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Abstract

We analyze a market game where firms choose capacities under uncertainty about

future market conditions and make output choices after uncertainty has unraveled.

We show existence and uniqueness of equilibrium under imperfect competition and

establish that capacity choices by strategic firms are generally too low from a welfare

point of view. We also demonstrate that strategic firms choose even lower capacities if

they anticipate competitive spot market pricing (e.g. due to regulatory intervention).

We finally illustrate how the model can be used to assess the impact of electricity

market liberalization on total capacity and welfare by fitting it to the data of the

German electricity market.
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1 Introduction

In this article we investigate the nature of equilibrium outcomes in oligopolistic mar-

kets where firms make capacity choices under uncertainty about future market conditions

(and/or anticipating fluctuating demand) and decide on output after the state of nature

has unraveled. The fact that in many industries where non storable goods are produced,

capacity is a long run decision, whereas production may be adjusted short–run is a natural

motivation for our approach. Consider, for example, the electricity sector or the High Tech

industry, where production has to take place just in time, but capacities have to be installed

well in advance. In those markets firms usually face considerable demand and cost uncer-

tainty when choosing their capacities. This may be due to uncertainty about the economic

trend, about the success of a new product, about future weather conditions, or fuel prices,

to give just a few examples. In electricity markets it is moreover well known that demand

fluctuates systematically over each day, month, or year. Firms naturally anticipate those

patterns when they make their investment decisions.

For a competitive industry investment incentives prior to spot market competition have

been analyzed by the peak load pricing literature (see e.g. Crew and Kleindorfer (1986)

for an overview).1 It is shown that under perfect competition spot prices and quantities

are determined by the intersection of (short run) marginal cost and demand, and that

investment incentives are such that the social optimum is attained. It is important to

note that in this ”competitive benchmark” spot market prices may rise considerably above

marginal cost of the last unit produced in case the capacity bound is reached. The reason

is that the marginal cost curve is vertical at the capacity bound, and therefore prices are

driven by the demand side in case the capacity constraint is binding.

Little is known, however, about the investment incentives of strategic firms under un-

certain or fluctuating demand. Gabszewicz and Poddar (1997) were the first to analyze

capacity choice by strategic firms prior to Cournot competition. They demonstrate in a

linear duopoly model existence of a symmetric equilibrium. Reynolds and Wilson (2000)

show that a two stage game where firms first invest under demand uncertainty and then

engage in Bertrand competition after uncertainty unraveled has no symmetric pure strat-

egy equilibrium.2 Fabra and de Frutos (2006) take up on this and characterize asymmetric

1There is also an extensive literature that analyzes the impact of demand uncertainty on expected profits
for monopolistic and competitive industries. See, for example, Oi (1961), Samdmo (1971), Leland (1972),
or Dréze and Gabszewicz (1967).

2Kreps and Scheinkman (1983) and Osborne and Pitchik (1986) have shown that for certain demand
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equilibria of this game. Garcia and Stacchetti (2007) analyze Markovian equilibria of a

strategic dynamic model with random demand growth and find that firms have incentives

to hold low reserve margins in order to extract higher rents.

In our paper we take up on the analysis of capacity choices under uncertainty prior

to Cournot competition. This framework allows to answer the question: How does mar-

ket power in the short run (at the production stage) affect investment incentives in the

long run? This question obviously cannot be answered in a model where firms engage in

Bertrand competition at stage two, since in that model unconstrained firms do not exercise

market power. We believe that such a model would not describe the markets we are in-

terested in.3 Our analysis provides existence and uniqueness results in a general oligopoly

model with endogenous investment that allows for either cost or demand uncertainty. This

allows to answer some of the key questions concerning the investment incentives of strategic

firms: First, we show that total capacity installed by strategic firms is too low both, locally

(that is, given that firms behave strategically at the production stage) as well as globally

(as compared to the first best competitive benchmark as analyzed by the peak load pricing

literature). Obviously, strategic withholding is practiced not only at the production stage

but also at the investment stage. Second, we analyze investment incentives in case strategic

firms anticipate a competitive spot market outcome (for example since they expect regula-

tory intervention at the spot market). We show that in this case investment is lower than

in the case where firms anticipate the Cournot outcome at stage two. Furthermore, unique-

ness of equilibrium cannot be established. The result demonstrates that intervention only

at the spot market may have undesirable effects if investment is endogenous. The welfare

effect of spot market regulation is ambiguous in our model with endogenous capacity choice

and may go in either direction.

We finally demonstrate how our theoretical insights can be used to assess long run

effects of electricity market liberalization on capacity levels and to quantify the capacity and

welfare effects of several recent policy proposals. We conduct our empirical analysis based

on data of the German electricity market. We use estimates of short run demand elasticity,

as well as data on variable production cost and investment cost in order to compute total

the Cournot outcome obtains if firms choose capacities prior to price competition.
3Having in mind applications like electricity markets, one could also opt for auctions or supply function

competition to model competition in the short run. However, those models typically have multiple equilibria
which limits the tractability of a model with endogenous investment decisions. Moreover, the Cournot
outcome seems to be a good approximation of coalition–proof supply function equilibria, as Delgado and
Moreno (2004) show.
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capacity predicted by our model for the scenarios we analyze, for different degrees of market

concentration. Comparison with currently installed capacity yields that actual capacity is

rather close to the First Best level. This is presumably due to the regulatory regime in the

pre–liberalization period which imposed too high investment incentives. In accordance with

this observation we find that observed prices during the hours where capacity is binding

(approximately 12 % of the year) are rather close to the first best level. Our theoretical

model, however, implies that those prices are not sufficient to sustain the actual capacity

level if investment is chosen strategically. In the long run, we detect a high potential

for the exercise of market power through capacity withholding, which would significantly

raise average prices well above the current level. We finally quantify the welfare effect

of tight market monitoring at the production stage, and its direction. It turns out to

be negative in concentrated industries, while it is slightly positive for more competitive

markets.4 Our empirical study demonstrates that our model adds important aspects to the

ongoing debate on market power in electricity markets, which often ignores the possibility

of strategic investment and focuses solely at assessment of the short run behavior of firms.5

Our paper is organized as follows: In section 2 we state the model. Section 3 contains the

theoretical analysis and results. We consider strategic investment in section 3.1 and welfare

optimal investment in section 3.2. In section 3.3 we provide a comparison of investment

levels in the scenarios we consider and explore in more detail under what conditions the

presence of uncertainty crucially affects the conclusions. Section 4 contains the empirical

analysis, where we also discuss the welfare implications of spot market regulation. Section

5 concludes.

2 The Model

We analyze a two stage market game where firms have to choose capacities under demand

and cost uncertainty, and make output choices after market conditions unraveled. We

denote by q = (q1, . . . , qn) the vector of outputs of the n firms, and by Q =
∑n

i=1 qi total

quantity produced in the market.

Inverse Demand is given by the function P (Q, θ), which depends on Q ∈ R+, and the

random variable θ ∈ R which represents uncertainty. Moreover, all firms face the same

4This is also confirmed by a simplified theoretical analysis with linear demand and uniform distribution
of uncertainty.

5See, e.g. Schwarz and Lang (2006) for Germany, Joskow and Kahn (2002) for California, or Wolfram
(1999) for the United Kingdom.
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cost function for each θ ∈ R, which we denote by C(qi, θ). The random variable θ ∈ R is

distributed according to a distribution F (θ) with bounded support.6

We introduce the parameter z ≤ 0 as a lower bound on market prices in order to

take into account nonnegativity of prices (z = 0) or disposal cost (z < 0). We denote

the quantity where this lower bound is met by Q(θ).7 The following two assumptions on

demand and cost for each realization of uncertainty θ ∈ R have to be satisfied only for

quantities 0 ≤ qi ≤ Q < Q(θ).

Assumption 1 (Assumptions at each θ) (i) Inverse demand P (Q, θ) is twice con-

tinuously differentiable8 in Q with Pq(Q, θ) < 0 and Pq(Q, θ) + Pqq(Q, θ)qi < 0.

(ii) C(qi, θ) is twice continuously differentiable in qi with Cq(qi, θ) ≥ 0 and Cqq(qi, θ) ≥ 0.

Assumption 2 (Monotonicity Assumptions regarding θ) (i) P (Q, θ) and

C(qi, θ) are differentiable in θ, and it holds that Pθ(Q, θ)− Cqθ(qi, θ) > 0.9

(ii) P (Q, θ)qi−C(qi, θ) is (differentiable) strict supermodular in qi and θ, i. e. Pθ(Q, θ)−
Cqθ(qi) + Pqθ(Q, θ)qi > 0.

The situation we want to analyze is captured by the following two stage game. At

stage one firms simultaneously build up capacities x = (x1, . . . , xn). Capacity choices are

observed by all firms. Cost of investment K(xi) is the same for all firms and satisfies

6While F has bounded support, it will be convenient to assume that P (Q, θ) is defined for all θ ∈ R and
Q ∈ R+.

7In case the lower bound is not binding we can set Q(θ) = ∞. In order to ensure a bounded solution
we then have to assume limQ→∞ P (Q, θ) < Cq(0, θ) for each θ ∈ (−∞,∞].

8Throughout the paper we denote the derivative of a function g(x, y) with respect to the argument x,
by gx(x, y), the second derivative with respect to that argument by gxx(x, y), and the cross derivative by
gxy(x, y).

9Notice that demand and cost uncertainty in principle can be driven by separate random events. Then
the parameter θ denotes then all joint realizations of those events, which have to satisfy assumption 2.
This requirement imposes some further restrictions on the model if cost and demand uncertainty should
be considered simultaneously. Consider, for example, a model with linear demand P (Q, β) = β − bQ and
fluctuating but constant marginal cost c(γ). For ease of exposition let both, β and γ follow a discrete
distribution. Now sort all joint realizations (β, γ) such that β−c(γ) is increasing and index each realization
by θ. Observe that the resulting system satisfies assumption 2 (i) and 2 (ii). Thus, the model can deal
simultaneously with cost and demand uncertainty in the case of linear demand, which we exploit in the
empirical part of the paper. In case of non–linear demand it is more plausible to think about demand and
cost uncertainty separately.
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Assumption 3 (Investment Cost) Investment cost K(xi) is twice continuously differ-

entiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

At stage two, facing the capacity constraints inherited from stage one, firms simultane-

ously choose outputs at the spot market. Since demand uncertainty unravels prior to the

output decision, produced quantities depend on the realized demand scenario. We denote

individual quantities produced in demand scenario θ by q(θ) = (q1(θ), . . . , qn(θ)), and the

aggregate quantity by Q(θ) =
∑n

i=1 qi(θ).

Finally, we state firm i’s stage one expected profit from operating if capacities are given

by x and firms plan to choose feasible10 production schedules q(θ) for all θ ∈ [−∞,∞].

πi (x, q) =

∫ ∞
−∞

[P (Q (θ) , θ) qi (θ)− C (qi (θ) , θ)] dF (θ)−K (xi) . (1)

Throughout the paper we consider only cases where investment is gainful, i.e. K(0) <

Eθ[P (0, θ)−C(0, θ)]. Note that if the condition does not hold, no firm invests in capacity.

3 Results

In this section we analyze the two stage market game where at stage one firms simulta-

neously invest in capacity under uncertainty about future market conditions and at stage

two, when uncertainty has unraveled, decide on production. In order to be able to assess

the impact of market power and of regulatory interventions on investment incentives and

production, we analyze four different scenarios.

In section 3.1 we consider the case that strategic firms choose profit maximizing in-

vestment levels. In this context we consider both, the case of Cournot competition at the

spot market as well as the case of competitive pricing (which may be a result of regulatory

intervention). We are aware that the latter scenario requires a lot of information on the

part of the social planer. Although stylized, however, it allows detailed insights in what

happens to investment incentives should the regulator suceed in implementing competitive

prices at the spot market.

In section 3.2 we assume that socially optimal investment levels are chosen at stage

one (e.g. enforced by a social planer) and again consider Cournot competition as well as

the case of competitive pricing at the spot market. The latter scenario coincides with the

competitive benchmark that has been analyzed by the peak load pricing literature. Table

2 relates the four scenarios we consider.
10That is, 0 ≤ qi(θ) ≤ xi for all θ ∈ [−∞,∞], i = 1, . . . , n.
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Objective at the Production Stage

Profit Welfare

(strategic firms)

Objective Profit Cournot Marginal Cost Pricing

at the (str. firms) (total investment XC) (total investment XMC)

Investment Welfare Second Best First Best

Stage (total investment XSB) (total investment XFB)

Table 1: The four scenarios analyzed.

3.1 Strategic Investment

First consider the market game where firms strategically choose capacities at stage one as

to maximize profits. Our first theorem shows that the two stage market game where firms

engage in Cournot competition (C) at stage two has a unique and symmetric equilibrium.

If, however, a social planer intervenes at the production stage (implementing marginal cost

(MC) pricing whenever firms are unconstrained), uniqueness can no longer be established

and also existence cannot be guaranteed for general production costs.

Theorem 1 (Strategic Capacity Choice) Suppose strategic firms choose their ca-

pacities at stage one.

(C) If firms engage in Cournot competition at the second stage, the game has a unique

equilibrium which is symmetric.

(MC) Suppose that firms anticipate marginal cost pricing at stage two, and that Cq(q, θ) is

constant in q. Then, there exists at least one symmetric equilibrium, but there may

be more than one. No asymmetric equilibria exist.

Total equilibrium investment in scenario S ∈ {C,MC}, XS, solves∫ ∞
θ̃S(XS)

[
P
(
XS, θ

)
+ Pq

(
XS, θ

) XS

n
− Cq

(
XS

n
, θ

)]
dF (θ) = Kx

(
XS

n

)
,

where θ̃S
(
XS
)

is the demand scenario from which on firms are capacity constrained at stage

two.11

11I.e. θC is implicitly defined by P (XC , θ̃C)+Pq(XC , θ̃C)X
C

n = Cq(X
C

n , θ̃C) and θMC is implicitly defined
by P (XMC , θ̃MC) = Cq(X

MC

n , θ̃MC), respectively.
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Proof See appendix B �

Let us emphasize some important aspects of our results. First, we could show that under

standard regularity assumptions the Cournot market game (i.e. the game where firms act

strategically at both stages) has a unique equilibrium. Second, we find that (symmetric)

equilibrium investment can be characterized by a rather intuitive condition. The condition

simply says that expected marginal profit generated by an additional unit of capacity at

the second stage must equal marginal cost of investment. When calculating the marginal

profit generated by an additional unit of capacity, however, one has to take into account

that additional capacity affects a firm’s profit only in those states of nature where capacity

is binding. Thus, expectation must only be taken with respect to those scenarios in which

the firms are capacity constrained, i. e. over the interval [θ̃
(
XS
)
,∞], and not over the

whole domain of θ.

Note that the critical demand scenario θ̃ (from which on firms are capacity constrained)

depends on the market game at stage two. If firms strategically withhold production at the

spot market (as under Cournot competition) the critical demand scenario is higher than

in the case where they are forced to the competitive production schedule. Observe that

actually the market game at stage two enters into the first order condition solely through

the critical demand realization.

If firms anticipate that at stage two the welfare optimum given their capacity choices

is implemented, existence and uniqueness of a symmetric equilibrium cannot be shown

in the general case (part (MC) of the theorem). Only for constant marginal production

cost we obtain existence (but not uniqueness).12 An immediate insight of this result is

that intervention at stage two may lead to high strategic uncertainty for the firms. Later

in section 3.3 we will show that intervention at stage two moreover decreases investment

incentives.

3.2 Optimal Investment

In order to assess the impact of market power at stage one on investment incentives, we now

characterize welfare optimal capacity levels. Again, we consider both, the case of Cournot

12The basic problem is that in neither case the stage one profit is quasiconcave, which makes stan-
dard analysis impossible. In the case of linear marginal cost, however, we can exploit recent insights on
oligopolistic competition that makes use of lattice theory (Amir (1996) and Amir and Lambson (2000)).
In the general case (i. e. strictly convex production cost), however, the game cannot be reformulated as a
supermodular game and thus, even more sophisticated techniques do not help.
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competition at stage two (Second Best solution — SB), as well as the case of welfare optimal

production (First Best solution — FB).

Theorem 2 (Welfare Maximization at Stage One) Suppose capacities are chosen

at stage one as to maximize social welfare.

(SB) If firms engage in Cournot competition at the second stage, welfare maximizing ca-

pacities are unique and symmetric.

(FB) If either production or investment costs are strictly convex, the First Best solution

(that maximizes total welfare) is unique and symmetric.

Socially optimal investment in scenario W ∈ {SB, FB}, XW , solves∫ ∞
θ̃W (XW )

[
P
(
XW , θ

)
− Cq

(
1

n
XW , θ

)]
dF (θ) = Kx

(
1

n
XW

)
, (2)

where θ̃W
(
xW
)

is the demand scenario from which on firms are capacity constrained at

stage two.13

Proof See appendix C �

Note that also the characterization of welfare optimal investment levels is rather intu-

itive. The condition implies that in the welfare optimum capacity should be chosen such

that expected marginal social welfare generated by an additional unit of capacity [LHS of

(2)] should equal marginal cost of investment [RHS of (2)]. Again it is important to notice

that expectation is only taken over those scenarios where the firms are actually constrained

given the scheduled stage two–production, that is, over the interval [θ̃S(XS),∞]. Note that

for a given investment, firms are constrained earlier if socially optimal production is im-

plemented at stage two since under Cournot competition they withhold quantity in order

to affect prices. Consequently, additional capacity is used more often (or, with a higher

probability) and thus, contributes more to expected marginal welfare if the spot market

behavior is more competitive. This implies that the First Best capacity level should be

higher than the Second Best. We show this formally in section 3.3.

We finally point out that if firms do not act strategically, investment and production

levels coincide with the first best (socially optimal) solution, again given the number of

firms:

13I.e. θSB is implicitly defined by P (XSB , θ̃SB) +Pq(XSB , θ̃SB)X
SB

n = Cq(X
SB

n , θ̃SB) and θFB is implic-
itly defined by P (XFB , θ̃FB) = Cq(X

FB

n , θ̃FB), respectively.
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Remark 1 (Non-Strategic Firms) For each number of firms, n, if firms do not behave

strategically (i. e. they act as price takers at stage two and ignore their impact on total

capacity at stage one), firms invest and produce optimally from a social welfare point of

view.

3.3 Comparison of Investment Levels

In this section we compare equilibrium investments in the scenarios we analyzed in the

previous two sections and discuss the impact of uncertainty on the ranking we find.

Theorem 3 (i) For any finite number of firms, n, it holds that

– Strategic firms invest less if they anticipate a more competitive result at the spot

market, i. e. XC
n ≥ XMC

n .

– Strategic firms invest too little from a social welfare point of view, i. e. XSB
n >

XC
n .

– The first best solution yields the highest investment among all scenarios.

Summarizing, it holds that XFB
n ≥ XSB

n > XC
n ≥ XMC

n .

(ii) As the number of firms approaches infinity, investment levels in all scenarios coincide,

i. e. XFB
∞ = XSB

∞ = XC
∞ = XMC

∞ .

Proof See appendix D �

Let us briefly provide some intuition for our result, using some characteristics of the

first order conditions as stated in theorems 1 and 2. Let us first draw the reader’s attention

to the particular structure of the first order conditions in theorems 1 and 2. They all

equalize expected marginal profit or welfare [LHS] with marginal cost of capacity [RHS].

Note that, at the LHS, the stage one–objective (either profit or welfare) is reflected only in

the integrand. That is, we integrate over marginal profit in cases where the firms maximize

profits at stage one (C and MC) and over marginal welfare in cases where welfare is the

stage one-objective (FB and SB). The stage two–objective enters exclusively into the lower

limit of integration, which is the demand scenario from which on firms are constrained given

the capacities chosen at stage one.

Now consider the optimal capacity choice of strategic firms. If the firms anticipate

Cournot competition at stage two, marginal profit generated by additional capacity is

positive in each scenario where the firm is constrained. If firms expect competitive behavior

10



at the spot market, however, this is not the case. A firm might be forced to use additional

capacity although the marginal profit from using it may be negative.14 Consequently,

additional capacity is less valuable to the firms in the latter case and investments are lower.

Comparison of the first order conditions in cases C (theorem 1) and SB (theorem 2)

reveals why strategic firms always invest too little. Note that for any fixed capacity level,

additional capacity is more valuable in case SB than in case C, since expected marginal

welfare is always higher than expected marginal profit.15 Consequently, from a social welfare

perspective, strategic investments are too low.

Also the comparison of the First Best and the Second Best case is intuitive. As already

mentioned, firms are constrained earlier the more competitive the spot market behavior is.

Thus, in the First Best case, for any initial capacity level additional capacity is used more

often and therefore generates a higher increase in social welfare.

Finally we derive exact conditions under which the weak inequalities from theorem 3 are

strict, and hold with equality, respectively. They hold with equality whenever already the

capacity choice determines production in any demand scenario θ where f(θ) > 0, that is, if

firms are always constrained at the production stage. Our theorem illustrates under what

conditions on the nature of uncertainty the regime at stage two matters for the capacity

choice (and when it is irrelevant).

Theorem 4 (Degenerate Cases) Denote by θ (θ) the lowest (highest) demand scenario

where f(θ) > 0 and suppose that f(θ) > 0 for all θ ∈ [θ, θ]. Denote by QC(θ) the aggregate

Cournot quantity in scenario θ in the absence of capacity constraints. It holds that16

(i) XC ≤ QC(θ) ⇔ XC = XMC,

(ii) XFB ≤ QC(θ) ⇔ XFB = XSB.

Proof See appendix E �

The following table visualizes the result of theorem 4.

If condition (i) of theorem 4 holds, in the Cournot market game (see theorem 1) firms

want to be constrained at the production stage in any state of nature θ ∈ [θ, θ]. Since the

incentive to be constrained is higher in case of optimal regulation at stage two, the solutions

14This is the case in all demand scenarios in [θ̃MC , θ̃C ].
15Formally, at a fixed capacity level, the critical value θ̃ is the same in both cases, but the integrand is

pointwisely bigger in case SB than in case C.
16The assumption f(θ) > 0 is only needed for the ”⇐”-direction. ”⇒” always holds.
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Genuine Uncertainty Degenerate Cases

QC(θ) < XC XC ≤ QC(θ) < XFB XFB ≤ QC(θ)

XMC < XC XMC = XC

XSB < XFB XSB = XFB

Table 2: Degenerate Cases and Equivalence of Scenarios.

of C and MC collapse in this case. Moreover, comparison with a result by Reynolds and

Wilson (2000) shows that under condition (i) also a game where firms invest prior to

Bertrand competition at stage two yields the same capacity as C and MC.17 Obviously,

condition (i) describes a degenerate environment where uncertainty does not matter much.

Under genuine uncertainty, where firms are unconstrained in at least some states of nature,

our analysis demonstrates that in fact market organization at stage two matters a lot.18

If condition (ii) holds, at the welfare maximizing (First Best) capacity level even strategic

firms are constrained in any demand scenario θ ∈ [θ, θ] at stage two. Notice that condition

(ii) is stronger than condition (i) [since XFB > XC , as we have shown in theorem 3].

Consequently, (ii) can only hold in a degenerate environment where uncertainty is not an

important issue.

The reason why the level of uncertainty is not the only decisive factor for a equivalence

of XFB and XSB can best be illustrated in case of certain demand. At the production stage,

strategic firms play either their Cournot quantity given marginal production cost, or their

capacity, whichever is lower. This implies that even under certainty the First Best and the

Second Best outcome coincide only in those cases where the First Best capacity level is below

the Cournot quantities at stage two. Thus, condition (ii) requires that marginal capacity

cost is sufficiently high compared to marginal production cost and that uncertainty does

not matter much. As we have shown in our analysis, however, under genuine uncertainty

17Reynolds and Wilson show that under condition (i) capacity choice prior to Bertrand competition
yields the same outcome as capacity choice in a game where firms cannot adjust their production after
uncertainty unraveled. It is easy to show that under condition (i) the latter game yields the same outcome
as our Cournot market game (which clearly is not the case if condition (i) does not hold).

18For the Bertrand market game Reynolds and Wilson (2000) show that under genuine uncertainty
equilibria with equal capacities of the firms do not exist.
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the First Best solution always implies higher investment than the second best solution,

independent of marginal capacity and production cost.

Whereas capacities in the four scenarios we analyze can be ranked unambiguously, this

is not always true when it comes to social welfare. A welfare comparison is simple and

straightforward for cases C, SB, and FB (where welfare is increasing in this order). It

is not obvious, however, whether welfare is higher in case C or MC. In scenario C firms

exercise market power at the spot market, whereas in case MC spot prices are regulated to

the competitive level. Thus, in absence of capacity constraints welfare would be higher in

MC. However, at stage one strategic firms choose lower capacities in case MC such that

prices are higher in case MC than in C whenever firms are capacity constrained in both

cases. Consequently, a welfare comparison between the two cases is not straightforward

and necessarily depends on details of the model’s specification. A simplified model with

linear demand demonstrates that both, an increase and a decrease in welfare is possible and

suggests that regulation of the production stage is particularly undesirable from a welfare

point of view if the number of firms is low. We come back to this issue in section 4, where

we fit our model to the data of the German electricity market.

4 An Empirical Analysis of Capacity Choice in Elec-

tricity Markets — The Example of Germany

In this section we demonstrate how our theoretical insights can be used to assess (long

run) capacity and welfare effects of electricity market liberalization. We also quantify

the capacity and welfare effects of several recent policy proposals for different degrees of

market concentration.19 The approach can be applied to any electricity market by fitting

the theoretical model to the corresponding data and comparing predicted strategic capacity

choices to the actually installed level.20 Here, for the reason of data availability, we use

data of the German electricity market.

19All welfare effects we demonstrate can also be shown in a simplified model with linear demand and
uniform distribution of uncertainty. In particular, in Grimm and Zoettl (2007) we show that the more
concentrated the market is, the less competitive the stage–two market outcome should be from a welfare
point of view.

20We are not aware of any empirical studies of investment in electricity markets. The main reason
presumably is that the post liberalization period is not yet long enough to generate data on investment
cycles. This is also a strong argument for fitting a theoretical model to the primitives of a market to get
an impression of possible long run effects that cannot appear in the data yet.

13



Note that — although they are quite stylized — our scenarios capture nicely some recent

policy proposals. A spot market intervention as described in case MC is closely related to

the common proposal to monitor tightly the firms’ spot market behavior.21 The difference

of capacity levels in scenarios C and SB is a proxy for the desirability of capacity markets

or other mechanisms that increase investment incentives. Thus, our analysis yields insights

to assess some policy tools that have been at the focus of the current debate on the need of

reorganization of the German electricity market. Apart from capacity choices, we also focus

on the price distribution in the different scenarios and on welfare implications of regulatory

interventions.

Our aim is to fit the theoretical model as closely as possible to the data of the German

Electricity market for the year 2006 and to compute resulting investment in gas turbine

generation capacity for the scenarios MC, C, SB, and FB. Note that this approach yields

total investment under the assumption that each firm’s marginal generating unit is always

a gas turbine. Since investment in the last unit of capacity (which, of course, determines

total capacity) is always a marginal decision, we do not need to specify the inframarginal

technology mix for the empirical analysis. Note however, that we need to assume that firms

are symmetric in size (but not necessarily with respect to their inframarginal technology

mix). Since mark-ups in the Cournot model generally increase if firms become asymmetric,

our results yield a lower bound for the extent of market power for a given number of firms.

In order to use our theoretical model for the analysis we chose to make the following

specifications. We assume linear fluctuating demand P (Q) = θ − bQ and fluctuating but

constant marginal cost c(θ). Note that for linear demand our model can allow simulta-

neously for both, demand and cost uncertainty. If we sort all realizations of demand and

cost according to the differences θ − c(θ), the resulting framework satisfies assumptions 1

to 3. Furthermore, for the sake of our applied example, we interpret the distribution over

the demand scenarios as relative frequencies which have been accurately predicted by all

firms.22

For a given demand and cost distribution and for given marginal investment cost, pre-

21See, e.g. Monopolkommission (2007), p.4, paragraph 9.*. If the regulator has perfect information, the
result of such an intervention would be marginal cost pricing at stage two.

22That is, in our empirical analysis we have no uncertainty but just demand fluctuation over time.
In practice, there should be two competing effects if uncertainty would be added to the analysis. Since
investment in gas turbines is rather risky and firms are typically risk averse, the benchmark determined
should yield too much investment. On the other hand, however, our model implies that a risk neutral firm
should invest more if risk is increased.
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dicted capacities can be calculated by solving the corresponding first order conditions as

stated in theorems 1 and 2. The resulting capacity choices allow us to derive the price

distribution for those hours where capacity is binding, and to compare it to the observed

price distribution. Moreover, we can capture the welfare effect of regulatory interventions.

To this aim we calculate the welfare difference to the Cournot case for scenarios MC, SB,

and FB and add up welfare differences generated in each hour of the year.

In order to assess the robustness of our results we do not perform the analysis for single

parameter values, but rather for plausible ranges of parameter distributions. This concerns

the following parameters of the model: The demand elasticity (determined by the slope of

the demand function, b), marginal cost of production, c, and marginal investment cost, k.

From the possible ranges of those parameters, our algorithm selects one random combination

in each iteration. The resulting distributions of capacities and welfare differences give an

impression of the sensitivity of our results to changes in the parameters. In the following

we provide some details on the relevant ranges of our cost and demand parameters.

Market demand: To construct fluctuating market demand, we depart from hourly mar-

ket prices (from the European Energy Exchange (EEX)23) and hourly quantities consumed

(from the Union for the Co-ordination of Transmission of Electricity (UCTE)24) for the year

2006. We chose the value of b in line with other studies on energy markets. Most studies

that estimate demand for electricity25 find short run elasticities between 0.1 and 0.5 and

long run elasticities between 0.3 and 0.7.26 The relevant range of prices is around P = 100

€/MWh and corresponding consumption is approximately Q = 50 GW. In our simulations

we thus use a uniform distribution of b on the interval [0.004, 0.007], which corresponds to

elasticities between 0.5 and 0.29.

Production cost: The major components of variable production cost are gas prices27

and prices for CO2 emission allowances.28 The average TTF gas price in 2006 was 20

23See www.EEX.com
24See www.UCTE.org
25See, for example, Lijsen (2006) for an overview of recent contributions on that issue.
26E.g. Beenstock et al. (1999), Bjorner and Jensen (2002), Filippini Pachuari (2002), Booinekamp (2007),

and many others.
27Daily values from the Dutch Hub TTF, corrected for transportation cost.
28Daily data taken from the EEX. The emission-coefficient for natural gas is set by the German ministry

of environment at 56t CO2/TJ which corresponds to 0.2016t CO2/MWh. Compare Umweltbundesamt
(2004).
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€/MWh and CO2 permissions traded on average for 9.30 €/MWh.29 The efficiency of gas

turbines currently ranges at around 37, 5%.30 The resulting daily production cost for the

year 2006 was on average 66.30 €/MWh. Daily values, as used in our empirical analysis,

are illustrated in figure 1. In our simulations we use the observed distribution but multiply

each realization by the factor f which is uniformly distributed in [0.9, 1.1].
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Figure 1: Production Cost in the Year 2006.

Investment Cost: Since we analyze investment incentives based solely on one year, we

break down investment cost to annuities.31 In order to take construction time of gas turbine

plants into account we consider investment cost on the basis of data from the year 2000.

We assume perfect foresight, i.e. all cost components have been predicted accurately by the

firms at the time of their investment decision. We base investment cost on the following

29Recall that we do not use the averages but the daily values in our simulation.
30See 2006 GTW Handbook or EWI and Prognos (2005).
31The results will thus only yield a benchmark for current profitability of investment. Provided, however,

that yearly demand is increasing over time (and that strategic timing of investment is not an issue) our
procedure should yield accurate predictions, even though once installed capacities cannot be removed the
subsequent year.
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two studies: First, a study on the German energy market commissioned by the German

Parliament (2002), with scenarios for investment decisions summarized in Weber and Swider

(2004) [in the following GP/WS]. Second, Energiereport III, a study conducted by the

Institute of Energy Economics (EWI) in Cologne and Prognos (2000) for the the German

Ministry of Economics [in the following EWI/P].

The relevant annuity is determined as follows: Total investment cost ranges between

279 €/KW (GP/WS) and 300 €/KW (EWI/P). Annual fixed cost of running a gas turbine

is already included in GP/WS, and is given by 8 €/KWa in EWI/P. This value is corrected

by the average availability of gas turbines, which, in Germany, is given by 94%.32 Based

on a financial horizon of 20 years and an interest rate of 10 % this yields annuities of

34863 €/MWa (GP/WS) and 45998 €/MWa (EWI/P). Finally, the free allotment of CO2

allowances granted to new power plants results in a de facto reduction of the annuity by the

net value of the allocated allowances. Calculating their value on the basis of the average

market price in 2006 yields 6305.3 €/MWa. The range of relevant annuities which we use

in our simulation is consequently given by [28558, 39692] €/MWa.

Figure 2 shows — for different numbers of firms — total investment in all four scenarios

we discuss. In the figure, the big symbols represent the average value while the two smaller

symbols of the same type determine the 90 % confidence interval of our simulation. Ob-

viously, predicted capacities are not very sensitive to changes in the parameters. The first

best investment does not change in the number of firms since we assume that each firm’s

marginal generating unit is a gas turbine, independent of the number of firms and the level

of demand. Strategic capacity choice (scenario C) is at only 50 % of the optimal level for

the monopoly case, while it is at 80 % of the optimal level for four firms. The graph illus-

trates that the presence of market power not only affects spot prices, but also has a strong

effect on capacity choices. Total capacity installed in Germany in 2006 was approximately

68 GW in a market with four large firms.33 The relatively high level of actual capacity as

compared to our results reflects the fact in the pre-liberalization period (i.e. before 1998)

generators where subject to a rate of return regulation that imposed excessive investment

incentives.

From the predicted capacity levels we now compute the price distribution for those

hours where capacity is predicted to be binding in the Cournot game. Since we want to

32Compare VGB Powertech (2006).
33The German market consists essentially of four large players. Two of them (RWE and E.on) have a

market share of 26 % each, while the two smaller ones (ENBW and Vattenfall) together cover 30 % of the
market each. Compare, e.g., Monopolkommission (2007).
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Figure 2: Investment Levels in all Four Cases.

compare predicted prices to the observed price distribution, we choose (in accordance with

the German market structure) a scenario of four firms. We, moreover, choose the mean

values of the parameter intervals which we used in our simulations, i.e. b = 0.0055, and k =

35430/MWa.34 For our data set strategic firms are capacity constrained in approximately

1107 hours (12.6 % of the year).35 Figure 3 provides the observed price distribution (grey

line), as well as the predicted price distributions during the hours with a binding capacity

constraint, separately for scenarios FB, SB, C, and MC (black lines). In order to make the

differences more visible, in the figure we focus on prices in the interval [0, 500] and provide

information on the highest price realizations in the legend. Obviously, for the parameter

configuration we chose, observed prices are above predicted prices in the first best scenario

34We could also determine the price distribution for ranges of parameters. Since capacities have turned
out not to be very sensitive to changes in the parameters, however, we chose to use mean values to make
our illustration more readable.

35Our predicted values match the empirical observations. Due to Umweltbundesamt (2004), gas turbines
run approximately 10 % of the time.
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FB, and Observed Prices.

but well below predicted prices in the Cournot market game. All depicted prices reflect the

willingness to pay for an additional unit of capacity that cannot be produced in the short

run. Notice that the relatively low level of observed prices (as compared to the Cournot

scenario) may well be due to the fact that currently firms have more capacity installed than

they would have chosen in a liberalized regime.36 Our theoretical analysis implies that the

current prices do not yield sufficient investment incentives to sustain the current capacity

level. Strategic investment would strongly affect the price distribution, as comparison of

the curves for the cases FB and C illustrates. Obviously, there is a strong potential for

market power not only in the short run, but also at the investment stage.

Finally, figure 4 illustrates the welfare effect that results from regulation of spot market

prices down to the competitive level. All welfare differences are calculated in relation to the

36In the pre-liberalization period, generators where subject to a rate of return regulation that imposed
excessive investment incentives.
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Figure 4: Welfare Differences to the Cournot Case (C) for Cases MC, SB, and FB.

Cournot market game. Again, we ran simulations using the relevant parameter ranges. Big

symbols represent average welfare differences while small symbols are the 90 % confidence

intervals. As we have already seen from the theoretical analysis and from figure 2, imposing

marginal cost prices at the spot market considerably decreases equilibrium investment. The

figure shows that if the number of firms in the market is low, enforcement of marginal cost

pricing at the spot market moreover decreases total welfare. Only if the number of firms is

four or higher, total welfare is increasing. Thus, our analysis demonstrates that intervention

only at the spot market does not necessarily have the desired effect if firms choose their

capacities strategically.

The figure moreover illustrates the welfare effect of intervention only at the investment

stage (scenario SB) and of implementation of the First Best solution. As it becomes clear

from the graph, performance of the Cournot market game is getting very close to the first

best solution as the number of competitors becomes large. We also observe that, while

the effect of increasing capacities given that firms have market power at the spot market
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is moderate for all market structures, intervention at the spot market may have relatively

large negative effects on welfare if the number of firms is low.

5 Conclusion

In this paper we have provided a general model of strategic investment decisions under un-

certainty prior to imperfectly competitive markets. We have shown existence and unique-

ness of equilibrium and provided an intuitive characterization of equilibrium investment.

We found that under imperfect competition increasing capacity is desirable from a social

welfare point of view. We also demonstrated that intervention only at the spot market leads

to strategic uncertainty at the investment stage and, moreover, decreases total investment.

Thus, in markets with considerable demand fluctuations, (partial) intervention only at the

spot market stage has to be carefully reconsidered.

We have also fitted our theoretical model to the data of the German electricity mar-

ket. We derive predicted capacity levels for various degrees of market concentration, and

illustrated welfare effects of regulatory interventions. In a market of four firms (which

corresponds to the current situation in Germany) predicted strategic capacity choices are

at 80 % of the First Best level, while installed capacity is even at approximately 96 %

of our First Best prediction. This is presumably due to high investment incentives in the

pre–liberalization period. In accordance with the relatively high current capacity level, the

observed distribution of prices in 2006 is close to the predicted First Best price distribution

for those scenarios where our model predicts that capacity is binding. An immediate impli-

cation of our theoretical analysis is, however, that the observed prices are not high enough

to sustain the current level of capacity if investment is strategic. Moreover, for a market

structure of four firms we find a slightly positive welfare effect of market monitoring at the

production stage. For highly concentrated markets (i.e. monopoly or duopoly), strategic

capacity choices are far below the First Best level. We find that in concentrated markets,

market monitoring at the spot market would decrease the investment incentives drastically

and would therefore have a large and negative welfare effect.

While the model provides a solid intuition for how investment incentives and welfare

are affected by regulatory intervention, specific market designs under consideration still

have to be analyzed carefully in order to obtain reliable policy conclusions. To this aim,

our model provides a tractable framework for the analysis of different scenarios at the

market stage. The framework captures the stylized fact that at the time when they make
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their investment decisions firms face considerable uncertainty both about future demand

and production cost, and probably also with respect to future regulatory regimes. Let us

outline several directions of research that can directly benefit from the analysis done in this

paper.

The most obvious application of the model is to modify the game played at the second

stage in order to analyze how different market designs or regulatory interventions affect

investment incentives and welfare. In this line, Grimm and Zoettl (2006) analyze how in-

vestment incentives are affected by the introduction of forward markets prior to spot trad-

ing. Another closely related article, Grimm and Zoettl (2007), uses the present framework

to analyze the effect of price caps on production and welfare under demand uncertainty.

Whereas the results of Grimm and Zoettl (2006) confirm the intuition that making the spot

market outcome more competitive (through the introduction of forward markets) decreases

investments, Grimm and Zoettl (2007) find that price caps at stage two may actually in-

crease investment incentives. The reason is that price caps eliminate an important feature

of the present model, i. e. prices cannot rise unboundedly in case of insufficient capacity,

which makes strategic withholding of capacity less profitable.

A second line of research for which the current model serves as a starting point is

the analysis of choice between different production technologies. On the one hand, such a

model would allow to analyze the effect of policy tools like emission allowances in electricity

markets on the technology mix chosen by strategic firms. On the other hand it could serve

as the theoretical benchmark that allows to estimate the effect of market power at the

investment stage also for inframarginal technologies.
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A Analysis of the Production Stage

The appendix contains all proofs of the paper. In the first part, we analyze the second stage

of the game, which we need in order to proof theorems 1 (appendix B) and 2 (appendix C).

In the first step we characterize capacity constrained production choices at stage two

for each θ given investment choices x. Note that we have to consider also asymmetric

investments. In order to simplify the exposition we will order the firms according to their

investment levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn, throughout the paper. At stage two either

firms engage in Cournot competition or a social planer implements the optimal production

schedule given investment choices. In this appendix we analyze both scenarios.
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A.1 Cournot Competition at the Production Stage

An equilibrium of the capacity constrained Cournot game at stage two in scenario θ given

x, qC(x, θ), satisfies simultaneously for all firms

qCi (x, θ) ∈ arg max
q

{
P (q + qC−i, θ))q− C(q, θ)

}
s.t. 0 ≤ q ≤ xi. (3)

Note that at very low values of θ all firms are necessarily unconstrained. By assumption 1

the unconstrained Cournot equilibrium [which we denote by q̃C0(θ)] is unique and symmetric

for each θ ∈ [−∞,∞].37 From (3) it follows that q̃C0
i (θ) is implicitly determined by the first

order condition

P (nq̃C0
i , θ) + Pq(nq̃

C0
i , θ)q̃C0

i = Cq(q̃
C0
i , θ).

Now as θ increases, at some critical value that we denote by θC1(x), firm 1 (the one

with the lowest capacity) becomes constrained. The critical demand scenario is implicitly

determined by x1 = qC0
1 (θC1). If it holds that x1 < x2, then at θC1(x) only firm one

becomes constrained. Then, in equilibrium, firm 1 produces at its capacity bound whereas

the remaining firms produce their equilibrium output of the Cournot game among n − 1

firms given the residual demand P (Q− x1, θ) [denoted by q̃C1
i (x, θ)], which solves the first

order condition

P (x1 + (n− 1)q̃C1
i , θ) + Pq(x1 + (n− 1)q̃C1

i , θ)q̃C1
i = Cq(q̃

C1
i , θ).

The capacity constrained Cournot equilibrium in the case where one firm is constrained is

a vector qC1(x, θ), where qC1
i (x, θ) = min{xi, q̃C1(x, θ)}.

As θ increases further, we pass through n+1 cases, from case C0 (no firm is constrained)

to case Cn (all n firms are constrained). Note that two critical values θCm(x) and θCm+1(x)

coincide whenever xm = xm+1, and that it holds that θCm(x) < θCm+1(x) (by assumption

2) whenever xm < xm+1.

Now we are prepared to characterize the capacity constrained Cournot equilibrium in

case Cm where m firms are constrained. In this case, the m firms with the lowest capacities

produce at their capacity bound, whereas the n−m unconstrained firms produce

q̃Cmi (x, θ) =

{
qi ∈ R : P

(
m∑
i=1

xi + (n−m) q̃Cmi , θ

)
(4)

+Pq

(
m∑
i=1

xi + (n−m) q̃Cmi , θ

)
q̃Cmi = Cq

(
q̃Cmi , θ

)}
,

37See, for example Selten (1970), or Vives (2001), pp. 97/98.
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The equilibrium quantities of the capacity constrained Cournot game in case Cm are given

by

qCmi (x, θ) = min{xi, q̃Cmi (x, θ)}, (5)

and aggregate production in case Cm is

QCm(x, θ) =
n∑
i=1

qCmi (x, θ). (6)

This allows us finally to pin down the profit of firm i in scenario Cm,

πCmi (x, θ) =


P
(
QCm, θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QCm, θ

)
q̃Cmi (x, θ)− C

(
q̃Cmi (x, θ) , θ

)
if i > m.

(7)

Note that it holds that
dπCm

i

dxi
> 0 only if i ≤ m, and

dπCm
i

dxi
= 0 otherwise, since a firm’s

capacity expansion only affects production at stage two in case the firm was constrained.

Obviously, in this case the derivative must be positive.

We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θCm, θCm+1] (where, given x, the m lowest capacity firms are constrained) as

WCm (x, θ) =

∫ QCm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qCmi (x, θ) , θ

)
. (8)

(we need this in order to prove Part (SB) of theorem 2). Note that W FBm only depends

on xi if firm i is constrained in scenario m, that is if i ≤ m.

Property 1 (Monotonicity of θCm) dθCm(x)
dxi

is strictly positive if i ≤ m (i.e. if firm i

produces at its capacity bound), and zero otherwise.

Proof θCm(x) is the demand realization from which on firm m cannot play its uncon-
strained output any more. At θCm(x) it holds that qCi (θCm(x)) = q̃Cmi (θCm(x)) = xm for
all i ≥ m and qCi (θCm(x)) = xi < xm for all i < m. Thus, θCm(x) is implicitly defined by
the conditions

P

(
m∑
i=1

xi + (n−m)xm, θCm(x)

)

+Pq

(
m∑
i=1

xi + (n−m)xm, θCm(x)

)
xm − Cq

(
xm, θ

Cm(x)
)

= 0.

Differentiation with respect to xi, i < m, yields

Pq (·) + Pθ (·) dθ
Cm (x)
dxi

+ Pqq (·)xm + Pqθ (·)xm
dθCm (x)
dxi

− Cqθ (·) dθ
Cm (x)
dxi

= 0,
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and solving for dθCm(x)
dxi

we obtain

dθCm (x)
dxi

= − Pq (·) + Pqq (·)xm
Pθ (·) + Pqθ (·)xm − Cqθ (·)

> 0

due to assumption 1, part (i) and assumption 2, part (ii) [note that the expression in

the denominator is the cross derivative which was assumed to be positive in part (ii) of

assumption 2].
Differentiation with respect to xi, i = m, yields

(n−m+ 2)Pq (·) + Pθ (·) dθ
Cm (x)
dxi

+(n−m+ 1)Pqq (·)xm + Pxθ (·)xm
dθCm (x)
dxi

− Cxx (·)− Cqθ (·) dθ
Cm (x)
dxi

= 0,

and solving for dθCm(x)
dxi

we obtain

dθCm (x)
dxi

= − (n−m+ 2)Pq (·) + (n−m+ 1)Pqq (·)xm − Cxx (·)
Pθ (·) + Pqθ (·)xm − Cqθ (·)

> 0,

also due to assumption 1, parts (i) and assumption 2, part (ii). Finally, differentiation
with respect to xi, i > m, yields

Pθ (·) dθ
Cm (x)
dxi

+ Pxθ (·)xm
dθCm (x)
dxi

− Cqθ (·) dθ
Cm (x)
dxi

= 0,

which implies that dθCm(x)
dxi

= 0 for i > m. �

A.2 Welfare maximization at the Production stage

In the following we specify, for a given vector of capacities x, the welfare optimal production

schedule for any possible demand scenario (that is, for any possible value of θ).38

Note that necessarily all firms are unconstrained for very low values of θ. It is straight-

forward to show that in the welfare optimum, all unconstrained firms produce the same

(due to convex cost). Thus, the socially optimal total quantity of each firm if all firms are

unconstrained is given by qFB0
i (θ) = {qi ∈ R : P (nqi, θ) = Cq (qi, θ)}.

Now, as θ increases, at some critical value, that we denote by θFB1(x), firm 1 (the lowest

capacity firm) becomes constrained. The critical demand scenario θFB1(x) is implicitly de-

fined by x1 = qFB0
1 (θFB1). If it holds that x1 < x2, then at θFB1(x) only firm 1 becomes con-

strained and the socially optimal production plan implies that firm 1 produces at its capacity

bound whereas the remaining firms produce the unconstrained optimal quantity given the

38With convex cost a characterization of the welfare optimum could probably be given with less mathe-
matical burden. However, we will need the characterization developed here also in section ??.
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residual demand P (Q−x1, θ), i. e. q̃FB1
i (x, θ) = {qi ∈ R : P ((n− 1)qi + x1, θ) = Cq (qi, θ)}.

The optimal production plan in scenario FB1 is a vector qFB1(x, θ), where each element is

given by qFB1
i (x, θ) = min{xi, q̃FB1

i (x, θ)}.
As θ increases further and more firms become constrained, we pass through n+ 1 cases,

from case FB0 (no firm is constrained) to case FBn (all n firms are constrained). Note

that two critical values θFBm(x) and θFBm+1(x) coincide whenever xm = xm+1, and that it

holds that θFBm(x) < θFBm+1(x) (by assumption 2) whenever xm < xm+1.

Now we are prepared to characterize the socially optimal production plan and social wel-

fare generated in case FBm, where m firms are constrained. In this case, the m firms with

the lowest capacities produce at their capacity bound, whereas the n−m unconstrained firms

produce the unconstrained optimal quantity given the residual demand P (Q−
∑m

i=1 xi, θ),

i. e.

q̃FBmi (x, θ) =

{
qi ∈ R : P

(
m∑
j=1

xj + (n−m)qi, θ

)
= Cq(qi, θ)

}
. (9)

We denote the optimal production plan in case FBm by qFBm(x, θ) where each element is

given by

qFBmi (x, θ) = min{xi, q̃FBmi (x, θ)} i = 1, . . . , n. (10)

Consequently, the optimal total quantity produced in case FBm is

QFBm(x, θ) =
n∑
i=1

qFBmi (x, θ). (11)

This allows to pin down firm i’s profit in scenario FBm,

πFBmi (x, θ) =


P
(
QFBm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QFBm(x, θ), θ

)
q̃FBmi (x, θ)− C

(
q̃FBmi (·) , θ

)
if i > m.

(12)

We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θFBm, θFBm+1] (where, given x, the m lowest capacity firms are constrained) as

W FBm (x, θ) =

∫ QFBm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qFBmi (x, θ) , θ

)
. (13)

(we need this in the proof of theorem 2). Note that W FBm only depends on xi if firm i is

constrained in scenario m, that is if i ≤ m.
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B Proof of Theorem 1

B.1 Proof of Theorem 1, Case (C)

Now we are prepared to analyze capacity choices at the investment stage. The results

obtained for the production stage enable us to derive a firm i’s profit from investing xi,

given that the other firms invest x−i and quantity choices at stage two are given by qCm(x, θ)

for θ ∈ [θCm(x), θCm+1(x)]. Recall that when choosing capacities the firms face demand

uncertainty. Thus, a firm’s profit from given levels of investments, x, is the integral over

equilibrium profits at each θ given x on the domain [−∞,∞], taking into account the

probability distribution over the demand scenarios. For each θ, firms anticipate equilibrium

play at the production stage, which gives rise to one of the n+ 1 types of equilibria, EQC0,

. . . , EQCm, . . . , EQCn. Note that any x > 0 gives rise to the unconstrained equilibrium if θ

is sufficiently low. As θ increases, more and more firms become constrained. Thus, a tuple

of investment levels that initially gave rise to an EQC0, then leads to an equilibrium where

first one (then two, three, . . . , and finally n) firms are constrained. In order to simplify the

exposition we define θC0 ≡ −∞ and θCn+1 ≡ ∞. Then, the profit of firm i is given by39

πi(x, q
C) =

m=n∑
m=0

∫ θCm+1

θCm

πCmi (x, θ)dF (θ)−K(xi). (14)

Note that at each critical value θCm, m = 1, . . . , n it holds that πCm−1(x, θCm) =

πCm(x, θCm). Thus, πi(x, q
C) is continuous. Differentiating πi(x, q

C) yields40

dπi
(
x, qC

)
dxi

=
n∑

m=i

∫ θCm+1(x)

θCm(x)

dπCmi (x, θ)

dxi
dF (θ)−Kx (xi) (15)

We prove part (i) of the lemma in two steps. In part I we show existence and in part II

uniqueness of the equilibrium.

Part I: Existence of Equilibrium In the following we show that a symmetric equilib-

rium of the two stage Cournot market game exists, and that equilibrium choices xCi = 1
n
XC ,

i = 1, . . . , n, are implicitly defined by equation (2). For this purpose it is sufficient to show

39Note that it is never optimal for a firm to be unconstrained at∞ and thus, we always obtain θCn ≤ ∞.
40Note that continuity of πi implies that due to Leibnitz’ rule the derivatives of the integration limits

cancel out. Moreover, πCmi only changes in xi if firm i is constrained in scenario FBm, i. e. i ≤ m. Thus,
the sum does not include the cases where firm i is unconstrained, i. e. m < i.
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quasiconcavity of firm i’s profit given the other firms invest xC−i, πi(xi, x
C
−i), which we do in

the following.
Note that πi(xi, x

C
−i) is defined piecewisely. For xi < xCi , we have to examine to profit

of firm 1 (by convention the lowest capacity firm) given that x2 = x3 = · · · = xn. Since
this implies that θC2 = · · · = θCn and thus it follows from (14) that

π1(x1, x
C
−1) =

∫ θC1(x)

−∞
πC0

1 (x, θ)dF (θ) +
∫ θCn(x)

θC1(x)

πC1
1 (x, θ)dF (θ) (16)

+
∫ ∞
θCn(x)

πCni (x, θ)dF (θ)−K(x1)

For xi > xCi , the profit of firm i is the profit of the highest capacity firm (firm n according
to our convention), given all other firm have invested the same, i. e. x1 = · · · = xn−1. We
get

πn(xn, xC−n) =
∫ θCn−1(x)

−∞
πC0
n (x, θ)dF (θ) +

∫ θCn(x)

θCn−1(x)

πCn−1
n (x, θ)dF (θ) (17)

+
∫ ∞
θCn(x)

πCnn (x, θ)dF (θ)−K(x1)

(i) The shape of πi(xi, x
C
−i) for xi > xCi : The second derivative of the profit function πn

is given by41

d2πn
(dxn)2

= −dθ
Cn(x)
dxn

[
dπCnn (x, θCn)

dxn

]
︸ ︷︷ ︸

=0 (xn is opt. atθCn)

f(θCn) +
∫ ∞
θCn(x)

d2πCnn (x, θ)
(dxn)2︸ ︷︷ ︸

<0 by A1 part (iv)

f(θ)dθ < 0. (18)

Note that the first term cancels out and the second term is negative by concavity of the

spot market profit function (implied by assumption 1). We find that for xi ≥ xCi , πi(xi, x
C
−i)

is concave, which implies that upwards deviations are not profitable.

(ii) The shape of πi(xi, x
C
−i) for xi < xCi : This region is more difficult to analyze since

the profit function π1(x1, x
C
−1) is not concave. We can, however, show quasiconcavity of

π1(x1, x
C
−1). For this purpose we need property 2 in order to complete the proof of existence

(part I). We can show quasiconcavity of π1(x1, x
C
−1) by showing that

dπ1(x
0
1, x

C
−1)

dx1

>
dπ1(x

C
1 , x

C
−1)

dx1

= 0 for all x0
1 < xC1 .

41It is obvious that there is no incentive for any firm to deviate such that it is unconstrained at∞. Thus,
we only consider the case that all firms are constrained at ∞.

31



This holds true, since [compare also equation (15)]

dπ1(x0
1, x

C
−1)

dx1
=

∫ θCn(x0
1,x

C
−1)

θC1(x0
1,x

C
−1)

dπC1
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by property 2, part (i)

+
∫ ∞
θCn(x0

1,x
C
−1)

dπCn1 (x0
1, x

C
−1, θ)

dx1
dF (θ)

≥
∫ ∞
θCn(x0

1,x
C
−1)

dπCn1 (x0
1, x

C
−1, θ)

dx1
dF (θ)

=
∫ θCn(xC−1,x

C
−1)

θCn(x0
1,x

C
−1)

dπCn1 (x0
1, x

C
−1, θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by properties 1 and 2, part (ii)

+
∫ ∞
θCn(xC1 ,x

C
−1)

[
dπCn1 (x0

1, x
C
−1, θ)

dx1
−
dπCn1 (xC1 , x

C
−1, θ)

dx1

]
dF (θ)︸ ︷︷ ︸

>0 by property 2, part (ii)

+
∫ ∞
θCn(xC1 ,x

C
−1)

dπCn1 (xC1 , x
C
−1, θ)

dx1
dF (θ)︸ ︷︷ ︸

=
dπi(x

C )
dxi

=0 [recall that θC1(xC)=θCn(xC)]

≥ 0.

To summarize, in part I (i) and (ii) we have shown that πi(xi, x
C
i ) is quasiconcave. We

conclude that the first order condition given in theorem 1 indeed characterizes equilibrium

investment in the Cournot market game.

Property 2 [Properties of Marginal Profits at Stage Two] Suppose all firms

but firm 1 have invested symmetric capacities summarized in the vector x0
−1. Firm 1 has

invested x1, less than each of the other firms. We obtain:

(i)
dπC1

1 (x0
1,x

0
−1,θ)

dx1
≥ 0 for θC1 ≤ θ ≤ θCn.

(ii)
dπCn

1 (x′1,x
0
−1,θ)

dx1
≥ dπCn

1 (x′′1 ,x
0
−1,θ)

dx1
≥ 0 for x′1 < x′′1, θCn ≤ θ ≤ ∞.

Proof (i) The first part holds due to the fact in case firm 1 is constrained, i. e. (θ ≥ θC1),

firm 1 would like to produce more than x1 for all demand realizations θ ≥ θC1, which,

however, is not possible due to the capacity constraint.

(ii) The first inequality follows from concavity of the profit functions in the spot markets,

which is implied by assumption 1. Thus, the first order condition at each spot-market is

decreasing in x1 until q̃C0
i , which immediately yields the first inequality of part (ii). The

second inequality is due to the fact that in case all firms are constrained, i. e. (θ ∈ [θCn,∞]),

firm 1 would like to produce more for all demand realizations θ (which is not possible because

it is constrained). �
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Part II: Uniqueness In this part we show that (i) xC is the unique symmetric equilib-

rium and (ii) that there are no asymmetric equilibria.

(i) xC is the unique symmetric equilibrium. If capacities are equal, i. e. x0
1 = x0

2 =
· · · = x0

n, we have

dπi(x0)
dxi

=
∫ ∞
θCn(x0)

[P (nx0
i , θ) + Pq(nx0

i , θ)x
0
i − Cq(x0

i , θ)]f(θ)dθ −Kx(x0
i ).

Differentiation yields42

d2πi(x0)
(dxi)2

=
∫ ∞
θCn(x0)

[
(n+ 1)Pq(nx0

i , θ) + nPqq(nx0
i , θ)x

0
i − Cqq(x0

i , θ)
]
dF (θ)−Kxx(x0

i ) < 0,

which is negative due to assumption 1. Thus, since dπi(x
C)

dxi
= 0 and moreover πi(x) is

concave along the symmetry line, no other symmetric equilibrium can exist.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric

equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, where at least one inequality

has to hold strictly. This implies x̂1 < x̂n. The profit of firm n can be obtained by setting

i = n in equation (14), and the first derivative is given by

dπn
dxn

=

∫ ∞
θCn(x)

dπCnn (x, θ)

dxn
f(θ)dθ −Kx(xn).

It is easy to show that firm n’s profit function is concave by examination of the second

derivative [see equation (18)]. Thus, any asymmetric equilibrium x̂, if it exists, must satisfy
dπn(x̂)
dxn

= 0. We now show that whenever it holds that dπn(x̂)
dxn

= 0, firm 1’s profit is increasing

in x1 at x̂ (which implies that no asymmetric equilibria exist).

From equation (15) it follows that the first derivative of firm 1’s profit function is given

by

dπ1

dx1

=

∫ θC2(x)

θC1(x)

dπCn1 (x, θ)

dx1

f(θ)dθ + · · ·+
∫ ∞
θCn(x)

dπCn1 (x, θ)

dx1

f(θ)dθ −Kx(x1).

Note that all the integrals in dπ1

dx1
are positive since firm 1 is constrained at all demand

realizations and therefore would want to increase its production. Thus, we have

dπ1

dx1
>

∫ ∞
θCn(x)

dπCn1 (x, θ)
dx1

f(θ)dθ −Kx(x1),

where the RHS are simply the last two terms of dπ1

dx1
. Note furthermore that x̂1 < x̂n also

implies that Kx(x̂1) < Kx(x̂n) (due to assumption 3) and

dπ1(x̂)
dx1

= P (x̂, θ) + Pq(x̂, θ)x̂1 − Cq(x̂1, θ) < P (x̂, θ) + Pq(x̂, θ)x̂n − Cq(x̂n, θ) =
dπn(x̂)
dxn

42Differentiation works as in (18).
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(due to assumption 1). Now we can conclude that

dπ1

dx1
>

∫ ∞
θCn(x)

dπCn1 (x, θ)
dx1

f(θ)dθ −Kx(x1) >
∫ ∞
θCn(x)

dπCnn (x, θ)
dxn

f(θ)dθ −Kx(xn) = 0.

The last equality is due to the fact that this part is equivalent to the first order condition of

firm n, which is satisfied at x̂ by construction. To summarize, we have shown that dπ1

dx1
> 0,

which implies that there exist no asymmetric equilibria, since at any equilibrium candidate,

firm 1 has an incentive to increase its capacity.

B.2 Proof of Theorem 1, Case (MC)

If the competitive outcome is implemented at stage two, firm i’s stage two–profit in scenario

θ is given by (12). The stage one expected profit of firm i is obtained by integrating over

all profits associated with each demand realization,43

πi(x, q
FB) =

n∑
m=0

∫ θFBm+1(x)

θFBm(x)

πFBmi (x, θ)dF (θ)−K (xi) . (19)

Thus, the first order condition is

dπi
(
x, qFB

)
dxi

=
n∑

m=i

∫ θFBm+1(x)

θFBm(x)

dπFBmi (x, θ)

dxi
dF (θ)−Kx (xi) . (20)

Now note that dπi

dxi
> 0 at X = 0 (since investment is gainful), that dπi

dxi
< 0 for some finite

value of X, and that dπi

dxi
is continuous. Thus, a corner solution is not possible, and we have

at least one point where (2) is satisfied and dπi

dxi
is decreasing. Note, however, that this does

not assure existence. In fact, in the scenario considered here a firm’s stage one profit is not

even quasiconcave, and it is not possible to reformulate the game as a supermodular game.

Now assume constant marginal cost. Note that in the case of constant marginal costs

it is, independently of the capacity choices firms made at stage one, always true that

either all firms are constrained at p = Cq(·, θ), or none of them. Thus, it holds that

θFB1(x) = · · · = θFBn(x).

In order to prove part (MC) of theorem 1, we apply theorem 2.1 of Amir and Lamb-

son (2000), p. 239. They show that the standard Cournot oligopoly game has at least one

symmetric equilibrium and no asymmetric equilibria whenever demand P (·) is continuously

differentiable and decreasing, cost C(·) is twice continuously differentiable and nondecreas-

ing and, moreover, the cross partial derivative dπ(X,q)
dX−idX

> 0, where X denotes total capacity

43We define θFB0 = −∞ and θFBn+1 =∞.
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and X−i capacity chosen by the firms other than i. In order to see that the results of Amir

and Lambson apply to our setup, note that our game is equivalent to a game where firms

choose output given the expected demand and cost function. Note that if the first best

outcome occurs whenever capacity is sufficient, it follows that expected inverse demand is

given by

EP (X) =

∫ θFBn(x)

−∞
P
(
QFB0 (θ) , θ

)
dF (θ) +

∫ ∞
θFBn(x)

P (X, θ) dF (θ) , (21)

and expected cost is given by

EC(xi) =

∫ θFBn(x)

−∞
C
(
qFB0
i , θ

)
dF (θ) +

∫ ∞
θFBn(x)

C (xi, θ) dF (θ) +K (xi) , (22)

Note that EP (X) is strictly decreasing in X and EC(xi) is strictly increasing in xi, but
they do not satisfy assumption 1, part (i), which is why existence and uniqueness are not
implied by standard (textbook) analysis.44 However, Amir and Lambson’s assumptions45

are satisfied, since the cross partial derivative

dπ2(X, qC)
dX−idX

= −dθ
FBn(x)
dX

[
−P (X, θFBn(x)) + Cq(X −X−i, θFBn(x))

]︸ ︷︷ ︸
=0 at θFBn(x)

f(θFBn(x))

+
∫ ∞
θFBn(X)

[−Pq(X, θ) + Cqq(X −X−i, θ)]︸ ︷︷ ︸
>0

f(θ)dθ

is positive. This guarantees that we have at least one symmetric equilibrium and no

asymmetric equilibria in case of constant marginal cost.

C Sketch of the Proof of Theorem 2

The proof of theorem 2, when welfare maximizing capacities are chosen is quite similar to

the proof of theorem 1. We therefore give only a brief sketch, and refer to a working paper

version of the paper (Grimm and Zoettl (2006)) for an extensive version of the proof.

44In fact, the expected profit function is not even quasiconcave, as it is easily seen by inspecting its second
derivative. Those observations point to an error in the article of Reynolds and Wilson (2000). They make
almost the same assumptions on demand as we do, but are more restrictive regarding cost (i. e. Cq(xi) = 0
and K(xi) = kxi). They state (p.126 of the article) that E[xiP (xi + x−i, θ) − kxi] (in our notation) is
strictly concave and differentiable in xi and therefore has a unique solution. Since E[xiP (xi+x−i, θ)−kxi]
is exactly the profit given by equation (19) for Cq(xi) = 0 and K(xi) = kxi, our analysis shows that this
is not true.

45The assumptions are: P (·) is continuously differentiable with Pq(·) < 0, C(·) is twice continuously
differentiable and nondecreasing, and Pq(X)− Cqq(xi) < 0.

35



In order to prove part (FB), we consider for each realization of θ the welfare maximum

at the spot market for fixed capacity choices. Integration over all realizations of uncertainty

then yields expected welfare, which is given by the following expression:

W(x, qFB) =
n∑

m=0

∫ θFBm+1(x)

θFBm(x)

W FBm(x, θ)dF (θ)−
n∑
i=1

K (xi) . (23)

Note that at each critical value θFBm, m = 1, . . . , n, it holds that W FBm−1(x, θFBm) =

W FBm(x, θFBm). Thus, W(x) is continuous. Differentiating W(x) yields the following first

order condition:

dW(x, qFB)

dxi
=

n∑
m=i

∫ θFBm+1(x)

θFBm(x)

dW FBm (x, θ)

dxi
dF (θ)−Kx (xi) = 0. (24)

After verification of the second order conditions we can conclude that the above first order

condition (24) yields a unique and symmetric first best solution as given stated by theorem

2, part (FB).

In order to proof part (SB), we need to determine welfare generated at the spot market at

each realization of θ for fixed capacity choices given Cournot competition. Expected welfare

is then again determined by integrating over all realizations of uncertainty and evaluation

of first and second order conditions yields a unique and symmetric solution stated in the

theorem.

D Proof of Theorem 3

Part (i) Consider the first order conditions that implicitly define total capacities in the
four scenarios considered, as given in theorems 1 and 2. Recall that (i) Pq(X, θ) < 0, and
note that (ii) θCn(x) > θFBn(x) for all x. Furthermore, (iii) at (below, above) the demand
realization θCn(xC) we have that Pq(X

C , θ)X
C

n
+ P (XC , θ) − Cq( 1

n
XC , θ) = 0 (< 0, > 0).

Thus, the lefthand–sides of the first order conditions can be ordered as follows:

FB :
∫ ∞
θFBn(x)

[
P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ) (25)

SB : ≥
∫ ∞
θCn(x)

[
P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)

C : >

∫ ∞
θCn(x)

[
Pq (X, θ)

1
n
X + P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)

MC : ≥
∫ ∞
θFBn(x)

[
Pq (X, θ)

1
n
X + P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)
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Note that according to theorems 1 and 2, the total capacities are determined as the values

of X where the respective term equals Kx

(
1
n
XZ
)
, Z ∈ {FB, SB, C, MC}. Recall that

in all cases we get interior solutions and note that the above terms (except for the one

that determines XMC) are decreasing in X, while Kx is increasing in X. This immediately

implies XFB ≥ XSB > XC .

In order to see why the ranking stated in the theorem also holds for case MC, note

that the above term in scenario C is strictly decreasing in X, whereas in scenario MC it

satisfies LHS(0) > Kx(0) (since production is gainful) and LHS(X) < Kx(X) for X high

enough. Since Kx(X) is increasing in X, this immediately implies that for any equilibrium

investment XMC it holds that XC ≥ XMC .

Part (ii) As n approaches infinity, all first order conditions collapse to
∫∞
−∞[P (X, θ) −

Cq(0, θ)]dF (θ) = Kx(0).

E Proof of Theorem 4

Let x0 be a vector of equal capacities summing up to X0. We have θFBn(x0) ≤ θCn(x0) for

all x0 and both, θFBn(x0) and θCn(x0) are increasing in X0.

(i) If XC ≤ QC(θ), then θCn(xC) ≤ θ, since installed capacities are lower than the un-

constrained Cournot-output at the lowest realization of uncertainty with positive weight

denoted by θ. This implies that θFBn(xMC) ≤ θCn(xC) ≤ θ, since XMC ≤ XC .

Then the first order conditions for the cases (C) and (MC) in theorem 1 collapse since

f(θ) = 0 for all θ ∈ [θFBn(xMC); θ] and thus, the lower limit of integration is given by θ.

This proves ”⇒”. In order to prove ”⇐”, note that XC > QC(θ) implies θ ≤ θFBn(xMC) <

θCn(xC).Then the the lower limit of integration in first order conditions for the cases (C)

and (MC) does not coincide which implies XMC < XC if f(θ) > 0 for all θ ∈ [θ, θ].

(ii) The proof works analogously to part (i).
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