empirical results, and compare the performances of
our new parsimonious bivariate MSM model with that of CFM and with the CC-
GARCH model of Bollerslev (1990) as benchmarks. We consider daily data for
two stock exchange indices: the Dow Jones composite 65 average index and the
NIKKEI 225 average index (DOW/NIK, 6th January 1970 - 30th December
2008), two foreign exchange rates, the U.S. Dollar to British Pound, and German
Mark to British Pound (US/DM , 1st March 1973 - 31st December 2008); and a
bond portfolio of U.S. 1-year and 2-year treasury constant maturity bond rates
(TB1/TB2, 1st June 1976 - 31st December 2008), where the first symbol inside
the parentheses gives the acronym for the corresponding time series, followed
by the starting and ending dates for the sample at hand. Asset return are
calculated as the log differences of prices rt = 100× (log(pt)− log(pt−1)), with
pt denoting daily price observations.3

We separate each time series into two subsets (in-sample data used for esti-
mation, out-of-sample data for forecast assessment). For the in-sample periods
we use for DOW/NIK: 6th January 1970 - 31st August 1990; US/DM : 1st

March 1973 - 30th April 1992; and TB1/TB2: 1st June 1976 - 31st May 1994.
The remaining out-of-sample subsets are for the DOW/NIK: 4th September
1990 - 30th December 2008; US/DM : 1st May 1992 - 31st December 2008 and
TB1/TB2: 1st June 1994 - 31st December 2008.

Table 4 provides the empirical estimates for different choices of joint cascade
levels j ranging from 1 to 7 (k = 8), as well as the mean long memory GPH
parameter for simulated portfolios (bottom). For the DOW/NIK portfolio the
preferred model according to the heuristic model selection scheme detailed in
sec. 4.3 is j = 2, while it is j = 3 for US/DM and j = 5 for TB1/TB2
respectively.

We have also conducted Monte Carlo experiments to further investigate the
validity of the GPH selection procedure. After steps 1 to 3 above, that is,
simulating 200 time series under the estimated parameters reported in Table
4 for each number of joint cascades, j, we obtain their GPH long memory
indices di,j (i = 1, 2, · · · , 200; j = 1, 2, · · · , 7) as well as mean values d̄j over
the 200 replications for specification j (reported in the bottom of each panel
in Table 4). We then compare each di,j with the d̄j and count the number of
cases in which the di,j are closest to each one of the d̄j . Results for the stock
markets are depicted in Table 5. Results for bonds and foreign exchange rates
are very similar. Typically, in about 50 percent of cases the correct model can
be identified in this way. If we add the next higher and lower j we arrive at
about 150 of 200 cases. Given the very small fluctuations of likelihood values,
we view this as a relatively satisfactory performance of our heuristic approach.

3The U.S. one and two-year treasury constant maturity rates have been converted to equiv-
alent bond prices before calculating returns.
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Table 5: GPH specification

j′ = 1 j′ = 2 j′ = 3 j′ = 4 j′ = 5 j′ = 6 j′ = 7

Dow/Nik

j = 1 123 27 12 9 11 16 2

j = 2 22 127 10 24 16 0 1

j = 3 20 5 106 10 28 21 10

j = 4 25 22 13 115 10 12 3

j = 5 17 6 11 20 111 22 13

j = 6 23 5 16 10 27 112 7

j = 7 23 10 16 11 43 8 89

Note: Each row corresponds to the number of cases in which the individual dij (i =
1, 2, · · · , 200; j = 1, 2, · · · , 7) are closest to each one of the d̄j′ (mean of 200 d for different
joint cascades j′ = 1, 2 · · · , 7).

5.2 Application to Value-at-Risk

Value-at-risk (VaR) has emerged as one of the most prominent tools for the
assessment of downside market risk. For instance, according to the Basle Com-
mittee (1996), the risk capital of a bank must be sufficient to cover losses on the
banks’ trading portfolio over a 10-day holding period on 99% of occasions. VaR,
therefore, represents a quantile of an estimated profit-loss distribution. Exist-
ing methodologies for calculating VaR differ in a number of respects. The most
widespread are non-parametric historical simulation methods which estimate
VaR by using the sample quantile estimate based on historic return data, fully
parametric methods based on econometric models for volatility dynamics which
often impose certain distributional assumptions, and semi-parametric methods
based on extreme value theory (EVT) focusing only on the tails of the return
distribution. For surveys of the advantages and disadvantages of various VaR
approaches, see Dowd (2002) and Kuester et al. (2006).

Here, we will of cource, explore the performance of our new bivariate MSM
model in VaR applications. To fix notation, let It be the information set until
time t, and rt,t+h the forward looking h-period return at time t. Value-at-risk
at time t for the h-period horizon is defined as:

Pr
(
rt:t+h ≤ −V aRα

t:t+h|It
)
= α. (15)

It places an upper bound on losses in the sense that these should exceed
the VaR threshold with only a pre-assumed target probability. In other words,
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conditional on the information up to time t, the value-at-risk for period h of
one unit of the portfolio is the (1−α)th quantile of the conditional distribution
rt:t+h.

The algorithm of the particle filter in Section 3 also provides us with a
way of calculating V aRα

t:t+h. To this end, we simulate each volatility particle

M
(b)
t one-step-ahead by using SIR: After having estimated the parameters with

in-sample data, we invoke once more the particle filter algorithm and iterate
the particle swarm under given estimated parameters up to the end of the in-
sample record. Since this requires less computation time than the estimation
stage, we use a larger number of particles, B = 10, 000, in order to improve the
approximation to the projected bivariate density. After the last iteration of the
in-sample series (time t), we simulate the Markov chain h-steps-ahead to obtain

{M̂ (b)
t+1}Bb=1, . . . , {M̂ (b)

t+h}Bb=1, which are used to approximate the distribution of
one- to h-step ahead forecasts of volatility. With the swarm of particles having
been iterated into the future (t+ 1, . . . , t+ h) we generate additional bivariate
Normal innovations to construct the Monte Carlo realizations of our portfolio
returns. When moving the forecast origin from t to t+1, we again apply the SIR
in order to extract the new information at t + 1, and then iterate the Markov

chain to generate draws {M̂ (b)
t+2}Bb=1 to {M̂ (b)

t+h+1}Bb=1 conditional on {M (b)
t+1}Bb=1.

This recursive procedure provides a discrete approximation to Bayesian up-
dating of state probabilities, which are then used as the basis to simulate the bi-
variate series forward over h-day horizons. Given the approximation to the pre-
dictive bivariate density by our particles we calculate V aRα

t:t+h as the (1−α)th
simulated quantile.

Table 6: SML estimates for Calvet/Fisher/Thompson model (in-sample data)

m̂1 m̂2 σ̂1 σ̂2 ρ̂ λ̂

Dow/Nik 1.435 1.375 0.924 1.211 0.288 0.373
(0.022) (0.030) (0.034) (0.037) (0.024) (0.020)

US/DM 1.430 1.415 0.797 0.672 0.276 0.470
(0.025) (0.022) (0.036) (0.037) (0.015) (0.029)

TB1/TB2 1.371 1.447 0.357 0.411 0.804 0.519
(0.029) (0.032) (0.043) (0.042) (0.020) (0.024)

Note: The number of cascade levels is k = 8 as in Calvet et al (2006).
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Table 7: CC-GARCH(1, 1) model estimates (in-sample data)

ω̂1 ω̂2 α̂1 α̂2 β̂1 β̂2 ρ̂12

Dow/Nik 0.01 0.05 0.04 0.22 0.94 0.73 0.07
(0.00) (0.02) (0.01) (0.02) (0.01) (0.03) (0.02)

US/DM 0.12 0.14 0.11 0.13 0.87 0.82 0.22
(0.01) (0.02) (0.01) (0.03) (0.01) (0.02) (0.03)

TB1/TB2 -0.02 -0.01 0.07 0.09 0.85 0.83 0.71
(0.01) (0.00) (0.03) (0.03) (0.01) (0.02) (0.03)

Note: The ML estimation of the CC-GARCH(1, 1) model is implemented via the GAUSS
module ‘Fanpac’ provided by Aptech TM Systems Inc.

We also compute value-at-risk based on the alternative CFM multifractal
model and on the bivariate constant correlation GARCH (CC-GARCH) model,
of Bollerslev (1990), for comparison. Tables 6 and 7 report the empirical esti-
mates of the parameters of the CFT and CC-GARCH models for the in-sample
series, while the pertinent parameters of the Liu/Lux model can be found in
Table 4. While value-at-risk for the CFM model is also computed via an SIR
approach, for the CC-GARCH (1, 1) model, a closed form solution exists for
one-day VaR forecasts, that is,

V aRα
t:t+1 = µt +Q1−ασt, (16)

with Q1−α the (1 − α)th quantile of the standard Normal distribution and
σt is the square root of the conditional volatility (standard deviation) implied
from CC-GARCH. VaR forecasts for more than one day are implemented again
through simulations.

We assess the model’s performances by computing the failure rate for the
individual assets as well as equal weight portfolios and hedge portfolios over
the out of sample VaR forecasts. By definition, the failure rate is the number
of times losses exceed the forecasted VaR in a given sample, which should be
close to the prescribed significance level if the model is correctly specified. We
then perform Kupiec’s likelihood ratio (LR) test, cf. Kupiec (1995). Since the
computation of the empirical failure rate is characterized as a sequence of yes/no
observations, the null hypothesis that the model generates the correct failure
rate amounts to testing:

H0: α = α̂, against
H1: α 6= α̂,

where α̂ is the empirical failure rate estimated. The results under the
alternative models are reported in Table 8 (Liu/Lux model), Table 9 (Cal-
vet/Fisher/Thompson model) and Table 10 (CC-GARCH model) for horizons
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of one, two and five days. These results demonstrate that VaR forecasts based
on multifractal processes are much more accurate those those based on CC-
GARCH model. For example, out of a total of 36 scenarios for stock markets,
there are only 4 too risky cases in the Liu/Lux model over one and five-day
horizons, and 4 failures (three too risky and one too conservative) in the Cal-
vet/Fisher/Thompson model for two and five-day horizons. In contrast, we find
9 too risky cases based on the CC-GARCH model. Forecasts of foreign exchange
rates show even more encouraging results: we observe only one conservative sce-
nario for the two-day horizon for the Liu/Lux model in Table 8, and two cases
for the Calvet/Fisher/Thompson model in Table 9. However, there is a total
of 13 too risky cases in Table 10 based on the CC-GARCH model, where most
failures occur at the 1% level. For the U.S bond market, there are 7 failures
and 8 unsuccessful forecasts in Table 8 and Table 9, respectively, whereas there
are 14 failures for the CC-GARCH model.

A glance at the comparison suggests that the performances of multifractal
models clearly dominates that of the CC-GARCH model, and it also shows that
our parsimonious multivariate MF model with smaller number of parameters
than CFM is able to achieve a similar performance of its VaR forecast.
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5.3 Expected shortfall

Although value-at-risk conveniently summarizes complex positions in a single
figure, it has been argued (Artzner et al., 1997), that it should be complemented
by other statistics as it disregards any loss beyond the VaR level (known as the
‘tail risk’ issue). VaR is also not sub-additive, i.e. the risk of a composite
portfolio is less than or equal to the sum of the risk of individual portfolios.

Expected shortfall (ES) has been proposed to alleviate these shortcomings.
It is defined as the expected loss conditional on exceeding the VaR, which is
given by:

ESα
t:t+h = E[

(
rt:t+h|rt:t+h ≤ −V aRα

t:t+h

) |It]. (17)

Thus, expected shortfall provides information about the size of the potential
losses, given that a loss larger than VaR occurred. This measure has also been
shown to be sub-additive (Acerbi and Tasche, 2002).

In this section, we assess our bivariate multifractal model in terms of the
performance of multi-period ES forecasts by comparing the empirical and fore-
casted expected shortfall. As for the VaR forecasts, expected shortfall forecasts
based on the Calvet/Fisher/Thompson model and the CC-GARCH(1, 1) model
were also computed as benchmarks. The results are reported in Tables 1 to 3.
Numbers inside the parentheses are the empirical expected shortfalls, numbers
without parentheses are the forecasted ones based on these three models. Bold
numbers show those cases for which we cannot reject identity of the empirical
and forecasted ES, i.e. the empirical value falling into the range between the 2.5
to 97.5 percent Monte Carlo quantiles of the simulated ones from the particle
swarm.

Table 11 shows quite positive results for the new model for stock indices,
except for three too risky cases (the simulated ES above the empirical one)
at the 1% level. For foreign exchange rates, the ES forecasts give only one
too conservative case (the simulated ES below the empirical one) for hedge
portfolios at the 1% level of the five-day horizon. For U.S. bonds, we find
seven unsuccessful cases among a total of 24 scenarios. The performance of the
Calvet/Fisher/Thompson model is provided in Table 2. ES forecasts of stock
indices show two excessively risky cases for NIK and DOW at the 1% level
at the one and five-day horizons, respectively. The results for foreign exchange
rates only have one too conservative HG portfolio at the one-day horizon. For
U.S. treasury bond maturity rates, there is a total of eight failures.

For the CC-GARCH(1, 1) model, Table 3 reports successful forecasts for
NIK, but shows six failures for the rest of the stock index portfolios. For
foreign exchange rates, we find again six failures across all scenarios although
forecasts on equal-weight portfolios are successful. Furthermore, results for U.S.
treasury bond rates are very disappointing in that all cases at 1% level fail, as
well as most forecasts of shortfalls of hedge portfolios.

Again, comparison of expected shortfall shows that the MSM type models
provide better forecasts than those derived from CC-GARCH. As with VaR, the
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performance of the CFM and our alternative approach is head-to-head without
any clear tendency for one to perform better than the other.
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6 Concluding remarks

In this paper, we have introduced a new parsimonious bivariate multifractal
model. We have also implemented estimation of its parameters via maximum
likelihood and simulation based inference. To shed light on the applicability of
this new model, two well-known instruments in financial risk management have
been employed in comparison with both the alternative bivariate MF model of
CFM and a more traditional multivariate GARCH process. We have considered
financial time series of stock markets, foreign exchange rates and bond mar-
kets in our empirical application. As it turned out multifractal models provide
promising results throughout for both value-at-risk and expected shortfall fore-
casts. There was little difference in the performance of our new model and the
one proposed by Calvet, Fisher, Thompson (2000). Since there are fewer param-
eters to be estimated in our approach, these findings speak of some redundancy
in the number of model parameters (e.g., the use of a bivariate Binomial dis-
tribution with different parameters for the multipliers in CFM). As in previous
research (Lux, 2008, Liu et al., 2009), we find that the results from applications
of multifractal models are quite robust across specifications.

A few avenues suggest themselves for further research: although our heuris-
tic approach for model selection seemed to work quite satisfactorily, one would
certainly like to develop more rigorous specification tests. Furthermore, exten-
sions of the present bivariate approach to higher-dimensional portfolios would
be welcome for practical applications. Because of the increasing computational
demands, we probably would have to give up likelihood-based methods of infer-
ence and turn to less demanding moment estimators for the parameters of the
multifractal models.
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