
Grottke, Michael

Working Paper

Modelling structural coverage and the number of failure
occurrences with non-homogeneous Markov chains

Diskussionspapier, No. 41/2001

Provided in Cooperation with:
Friedrich-Alexander-University Erlangen-Nuremberg, Chair of Statistics and Econometrics

Suggested Citation: Grottke, Michael (2001) : Modelling structural coverage and the number of
failure occurrences with non-homogeneous Markov chains, Diskussionspapier, No. 41/2001,
Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie,
Nürnberg

This Version is available at:
https://hdl.handle.net/10419/29571

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/29571
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Friedrich-Alexander-Universität Erlangen-Nürnberg
Wirtschafts- und Sozialwissenschaftliche Fakultät

Discussion Paper
41 / 2001

Modelling Structural Coverage
and the Number of Failure Occurrences
with Non-homogeneous Markov Chains

Michael Grottke

Lehrstuhl für Statistik und Ökonometrie
Lehrstuhl für Statistik und empirische Wirtschaftsforschung

Lange Gasse 20 � D-90403 Nürnberg

Modelling Structural Coverage

and the Number of Failure Occurrences
with Non-homogeneous Markov Chains

Michael Grottke
Lehrstuhl für Statistik und Ökonometrie

Universität Erlangen–Nürnberg
Lange Gasse 20

D–90403 Nürnberg
Germany

E-Mail: Michael.Grottke@wiso.uni-erlangen.de

October 8, 2001

Abstract

Most software reliability growth models specify the expected number of failures
experienced as a function of testing effort or calendar time. However, there are
approaches to model the development of intermediate factors driving failure
occurrences. This paper starts out with presenting a model framework consist-
ing of four consecutive relationships. It is shown that a differential equation
representing this framework is a generalization of several finite failures category
models.
The relationships between the number of test cases executed and expected
structural coverage, and between expected structural coverage and the ex-
pected number of failure occurrences are then explored further.
A non-homogeneous Markov model allowing for partial redundancy in sam-
pling code constructs is developed. The model bridges the gap between setups
related to operational testing and systematic testing, respectively. Two ex-
tensions of the model considering the development of the number of failure
occurrences are discussed.
The paper concludes with showing that the extended models fit into the struc-
ture of the differential equation presented at the beginning, which permits
further interpretation.

1

1 A model framework

Most software reliability growth models specify the expected number of failure occurrences
µ as a function of some measure of time. The authors of one of the earliest models, Jelinski
and Moranda [3], for example, use calendar time t∗ as the exogenous variable. However,
they also state that an implicit assumption of their model is that the intensity of testing
is constant over time. For cases in which this proposition does not hold they formulate a
refined model specifying two consecutive mappings: the one from calendar time to testing
effort t, and the one from testing effort to the expected number of failure occurrences.

More recently, there have been efforts to identify intermediate factors driving the num-
ber of failure occurrences. Gokhale et al. [2] unify several finite failures category models
of the Poisson type by considering structural coverage c of the application under test as
such a driving factor. Structural coverage can be generically defined as the number of
code constructs (for example, statements, blocks or paths) exercised by testing divided
by the total number of code constructs in the application under test.

Rivers and Vouk [6, 7] specify the relationship between either test case coverage b - the
percentage of planned test cases which have been executed - or structural coverage and
the number of failure occurrences. They note that the number of failures experienced is
not necessarily proportional to the coverage attained. Their solution is the introduction
of an additional factor g, which they call testing efficiency.

Piwowarski et al. [5] derive block coverage, a specific structural coverage, as a random
variable C stochastically depending on the number of test cases executed i and discuss the
expected structural coverage κ(i) = E(C(i)) and the mean value function µ(i), assuming
that µ(i) and κ(i) are proportional. If the total number of planned test cases, it, is known,
both functions can be formulated with test case coverage b = i

it
being the exogenous

variable.
Combining all these approaches, four consecutive relationships are identified:

I. The allocation of testing effort t to calendar time t∗

II. The development of test case coverage b as a function of cumulative testing effort

III. The expected coverage of code constructs κ = E(C) attained through test case
coverage

IV. The relationship between expected structural coverage and the expected number of
failures experienced µ

Moreover, a model framework integrating the different concepts can be formulated as the
following differential equation:

dµ(κ(b(t(t∗))))

dt∗
=

dt(t∗)

dt∗
dκ(b(t(t∗)))/dt(t∗)

1− κ(b(t(t∗)))
×

g(κ(b(t(t∗))))[νd − µ(κ(b(t(t∗))))] (1)

Under the condition that the testing efficiency g is constant, νd represents the expected
number of failures to be experienced until full structural coverage has been attained. In
a model assuming that as soon as a failure has occurred the fault which caused it is

2

removed instantaneously and perfectly, νd is equal to the expected number of detectable
faults present in the software at the beginning of testing. If the detection probability is
the same time-invariant constant d for all faults, then νd = ν · d. For software reliability
models of the binomial type, ν stands for the fixed but unknown number of initial faults,
u0. For models of the Poisson type, it represents the expected value N of the initial
number of faults, which is assumed to follow a Poisson distribution.

It is straightforward to show that this framework includes the models mentioned above
as well as additional ones:

• The Goel-Okumoto model [1] starts out with a measure of testing effort. Therefore,
the relationship I is not in its scope. Moreover, the relationships II, III and IV
are not specified explicitly. It is only known that the product dκ(t)/dt

1−κ(t)
g(κ(t)) is a

constant value, say φ. A sufficient but not necessary condition is that both the
hazard rate of the execution of a certain code construct and the testing efficiency
take constant values. In the Goel-Okumoto model, the number of initial faults is
a random variable following a Poisson distribution, and the detection probability is
assumed to be equal to one. Consequently, in the specific differential equation νd is
replaced by N . This yields

dµ(t)

dt
= φ[N − µ(t)]. (2)

• Using the same propositions as the Goel-Okumoto model but assuming that the
initial number of faults is fixed at the unknown value u0 leads to the differential
equation of the Jelinski-Moranda model [3],

dµ(t)

dt
= φ[u0 − µ(t)].

• If relationship I is specified by some function t(t∗) = W (t∗) and the product
dκ(t)/dt
1−κ(t)

g(κ(t)) is assumed to be a constant φ, then for ν = N and d = 1 the Goel-

Okumoto model with a time-varying testing effort [8] is obtained:

dµ(t∗)

dt∗
=

dW (t∗)

dt∗
φ[N − µ(t∗)] (3)

Note that one could as well transform the time scale by t = W (t∗) and consider

µ(t) = µ(W (t∗)) and dµ(t)
dt

= dµ(W (t∗))
dW (t∗)

, because the differential equation

dµ(W (t∗))

dW (t∗)
= φ[N − µ(W (t∗))]

can be written as

dµ(W (t∗))
dt∗

dW (t∗)
dt∗

=
dµ(W (t∗))

dt∗
dt∗

dW (t∗)
= φ[N − µ(W (t∗))],

which is equivalent to equation (3).

3

• Again, substituting u0 for N in equation (3) yields a model of the binomial type,
namely the refined Jelinski-Moranda model taking into account a time-varying test-
ing effort [3]:

dµ(t∗)

dt∗
=

dW (t∗)

dt∗
φ[u0 − µ(t∗)]

• The Enhanced Non-homogeneous Poisson Process (ENHPP) framework by Gokhale
et al. [2] starts out with a measure of testing effort t. Structural coverage is supposed
to be a deterministic function of this measure. This means that κ(t) = E(C(t)) =
c(t). Under the assumptions that the faults are distributed uniformly over the code
constructs, that a fault causes a failure with constant probability d the first time
that the construct at which it is located is exercised and that faults are removed
instantaneously and perfectly as soon as they have caused a failure, the number of
failure occurrences increases proportionally to structural coverage. Moreover, the
per-fault hazard rate is equal to dc(t)/dt

1−c(t)
, an expression which can be interpreted as

the hazard rate of the execution of a certain code construct if limt→∞ c(t) = 1. This
implies that the testing efficiency g is identical to one. Therefore, the differential
equation of this model framework for non-homogeneous Poisson processes is

dµ(t)

dt
=

dc(t)/dt

1− c(t)
[Nd− µ(t)].

The ENHPP framework itself includes a number of finite failures category models.
For example, for a deterministic coverage function with a constant hazard rate φ
and d = 1 the Goel-Okumoto model (2) is obtained. A coverage hazard function

of φ2t
1+φt

leads to Ohba’s inflection S-shaped model [4] if d = 1. Remarkable is the
new interpretation given by the ENHPP framework: The shape of the mean value
function is determined by the shape of structural coverage as a function of testing
effort.

• Rivers and Vouk [6, 7] treat test case coverage and structural coverage as equivalent
and exchangeable, implying their numerical identity c = c(b) = b. The respective
coverage measure is assumed to be an exogenous variable, i.e., the relationships I
and II are not in the scope of the model. Moreover, as mentioned above, Rivers and
Vouk introduce a factor g, whose value depends on current coverage, for taking into
account that coverage growth and the development of the number of failures experi-
enced are not necessarily proportional to each other. In the original formulation, the
number of initial faults in the software is not specified to follow a Poisson distribu-
tion, but rather treated as an unknown, fixed value. The fault detection probability
is constant at one. Therefore, the differential equation of the Rivers-Vouk model is

dµ(b)

db
=

g(b)

1− b
[u0 − µ(b)]

when starting out with test case coverage and

dµ(c)

dc
=

g(c)

1− c
[u0 − µ(c)].

4

when data on structural coverage is to be used.

These forms represent a meta model which needs further specification of the testing
efficiency function. For example, setting g(b) = α(1− b) in the first case yields the

so-called linear testing efficiency model, dµ(b)
db

= α[u0 − µ(b)]. Obviously, its shape is
similar to the one of the Jelinski-Moranda model; the main difference is that the
exogenous variable is test case coverage, not testing effort.

• In the model by Piwowarski et al. [5] structural coverage growth is not deterministic
like in the ENHPP framework, but a stochastic function of the number of test
cases executed, i, or test case coverage, b = i

it
. As a consequence, the mean value

function is determined by the time-varying function of expected structural coverage,
κ(b) = E(C(b)). The expected number of failure occurrences is assumed to be
proportional to expected structural coverage (i.e., g(b) ≡ 1), and all the u0 faults in
the software are thought to be detectable. Consequently, the differential equation
of the model is given by

dµ(b)

db
=

dκ(b)/db

1− κ(b)
[u0 − µ(b)].

Figure 1 summarizes the structures of these models.

t∗ t b κ µ

Goel-Okumoto/Jelinski-Moranda X X-

Goel-Okumoto/Jelinski-Moranda
with a time-varying testing-effort X X X- -

ENHPP (Gokhale et al.) X X X- -∝

Rivers-Vouk X X X- -=

Piwowarski et al. X X X- -∝

Figure 1: Relationships (implicitly) specified by different models; assumed
equalities (=) and proportionalities (∝) are indicated

The framework introduced here does not only unify a number of models in one generalizing
equation. It also helps to structure assumptions according to the different consecutive
relationships and to determine those propositions that have not been stated explicitly.
Focussing on the intermediate relationships may help practitioners to better understand
the shape of specific software reliability growth models. Moreover, the suggested forms
of such relationships may be discussed with regard to their assumptions about the real
world (e.g., the testing strategy used) and - if necessary - improved.

In the remaining sections of this paper, the relationships between the number of test
cases executed and structural coverage, and between structural coverage and the number
of failure occurrences are explored further.

5

2 Modelling structural coverage

2.1 Piwowarski et al. versus Rivers and Vouk

In both the approach by Piwowarski et al. and the Rivers-Vouk model the relationship
between test case coverage and structural coverage growth is contained.

Piwowarski et al. [5] base their model on the following assumptions:

1. The program under test consists of G code constructs.

2. Per test case, p of these constructs are sensitized on average.

3. The p code constructs are always chosen from the entire population. The fact
that a construct has already been sensitized does not diminish its chances of being
sensitized in future.

This setup resembles operational testing with a homogeneous operational profile, in which
all non-overlapping and equally-sized operations have the same occurrence probability.
Piwowarski et al. show that the shape of expected structural coverage attained as a
function of the number of test cases executed, κ(i), is an exponential one, similar to the
one of the Jelinski-Moranda model and the Goel-Okumoto model; i.e.,

κ(i) = 1− exp
(
− p

G
· i

)
. (4)

In figure 2, this equation is depicted as the solid line.

Figure 2: Structural coverage growth in the model by Piwowarski et al. and in the
Rivers-Vouk model

On the contrary, the model by Rivers and Vouk [6, 7] is explicitly designed for systematic
testing. An objective of this testing regime is to test as much of the application under
test as possible. This implies that redundant executions of code constructs have to be
avoided. While under the condition of equally-sized test cases the first two assumptions
of the model of Piwowarski et al. also apply, assumption three has to be replaced by the
central proposition of the Rivers-Vouk model:

3. Code constructs which have already been exercised are not tested a second time.

6

Clearly, the gain in structural coverage is then p
G

for each of the equally-sized test cases,
and

κ(i) = c(i) =
p

G
· i. (5)

This relationship is represented by the dotted straight line in figure 2.
The two models mark extremes. Neither will testers re-execute the same portions of

code over and over again during operational testing nor will testers following a systematic
approach be able to perfectly avoid redundant executions of code constructs. A model
allowing for partial redundancy could capture more realistic situations and bridge the gap
between models for operational testing and those for systematic testing. In the following
sections, variations of such a model are developed.

2.2 A Markov model for structural coverage

In order to consider partial redundancy in code construct execution, it seems useful to
define three different states code constructs may take: “untested” (U), “already tested
with the possibility of being tested again in future” (T) and “tested and eliminated from
further consideration” (E). The assumptions of the model are as follows:

1. The program under test consists of G code constructs. At the beginning of testing,
all these constructs are in state U.

2. Per test case, p constructs are sensitized on average.

3. The p constructs are randomly chosen from those constructs residing in state U or
in state T at the beginning of the test case execution.

4. A constant fraction r (0 ≤ r ≤ 1) of those constructs exercised by a test case change
to (or stay in) state T and may be tested again in future. The other constructs are
eliminated and take state E.

This setup is a generalization of the one by Piwowarski et al. and the one by Rivers and
Vouk, because its assumptions 3 and 4 comprise both variations of proposition 3 in the
two models.

It can be formulated as a discrete-time Markov chain, in which transitions of the code
constructs from one of the three states to another occur at the “atomic” test case execu-
tions. A code construct in state U may either remain in this state or switch to one of the
other states. Since code constructs already tested before cannot become untested again,
they can only stay in the current state or get eliminated. State E is an absorbing (or
“closed”) one, i.e., constructs eliminated never leave this state. The structure of the re-
sulting Markov chain is depicted in figure 3. πAB,i denotes the transition probability from
state A to state B during execution of the ith test case. Since the transition probabilities
are not time-invariant, the Markov chain is non-homogeneous.

A construct can only change its state if it is sensitized by the test case. According to
assumption 2 the probability zi of being selected by the ith test case is

zi =
p

E(GU,i−1) + E(GT,i−1)

7

Figure 3: Transition graph of the basic Markov model

for all constructs residing in state U or in state T at the beginning of the ith test case
execution, with E(GA,i−1) representing the expected number of constructs in state A after
execution of the (i− 1)th test case.

Since the fraction (1− r) of the code constructs sensitized is eliminated, the transition
probabilities πUE,i and πTE,i are both zi(1 − r). A construct changes from state U to
state T if it is exercised but not eliminated; therefore, πUT,i = zir. The probability of
remaining in state U, πUU,i, is equal to 1 − πUT,i − πUE,i = 1 − zi, which is exactly the
probability of not being selected. Likewise, πTT,i = 1 − πTE,i = 1 − zi(1 − r), which can
also be calculated as the probability of not being exercised plus the probability of being
sensitized but not eliminated. The transition probability πEE,i is equal to one, because
state E is absorbing.

With the help of the transition matrix of this basic model, Pi = {πAB,i}A,B∈{U,T,E}, the
expected number of code constructs in the three states can be expressed as E(GU,i)

E(GT,i)
E(GE,i)

 =

 1− zi 0 0
zir 1− zi(1− r) 0

zi(1− r) zi(1− r) 1

 E(GU,i−1)
E(GT,i−1)
E(GE,i−1)

 . (6)

We are interested in the expected number of code constructs covered by the first i test
cases, E(Qi), which is the sum of E(GT,i) and E(GE,i):

E(Qi) =
(

0 1 1
) E(GU,i)

E(GT,i)
E(GE,i)

 =

= ziE(GU,i−1) + E(GT,i−1) + E(GE,i−1). (7)

Equations (6) and (7) could be used together with the initial conditions E(GU,0) = GU,0 =
G, E(GT,0) = GT,0 = 0 and E(GE,0) = GE,0 = 0, which follow from assumption 1, for
iteratively calculating the expected number of constructs in the different states and the
number of code constructs sensitized after each test case. However, it is also possible to
derive a (continuously approximated) closed form expression for the expected number of
code constructs exercised, or for expected structural coverage.
Since E(GT,i−1) + E(GE,i−1) = E(Qi−1), subtracting E(GT,i−1) + E(GE,i−1) from both
sides of equation (7) yields

E(∆Qi) = ziE(GU,i−1). (8)

It is now necessary to express both zi and E(GU,i−1) in terms of E(Qi). Obviously, the
expected number of constructs not tested during the first (i− 1) test cases is exactly the

8

number of all constructs minus the expected number of constructs that have already been
sensitized: E(GU,i−1) = G− E(Qi−1).

As for the denominator of zi, E(GU,i−1) + E(GT,i−1), it is equal to G − E(GE,i−1).
Since a constant fraction (1− r) of the p constructs executed by a test case is eliminated
- regardless of the state these constructs were in before -, the change in the number
of eliminated constructs is always p(1 − r). Therefore, E(GE,i−1) is nothing but the
deterministic value GE,i−1 = p(1− r)(i− 1).

Consequently, equation (8) can be written as

E(∆Qi) = p · G− E(Qi−1)

G− p(1− r)(i− 1)
(9)

or, dividing both sides by the total number of code constructs G, it can be formulated in
terms of structural coverage:

E(∆Ci) =
p

G
· 1− E(Ci−1)

1− p
G
(1− r)(i− 1)

(10)

It is possible to continuously approximate difference equation (10) by assuming that each
test case can be split in any number of smaller test cases, i.e., by letting ∆i → di → 0:

dκ(i)

di
=

p

G
· 1− κ(i)

1− p
G
(1− r)i

.

Integrating this differential equation finally yields

κ(i) = 1−
(
1− p

G
(1− r)i

) 1
1−r

(11)

for 0 ≤ r < 1 and p
G
(1− r)i < 1, and

κ(i) = 1− exp
(
− p

G
· i

)
(12)

for r = 1.
These equations confirm that this Markov model is a generalization of the two ap-

proaches described in section 2.1: Equation (12) obtained for r = 1, i.e., if constructs are
never eliminated, is identical to equation (4) derived by Piwowarski et al. Assuming per-
fect avoidance of redundancy (r = 0), on the other hand, leads to the linear relationship
(5), which is connected to the setup proposed by Rivers and Vouk.

9

3 Markov models for the number of failure occur-

rences

3.1 Common assumptions

The basic Markov model derived in section 2.2 can be extended to include relationship
IV of the model framework. This requires to distinguish between correct and faulty code
constructs. Like in the existing models explicitly specifying this relationship (e.g. the
Rivers-Vouk model), an implicit assumption of this extended Markov model is that at
most one fault can be located at a code construct and cause a failure. For code metrics
partitioning the software in a large number of code constructs, this proposition does not
seem to be very restrictive.

In order to facilitate the distinction between correct and faulty code constructs, each of
the states U, T and E is split into two: code constructs can be untested and faulty (UF),
untested and correct (UC), tested and faulty (TF), tested and correct (TC), eliminated
and faulty (EF) or eliminated and correct (EC).

This entails the necessity to restate the model assumptions:

1. The program under test consists of G code constructs. At the beginning of testing,
u0 of these constructs are in state UF (i.e., they are untested and faulty); the
remaining (G− u0) constructs are in state UC.

2. Per test case, p constructs are sensitized on average.

3. The p constructs are randomly chosen from those constructs residing in one of the
states UF, UC, TF or TC at the beginning of the test case execution.

4. A constant fraction r (0 ≤ r ≤ 1) of those constructs exercised by a test case may
be tested again in future. If such a construct is faulty after the test case execution,
it changes to (or stays in) state TF; if it is correct after the test case execution, it
moves to (or remains in) state TC. The other constructs are eliminated and take
state EF or state EC, respectively.

These rephrased assumptions only lay the foundation for the model extension, they do
not change the way in which structural coverage grows.

As for the kind of development of the number of failures experienced, i.e. the structure
of transitions from the states UF and TF to the states TC and EC, two variations are
specified and discussed in the following subsections.

3.2 Fault detection at the first code construct execution only

As we have seen in section 1, several models explicitly specifying relationship IV assume
that a failure may occur when a code construct at which a fault is located is exercised
for the first time. A failure is then either caused with certainty (like in the approach by
Piwowarski et al.) or - more generally - only with a certain fault detection probability d
(like in the ENHPP framework).

10

Within the Markov model a proposition corresponding to this setup is as follows:

5. When a code construct at which a fault is located is exercised for the first time,
the fault causes a failure with activation probability s (0 ≤ s ≤ 1). The fault is
then removed instantaneously and perfectly. If no failure occurs during the first
execution of the code construct, then the fault will not be detected until the end
testing.

Figure 4 represents the resulting transition graph. The superscript eI of the transition
probabilities indicates that they are linked to the first extended model. The “transitions”
within one state have been omitted in order to maintain a clear diagram.

Since the structure in which code constructs are sampled has not been changed, the
transition probabilities between the “correct” states are similar to the corresponding ones
in the basic model. For example, πeI

UCTC,i is still the probability of being selected mul-
tiplied by the replacement rate r. However, when calculating the selection probability
the expected number of constructs in one of the states UC, TC, UF and TF has to be
considered now, i.e.,

zeI
i =

p

E(GUC,i−1) + E(GTC,i−1) + E(GUF,i−1) + E(GTF,i−1)
.

Likewise, πeI
UCEC,i = πeI

TCEC,i = zeI
i (1− r).

As for the transitions from and between “faulty” states, the fault activation probability
s comes into play. Since an untested, faulty construct switches to state TC if it is exercised
but not eliminated and if a failure occurs, πeI

UFTC,i = zeI
i rs. Similarly, πeI

UFTF,i = zeI
i r(1−s)

and πeI
UFEF,i = zeI

i (1− r)(1− s).

Figure 4: Transition graph of the first extended Markov model

A faulty construct that has already been tested before can only remain in state TF or
move to state EF, because according to assumption 5 the fault will never be detected and
corrected. Therefore, πeI

TFEF,i = zeI
i (1− r).

11

This leads to the transition equation of the first extended model
E(GUC,i)
E(GUF,i)
E(GTC,i)
E(GTF,i)
E(GEC,i)
E(GEF,i)

 = PeI
i

E(GUC,i−1)
E(GUF,i−1)
E(GTC,i−1)
E(GTF,i−1)
E(GEC,i−1)
E(GEF,i−1)

with the non-stationary transition matrix

PeI
i =

1− zeI

i 0 0 0 0 0
0 1− zeI

i 0 0 0 0
zeI

i r zeI
i rs 1− zeI

i (1− r) 0 0 0
0 zeI

i r(1− s) 0 1− zeI
i (1− r) 0 0

zeI
i (1− r) zeI

i (1− r)s zeI
i (1− r) 0 1 0

0 zeI
i (1− r)(1− s) 0 zeI

i (1− r) 0 1

 .

The expected number of code constructs exercised by the first i test cases can be calculated
as follows:

E(Qi) =
(

0 0 1 1 1 1
)

E(GUC,i)
E(GUF,i)
E(GTC,i)
E(GTF,i)
E(GEC,i)
E(GEF,i)

 =

= zeI
i [E(GUC,i−1) + E(GUF,i−1)] +

∑
A∈{TC,TF,EC,EF}

E(GA,i−1)

Since
∑

A∈{TC,TF,EC,EF} E(GA,i−1) = E(Qi−1),

E(∆Qi) = zeI
i [E(GUC,i−1) + E(GUF,i−1)] .

Like in the basic model, the denominator of the selection probability zeI
i is equal to

G− p(1− r)(i− 1). Moreover, the constructs in the states UC and UF are exactly those
which have not been tested before; therefore, E(GUC,i−1) + E(GUF,i−1) = G− E(Qi−1).

The difference equation derived for the number of code constructs covered is conse-
quently

E(∆Qi) = p · G− E(Qi−1)

G− p(1− r)(i− 1)
,

exactly the same as equation (9). This means that the continuously approximated func-
tions for expected structural coverage derived with regard to the basic model - i.e., equa-
tions (11) and (12) - also apply to the first extended model.

This result is not really surprising, because when restating the model assumptions care
has been given not to change the way in which coverage grows.

12

The expected number of faults still remaining in the software after execution of the ith

test case is given by E(GUF,i) + E(GTF,i) + E(GEF,i). Therefore, E(Mi), the expected
number of failure occurrences for the first i test cases, is

E(Mi) = u0 −
(

0 1 0 1 0 1
)

E(GUC,i)
E(GUF,i)
E(GTC,i)
E(GTF,i)
E(GEC,i)
E(GEF,i)

=

= u0 − (1− zeI
i s)E(GUF,i−1)− E(GTF,i−1)− E(GEF,i−1).

Using the relationship E(Mi−1) = u0−E(GUF,i−1)−E(GTF,i−1)−E(GEF,i−1), it follows:

∆E(Mi) = zeI
i sE(GUF,i−1) (13)

Quite intuitively, this equation states the reason for growth in the number of failure
occurrences: faulty constructs whose execution may cause failures are sensitized, and the
fault is activated.

Since untested faulty and untested correct constructs have the same chance of being
selected, the proportion of E(GUF,i−1) at all expectedly untested constructs is always the
same, u0

G
:

E(GUF,i−1) =
u0

G
[E(GUC,i−1) + E(GUF,i−1)] =

=
u0

G
[G− E(Qi−1)] =

= u0 [1− E(Ci−1)] (14)

For r < 1, plugging equation (14) into equation (13) and letting ∆i approach zero yields

dµ(i) =
p

G− p(1− r)i
su0 [1− κ(i)] di =

=
psu0

G

[
1− p

G
(1− r)i

] r
1−r

di.

The continuously approximated function of the expected number of failure occurrences
µ(i) is obtained by integrating this equation:

µ(i) =
psu0

G

∫ i

0

[
1− p

G
(1− r)x

] r
1−r

dx =

= u0s

[
1−

(
1− p

G
(1− r)i

) 1
1−r

]
=

= u0sκ(i)

For r = 1, the continuous approximation of ∆E(Mi) is

dµ(i) =
p

G
su0 [1− κ(i)] di =

=
psu0

G
exp

(
− p

G
i
)

di,

13

and the mean value function is given by

µ(i) =
psu0

G

∫ i

0

exp
(
− p

G
x
)

dx =

= u0s
[
1− exp

(
− p

G
i
)]

=

= u0sκ(i). (15)

In the Markov model, the proposition that only the first execution of a faulty construct
may produce a failure leads to a proportional relationship between structural coverage
and the number of failure occurrences, just like in the ENHPP framework and in the
approach by Piwowarski et al. The constant of proportionality is the expected number of
detectable faults, u0s.

3.3 Fault detection at repeated code construct executions

If a fault is not necessarily detected during the first execution of the construct at which it is
located, proportionality between structural coverage and the number of failure occurrences
does not seem realistic. Rather, repeated testing of a construct which is still faulty may
finally reveal the fault. Therefore, the occurrence of failures should be possible even if no
additional structural coverage is attained. With this respect, redundancy may also have
positive effects. (Indeed, these are the effects researchers advocating operational testing
rely on.)

To account for that, assumption 5 of the first extended model is replaced by the fol-
lowing one:

5. When a code construct at which a fault is located is exercised for the first time or re-
peatedly, the fault causes a failure with constant activation probability s (0 ≤ s ≤ 1).
The fault is then removed instantaneously and perfectly.

This means that in the transition graph of the second extended model (cf. figure 5)
additional transitions from state TF to the states TC and EC have to be considered. The
transition probabilities are equal to the corresponding ones starting from state UF, i.e.,
πeII

TFTC,i = πeII
UFTC,i = zeII

i rs and πeII
TFEC,i = πeII

UFEC,i = zeII
i (1− r)s. At the same time, the

transition probabilities πeII
TFTF,i and πeII

TFEF,i are diminished. The superscript eII indicates
the expressions related to the second extended model. However, note that

zeII
i =

p

E(GUC,i−1) + E(GTC,i−1) + E(GUF,i−1) + E(GTF,i−1)

is exactly the same as the selection probability in the first extended model, zeI
i .

The transition matrix PeII
i of this model variation is

1− zeII
i 0 0 0 0 0

0 1− zeII
i 0 0 0 0

zeII
i r zeII

i rs 1− zeII
i (1− r) zeII

i rs 0 0
0 zeII

i r(1− s) 0 1− zeII
i (1− r(1− s)) 0 0

zeII
i (1− r) zeII

i (1− r)s zeII
i (1− r) zeII

i (1− r)s 1 0
0 zeII

i (1− r)(1− s) 0 zeII
i (1− r)(1− s) 0 1

 .

14

Figure 5: Transition graph of the second extended Markov model

Since no changes have been made with regard to the way in which code constructs are
covered, equations (11) and - for r = 1 - (12) still hold true.

As for the expected number of failure occurrences after execution of the ith test case,
calculating

E(Mi) = u0 −
(

0 1 0 1 0 1
)

E(GUC,i)
E(GUF,i)
E(GTC,i)
E(GTF,i)
E(GEC,i)
E(GEF,i)

leads to

∆E(Mi) = zeII
i s [E(GUF,i−1) + E(GTF,i−1)] =

= zeII
i sE

(
G{UF,TF},i−1

)
, (16)

where E
(
G{UF,TF},i−1

)
denotes [E(GUF,i−1)+E(GTF,i−1)]. The difference between this

equation and the corresponding one for the first extended model lies in the contribution
of the constructs in state TF to the number of failures experienced.

If infinitely small changes in i are allowed, equation (16) can be continuously approxi-
mated by

dµ(i) =
p

G− p(1− r)i
sγ{UF,TF}(i)di. (17)

γ{UF,TF}, the continuous approximation of E
(
G{UF,TF}

)
, has to be determined in order

to derive µ(i).
Note that no transition is directed to the set {UF, TF}. Therefore, the expected

number of code constructs leaving this set during the ith test case can be explained by

15

the expected number of code constructs taking one of the two states before that test case
execution. Specifically,

∆E
(
G{UF,TF},i

)
= −E

(
G{UF,TF},i−1

) (
πeII

UFTC,i + πeII
UFEC,i + πeII

UFEF,i

)
=

= −E
(
G{UF,TF},i−1

) (
πeII

TFTC,i + πeII
TFEC,i + πeII

TFEF,i

)
=

= −E
(
G{UF,TF},i−1

)
zeII

i (1− r + rs) .

For ∆i → di → 0, this difference equation transforms into the differential equation

dγ{UF,TF}(i)

γ{UF,TF}(i)
= −

p
G
(1− r + rs)

1− p
G
(1− r)i

di,

whose integration under the condition r < 1 yields

γ{UF,TF}(i) = u0

(
1− p

G
(1− r)i

) 1−r+rs
1−r

. (18)

Integrating equation (17) with equation (18) plugged in finally results in

µ(i) = u0
s

1− r + rs

[
1−

(
1− p

G
(1− r)i

) 1−r+rs
1−r

]
. (19)

For r = 1,

γ{UF,TF}(i) = u0 exp
(
− p

G
si

)
,

and
µ(i) = u0

[
1− exp

(
− p

G
si

)]
.

The expected number of failure occurrences at full structural coverage is u0
s

1−r+rs
, which

lies between u0s in case of no redundancy and u0 for r = 1. If a fault is not detected with
certainty through execution of the respective defective construct, one can only expect that
testing will finally lead to the removal of all faults if code constructs are always replaced.

It can now be proved that in this second extended model the relative number of failures
experienced per percentage of structural coverage gained increases. For 0 ≤ r < 1,

d
(

µ(i)
κ(i)

)
di

=
u0s

p
G

(1− κ(i))rs

(κ(i))2

[
1− rs− r

1− r + rs
(1− κ(i))− 1

1− r + rs
(1− κ(i))r(1−s)

]
.

Both the fraction and the expression in brackets are always positive for κ(i) ∈ (0, 1) if s
is larger than zero.

For r = 1,

d
(

µ(i)
κ(i)

)
di

=
u0

p
G

(κ(i))2 ×[
s exp

(
− p

G
si

)
+ (1− s) exp

(
− p

G
(1 + s)i

)
− exp

(
− p

G
i
)]

. (20)

There is no doubt about the positive sign of the fraction. The expression in brackets
can be visualized in a graph showing the exponential function exp

(
− p

G
x
)
, where x is the

exogenous variable (cf. figure 6).

16

Figure 6: Graphical interpretation of the bracketed expression in equation (20)

For any values i > 0 and 0 < s < 1, the secant between the points
(
si, exp

(
− p

G
si

))
and(

(1 + s)i, exp
(
− p

G
(1 + s)i

))
can be drawn. Then s exp

(
− p

G
si

)
+(1−s) exp

(
− p

G
(1 + s)i

)
is exactly the y-value of that point on the secant for which x is equal to i. Since the
concave side of the exponential function points upward, this value is always larger than
the y-value of the corresponding point on the curve, exp

(
− p

G
i
)
. This means that the

bracketed expression and the derivative of µ(i)
κ(i)

with respect to i for r = 1 are positive for
0 < s < 1.

Regardless of the extent of redundancy, as long as the detection of faults is neither
certain nor impossible the number of failure occurrences per percentage of structural
coverage gained increases as testing proceeds.

4 The Markov models and the model framework

It remains to be examined whether the functions derived for the two extended Markov
models fit into the differential equation (1) presented at the beginning of this article, or
whether this equation has to be generalized further.

In sections 2.2 and 3, expected structural coverage κ and the expected number of
failure occurrences µ have been formulated in terms of the absolute number of test cases
executed. They can easily be restated as functions of test case coverage b = i

it
, with it

denoting the total number of test cases planned.
For both extended models, expected structural coverage is the same:

κ(b) =

{
1−

(
1− p

G
(1− r)itb

) 1
1−r if 0 ≤ r < 1

1− exp
(
− p

G
itb

)
if r = 1

In the first extended model, in which failures may only occur at the first execution of a
faulty construct, the expected number of failures experienced in terms of test case coverage
is

µ(b) =

{
u0s

[
1−

(
1− p

G
(1− r)itb

) 1
1−r

]
if 0 ≤ r < 1

u0s
[
1− exp

(
− p

G
itb

)]
if r = 1

.

It can easily be shown that for both cases the following differential equation holds:

dµ(b)

db
=

dκ(b)/db

1− κ(b)
[u0s− µ(b)]

17

This equation is a special case of equation (1). This formulation confirms two properties
of the model already discussed in section 3.2: Firstly, νd = u0s is the number of faults
expected to be detected when full structural coverage has been attained. Moreover, since
the factor g present in equation (1) is identical to one, the expected number of failure
occurrences develops proportionally to structural coverage.

The mean value function of the second extended model in terms of test case coverage
b is:

µ(b) =

{
u0

s
1−r+rs

[
1−

(
1− p

G
(1− r)itb

) 1−r+rs
1−r

]
if 0 ≤ r < 1

u0

[
1− exp

(
− p

G
sitb

)]
if r = 1

Again, the differential equation being valid for both cases of this model,

dµ(b)

db
=

dκ(b)/db

1− κ(b)
(1− r + rs)

[
u0

s

1− r + rs
− µ(b)

]
, (21)

is a special case of equation (1). As already noted before in section 3.3, the expected
number of detectable faults νd is u0

s
1−r+rs

. This means that the detection probability d
is given by s

1−r+rs
. Equation (21) additionally reveals that the second extended model

implies a constant testing efficiency g = 1− r + rs, which is smaller than one for r, s < 1.
Interestingly, the value of the testing efficiency is equal to the denominator of the detec-
tion probability. Therefore, it looks like that there exists a connection between testing
efficiency and the number of detectable faults not discussed in literature so far.

5 Conclusions

The model framework presented in this paper seems to be useful for systematically exam-
ining existing models as well as deriving new ones. Generalizing the relationship between
test case coverage and structural coverage as specified in the model by Piwowarski et
al. and in the Rivers-Vouk model, respectively, the basic Markov model bridges the gap
between models for data collected during operational testing and those intended for data
collected during systematic testing. Moreover, the model can be extended in various ways
in order to consider the expected number of failure occurrences. While the first varia-
tion discussed implies a constant testing efficiency of one (and therefore proportionality
between structural coverage and the number of failures experienced), the relationship be-
tween structural coverage and the number of failure occurrences derived for the second
variation involves a constant testing efficiency smaller than one if the activation proba-
bility s and the degree of redundancy r are both less than one-hundred per cent.

Instead of constant values for r and s, time-varying probabilities could be examined as
well. Even for complicated assumptions, the expected structural coverage and the mean
value function in terms of the number of test cases executed can easily be calculated
iteratively. However, the derivation of closed-form expressions may not be possible then.

18

Acknowledgements

The research described in this paper was done in the course of the project PETS. This
project is supported by the European Community in the framework of the specific pro-
gram for research, technological development and demonstration on a user friendly society
(1998-2002), the “IST Program”. The author is solely responsible for this paper. It does
not represent the opinion of the Community.

References

[1] Goel, A. L.; Okumoto, K.: Time-Dependent Error-Detection Rate Model for Software
Reliability and Other Performance Measures, IEEE Trans. Reliability 28 (1979),
pp. 206 - 211

[2] Gokhale, S. S.; Philip, T.; Marinos, P. N.; Trivedi, K. S.: Unification of Finite Failure
Non-Homogeneous Poisson Process Models through Test Coverage, Proc. Seventh
International Symposium on Software Reliability Engineering, White Plains, 1996,
pp. 299 - 307

[3] Jelinski, Z.; Moranda, P.: Software Reliability Research, in: Freiberger, W. (ed.):
Statistical Computer Performance Evaluation, New York, 1972, pp. 465 - 484

[4] Ohba, M.: Software reliability analysis models, IBM Journal of Research and Devel-
opment 28 (1984), pp. 428 - 443

[5] Piwowarski, P.; Ohba, M.; Caruso, J.: Coverage Measurement Experience During
Function Test, Proc. Fifteenth International IEEE Conference on Software Engineer-
ing (ICSE), 1993, pp. 287 - 301

[6] Rivers, A. T.: Modeling Software Reliability During Non-Operational Testing, Ph.D.
thesis, North Carolina State University, 1998

[7] Rivers, A. T.; Vouk, M. A.: Resource-Constrained Non-Operational Testing of Soft-
ware, Proc. Ninth International Symposium on Software Reliability Engineering,
Paderborn, 1998, pp. 154 - 163

[8] Yamada, S.; Ohtera, H.; Narihisa, H.: Software Reliability Growth Models with
Testing-Effort, IEEE Trans. Reliability 35 (1986), pp. 19 - 23

19

