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summary

Information-theoretic approaches still play a minor role in financial market anal-
ysis. Nonetheless, there have been two very similar approaches evolving during
the last years, one in so-called econophysics and the other in econometrics. Both
generalize the notion of GARCH processes in an information-theoretic sense and
are able to capture skewness and kurtosis better than traditional models. In this
article we present both approaches in a more general framework and compare
their performance in some illustrative data sets.
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1 Introduction

Though information-theoretic approaches still play only a minor role in financial market
analysis, there have been two recent approaches developing independently one in econo-
physics and the other in econometrics. Both approaches generalize the notion of either
ARCH or GARCH models.
The econometric models for financial markets analysis have been introduced by Rockinger/
Jondeau (2002) and been extended and generalized in Bera/Park (2009) and Fischer/Herrmann
(2008). These approaches model variance’s motion in time, like traditional GARCH models,
but include knowlegde of higher moments, such as skewness and kurtosis, in order to capture
known stylized facts.
The models in econophysics have been developed mainly in Queirós/Tsallis (2005), Borland
(2005) and Queirós (2007). The econophysics approaches model only variance, but derive
corresponding maximum entropy distributions by maximizing Tsallis q-entropy

HT =
∫
D(X)

1− f(X)q

q − 1
dx,

where X is some random variable, D(X) its support and f(x) its density function, instead of
the Shannon or Boltzmann-Gibbs entropy for given constraints. The resulting distribution



given only variance constraints is called q-Gaussian and its functional form is equivalent to
a generalized Student-t distribution. A deviation of the value found for q from 1, the case
when the normal distribution would be recovered, is called non-extensitivity.
Both approaches have been succesfully applied to financial market data as both generaliza-
tions allow to capture kurtosis in given variance models. Following Kesavan/Kapur (1989)
we give a more general framework for information theoretic models for time-varying mo-
ments and derive GARCH models as well as the above mentioned non-extensive approaches
as special cases. We extend the existing models and in an application to financial market
data we compare these model’s capability to capture financial returns behavior.

2 Models for Time-Varying Moments using the Gener-
alized Principle of Maximum Entropy

In this note we will only consider time-series models that assume the conditional distribution
of some random variable X at time t given the information set available at time t− 1 to be
the distribution maximizing some generalized entropy measure as

H(f) = −
∫
D(X)

φ(f(x))dx,

for some convex function1 φ and for D(X) the random variables support, subject to con-
straints of k + 1 conditional expectation values of suitable functions gi(·) as

E(g0(X)) = E(1) = 1, E (gi(X)|Ft−1) = mi(Ft−1), ∀i = 1, ..., k,

where ai may be some deterministic functions depending only on the information set avail-
able.

The information theoretic interpretation of such models is, that we model only some
expectation values’ motion in time and for all information missing to completely determine
the corresponding density functions, we maximize entropy. In the case of the Shannon
entropy measure such a way of modelling is nothing else but the consequent application of
Jaynes (1957) principle of maximum entropy. Using generalized entropy measures is justified
by Kesavan/Kapur (1989)’s generalized maximum entropy principle.

Following their suggestion, we restrict φ to the set of differentiable convex functions.
A variational approach shows that, under some weak conditions for φ, for the maximum
entropy density (if it exists) holds that,

φ′(f(x)) =
k∑
i=0

λigi(x), (2.1)

1Here we follow the suggestion of Kapur/Kesavan (1989).



where the λi have to be chosen such that the constraints are fullfilled.2 If a solution exists
for f , the λi can be found by numerically minimizing a concave function of some dual prob-
lem. Some generalized entropy measures and corresponding dual problems are given e.g. in
Kapur (1994). Table (1) gives some examples:

Entropy φ(t) Parameters

Burg ln(t) -

Kapur t · ln(t) + 1
c (t+ c)ln(t+ c) c > 0

Shannon t · ln(t) -

Tsallis 1−tq
1−q q > 0, q 6= 1

Table 1: Some generalized entropy measures.

A very efficient numerical algorithm for their implementation is given by Rockinger/Jondeau
(2002) for the Shannon entropy, but can easily be adjusted to other dual problems.

3 GARCH Models as Models for Time-Varying Mo-
ments

Bollerslev (1986)’s original GARCH(p,q) model may be given as

xt|Ft−1 = zt · σt, zt
iid∼ N (0, 1),

σt = α0 +
p∑
i=1

α1,ix
2
t−i +

q∑
i=1

α2,iσ
2
t−i, (3.1)

where xt is the random variable at time t and Ft−1 the information set available in the
period before.

We can present the same model as a model for time-varying moments as defined above,
if we derive the conditional densities of xt given the information available at t − 1, by
maximizing Shannon’s entropy measure

HS(f) =
∫
D(X)

f(x)ln(f(x))dx

subject to the constraints

E(1|Ft−1) = 1, E(X|Ft−1) = µ, E((X−µ)2|Ft−1) = σ2
t = α0 +

p∑
i=1

α1,ix
2
t−i +

q∑
i=1

α2,iσ
2
t−i.

We can derive the Shannon entropy as a generalized measure of entropy, if we set φ(t) =
t · ln(t). Because

φ′(t) =
δ(t · ln(t))

δt
= 1 + ln(t),

2Compare e.g. Kapur(1994).



we derive the funtional form of the conditional distribution using equation (2.1) as

f(x|Ft−1) = exp(−1 + λ0 + λ1x+ λ2x
2),

where the λi are functions of the conditional moment constraints. As we derive λ to meet
the above constraints, this distribution is nothing else but the normal distribution with
mean µ and variance σ2

t , just as in Bollerslev (1986)’s model.
It is a well known fact, that GARCH-models assuming gaussian innovations do not suf-

ficiently describe financial markets data. Apart from a vast literature concerned with that
topic3, this can be seen be looking at the empirical distribution of GARCH-filtered inno-
vations. After estimating α0, α1,1, ..., α1,p, α2,1, ..., α2,q, these can be obtained by rewriting
GARCH-models in the original notation of Bollerslev (1986), as ẑt = xt

σt

If the assumption of gaussian innovations would hold, the empirical distribution of ẑt
should be close to a normal distributions. But having a look at some illustrative data sets4,
we find some evidence, that this assumption does not hold, see figure (1).

Gold DJIA EurUS

Statistic p-Value Statistic p-Value Statistic p-Value

Skewness -0.0309 -0.0503 -0.0404

Kurtosis 3.8532 3.7080 3.8534

Jarque-Bera 49.514 1.771e-11 35.124 3.064e-08 50.514 1.074e-11

χ2 11.382 0.2504 34.602 5.666e-05 16.084 0.0652

Figure 1: GARCH(1,1) innovations’ empirical densities versus normal density (dotted line)
and results for tests on normality.

It is generally assumed that financial market GARCH innovations deviate from the normal
distribution because of skewness and higher kurtosis. Traditional approaches try to overcome
that problem by assuming zt to follow some parametric distribution that is flexible enough

3See e.g. Hansen (1994) for an overview.
4See section (6.2) for a more detailed description of the data sets.



to model skewness and kurtosis, such as e.g. the SGT2, EGB2 or the family of stable
distributions.56

This note, of course, is devoted to information theoretic approaches that directly model
such features by, e.g. including measures of skewness and kurtosis in the entropy maximiza-
tion task or, as the non-extensive approaches do, by choosing suitable entropy measures to
allow for higher kurtosis.

4 Higher Informative Moments

To the best of our knowlegde, the first approach of including knowledge of higher moments
in an information theoretic framework was given by Rockinger/Jondeau (2002). In their
approach the use third and fourth power moments to measure skewness and kurtosis and
use Shannon’s entropy as information measure. But as Fischer/Herrmann (2008) point out,
these measures do not allow the derivation of proper maximum Shannon entropy densities
for kurtosis values higher than implied by the lower moments. In order to overcome that
problem, one has to use measures that are defined as expectation values of functions that
grow slower in x than x2.7 Suggestions for such measures as mi = E(gi(X)|Ft−1) can be
found in Bera/Park (2009) and Fischer/Herrmann (2008), as e.g.

m3 m4

E
(
tan−1(X)

)
E
(
tan−1(X)2

)
E
(

X
1+X2

)
E
(
log(1 +X2)

)
Table 2: Some suggestions for measures of asymmetry m3 and measures of kurtosis m4 as
proposed in recent literature.

where m3 denotes measures of asymmetry and m4 denotes measures of kurtosis.
Following Fischer/Herrmann (2008) and Bera/Park (2009), we can extend Bollerslev

GARCH model as model for time-varying moments, assuming for the conditional distribtions
of Xt given the information set available at t− 1 the distribution maximizing the Shannon
entropy subject to

E (X|Ft−1) = µ, E
(
(X − µ)2|Ft−1

)
= σt,

E

(
g3

(
X − µ
σt

)
|Ft−1

)
= m3, E

(
g4

(
X − µ
σt

)
|Ft−1

)
= m4,

where we let σt vary over time as in the original GARCH model, see equation (3.1), while
we assume all other moment functions to be constant over time.8

5Compare e.g. Theodossiou (1998), MacDonald (1991) and Rachev/Mittnik (2000).
6Some of the generalized parametric approaches may also find some representation in the above framework

- but because of the vast supply of such suggestions, we will restrict this note to the most basic case.
7Compare Fischer/Herrmann (2008).
8Nonetheless there is of course weak evidence of time-variability of higher moments, compare Fis-

cher/Herrmann(2008) or e.g. Dubauskas/Teresiene(2005).



5 Non-Extensive Approaches

Information theoretic models in econophysics have been developed mainly in Queirós/Tsallis
(2005), Borland (2005) and Queirós (2007). Their approaches generalize GARCH models
in the above discussed form by assuming the conditional density functions to maximize the
generalized entropy measure suggested by Tsallis (1988)9

HT =
∫
D(X)

1− f(X)q

q − 1
dx, , s.t. E (X|Ft−1) = µ, E

(
(X − µ)2|Ft−1

)
= σt, (5.1)

with different suggestions for σt’s motion in time.
Contrary to the econometric approaches these models capture kurtosis not as information

explicitly included, but by flexibly varying q. As the resulting conditional distributions of
these models are

fME,T =

(
q − 1
q

k∑
i=0

λigi(x)

) 1
q−1

=
(
q − 1
q

(
λ0 + λ1x+ λ2(x− µ)2

)) 1
q−1

,

they can be interpreted as some generalized t-distribution, where q is a parameter that
drives the degrees of freedom, ν. For fixed mean and variance a finite ν corresponds to a
distribution with higher kurtosis than the normal distribution. Because distributions with a
value for q different than 1 are called non-extensive10, we refer to these approaches as non-
extensive approaches. As the degree of this non-extensitivity increases with the kurtosis
implied, these models capture kurtosis by their non-extensitivity.

6 Application to Financial Market Data

We compare three models, equivalent in their flexibility, by applying them to three time
series typical for financial market data from three different markets. We will compare these
models by likelihood and likelihood based goodness-of-fit measures, by the distance of their
empirical innovations’ distribution to the theoretical model and by their capability to explain
their empirical quantiles in the tails.

6.1 Models

For the class of the econometric models (ECO) we follow a suggestion by Bera/Park (2009)
and maximize the Shannon entropy subject to

E (X|Ft−1) = µ, E
(
(X − µ)2|Ft−1

)
= σt, (6.1)

9Tsallis suggestion is also known as the entropy of Havrda/Charvat.
10Compare e.g. Tsallis (1988).



and include knowledge of higher moments using

E

(
tan−1

(
X − µ
σt

)
|Ft−1

)
= m3, E

(
ln

(
1 +

(
X − µ
σt

)2
)
|Ft−1

)
= m4, (6.2)

as in some previous study models using these moments performed best.
For the class of non-extensive models (NEX) we maximize the Tsallis entropy given

in equation (5.1) subject to equation (6.1) and, contrary to the proposal in econophysicy,
additionally introduce the skewness moment of equation (6.2). The later is included to make
sure, that the non-extensive models exhibit the same flexibility as the econometric models
in terms of skewness.

In order to show the flexibility of the proposed generalized framework, we suggest a third
model (KAP), where we maximize the entropy measure suggested by Kapur (1994), subject
to equation (6.1) and the skewness moment of equation (6.2), where the flexibility in terms
of kurtosis shall be introduced by flexibly varying c.

For all models we assume the time-model for variance as in a traditional GARCH(1,1)11

as
σt = α0 + α1x

2
t−i + α2σ

2
t−i

and assume all higher moments or parameters to be constant over time.

6.2 Data

In order to sample different kinds of financial market indices, we chose the daily returns
between January 1st 2003 and March 20th 2009 for the gold price, the Dow Jones Indus-
trial Average, both from yahoo.finance.com, and for the euro-US-dollar exchange rate from
www.ecb.int.

Some descriptive statistics for the data are given in table (3):12

Gold DJIA EurUS

Mean -1.363e-03 2.316e-05 -1.657e-04

Stan.Dev. 3.479e-02 1.286e-02 6.499e-03

m̂3 -1.596e-01 -5.802e-02 7.545e-02

m̂4 6.961 14.301 7.254

Observations 1606 1603 1632

Table 3: Some descriptive statistics for the illustrative data sets.

11As there is empirical evidence that p = 1 and q = 1 sufficiently describe financial returns behavior,
compare e.g. Bera/Higgins (1993).

12m3 (m4) denotes the third (fourth) standardized power moment.



6.3 Empirical Results

We use numerical optimization routines to implement a maximum likelihood estimation of
the model parameters. Estimates, log-likelihood and standard errors (in brackets) are given
in figure (2):

Gold Price

α̂0 α̂1 α̂2 β̂0 γ̂0 LogL

GARCH 7.2937e-06 0.04064 0.95317 - - 3268.252
(3.5009e-06) (0.00753) (0.00852)

ECO 7.6282e-06 0.04101 0.95246 0.00409 0.50789 3283.845
(4.1548e-06) (0.00874) (0.00991) (0.00393) (0.00534)

NEX 7.028e-06 0.03936 0.95468 0.00537 0.80672 3284.064
(3.9615e-06) (0.00824) (0.00922) (0.00385) (0.03794)

KAP 7.6789e-06 0.04158 0.95197 0.0052 3.88308 3283.851
(4.1579e-06) (0.00886) (0.01) (0.00375) (1.01096)

Dow Jones Industrial Average

α̂0 α̂1 α̂2 β̂0 γ̂0 LogL

GARCH 7.0443e-07 0.07095 0.92296 - - 5241.281
(2.7215e-07) (0.01010) (0.01025)

ECO 7.0784e-07 0.07065 0.92299 -0.00004 0.50851 5255.646
(3.1362e-07) (0.01147) (0.01158) (0.00399) (0.00531)

NEX 7.3838e-07 0.07024 0.92337 -0.00114 0.81873 5252.580
(3.1597e-07) (0.01143) (0.01149) (0.00393) (0.04088)

KAP 7.3096e-07 0.07018 0.92328 -0.00284 4.0709 5255.698
(3.1737e-07) (0.01148) (0.01163) (0.00384) (1.08256)

Euro-USD Exchange Rate

α̂0 α̂1 α̂2 β̂0 γ̂0 LogL

GARCH 1.1797e-07 0.03380 0.96342 - - 6062.748
(7.5857e-08) (0.00584) ( 0.00592)

ECO 1.4706e-07 0.03371 0.96254 -0.00144 0.50931 6076.519
(9.2357e-08) (0.00675) (0.00702) (0.00386) (0.00524)

NEX 1.6122e-07 0.03127 0.96441 -0.00272 0.81997 6076.861
(9.0189e-08) (0.00638) (0.00674) (0.00379) (0.03741)

KAP 1.4455e-07 0.03434 0.96211 -0.00236 3.63563 6075.98
(9.2727e-08) (0.00682) (0.00706) (0.00369) (0.99112)

Figure 2: Empirical results for our models for some illustrative data sets.

We find for all models similar estimates for variance motion in time as well as similar
values for skewness. The kurtosis parameters differ of course, as all models have their own
way to capture kurtosis. For all models and all data sets we find significant non-normal
kurtosis.13

13The value for m4 (as used in the ”ECO” model) implied by the normal distribution is about 0.53345.



Figure (3) gives an overview over the model’s fit, where LogL denotes log-likelihood,
AIC the Akaike information criterion, BIC the Bayesian information criterion, KS the
Kolgomorov-Smirnov distance and χ2 the χ2-test statistic with 10 classes.

Gold Price

LogL AIC BIC KS χ2

GARCH 3268.252 -6530.503 -6514.359 1.3004 19.560

ECO 3283.845 -6557.690 -6530.782 0.5238 4.666

NEX 3284.064 -6558.129 -6531.221 0.5626 4.396

KAP 3283.851 -6557.703 -6530.795 0.4707 4.037
Dow Jones Industrial Average

LogL AIC BIC KS χ2

GARCH 5241.281 -10476.56 -10460.42 2.0280 42.770

ECO 5255.646 -10501.29 -10474.39 1.6563 23.776

NEX 5252.58 -10495.16 -10468.26 1.7200 29.956

KAP 5255.698 -10501.40 -10474.50 1.4537 21.874
Euro-USD Exchange Rate

LogL AIC BIC KS χ2

GARCH 6062.748 -12119.50 -12103.30 1.2970 21.442

ECO 6076.47 -12142.94 -12116.05 0.6817 5.747

NEX 6076.811 -12143.62 -12116.73 0.7017 9.754

KAP 6075.93 -12141.86 -12114.97 0.6125 5.217

Figure 3: Some goodness-of-fit measures for the applied models.

All generalizations of the GARCH model behave well - except for the Dow Jones In-
dustrial Average, where for the χ2-test would reject all suggested models. In the sense of
likelihood-based measures we can not derive a uniformly ”best” model. The Kapur model
outperforms all other models if we use only KS and χ2 as criteria.

We conclude that the inclusion of knowledge of higher moments such as skewness and
kurtosis significantly improves our model - not only in the sense of likelihood, but also in
likelihood based measure that penalize additional parameters as AIC or BIC and also in the
sense of distance-based measures of fit, such as χ2 or KS.

Comparing the generalized models with each other, we find very similar results. This is
of course due to the fact, that all models basically rely on the same additional information
and only differ in the way of measuring this information.



7 Summary

The information-theoretic approaches to time series models considered in econometrics and
econophysics may both be interpreted as special cases of models for time-varying moments
using the generalized maximum entropy principle. Using this interpretation we derive a
third model. Using three illustrative data sets typical for financial markets, we show that
all suggested models from this class exhibit similar flexibility in capturing financial returns
behavior.
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