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Abstract

With the celebrated model of Black and Scholes in 1973 the development of

modern option pricing models started. One of the assumptions of the Black

and Scholes model is that the risky asset evolves according to a geometric

Brownian motion which implies normally distributed log-returns. As various

empirical investigations show, log-returns do not follow a normal distribution,

but are leptokurtic and to some extend skewed. To capture these distri-

butional stylized facts, exponential L�evy motions have been proposed since

1994 which allow for a large class of underlying return distributions. In these

models the Esscher transformation is used to obtain a risk-neutral valuation

formula. This paper proposes the so-called Esscher NEF-GHS option pricing

model, where the price process is modeled by an exponential NEF-GHS L�evy

motion, implying that the returns follow an NEF-GHS distribution. The cor-

responding model seems to unify all advantages of other Esscher-based option

pricing model, that is numerical tractability and a 
exible underlying distri-

bution which itself is self-conjugate.

JEL classi�cation: C22; G13

Keywords: NEF-GHS distribution; Option pricing; Esscher transformation

1 Preface

There is no doubt that the starting point of the modern option pricing theory is

given by the famous option pricing model of Black and Scholes in 1973. It is based

on the so-called geometric Brownian motion as a model for the underlying price

process. This process implies that the log returns | i.e. the di�erences of the

logarithm of consecutive prices | follow a normal distribution. However, various
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empirical studies show that �nancial data exhibit some speci�c distributional fea-

tures, the so-called distributional stylized facts: On the one hand, there is evidence

of heavier or fat tails, on the other hand, log returns are occasionally skewed. Both

features cannot be captured by a normal distribution. Hence, Black and Scholes

formula systematically leads to mispricing.

In order to remove this "distributional shortcoming", Gerber und Shiu (1994) in-

troduced the concept of Esscher option pricing. In this framework, stock prices

are modeled by geometric L�evy motions, i.e. processes which stationary and inde-

pendent increments. The risk-neutral martingale measure is obtained by means of

the Esscher transformation. Within this framework, log-returns can be modeled by

in�nitely divisible distributions with existing moment-generating function.

Eberlein and Keller (1994) applied the Esscher concept to the hyperbolic distribution

family, whereas Barndor�-Nielsen (1995) suggested the Normal-inverse Gaussian

distribution family. Both models are nested in the generalized hyperbolic model from

Prause (1999), where the log-returns are assumed to follow a generalized hyperbolic

distribution. This family includes several standard distributions as limiting or as

special cases. However, except for the hyperbolic distribution, parameter estimation

turns out to be very time-consuming and complicated because of the Bessel function

being part of the density.

For that reason, Fischer (2000) proposed the EGB2 distribution | a four parame-

ter generalization of the standard logistic distribution | in the context of Esscher

pricing. However, only a restricted domain of skewness and leptokurtosis can be

achieved by EGB2 if skewness and kurtosis are measured by the third and fourth

standardized moments. To remove this shortcoming, Fischer (2001) introduced the

convoluted EGB2 or CEGB2 distribution. Unfortunately, there is no closed form

for the probability density function (up to now) which has to be approximated nu-

merically, for example, by fast Fourier transformation.

The aim of this paper is to derive an Esscher option pricing model, where

� the underlying distribution is more 
exible with respect to skewness and kur-

tosis than the EGB2 or the normal distribution,

� parameter estimation is easier to implement than in the case of CEGB2 or

generalized hyperbolic distribution,

� a closed form is given for the risk-neutral density. Consequently, the latter
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doesn't has to be numerically approximated as in the case of EGB2 or hyper-

bolic distribution.

For that reason, we propose an Esscher model based on the so-called NEF-GHS

distribution, a 
exible in�nitely divisible, self-conjugate distribution with existing

moment-generating function.

2 Esscher pricing: A review

Originally, the concept of the Esscher transformation was a time-honored tool in

actuarial science suggested by Esscher [5] in 1932. Gerber and Shiu [8] applied

this concept to value derivative securities if the log-prices or returns of the primary

securities { take, for example, stocks { are governed by L�evy processes, i.e. stochastic

processes with stationary and independent increments. In other words, non-dividend

paying stock prices are assumed, driven by fStgt�0 with

St = S0 exp(Xt); t � 0; (2.1)

where fXtgt�0 is a L�evy process with corresponding probability density function

ft(x) and moment-generating function Mt(u).
1 The Esscher density for the para-

meter h is then de�ned as

ft(x; h) =
ehx

Mt(h)
� ft(x): (2.2)

Note that the moment-generating function of the corresponding L�evy process fXh
t gt�0

is given by

Mt(u; h) =

Z 1

�1

euxft(x; h)dx =

Z 1

�1

eux
ehxft(x)

Mt(h)
dx =

Mt(u+ h)

Mt(h)
: (2.3)

As the exponential function is positive, the corresponding Esscher measure is equi-

valent to the original measure, that means, both probability measures have the same

null sets, i.e. sets with probability measure zero. In some statistical research, the

term exponential tilting is used to describe this change of measure. From equation

(2.2) it is straightforward to derive the corresponding characteristic function of the

Esscher density.

Example 2.1 (Esscher transformation of di�erent distributions)

1. Gerber and Shiu (1995): The Esscher transformation of a Gaussian variable

with mean � and variance �2 is again a Gaussian variable with mean � +

h�2 and variance �2. This means that Esscher transformation of a Gaussian

variable a�ects only location.

1Assume that h > 0 is a real number for whichMt(h) exists.
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2. Prause (1999): The Esscher transformation of a generalized hyperbolic (GH)

distribution with parameters (�; Æ; �; �; �) results in a GH distribution with

parameters (�; Æ; �; �+h; �). Consequently, skewness { measured by the third

standardized moment { will be changed, too.

3. Fischer (2001): The Esscher transformation of an EGB2 distribution with

parameters (�; Æ; �1; �2) is again an EGB2 variable with parameters (�; Æ; �1+

Æh; �2 � Æh), if jhj < �2
Æ
.

In order to construct risk-neutral stock prices2, the process fStgt�0 has to be trans-

formed by the Esscher transformation to a process fSh
t gt�0 with S

h
t = S0 exp(X

h
t ).

Here, h is chosen so that the discounted Esscher transformed stock price process

fe�rtSh
t gt�0 is a martingale with respect to the original measure P. Equivalently,

the discounted stock price process fe�rtStgt�0 is a martingale with respect to the

Esscher measure P�. For these purposes, the so-called martingale equation can

be derived with the help of equation (2.1) as

S0 = E�
�
e�rtSt

� () er =M1(1; h
�) () r = ln(M1(1; h

�)): (2.4)

Therefore, the discounted price process is a martingale if the Esscher parameter h�

satis�es the equation on the right side of (2.4). This is equivalent to h� being a root

of the martingale function

M (h)
�
= r � ln(M1(1; h)) = r � ln

�M1(h + 1)

M1(h)

�
: (2.5)

Standard no-arbitrage arguments imply that the fair value c0 of a European call

option with exercise price K and maturity date T at time t = 0 is given by

c0 = e�rTE�(max(ST �K; 0)); (2.6)

where E� denotes the expectation value with respect to the equivalent martingal

measure P�, here the risk neutral Esscher measure. De�ning � = ln(K=S0) and

using exfT (x; h
�) = erTfT (x; h

� + 1), equation (2.6) can be rewritten as

c0 = e�rT
Z 1

�

(S0e
x �K)fT (x; h

�) dx

= S0

Z 1

�

fT (x; h
� + 1) dx� e�rTK

Z 1

�

fT (x; h
�) dx (2.7)

= S0

1Z
�

e(h
�+1)xfT (x)

MT (h� + 1)
dx� e�rTK

1Z
�

eh
�xfT (x)

MT (h�)
dx;

or, by means of the Esscher transformed cumulative distribution function FT (x; h
�),

c0 = S0(1� FT (�; h
� + 1))� e�rTK(1� FT (�; h

�)) = S0�1 � e�rTK�2: (2.8)

2Prices that are internally consistent.
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3 Option pricing by means of Esscher transfor-

mation: Necessary and desirable properties of

the underlying distribution

In order to perform a fast and realistic Esscher option pricing, the underlying distri-

bution should satisfy the two necessary properties ID and EXMGF and, if possible,

all of the desirable properties FLEX, NTRAC, SECON which are de�ned and dis-

cussed in the following.

1. ID (In�nite divisibility): This property is necessary to construct exponen-

tial L�evy processes which serve as models for the stock prices. Many of the

standard distributions are in�nitely divisible. A summary of in�nitely divisible

distribution is given, for example, by Fischer [7]. Among them are the genera-

lized hyperbolic family, the generalized logistic family, the stable distributions

and the Student-t distribution.

2. EXMGF (Existence of the moment-generating function) is necessa-

ry to de�ne the risk-neutral Esscher density which is given by f(x; h�) =

f(x) � exp(h�x)

M1(h�)
. This claim rules out the Student-t distribution and the stable

distributions as possible candidates for the underlying distribution.

3. FLEX (Flexibility): It is well-known that the normal distribution is not

capable to model skewness and, above all, positive excess kurtosis of �nancial

return data. Consequently, alternatives have been proposed, as for example

the generalized hyperbolic family or the EGB2 distribution. However, note

that the range of skewness and kurtosis of EGB2 is restricted to [�2; 2] and
[3; 9], respectively.

4. NTRAC (Numerical tractability): The disadvantage of the EGB2 disti-

bution of not being able to rebuild arbitrary kurtosis and skewness can be

overcome by introducing an additional (convolution) parameter. However, the

density function of the convoluted EGB2 is not known explicitly and has to

be approximated with numerical methods. Although the probability density

function of the generalized hyperbolic distribution family is known, the mo-

di�ed Bessel function is part of the density may lead to a time-consuming

estimation procedure3.

5. SECON (Self-conjugation): In order to calculate the risk neutral probabi-

lities �1 and �2 from (2.8), the risk neutral density or distribution function

3Note that the modi�ed Bessel function is not implemented in many statistic packages.
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has to be determined numerically from the risk neutral characteristic function

't(x; h
�) = ('1(x; h

�))t which | in most of the cases | induces a di�erent

density for each t > 0. This problem can be circumvent or simpli�ed if the

underlying distribution is self-conjugate, that means is invariant with respect

to convolution. In this case, the risk neutral probabilities �1 and �2 can be

determined via simple numerical integration. Within the GH-family, the NIG

distribution is the only distribution which is self-conjugate. Moreover, the

EGB2 distribution isn't, whereas the CEGB2 distribution is, by construction.

Up to now all Esscher option pricing models lack in at least one of this �ve properties.

The following table summarizes the Esscher models and their properties.

Distribution ID EXMGF FLEX NTRAC SECON Author

Normal Yes Yes No Yes Yes Black/Scholes [3]

GH Yes Yes Yes No* No** Prause [13]

NIG Yes Yes Yes No Yes Barndor�-Nielsen [1]

HYP Yes Yes Yes Yes No Eberlein/Keller [4]

EGB2 Yes Yes Yes Yes*** No Fischer [6]

CEGB2 Yes Yes Yes No Yes Fischer [7]

* only for HYP, ** only for NIG, *** range of skewness/kurtosis restricted

Figure 1: Esscher option pricing models.

The aim of this study is to propose an Esscher model which exhibits all of the

previous �ve requirements.
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4 The NEF-GHS distribution

The NEF-GHS distribution was originally introduced by Morris [12] in the context

of natural exponential families (NEF) with speci�c quadratic variance functions.

Densities of natural exponential families are of the form

f(x;�; �) = expf�x�  (�; �)g � �(x; �): (4.9)

In the case of the NEF-GHS distribution,  (�; �) = �� log(cos(�)) and �(x; �)

equals the pdf of a generalized hyperbolic secant (GHS) distribution4 which can

be obtained as �-th convolution of a hyperbolic secant (HS) variable. Hence, the

probability density function of the NEF-GHS distribution is given by

f(x;�; �) =
2��2

� �(�)
�
�����
�
�+ ix

2

�����2 � exp f�x + � log(cos(�))g (4.10)

for � > 0 and j�j < �=2. Introducing a scale parameter Æ > 0 and a location

parameter � 2 R, and setting � � tan(�) 2 R, equation (4.10) changes to

f(x;�; Æ; �; �) =
2��2

Æ� �(�)
�
�����
�
�+ i(x��

Æ
)

2

�����
2

� earctan(�)x��Æ +� log(cos(arctan(�))) (4.11)

It can be shown that NEF-GHS distribution reduces to the GHS distribution for

� = � = 0, to the skewed hyperbolic secant distribution for � = 1 and to the

hyperbolic secant distribution for � = 1 and � = 0. Furthermore, it goes in limit to

the normal distribution (�!1).

Proposition 4.1 (Properties of NEF-GHS) Let X follow a NEF-GHS distri-

bution with parameters (�; �). Then

1. The mgf of X exists for fuj cos(u)� � sin(u) > 0g and is given by

M(u) = exp f�� log(cos(u)� � sin(u))g : (4.12)

2. All moments exist. In particular, the range of S(X) and K (X) is unrestricted.

3. X is in�nitely divisible.

4. X is self-conjugate.

4A detailed discussion of the GHS distribution can be found in Baten [2], Harkness and Harkness
[9] and J�rgensen [10].
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Proof: 1. With c(x;�) = 2��2

��(�)
�
��� ��+ix

2

���2, the calculation of the moment-

generating function is straightforward:

M(u) =

Z 1

�1

exp(ux) � c(x;�) � exp f�x+ � log(cos(�))g dx

=

Z 1

�1

c(x;�) � exp f(u+ �)x+ � log(cos(� + u))g
exp f� log(cos(� + u))� � log(cos(�))g dx

= exp f�� log(cos(� + u)) + � log(cos(�))g
= exp f�� log(cos(u)� tan(�) sin(u))g = exp f�� log(cos(u)� � sin(u))g :

3. From (4.12), the characteristic function is given by

'(u) =M(iu) = exp f�� log(cos(iu)� � sin(iu))g : (4.13)

In�nite divisibility can be easily derived as '(u)1=n is a characteristic function of a

NEF-GHS distribution with �0 = �=n for all n 2 N .

4. For the same reason, '(u;�; �)� = '(u; ��; �) for � > 0. Thus, X is also self-

conjugated. �

Corollary 4.1 (Moments of NEF-GHS) Let X denote a NEF-GHS distributed

random variable with parameters (�; Æ; �; �). Then, the �rst four moments m0
i =

E(X i) are given by

m0
1 = E(X) = �+ Æ��;

m0
2 = Æ2 �(�2 + 1 + ��2);

m0
3 = Æ3 �(�3�2 + 3�� + 2� + 3��3 + 2�3) and

m0
4 = Æ4 �(2 + 3�+ 6�4 + 8�2 + 11��4 + 6�2�2 + 14��2 + �3�4 + 6�2�4):

Consequently, the corresponding central moments mi = E(X �m)i are

m2 =
 000(�1) +  000(�2) + 3( 0(�1) +  0(�2))

2

[ 0(�1) +  0(�2)]2
;

m3 = 2Æ3��(�2 + 1) and

m4 = Æ4[3�(�+ 2)(1 + �2)2 � 4�(1 + �2)]:

Corollary 4.2 (Skewness and kurtosis of NEF-GHS) Let X denote a NEF-

GHS distributed random variable with parameters (�; Æ; �; �). The skewness and

kurtosis coeÆcient | measured by the third and fourth standardized moments |

are given by

S(X) =
m3p
(m2)3

=
2�p

�(1 + �2)
and K (X) =

m4

(m2)2
=

2 + 6�2

�(1 + �2)
: (4.14)

8



D
R

A
FT

The range of S(X) and K
�(X) = K (X) � 3 subject to the parameters � and � can

be seen in table 1 and 2, below. It is obvious that S(X) increases with decreasing �

(keeping � �x) and increasing � (keeping � �x).

� # � ! 100 10 5 2 1 0.1

0.1 6.32 6.29 6.20 5.66 4.47 0.63

0.5 2.89 2.81 2.77 2.53 2.00 0.28

1 1.99 1.99 1.96 1.79 1.41 0.20

2 1.41 1.41 1.39 1.27 1.00 0.14

5 0.89 0.89 0.88 0.80 0.63 0.09

10 0.63 0.63 0.62 0.57 0.45 0.06

100 0.20 0.20 0.19 0.18 0.14 0.02

Table 1: Range of skewness measured by S(X).

Table 2 illustrates that K (X) and K �(X) increase with decreasing � (keeping � �x)

and increasing � (keeping � �x).

� # � ! 0.1 1 2 5 10 100

0.1 20.40 40.00 52.00 58.46 59.60 60.00

0.5 4.08 8.00 10.40 11.69 11.92 12.00

1 2.04 4.00 5.20 5.85 5.96 6.00

2 1.02 2.00 2.60 2.92 2.98 3.00

5 0.41 0.80 1.04 1.17 1.19 1.20

10 0.20 0.40 0.52 0.59 0.60 0.60

100 0.02 0.04 0.05 0.06 0.06 0.06

Table 2: Range of kurtosis measured by K (X)� = K (X) � 3.
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5 Application: Modelling �nancial return data

In order to adopt and compare estimation results for stable distributions, priority

is given to the weekly returns of the Nikkei from July 31, 1983 to April 28, 1995,

with N = 608 observations. This series was investigated by Mittnik et al. [11] and

it shows typical stylized facts of �nancial return. Figure 2 illustrates the levels and

returns of the Nikkei data.
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Figure 2: Levels and returns of Nikkei.

Similar to Mittnik et al. [11], four criteria are employed to compare the goodness-

of-�t of the di�erent candidate distributions: The �rst is the log-Likelihood value

(LL) obtained from the Maximum-Likelihood estimation. The LL-value can be

considered as an "overall measure of goodness-of-�t and allows us to judge which

candidate is more likely to have generated the data"5. As distributions with di�erent

numbers k of parameters are used, this is taken into account by calculating the

Akaike criterion given by

AIC = �2 � LL+
2N(k + 1)

N � k � 2
:

The third criterion is the Kolmogorov-Smirnov distance which measures the distance

between the estimated parametric cumulative distribution function (denoted by F̂ )

and the empirical sample distribution (Femp). It is usually de�ned by

K = 100 � sup
x2R

jFemp(x)� F̂ (x)j: (5.15)

5See Mittnik et al. [11], p. 11.
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Finally, Anderson-Darling statistic is calculated which weights jFemp(x)� F̂ (x)j by
the reciprocal of the standard deviation of Femp, namely

q
F̂ (x)(1� F̂ (x)), that is

AD0 = sup
x2R

jFemp(x)� F̂ (x)jq
F̂ (x)(1� F̂ (x))

: (5.16)

Instead of just the maximum discrepancy, the second and third largest value, which

are commonly termed as AD1 and AD2, are also taken into consideration. Whereas

K emphasizes deviations around the median, AD0;AD1 and AD2 allow discrepan-

cies in the tails of the distribution to be appropriately weighted.

Distr. k LL AIC K AD0 AD1 AD2

Stable, normal and Student-t distribution

S�;� 4 -1393.2 2796.5 3.00 0.085 0.084 0.081

NORM 2 -1428.3 2862.6 6.89 4.920 2.810 1.070

t 3 -1392.2 2792.5 3.77 0.107 0.104 0.103

Generalized logistic family

HYPC 2 -1393.4 2792.8 4.31 0.216 0.150 0.121

LOG 2 -1398.1 2802.1 4.56 0.362 0.236 0.186

EGB2 4 -1388.1 2786.3 2.45 0.103 0.100 0.095

CEGB2 5 -1388.0 2788.3 2.42 0.095 0.093 0.086

Generalized hyperbolic family

GH 5 -1388.0 2788.2 2.43 0.095 0.093 0.086

HYP 4 -1388.2 2786.5 2.50 0.106 0.103 0.098

NIG 4 -1388.2 2786.6 2.48 0.085 0.085 0.075

NEF-GHS family

NEF-GHS 4 -1388.1 2786.3 2.42 0.091 0.090 0.083

Table 3: Goodness-of-�t: Nikkei225.

It becomes obvious from table 3, that NEF-GHS is a competitive alternative with

respect to all of the goodness-of-�t measures.
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6 The NEF-GHS option pricing model

Before deriving the NEF-GHS Esscher price, it will be proved that the Esscher

transformation of a NEF-GHS variable is again a NEF-GHS variable.

Proposition 6.1 (Esscher transformation of NEF-GHS) The Esscher trans-

formation (with respect to h) of a NEF-GHS distribution with parameter (�; �) is

again a NEF-GHS distribution with parameter vector (�; � + h).

Proof: Using equations (4.10) and (4.12) it follows that6

fh(x;�; �) =
exp(hx)

M(h)
� f(x;�; �)

=
2��2

� �(�)
�
�����
�
�+ ix

2

�����2 � exp(hx) exp f�x+ � log(cos(�))g
exp f�� log(cos(h)� tan(�) sin(h))g

=
2��2

� �(�)
�
�����
�
�+ ix

2

�����2 � exp((h+ �)x)

exp f�� log(cos(�) cos(h)� sin(�) sin(h))g

=
2��2

� �(�)
�
�����
�
�+ ix

2

�����2 � exp((h+ �)x)

exp f�� log(cos(� + h))g

=
2��2

� �(�)
�
�����
�
�+ ix

2

�����2 � exp f(� + h)x + � log(cos(� + h))g
= f(x;�; � + h) �

Derivation of the option price: For every in�nitely divisible distribution a L�evy

process fXtg0�t�T can be constructed so that X1 � L. Since the NEF-GHS distri-

bution is in�nitely divisible, there exists a L�evy process fXtg0�t�T , where X1 follows

a NEF-GHS distribution with parameter vector (�; Æ; �; �). This stochastic process

is termed as a NEF-GHS L�evy motion in the following. Consequently, all incre-

ments of length 1 of a NEF-GHS-L�evy motion follow a NEF-GHS distribution and

| as a consequence of self-conjugation | every Xt, t > 0 is NEF-GHS distributed

with parameter vector (�; Æ; �t; �).7

In analogy to the proceeding of Eberlein and Keller [4] and Prause [13], the un-

derlying �nancial market consists of two securities de�ned on a stochastic basis

(
;F ; fFtg0�t�T ; P ) which satis�es the usual conditions. It is further supposed that

there is a risk-free security fBtg0�t�T that starts with B0 = 1 and bears (conti-

nuously) r percent interest. The second (risky) asset is assumed to be a stock whose

price process is modeled by an exponential NEF-GHS L�evy process fStg0�t�T with

6Note, that cos(x+ y) = cos(x) cos(y)� sin(x) sin(y).
7In absence of self-conjugation, the distribution of Xt; t 6= 1 has to be calculated numerically

by inverting its characteristic function 't with the help of the Fourier inversion.
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St = S0 exp(Xt), where fXtg0�t�T is a NEF-GHS L�evy motion.

The derivation of the NEF-GHS Esscher option price is then straightforward8: First,

transform the density ft into a risk-neutral martingale density f �t which depends on

the root, h�, of the martingale function

M (h) = r � �+ log

�
exp f�� log(cos(Æ(h+ 1))� � sin(Æ(h+ 1)))g

exp f�� log(cos(Æh)� � sin(Æh))g

�

= r � �+ � � log
�
cos(Æ(h+ 1))� � sin(Æ(h+ 1))

cos(Æh)� � sin(Æh)

�
(6.17)

According to proposition 6.1, the Esscher transformed density of X1 is given by

f �1 (x) =
exp(h�x)

M(h�)
� f(x) = f(x;�; Æ; �; � + h);

i.e. X1 obviously follows an NEF-GHS distribution with parameters (�; Æ; �; � + h).

Rescaling of the NEF-GHS distribution: When �tting a normal distibution

only a scale parameter � and a location parameter � has to be estimated. In the

case of the NEF-GHS distribution, additional parameters � and � which determine

both skewness and kurtosis have to be chosen. Tail estimates are typically based on

series observed over a longer time horizont, especially rare events like crashes should

be taken into account. On the other hand, variance estimates should be adapted

regularly with respect to short term developments. The variance of a NEF-GHS

distributed random variable X has a linear structure

V ar(X) = Æ2 � C�;�;

where C�;� depends only on the shape, i.e. the scale- and location-invariant para-

meters � and �9. Therefore, Æ can be treated as volatility parameter. According to

this background, the following rescaling is executed if options are valued or implicit

volatilities are calculated: Given the standard deviation �̂, the new ~Æ is obtained by
~Æ = �̂p

�̂(�̂2+1)
:

8As the moment-generating function of the NEF-GHS distribution does exist, the concept of
Esscher transformation can be applied.

9Scale- and location-invariance of � and � can be easily veri�ed.
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7 Esscher valuation in practice

Calculating option prices within an Esscher framework requires �ve steps that have

to be implemented. In the following, this procedure is demonstrated by means of

Consors AG which is part of the NEMAX50 index.

In a �rst step, it is necessary to estimate the parameters of the in�nitely divi-

sible distribution which is assumed as a model for the log-returns of Consors. The

log-returns of Consors are shown in �gure 3(a). Throughout this section the nor-

mal (NORM), the normal-inverse Gaussian (NIG) and the NEF-GHS distribution

are centered and compared with each other. Estimation was done by Maximum-

Likelihood using Matlab functions. The corresponding results are given in table 4,

below.

Distribution Location Scale Shape

NIG b� = �0:0050 bÆ = 0:0622 b� = 28:1426 b� = 1:9520

NEF-GHS b� = �0:0050 bÆ = 0:0418 b� = 1:26100 b� = 0:0831

NORM b� = �0:0006 b� = 0:0470 | |

Table 4: Parameter estimation results for Consors AG.

A graphical comparison of the goodness-of-�t for the normal, the NIG and the NEF-

GHS distribution can be seen in �gure 3 (b){(d).

For reasons of brevity, the second step (that means rescaling of the variance) will

be skipped. Next, the martingale parameters of the Esscher transformation have

to be determined numerically from the data. In the case of NEF-GHS, the root of

the martingale function | assuming a risk-free interest rate r = 0:01 | is close to

4:14. The same is true for the NIG distribution, whereas the root of the "normal"

martingale function lies near 4:32 (see table 5).

Distribution h�

NORM 4.315044

NIG 4.134667

NEF-GHS 4.143695

Table 5: Di�erent martingale parameter for Consors AG.
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Figure 3: Returns and �t for Consors AG.

Figure 4(a) graphically illustrates the di�erent martingale functions. The di�erences

between the normal distribution on the one hand (represented by the red, pointed

line) and the NEF-GHS and NIG distributions (which are represented by the two

lines which are close together) on the other hand are evident .

In a fourth step, the risk-neutral Esscher-density of Consors AG has to be determi-

ned. In analogy to the convolution densities fft(x) = f1(x)
t�gt2R+;x2R, similarities

between the NEF-GHS and NIG distributions, and di�erences in x and t between

NEF-GHS and the normal densities, and NIG and the normal densities become ob-
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vious in �gure 5 and 6. Consequently, these characteristics carries over to the option

prices which are shown in �gure 7. In particular, NIG and NEF-GHS options prices

are very close together. For that reason, we will factor out the analysis of mispricing

for the NEF-GHS model and refer the interested reader to the work of Prause [13].
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Figure 4: Di�erent martingale functions of Consors AG.

8 Conclusions

To sum up, the NEF-GHS distribution is able to capture all of the distributional

stylized facts. Moreover it was demonstrated, that the NEF-GHS option pricing

model uni�es all of the advantages of the other Esscher option pricing models. Ho-

wever, it should be mentioned that there are also so-called time-series stylized facts

which have not been considered within this analysis. Moreover, the use of the Es-

scher transformation has a major drawback as the market is now incomplete, i.e.

there are several choices of equivalent martingale measures which can be used to

determine option prices. In this case it is quite natural to specify the preferences of

the agents in order to select one of the martingale measures. The speci�cation of the

investor's behaviour can be done, for example, in terms of utility functions. Applied

to the concept of Esscher transformation an agent with power utility function is

implicitly assumed.
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Figure 5: Convolution densities for Consors AG.
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Figure 6: Risk-neutral convolution densities for Consors AG.
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Figure 7: Option prices for Consors AG.
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