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Abstract

Idempotence is a well–known property of functionals of location. It means that

the value of the functional at a singular distribution must be identically to the

mass point of this distribution. First, we explain the role of idempotence in the

known axiomizations of location functionals. Then we derive the distribution of

idempotent and sufficient statistics. In the special cases of parametric families

of location we get the so–called power–n–distributions. Power–n–distributions

again are distributions with a parameter of location and can be derived from

every location family for which the density is constrained. Additionally we show

that the completeness of the populations family insures the completeness of

the family of power–n–distributions. And at last, we give a further, now very

easy proof that the normal distribution is the only one for which a idempotent,

sufficient and unbiased estimator attains the Cramér–Rao–lower bound.
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1 Introduction

Idempotence is a well–known property of functionals of location. It means that the value

of the functional at a singular distribution must be identically to the mass point of this

distribution.

First, we explain the role of idempotence in the known axiomizations of location functio-

nals. Then we derive the distribution of idempotent and sufficient statistics. In the special

cases of parametric families of location we get the so–called power–n–distributions. Power–

n–distributions again are distributions with a parameter of location and can be derived

from every location family for which the density is constrained. Additionally we show

that the completeness of the populations family insures the completeness of the family of

power–n–distributions. And at last, we give a further, now very easy proof that the nor-

mal distribution is the only one for which a idempotent, sufficient and unbiased estimator

attains the Cramér–Rao–lower bound.

2 Statistical measures of location

2.1 Statistical functionals

Let D be the set all univariate statistical distribution functions and F ∈ D. Furthermore,

let X1, . . . , Xn be a sample from the population with distribution function F and Tn =

Tn(X1, . . . , Xn) be a statistic. If Tn can be written as Tn) = T (Fn), where T does not

depend on n and Fn is the empirical distribution function of X1, . . . , Xn, then T will be

called a statistical functional (see Fernholz (1983), p. 5). As domain of t will be considered

a set of distribution functions F that contains the empirical distribution functions Fn for

all n ≥ 1 and the population distribution function F . Instead of T (F ) we write T (X) if

X is distributed according to F .
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2.2 Idempotence

Let F contain the singular distribution δx with mass point x ∈ R what means δx(y) =

I[x,∞)(y), y ∈ R with indicator function

IA(y) =

{
1 for y ∈ A
0 for y /∈ A

for A ⊆ R. T will be called idempotent if T (δx) = x.

Instead of idempotence Fleming & Wallace (1986) speak about ”reflexivity” and Aczél

(1990) about ”agreement”. Reflexivity or agreement are one of the characterizing proper-

ties of so–called merging functions that aggregate different ratio-scaled measurements.

Idempotence can also be used for the characterization of measures of location. If all the

measurements of a variable have the same value x a location measure should have the

value x, too (see Klein (1984), p. 136).

2.3 Idempotence and the axiomatization of location

There are several systems of conditions (axioms) to characterize the specific properties of a

statistical functional of location (see f.e. Bickel & Lehmann (1975), Oja (1981), Dabrowska

(1985)). All these approaches are very similar.

The axiomatization of Bickel & Lehmann starts with two special relations on D: The first

binary relation is the well–known stochastical ordering �. If F,G ∈ D F will be called

stochastically not larger than G (shortly F � G) if F (x) ≥ G(x) for all x ∈ R.

The second relation R ⊆ D × D also is binary. Let X be the random variable with

distributon functions F . We say (F,G) ∈ R if G is the distribution function of the random

variable −X.

Due to Bickel and Lehmann T : F −→ R is a measure of location, if

(1) F,G ∈ F and F � G =⇒ T (F ) ≥ T (G)

(2) F,G ∈ F and (F,G) ∈ R =⇒ T (F ) = −T (G)

(3) F, F ◦ g−1 ∈ F for g(x) = a+ bx, a, b ∈ R =⇒ T (F ◦ g−1) = g(T (F ))
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The third property will be called ”equivariance”. Bickel and Lehmann (1975), p. 1047

show the independence of these axioms.

For symmetric distributions the symmetry point determines the value of every measure

of location (see also Bickel & Lehmann (1975), p. 1047, Theorem 1.1). Because singular

distributions are symmetric with the mass point as symmetry point location functionals

have to be idempotent (see Bickel & Lehmann (1975), p. 1047, Theorem 1.2).

There a two alternative ways to show the idempotence of functionals. First, we can prove

this property in a direct way. Second, we only have to show that a functional is a measure

of location in the sense of Bickel & Lehmann.

Obviously, a lot of popular distributional measures are idempotent. The most import-

ant is the arithmetic mean
∫ 1

0
F−1(p)dp. This also is a measure of location on the set

of distribution functions for which the integral exist. F−1(.) is the well–known quantile

function

F−1(u) = inf{x ∈ R|F (x) ≥ u} for u ∈ [0, 1].

The quantiles F−1(p), 0 < p < 1 are idempotent but not neccessarily a measure of location

in the sense of Bickel & Lehmann. Further idempotent functionals are considered in Klein

(1999).

In this paper we will show the consequences of idempotence on such important statistical

concepts as sufficiency, completeness and the Rao–Cramér-inequality.

3 Idempotence and sufficiency

An estimator Tn will be called sufficient for a parameter θ, if the conditional distribution

of X1, . . . , Xn

fX1,...,Xn|Tn

does not depend on θ (see for example Casella & Berger (1990), p. 247).

Due to the factorization theorem in the case of i.i.d. random variables X1, . . . , Xn, Tn is

sufficient for a parameter of location θ if and only if

n∏
i=1

fX1(xi; θ) = fTn(t(x1, . . . , xn); θ)hn(x1, . . . , xn)
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for all x1, . . . , xn belonging to support D(X1)
n if X1, . . . , Xn and θ ∈ Θ ⊆ R. hn(.) may

not depend on θ.

If Tn is idempotent the factorization theorem gives

fTn(x; θ) =
fX(x− θ)n

hn(x, . . . , x)

for x ∈ D(X1) and θ ∈ Θ. Instead of hn(x, x, . . . , x) we write hn(x).

The following examples consider some parametric family of distributions for which the

sufficient statistic is well–known.

Example 3.1 Let X1, . . . , Xn be independent and identically bernoulli–distributed with

parameter p then it is easy to see by the factorization theorem that
∑n

i=1Xi is a sufficient

statistic. The 1–1-function Xn of
∑n

i=1Xi also is sufficent such that

fXn
(x; p) =

pnx(1− p)n−nx

hn(x)

for x ∈ {0, 1} and p ∈ (0, 1). For fXn
to be a probability function it is

hn(x) =

(
n

nx

)
.

hn(.) depends on x.

Example 3.2 Let X1, . . . , Xn be independent and identically distributed with the density

f(x;λ) =
1

λ
e−λx

for x > 0 and λ > 0. λ is a scale parameter that can be estimated sufficiently by the

sample mean Xn with density

fXn
(x;λ) =

1/λne−nx/λ

hn(x)
.

It is well–known that
∑n

i=1Xi has the density of a gamma–distribution

f∑n
i=1Xi

(x;n, λ) =
λ−n

Γ(n)
xn−1ex/λ
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for x > 0. Hence, it is

fX(x;n, λ) =
λ−n

nΓ(n)
(nx)n−1e−nx/λ

such that

hn(x) =
nΓ(n)

(nx)n−1

is a function of x.

Example 3.3 Let X1, . . . , Xn be independent and identically distributed with

fX(x; θ) =
1

θ
I(0,θ(x)

for θ > 0. The smallest order statistic X(1) is sufficient and idempotent. The corresponding

density is

fX(x; θ)n/h(x) =
1

θn
I(0,θ)(x)n/hn(x).

It is well–known that the density is

fX(1)(x; θ) = nfX(x; θ)FX(x; θ)n−1 = n
1

θ

(x
θ

)n−1

I(0,θ)(x)

such that hn(x) = 1/(nxn−1) depends on x.

Example 3.4 Let X1, . . . , Xn be independent, identically distributed with density

fX(x− θ) = e−(x−θ)I(θ,∞)(x)

for θ ∈ R. In this case , it is

fX(x− θ)n/hn(x) = e−n(x−θ)I(θ,∞)(x)/hn(x).

If we set hn(x) = n, we get an exponential distribution with parameters θ und 1/n. The

smallest order statistic is an idempotent function of X1, . . . , Xn that has this distribution

and is sufficient for θ. Notice that hn(.) is independent of x.

7



4 Power–n–distribution

The last example is special because we consider a a parametric family of location. In this

case the sufficient and idempotent statistic also has a distribution with location parameter.

This is due to the fact that hn(.) is constant.

This result can be generalized to every parametric family of location. Let X be distributed

with density fX(.− θ) having support D(X). Then we define

fn(x; θ) := fX(x− θ)n/
∫
D(X)

fnX(y − θ)dy

for x ∈ D(X) and θ ∈ R. This only can be a well–defined density if

hn :=

∫
D(X)

fnX(y − θ)dy = E(fn−1
X (X − θ)) <∞.

A sufficient but not very restrictive condition is that fX(x; θ) <∞ for all x ∈ R. Because

Z = X − θ is pivotal, (D(Z) and fZ do not depend on θ), we get

E(fn−1
X (X − θ)) = E(fn−1

Z (Z))

what does not depend on θ. Therefore, fn is a density with location parameter θ. We

write fn(.− θ) and call fn ”power–n–density of fX . If there is a sufficient and idempotent

estimator of a location parameter this estimator is distributed according to the power–n–

distribution.

Example 4.1 Ferguson (1962) showed that under some conditions of regularity the on-

ly parametric family of location belonging to the exponential family distribution – and

therefore admitting a sufficient statistic – is given by

fX(x− θ) = |γ| r
r

Γ(r)
exp

(
−reγ(x−θ) + rγ(x− θ)

)
.

Special cases are the normal, the exponential– and as a limit case the uniform distribution.

This parametric exponential family of location can be derived from an Γ–distribution with

parameters r and λ via a logarithmic transformation. Therefore, we call the members of

this exponential family of location loggamma–distributions. The parameters r, γ und θ are

related by

θ = 1/γ log(r/λ).
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For loggamma–distributions, it is

fX(x− θ)n = |γ|n rnr

Γ(r)n
exp

(
−nreγ(x−θ) + nrγ(x− θ)

)
.

Hence, we have

h =

∫ ∞
−∞

fX(x− θ)ndx = |γ|n−1nnr
Γ(nr)

Γ(r)n

and the power–n–density is

f ∗n(x− θ) = |γ|(nr)
nr

Γ(nr)
exp

(
−nreγ(x−θ) + nrγ(x− θ)

)
.

This is a loggamma–distribution with parameters γ, θ and nr.

Power–n–distributions can be derived from every location familiy, not only from families

for which a sufficient and idempotent estimator exists. In the following example we con-

sider the t–distribution for which the order statistics are minimal–sufficient (see Cox &

Hinkley (1974), p. 34).

Example 4.2 Let X be distributed according to the t–distribution with parameter v

fX(x− θ) =
Γ((v + 1)/2)

Γ(v/2)

1√
vπ

(
1

1 + x2/v

)v/2+1

for x ∈ R, θ ∈ R and v > 0. Again, we have

hn =

(
Γ((v + 1)/2)

Γ(v/2)

)n(
1√
vπ

)n
Γ(v∗/2)

Γ((v∗ + 1)/2)

√
vπ

with v∗ = n(v + 1)− 1 and

f ∗n(x− θ) =
Γ((v∗ + 1)/2)

Γ(v∗/2)

1√
vπ

(
1

1 + x2/v

)(v∗+1)/2

.

If Y ∗n again is the random variable belonging to this distribution then Y ∗n obviously is

not t–distributed. Instead, the transformation Z∗n =
√
v∗/vY ∗n gives an t–distribution with

n(v + 1)− 1 degrees of freedom. Hence, the distribution of Y ∗n only is closely related to a

t–distribution.
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5 Completeness of the power–n–distribution

A parametric family of location {fX(x − θ)|θ ∈ R} will be called complete if for any

function u(X) with E(u(X)) = 0 for all θ ∈ R there must be P (g(X) = 0) = 1 for all

θ ∈ R (see f.e. Casella & Berger (1990), p. 260). An estimator is complete if its parametric

family is complete.

Now it is easy to see that the completeness of the underlying parametric family of location

implies the completeness of the location family of power–n–distributions: Let X be a

complete random variable and Let Yn be the random variable corresponding to the density

fn. Then, we have

E(u(Yn)) = E

(
u(X1) ·

fX(X)n−1

Kn

)
.

Now set v(x) = u(x)fX(x)n−1/hn for x ∈ R. If E(v(X)) = 0 for all θ ∈ R then P (v(X) =

0) = 1 for all θ ∈ R because of the completeness of X. It is fX(x)n−1 > 0 for x ∈ D(X)

Hence, we have P (u(X) = 0) = 1 for all θ ∈ R. This shows the completeness of Yn for all

n ∈ N.

If Tn is a sufficient location estimator and especially idempotent then Tn is complete and

sufficient (and therefore minimal sufficient) if the populations distribution is complete.

Example 5.1 Due to Lehmann & Scheffé ((1950), p. 314) the family of Cauchy–

distributions with location parameter θ is complete. Therefore, the family of distributions

with density

fn(x− θ) =
Γ(n)

Γ((2n− 1)/2)

1√
π

(
1

1 + x2

)n
.

is complete.

Example 5.2 Due to Patel et al. ((1976), p. 166) the exponential distributions with lo-

cation parameter are complete. As we have shown the first order statistic has the corre-

sponding power–n–distribution that therefore has to be complete. Hence, the first order

statistic is sufficient and complete. Additionally, it is unbiased. Then, due the theorem of

Lehmann and Scheffé the first oder statistic is an ”uniformly mininum variance unbiased

estimator” (UMVUE) for the location parameter.

10



6 Cramér–Rao–lower–bound and idempotence

It is well known that under some regularity conditions the variance of an unbiased suffi-

cient statistic Tn attains the Cramér–Rao–lower–bound if there are functions K(θ, n) and

t(x1, . . . , xn) with

n∑
i=1

∂ ln fX(xi − θ)
∂δ

= K(θ, n)(t(x1, . . . , xn)− θ)

(see Mood, Graybill & Boes (1974), pp. 315). Hence, we have the unbiased and sufficient

statistic Tn = t(X1, . . . , Xn). If additionally Tn is idempotent, then it is

−n∂ ln fX(x− θ)
∂x

= K(θ, n)(t(x, . . . , x)− θ).

This implies for the populations distribution fX

ln fX(x− θ) = −K(θ, n)

n

1

2
(x− θ)2,

such that

fX(x− θ) =
1

2π
e−1/2(x−θ)2

is the density of the normal distribution. This is a very simple proof that under conditions

of regularity the normal distribution is the only one having an idempotent, unbiased and

sufficient estimator for the parameter of location that attains the Cramér–Rao–lower–

bound.

7 Summary

Idempotence is a well–known property of functionals of location. It means that the value

of the functional at a singular distribution must be identically to the mass point of this

distribution.

First, we explained the role of idempotence in the known axiomizations of location func-

tionals. Then we derived the distribution of idempotent and sufficient statistics. In the

special cases of parametric families of location we got the so–called power–n–distributions.

Power–n–distributions again are distributions with a parameter of location and can be

derived from every location family for which the density is constrained. Additionally we
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show that the completeness of the populations family insures the completeness of the

family of power–n–distributions. And at last, we gave a further, now very easy proof that

the normal distribution is the only one for which a idempotent, sufficient and unbiased

estimator attains the Cramér–Rao–lower bound.
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