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1 Introduction

Continuous-time Markov chains are a popular tool for stochastic modeling in
a great variety of fields, ranging from population genetics to communication
networks. The mathematical theory of such processes is well understood and
provides powerful results for the handling of applied problems. An early eco-
nomic application was Champernowne’s model of income distribution [9] and
more recently, inspired by Kirman’s “ant model” [17], Markov chains have ex-
perienced a surge of economic interest in the form of behavioral agent-based
models that aim at explaining the statistical regularities of financial returns.
In this note, we shall review some of the relevant mathematical facts and
show how they apply to these agent-based models, with the particular goal
of establishing their asymptotic behavior, which has become an increasingly
important concern in the agent-based literature.

The time series of financial returns reveal some ubiquitous statistical reg-
ularities across countries, time frequencies, and asset classes. Most notably,
financial returns are leptokurtic and exhibit clustered volatility, and there
are strong indications that both the distribution of large returns as well as
the auto-correlation of transformations of returns are power-laws [10, 14, 19,
20, 21]. While traditional finance has paid very little attention to scaling
laws and their economic origins, a series of stochastic behavioral asset pric-
ing models with heterogeneous interacting agents have been able to account
for the stylized facts [1, 2, 3, 13, 16, 18]. The unifying feature of these models
is their conceptualization of agent interactions as a probabilistic herding pro-
cess that is expressed through a pair of Markovian transition rates. Starting
with [11], however, a number of studies have pointed out that the ability of
such models to reproduce the stylized facts hinges crucially on the size of
the agent population, typically denoted by N , a phenomenon that is also
known as N -dependence.1 In many cases the interesting properties of re-
turns, namely their peculiar time-dependence structure and the power law
decay of the return distribution, progressively disappear when N increases,
instead leading to Gaussian price fluctuations and a weak degree of tempo-
ral dependence for an otherwise unchanged model parametrization. From a
historical point of view such model behavior is also clearly unsatisfactory,
because the collapse of the Bretton-Woods system in 1971 has led to more
globalized financial markets with considerable increases in the number of
agents and volumes, but certainly not to Gaussian returns.

The formal problem of N -dependence can be traced to an apparently
minor modification in the transition rates that is independent of the behav-

1Aoki [7, 8] utilizes the terms (non) self-averaging in lieu of N -(in)dependence.
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ioral parameters [4], which in turn has motivated research into the network
structure that describes the microscopic feasibility of agent interaction [5].
Topological aspects of heterogeneous agent interaction have very recently
also been taken up in a similar model of herding in financial markets [22].
The motivation of our paper is to demonstrate the formal criteria for N -
(in)dependence in Kirman-type herding models, thereby providing a more
rigorous mathematical treatment of the results in [4]. Our strategy will be to
consider two benchmark cases, labeled Model 1 and Model 2, and to carefully
show how their asymptotic behavior depends on the detailed parametrization
of the Markovian herding model. The main finding is that N -(in)dependence
traces back to both the topology and the velocity of information transmission
among heterogeneous financial agents.

2 Basic facts on continuous-time Markov chains

2.1 Generalities

We consider a continuous-time Markov chain (Xt)t∈[0,∞) with discrete state
space S, finite or countably infinite, having right-continuous paths. The
Markov property states that

P (Xt+s = j|(Xr)0≤r≤s, Xs = i) = P (Xt+s = j|Xs = i)

for all t, s ≥ 0, i, j ∈ S, i.e. the future development, given the past and
present, only depends on the present state i and is time-homogeneous. (Pij(t))i,j
are stochastic matrices and are called the transition matrices.

The infinitesimal characteristics are given by

qij = lim
t↓0

Pij(t)

t
, j 6= i, qii = lim

t↓0

Pii(t)− 1

t
,

and we assume 0 < qi = −qii =
∑

j 6=i qij < ∞ for all states. The qij are
the transition rates and the matrix Q = (qij)i,j is the generator. Q uniquely
determines the distribution of the process and we have the matrix differential
equation

P ′(t) = P (t)Q, resulting in P (t) = eQt.

A stationary distribution π = (πi)i fulfills the equation πTQ = 0. To Q
corresponds the infinitesimal generator A which, for any bounded mapping
f : S → S, defines a mapping Af : S → S by

Af(i) = lim
t↓0

∑
j∈S Pij(t)(f(j)− f(i))

t
=
∑
j 6=i

qij(f(j)− f(i)).
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It determines Q uniquely, hence also the distribution of the process, while
the transition rates fulfill

P (Xt = j|X0 = i) = qijt+ o(t), i 6= j

P (Xt = i)|X0 = i) = 1− qit+ o(t).

2.2 Probabilistic representation

Starting from Q we can realize the process in the following way. Let

pij =
qij
qi
, i 6= j, pii = 0.

This is the transition matrix of a discrete-time Markov chain, the so-called
embedded chain. When the chain is in state i, it stays there for a random
holding time, exponentially distributed with parameter qi, and then jumps
to j according to pij. An equivalent description is the following. Assume
supi qi ≤ q <∞ and define

rij =
qij
q
, i 6= j, rii = 1−

∑
j 6=i

rij.

When the chain is in state i, it stays there for a random holding time, ex-
ponentially distributed with parameter q, and then makes a transition to j
according to rij, so in this second realization the process may stay put in
i with probability rii. This representation immediately shows how such a
process may be simulated with exponentially distributed random variables
and discrete transitions from i to j. It also shows the different roles of qi and
qij
qi

, the first determining the rate at which transitions occur and the second
the probabilities according to which the new state is selected.

2.3 Representation using a random time transforma-
tion

We now assume that S is a subset of Zd; setting transition rates outside of
S equal to zero, S may be assumed to be equal to Zd. The basic building
block is the Poisson process which remains in any state i = 0, 1, 2, . . . with
exponential holding time with parameter 1, and then jumps to i + 1. A
continuous-time Markov chain (Xt)t∈[0,∞) fulfills the following integral equa-
tion with γl(i) = qi,i+l

Xt = X0 +
∑
l

lY l(

∫ t

0

γl(Xs)ds)
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where the (Y l
t )t are independent Poisson processes and we write Y l

t as Y l(t);
see [12], 6.4. Here the clock for the Poisson process Y l runs with the random
speed

∫ t
0
γl(Xs)ds. We shall see in the following how this representation

immediately sheds light on the limiting behavior for such processes.

3 Basic facts on asymptotic behavior

Let us assume that for N = 1, 2, . . . we have continuous-time Markov chains
(ZN

t )t with state space SN and transition rates qNij , depending on N . In typ-
ical examples, N is the size of a population or of a network. For large N , the
exact behavior is no longer tractable so one has to rely on approximations.
In mathematical terms, the limiting behavior of suitably standardized ver-
sions (XN

t )t of (ZN
t )t as N → ∞ has to be investigated. There are various

mathematical methods to achieve this.

3.1 Convergence via infinitesimal operators

Suppose that SN ⊆ S for all N . The convergence of the process (XN
t )t can

be reduced to a study of the convergence of the infinitesimal operators AN .
This is a general fact and does not depend on the assumption of discrete
state spaces which is discussed here.

Assume that we find an operator A, defined on a suitable setD of bounded
functions f : S → R, where Af again is a function Af : S → R, such that
the following condition holds

lim
N→∞

sup
y∈SN

∣∣ANf(y)− Af(y)
∣∣→ 0.

If A generates a well-behaved Markov process (Xt)t in the mathematical
sense of a Feller process, then

(XN
t )t converges to (Xt)t.

In exact mathematical terms, this convergence takes place in the sense of
weak convergence in the function space DS[0,∞), which includes the conver-
gence of finite-dimensional distributions, e.g. the convergence of stationary
distributions and distributions of first hitting times; we refer to [12], 1.6.1,
4.2.11. In many examples, A will be a differential operator on a certain set
D of twice differentiable functions and the limit process will be a diffusion.
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3.2 Convergence via the representation 2.3

For a concise discussion we let N denote the size of a population and SN =
{0, 1, . . . , N}. ZN

t describes the random number of a certain species within
the population. The standardized version is given by the proportion of this
species

XN
t =

ZN
t

N

taking values in {0, 1
N
, 2
N
, . . . , 1}. Now assume that the transition rates for

(ZN
t )t fulfill

γNl (i) = qNi,i+l = Nβl(
i

N
)

for some bounded function β on [0, 1], which may be generalized to γNl (i) =
qNi,i+l = N(βl(

i
N

) +O( 1
N

)). This implies that the mean number of transitions
in one unit of time is of the order N , equal in order to the size of the
population. So we expect a law of large numbers to hold for XN

t , hence
a non-random limiting process (Xt)t, and similarly a central limit theorem.
This may be seen with the following arguments, and we refer to [12], 11.2 for
a rigorous and complete discussion.

3.2.1 A law of large numbers

Let Ỹt = Yt − t be a centered Poisson process. The law of large numbers for
this process states that for all t

sup
s≤t

∣∣∣∣ 1

N
ỸNs

∣∣∣∣→ 0 almost surely for N →∞.

Using the representation from 2.3 for (ZN
t )t we have, with f(x) =

∑
l lβl(x),

XN
t =

1

N
ZN
t = XN

0 +
∑
l

l
1

N
Ỹ l

(
N

∫ t

0

βl(X
N
s )ds

)
+

∫ t

0

f(XN
s )ds.

So our random clock has a speed of order N . Assuming XN
0 → x0 and

Lipschitz continuity of f , the law of large numbers for the centered Poisson
process implies for all t

sup
s≤t

∣∣XN
s −X(s)

∣∣→ 0 almost surely for N →∞.

where X(t) is the non-random solution of the differential equation

d

dt
X(t) = f(X(t)), X(0) = x0.
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3.2.2 A central limit theorem

The basic central limit theorem states that, for a sum of i.i.d. random vari-
ables Xi with finite mean µ and finite positive variance, the normalized sum

1√
N

∑N
i=1(Xi − µ) converges to a normal distribution. Writing

1√
N

N∑
i=1

(Xi − µ) =
√
N

(
1

N

N∑
i=1

Xi − µ

)

we see that the term 1
N

∑N
i=1Xi − µ, which tends to zero according to

the law of large numbers, has to be enlarged by a factor
√
N to obtain a

non-degenerate asymptotic normal distribution. This is a wide-spread phe-
nomenon, so in our setting it is readily conjectured that the stochastic process(√

N(XN
t −X(t))

)
t

converges to a non-degenerate process which is Gaus-

sian. To see this we use the central limit theorem for the centered Poisson
process. This states that for the process (WN

t )t with WN
t = 1√

N
(YNt −Nt)

(WN
t )t converges to a standard Wiener process (Wt)t.

Set

V N
t =

√
N(XN

t −X(t)) = V N
0 +

∑
l

lW l,N(

∫ t

0

βl(X
N
s )ds) +

∫ t

0

√
N(f(XN

s )− f(X(s))ds

= V N
0 +

∑
l

lW l,N(

∫ t

0

βl(X
N
s )ds) +

∫ t

0

√
N

(
f(X(s) +

1√
N
V N
s )− f(X(s))

)
ds.

Letting N tend to infinity, with V N
0 → v0, the limiting equation is

Vt = v0 + Ut +

∫ t

0

f ′(X(s))Vsds,

where Ut =
∑

l lW
l(
∫ t

0
βl(X(s))ds) is a Gaussian process. It can be shown

rigorously that in fact

(
√
N(XN

t −X(t)))t converges to a process (Vt)t

with (Vt)t being a solution of the limiting equation. Since (Ut)t is a Gaussian
process, (Vt)t also is a Gaussian process. Gaussian processes are uniquely de-
termined by their mean and covariance function. From the limiting equation
one can obtain the following expressions:
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Let g(t, s) be a solution of

d

dt
g(t, s) = f ′(X(t))g(t, s), g(s, s) = 1.

Then the mean of Vt is given by g(t, 0)v0 and the covariance is given by

Cov(Vt, Vr) =

∫ min{t,r}

0

g(t, s)g(r, s)
∑
l

l2βl(X(s))ds.

So we have that the process

(XN
t )t is approximated by X(t) +

1√
N
Vt,

hence
(ZN

t )t is approximated by (NX(t) +
√
NVt)t.

The distribution of ZN
t is approximated by a normal distribution with mean

Nx0 +
√
Nv0 and variance NV ar(Vt).

4 Agent-based models and their asymptotic

behavior

In agent-based models we have a population of N agents that are interacting
on a financial market through their opinion formation process. These agents
are of two different types, e.g. optimists and pessimists. The number of
agents of one type, say optimists, is described by a continuous-time Markov
chain (ZN

t )t with state space {0, 1, . . . , N}. Agents may switch from one
type to the other, and the usual assumption is that (ZN

t )t follows a birth and
death process where

qi,i+l = 0 for |l| > 1.

In this context, birth represents the conversion of a pessimist to an optimists,
while death corresponds to the opposite conversion. The birth and death
rates are, respectively,

λi = qi,i+1 for i = 0, 1, . . . , N − 1, µi = qi,i−1 for i = 1, . . . , N,

with λN = µ0 = 0. For a birth-and-death process, the probability of multiple
switches in time interval of length t tends to zero as t tends to zero.

There are two benchmark models that have been proposed in the litera-
ture, let us call them Model 1 and Model 2, corresponding to extensive and
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non-extensive transitions in the jargon of [4], who interpret the two bench-
marks as cases of local vs non-local agent interactions. They argue that this
difference should somehow reflect the different intensities of interpersonal
coupling among agents, which initially inspired work on the topological fea-
tures of agent interaction [5, 6]. In this paper, we demonstrate that the
intensity of interpersonal coupling also depends on the velocity of informa-
tion transmission between agents, adding an important aspect to the generic
herding model. Put differently, interesting long-range correlations among
agents that are prone to herding can arise both from the topology and the
velocity of information transmission in the agent network.

Model 1 (the extensive case) looks at the birth and death rates

λi = (N − i)(a+ b
i

N
), µi = i(a+ b

N − i
N

),

Model 2 (the non-extensive case) looks at the birth-and-death rates

λi = (N − i)(a+ bi), µi = i(a+ b(N − i))

where a describes the overall tendency to switch, often conceptualized as
the impact of news arrival, while b describes the herding propensity among
agents.

4.1 Analysis of Model 1

Referring to the discussion in Section 2, we slightly generalize the model to
λi = (N − i)(a1 + b1

i
N

), µi = i(a2 + b2
N−i
N

) and have with y = i
N

qi = λ1 + µi = N [(1− y)(a1 + b1y) + y(a2 + b2(1− y))]

pi,i+1 =
λi

λi + µi
=

1

1 + [(1− y)(a1 + b1y)]−1y(a2 + b2(1− y))
,

pi,i−1 = 1− pi,i+1.

So we see that the expected number of switches, which may be loosely inter-
preted as being proportional to the expected number of encounters of agents
in one unit of time, is of the order N . The probabilities pi,i+1 and pi,i−1 that
describe in which direction switching occurs, only depend on the fraction of
agents of one type in the population. The limiting behavior of the normal-

ized process XN
t =

ZN
t

N
follows readily from 3.2. Using the notation from this

section, we have

γNl (i) = qi,i+l = Nβl(
i

N
), l = −1, 1,

9



with β1(x) = (1−x)(a1+b1x), β−1(x) = x(a2+b2(1−x)) defined for x ∈ [0, 1].
From this it is clear that 3.2 applies, and we have

f(x) = β1(x)− β−1(x) = (1− x)(a1 + b1x)− x(a2 + b2(1− x)).

The limiting process is the non-random solution of the differential equation,
which is an inhomogeneous Bernoulli-differential equation,

d

dt
X(t) = f(X(t)), X(0) = x0.

As we have seen in 3.2, the standardized differences
√
N(XN

t − X(t)) tend
to a Gaussian process Vt. Assume V0 = 0, the mean value function is zero.
We have f ′(x) = b1 − b2 − a1 − a1 + 2(b2 − b1)x, and the covariance function
may be computed, at least numerically, from the linear differential equation

d

dt
g(t, s) = f ′(X(t))g(t, s), g(s, s) = 1,

and the resulting expression in 3.2. Let us now make the following standard
assumption b1 = b2 = b. Then

f(x) = (a1 + a2)

(
a1

a1 + a2

− x
)
,

and it follows that

X(t) =
a1

a1 + a2

−
(
x0 −

a1

a1 + a2

)
e−(a1+a2)t.

This shows that X(t) converges to a1

a1+a2
as t→∞.

We have f ′(x) = −(a1 + a2) and a solution of the above differential equation
is given by

g(t, s) = e−(a1+a2)(t−s).

It follows that

Cov(Vt, Vr)

=

∫ min{t,r}

0

e−(a1+a2)(t+r−2s)((2b− a1 + a2)s− 2bs2 + a1)ds

=
e−(a1+a2)(t+r)

2(a1 + a2)

∫ min{t,r}·2(a1+a2)

0

e−s(a1 +
2b− a1 + a2

2(a1 + a2)
s− 2b

4(a1 + a2)2
s2)ds

=
e−(a1+a2)(t+r)

2(a1 + a2)

[
a1 +

2b− a1 + a2

2(a1 + a2)
+ 2

2b

4(a1 + a2)2

−e−min{t,r}·2(a1+a2)

(
a1 +

2b− a1 + a2

2(a1 + a2)
(1 + min{t, r} · 2(a1 + a2))

+
2b

4(a1 + a2)2
(2 + 2(min{t, r} · 2(a1 + a2)) + (min{t, r} · 2(a1 + a2))

2)

)]
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4.2 Analysis of Model 2

In Model 2 we have, with slight generalization and y = i
N

,

λi = (N − i)(a1 + b1i) = N2 (1− y)
(a1

N
+ b1y

)
,

µi = i(a2 + b2(N − i)) = N2y
(a2

N
+ b2(1− y)

)
with

qi = λi + µi = N2
[
(1− y)

(a1

N
+ b1y

)
+ y

(a2

N
+ b2(1− y)

)]
pi,i+1 =

1

1 +
[
(1− y)

(
a1

N
+ b1y

)]−1 i
N

(
a2

N
+ b2(1− y)

) .
There are two changes compared to Model 1. The expected number of
switches during one time period has increased to the order of N2, and the
overall tendency of switching has decreased to the order of 1

N
. This, of course,

is a dramatic change since for, say, N = 100 the number of switches during
one time unit is no longer of the order 100 but of the order 10 000. Due
to the first change, it is clear that a law of large numbers, as stated in 4.1
for Model 1, can no longer hold. To analyze the asymptotic behavior of the
system, we use the method of infinitesimal operators as described in 3.1. Let

XN
t =

ZN
t

N
as before, and denote the infinitesimal operator of (XN

t )t by AN .
It follows for y = i

N
, 0 < i

N
< 1

ANf(y) = λi(f(y +
1

N
)− f(y)) + µi(f(y − 1

N
)− f(y)).

Let D denote the set of continuous mappings f : [0, 1] → R which are
twice-continuous differentiable in the interior such that the derivatives have
a continuous extension to 0 and 1. A Taylor expansion for 0 < y < 1 shows
that

ANf(y) =
1

N
(λi − µi)f ′(y) +

1

2N2
(λi + µi)f

′′(y) + (λ1 + µi)o(
1

N2
)

with error term o( 1
N2 ) uniform in y. Inserting the birth and death rates of

Model 2, we find

ANf(y) =
1

N
N2
(

(1− y)(
a1

N
+ b1y)− y(

a2

N
+ b2(1− y))

)
f ′(y)

+
1

N2

N2

2

(
(1− y)(

a1

N
+ b1y) + y(

a2

N
+ b2(1− y))

)
f ′′(y) + o(1)

= N
(

(1− y)
a1

N
− ya2

N
+ b1y(1− y)− b2y(1− y)

)
f ′(y)

+
1

2

(
(1− y)(

a1

N
+ b1y) + y(

a2

N
+ b2(1− y))

)
f ′′(y) + o(1).
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From this it is clear that ANf neither converges for b1 6= b2 nor for some
fixed overall switching tendencies ã1, ã2 that are not of order O( 1

N
). So with

the standard assumption b1 = b2 = b we have

ANf(y) = ((1− y)a1 − ya2)f
′(y) +

1

2

(
2b(1− y)y +

a1

N
(1− y) +

a2

N
y
)
f ′′(y) + o(1)

→ ((1− y)a1 − ya2)f
′(y) +

1

2
2b(1− y)yf ′′(y) as n→∞.

If A is the differential operator on D defined by the last line, then we see
that

sup
y∈SN

|ANf(y)− Af(y)| → 0 as N →∞.

The set of all functions in D is rich enough to yield convergence of the process
according to 3.1, see [15]. So (XN

t )t converges to a diffusion on [0, 1] with
drift term µ(y) = (1− y)a1 − ya2 and diffusion term σ2(y) = 2by(1− y).

5 Mean field analysis of agent networks

If we conceptualize agent interaction with a communication network, we can
model transition rates through a term that represents a general switching
tendency and another term that depends on the particular network structure
among agents. So for any agent α, the transition rate to switch from a state
k to a state l might be modeled as a function

tα(k, l;Nα(k), Nα(l), N),

where N is the total number of agents in the network, Nα(k) is the number of
neighbors of agent α in state k, and Nα(l) is the number of neighbors in state
l. More complicated models are possible of course, involving neighboring
agents in different states, but already a model of the above type is analytically
intractable on the individual agent level. So one may resort to an analysis of
the aggregate number of agents in a particular state k, with transition rates
depending on the average number of neighbors and their states; see [5] for a
corresponding mean-field derivation in Kirman-type models. Going back to
two states, e.g. optimistic and pessimistic agents in the network, the number
ZN
t of optimistic agents may be viewed as a birth-and-death process. We can

model the birth and death rates with y = i
N

as

λi = h(N)(1− y)(a1(N) + b1(N)y),

µi = h(N)y(a2(N) + b2(N)(1− y)).

12



Here ai(N) represents the aggregate switching tendency in the network, bi(N)
describes the herding intensity that depends on the average opinion of neigh-
bors in the network, and h(N) gives the order of the mean number of switches
within a time unit, loosely interpreted as being of the order of the mean num-
ber of encounters in the network. All the parameters h(N), ai(N), bi(N) can
depend on the network topology.

Suppose that any agent is linked to a fixed proportion γ of the other
agents in the network, and that the mean number of encounters in one unit
of time is of the order δN . Then, with ai(N) = ai and bi(N) = γbi, we
recover Model 1 of Section 4

λi = δN(1− y)(a1 + γb1y),

µi = δNy(a2 + γb2(1− y)).

Now assume that the mean number of encounters during one time unit in-
creases to δN2. Then, with a1(N) = a1

N
and a2(N) = a2

N
, we arrive at

λi = δN2(1− y)(
a1

N
+ γb1y),

µi = δN2y(
a2

N
+ γb2(1− y)),

which corresponds to Model 2 of Section 4.
Further assume for any agent that the number of neighbors in the net-

work grows slower than the total agent number N . Then we may model the
proportion of neighboring agents as γf(N) where f(N) tends to 0 as N tends
to infinity. So we arrive at

λi = h(N)(1− y)(a1(N) + γf(N)b1y),

µi = h(N)y(a2(N) + γf(N)b2(1− y)).

By a suitable choice of ai(N) and h(N), however, we can again recover either
Model 1 or Model 2. From a socio-economic point of view, the choice of
these parameters fixes the speed of information transmission in the system.
Speeding up the agent encounters, for instance to h(N) = N2

f(N)
with overall

switching tendency ai(N) = aif(N)
N

, we arrive at the N -independent Model 2

λi = N2(1− y)(
a1

N
+ γb1y),

µi = N2y(
a2

N
+ γb2(1− y)).
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6 Conclusion

In summary we see that topological network features, like the average num-
ber of neighboring nodes, are only one possible source of N -(in)dependence
in the class of agent-based herding models that we have discussed here. Our
main finding is that link characteristics in the network, for instance the speed
of information transmission along the links, are equally important for the
central issue of N -(in)dependence. Put differently, herding models in the
Kirman tradition can reproduce the stylized facts of financial markets for
any system size by way of an appropriate combination of network topology
and communication speed that will lead to a non-trivial limiting behavior
of the stochastic processes that describe agents’ opinion (or strategy) forma-
tion. Interestingly, casual observation would suggest that the decades since
the collapse of Bretton-Woods were not only accompanied by an increase in
the number of market participants, but also by technological advances that
have vastly increased the speed of communication among agents. An emerg-
ing empirical question for future research is whether one can identify and
disentangle the two effects in financial markets, which would obviously have
profound implications for the understanding of financial fluctuations and the
mitigation of risks that stem from them.
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[6] S. Alfarano, M. Milaković, and M. Raddant. On network hierarchy and
risk in Kirman’s ant model. Working Paper, 2009.

[7] M. Aoki. New Approaches to Macroeconomic Modeling. Cambridge
University Press, Cambridge, UK, 1998.

[8] M. Aoki. Thermodynamic limits of macroeconomic or financial models:
One- and two-parameter Poisson-Dirichlet models. Journal of Economic
Dynamics and Control, 32(1):66–84, 2008.

[9] D. G. Champernowne. A model of income distribution. Economic Jour-
nal, 63:318–351, 1953.

[10] Z. Ding, C. W. J. Granger, and R. F. Engle. A long memory property of
stock market returns and a new model. Journal of Empirical Finance,
1:83–106, 1993.

[11] E. Egenter, T. Lux, and D. Stauffer. Finite-size effects in Monte Carlo
simulations of two stock market models. Physica A,, 268:250–256, 1999.

[12] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley Series in
Probability and Mathematical Statistics: Probability and Mathemat-
ical Statistics. John Wiley Sons Inc., New York, 1986. Characterization
and convergence.
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