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Practical estimation methods for linked
employer-employee dataa

Martyn J. Andrewsb , Thorsten Schankc, Richard Upwardd

Abstract: Methods for the analysis of linked employer-employee data are not yet
available in standard econometrics packages. In this paper, we make the �xed-e�ects
methods developed orginally by Abowd, Kramarz, Margolis and others more accessible,
where possible, and show how they can be implemented in Stata. To illustrate these
techniques, we give an example using German linked data. There is a caveat: when the
number of plants is prohibitively large and the investigator wants to estimate the cor-
relation between the worker and �rm unobserved heterogeneities, the regression-based
techniques discussed are not feasible. We also report an estimate of the correlation of
zero.

Zusammenfassung: Die Analyse von zusammengefügten Personen- und Firmendaten
ist bisher nicht in die Statistiksprogramme integriert worden. In dem vorliegenden
Beitrag werden die ursprünglich von Abowd, Kramarz, Margolis u.a. entwickelten
Analyseverfahren aufbereitet und, sofern möglich, wird gezeigt, wie diese in Stata
implementiert werden können. Die vorgestellten Methoden werden mit einem kom-
binierten Firmen-Beschäftigtendatensatz (LIAB) aus Deutschland veranschaulicht. Es
gibt jedoch eine Einschränkung: sofern die Anzahl der Firmen sehr groÿist und man
die Korrelation zwischen den unbeobachtbaren Personen- und Firmenheterogenitäten
schätzen möchte, können die in diesem Papier vorgestellten Regressionstechniken nicht
verwendet werden. In Übereinstimmung mit anderen Studien �nden wir ebenfalls eine
Korrelation von Null.
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1 Introduction

Labour market outcomes are driven by the decisions of both workers and �rms. How-
ever, it is only recently that the analysis of both sides of the market has become possible
using matched (or linked) employer-employee data. There is a growing literature, whose
origins are associated mainly with Abowd, Kramarz and Margolis. In Abowd, Kramarz
& Margolis (1999) (hereafter AKM), they re-examine the whole of issue of persistent
inter-industry wage di�erentials. Many other labour-market issues have been analysed,
including inter-�rm di�erences in productivity; the e�ects of hiring, quits and layo�s
on productivity; the impact of new technology on wages; job creation and destruction;
the e�ects of training; estimates of the cost of worker displacement; and the e�ects of
unions and collective bargaining.2

Most econometric investigations of labour market issues are based on datasets that are
either supply-side (individual- or household-level datasets) or demand-side (plant- or
�rm-level).3 If worker variables are correlated with �rm variables, then any study that
ignores information from the other side of the market will produce biased estimates.
Biases also occur if the worker heterogeneity or the �rm heterogeneity are correlated
with the observables. For example, in AKM's (1999) paper `High wage workers, high
wage �rms', it is unobservably better workers, in terms of wages, that are assumed to
work in unobservably better �rms.

Although there is a growing literature, the analysis of linked employer-employee data is
not yet routine. There are two reasons why this research agenda has not moved on as
quickly as it might. First, matched datasets involve linking together di�erent sources of
o�cial information, and there are often technical, logistic and accessibility constraints
that hinder progress. Second, there are various econometric issues to overcome, which
mean that routine techniques and packages cannot be used. AKM's papers suggest
these issues are quite technical. The objective of this paper, therefore, is to make these
methods more accessible, where possible, and then show how they can be implemented
in Stata. To illustrate these techniques, we give an example using German linked data,
from the Institut für Arbeitsmarkt- und Berufsforschung, Nürnberg (hereafter IAB).4

A puzzle has emerged, in that the unobserved component of workers' wages appears
to be negatively correlated with the unobserved component of �rms' average wages.
Apart from AKM's original study, which reported a positive correlation, all subse-
quent estimates have been negative. Abowd, Creecy & Kramarz (2002) (hereafter
ACK) report that this is because the approximation used in their earlier work gives

2See also Abowd & Kramarz (1999) and Haltiwanger, Lane, Spletzer, Theeuwes & Troske (1999)
for early surveys of the wide range of issues covered in this literature.

3Some datasets ask questions about the other side of the market; for example, a �rm identi�er and
plant-size is available in the BHPS. Also, in what follows, `workers' and `individuals' are synonyms.

4Hereafter we refer to the data as LIAB: Linked IAB data.
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di�erent estimates when the models are re-estimated with the exact solution developed
subsequently. Abowd, Creecy & Kramarz report correlations of −0.283 for French data
and −0.025 for data from Washington State. Goux & Maurin (1999) �nd a correlation
ranging from +0.01 to −0.32 depending on the time period chosen. Gruetter & Lalive
(2003) �nd a correlation of −0.543 for Austrian data; Barth & Dale-Olsen (2003) re-
port a correlation of between −0.47 and −0.55. Our own estimates from German data
suggest a correlation of approximately zero.

The paper is organised as follows. In Section 2, we set out the generic model that best
represents the econometrics of �xed-e�ects models using matched employee-employer
data, and in Section 3 we describe the various methods that can be used to estimate
this generic model. In Section 4, we describe the LIAB data that we use to illustrate
these techniques, which are presented in Sections 5 and 6. Section 7 concludes. Two
appendices give the Stata code that can be used to estimate the models discussed in
the paper.

2 A generic model

Consider the following model with both employer and employee heterogeneity and
employer and employee covariates:

yit = µ + xitβ + wjtγ + uiη + qjρ + αi + φj + εit (1)

There are i = 1, . . . , N workers (N is often millions) and j = 1, . . . , J �rms (J is often
thousands); yit is the dependent variable; xit and ui are vectors of observable i-level
covariates; wjt and qj are vectors of observable j-level covariates; and αi and φj are
(scalar) unobserved heterogeneities, correlated with observables and each other. Note
that both αi and ui are variables that are time-invariant for workers and similarly φj

and qj are �xed over time for �rms. xit, on the other hand, varies across i and t, and
wjt varies across j and t. (There is more on use of j subscript below.) Equation (1)
therefore contains all four possible types of information which a researcher might have
about workers and �rms. There are K observed covariates in total.

Both workers and �rms are assumed to enter and exit the panel, which means we
have an unbalanced panel with Ti observations per worker. There are N∗ =

∑N
i=1 Ti

observations (worker-years) in total. Workers also change �rms. This is crucial, as
�xed-e�ects methods are identi�ed by changers. In this paper, we assume εit is strictly
exogenous, which implies that workers' mobility decisions are independent of εit. It is
worth noting that mobility may be a function of the observables and the time-invariant
unobservables.
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Suppose the investigator only has access to worker (or household) data, and therefore
considers estimating

yit = µ + xitβ + uiη + αi + φj + εit.

If the investigator does not observe the vector [wjt,qj] then the estimates of [β,η]

are biased if the vector [xit,ui] is correlated with these missing �rm-level variables.
However, he can still control for φj providing he knows the identity of the �rm, as
there are multiple observations on workers within the same �rm, which means that
there are no biases arising from φj being correlated with any of the observables. Now
suppose the investigator only has access to a single cross section. Clearly, he can still
control for φj, but now he cannot control for αi as it now part of the error term αi + εi.

Now suppose the investigator has only �rm-level data, and considers estimating:

yjt = µ + wjtγ + qjρ + φj + αjt + εjt.

Now the unit of observation is a �rm, which means that [yjt, αjt, εjt] are averages over
each �rm's employees. If everything were observed, including the vector of worker-level
variables [xjt,uj] (e.g. average age of the �rm's employees, or the proportion of males
in the �rm), then the aggregation of variables would just cause heteroskedasticity.
However, not observing [xjt,uj] causes bias if these variables are correlated with the
vector [wjt,qj]. However, we can control for φj using �rm-level �xed e�ects methods,
but we cannot control for αjt, because it is part of the error term αjt + εjt. This is
the well-known aggregation bias caused by having �rm-level rather than worker-level
data.5 To conclude, without linked data, there are obvious biases from not observing
observables, and from not controlling for unobservables.

Turning back to Equation (1), we emphasise that it is usual to assume that the hetero-
geneity terms αi and φj are correlated with the observables. This means that random
e�ects methods are inconsistent, and so �xed e�ects methods are needed to estimate
the parameters of interest. This, in turn, means that [ρ, η], the parameter vector
associated with the time-invariant variables, is not identi�ed. Rather than dropping
[ui,qj], it is usual to de�ne

θi ≡ αi + uiη (2)

and
ψj ≡ φj + qjρ (3)

giving
yit = µ + xitβ + wjtγ + θi + ψj + εit. (4)

5Early estimates of the union wage di�erential in the UK came from plant-level data (WIRS),
which typically did not have important information on the employees' backgrounds.
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Estimates of [η, ρ] can be recovered by making the additional random e�ects assump-
tions Cov(ui, αi) = Cov(qj, φj) = 0. Hausman & Taylor (1981) show that it is possible
to identify time-varying e�ects using �xed-e�ects methods whilst identifying non-time-
varying e�ects using random-e�ects methods in the same regression. However, some in-
vestigators may be unhappy about having di�erent assumptions depending on whether
the variable is time-invariant, or otherwise, so in everything that follows, we consider
the identi�cation of [η,ρ] as an optional extra rather than part of the main story.

3 Econometric methods

Equation (4) is the generic model that represents most of the existing literature. A
number of �xed-e�ects methods have been proposed in the literature. In what follows,
we describe each.6

3.1 Least squares dummy variables (LSDV)

AKM are the �rst to propose consistent estimates of the parameters of Equations (1�4).
It needs emphasising that they are particularly interested in estimating θi and ψj, in
addition to [β,γ], for two reasons. The �rst is that they want to see whether estimates
of θi and ψj are correlated, hence the title `High wage workers, high wage �rms'. The
second is that they want to recover estimates of ρ and η using Equations (2) and (3)
respectively. Because the heterogeneity variables are assumed to be correlated with the
observables, they note that the Least Squares Dummy Variables (LSDV) estimator has
the best properties, for the usual reasons. The LSDV estimates of αi are inconsistent,
although unbiased. (See Wooldridge (2002, ch. 10) for assumptions and properties of
panel data models.) The properties of the ψj are the same as for [β,γ], the parameters
associated with the time-varying covariates [xit,wjt].

There are two potential problems with actually computing this LSDV estimator. It
is well known that a model with individual and time dummies (Baltagi's Two Way
Fixed E�ects Model, Section 3.2) gives algebraic solutions for the estimates of the
e�ects of the covariates and both sets of dummies. Essentially, there is a matrix that
sweeps out both sets of dummies in one go, which means that a regression involving
transformed variables is performed. For the model here, there are two important
di�erences. First, in Baltagi the data are balanced, whereas here both workers and
�rms can enter and exit the panel. Wansbeek & Kapteyn (1989) analyse Baltagi's
model for unbalanced data, and obtain inelegant expressions that involve generalised
inverses. Second, there is not a regular pattern between the �rm and worker dummies

6The Stata code to estimate each of them can be downloaded from
http://www.arbeitsmarkt.wiso.uni-erlangen.de/schank.htm.
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as there is between Baltagi's individual and time dummies. It is the second that is
the important di�erence, because it means that there is no algebraic transformation of
the observables that sweeps away both heterogeneity terms in one go and which allows
them to be recovered subsequently. To circumvent this second problem, AKM note
that explicitly including dummy variables for the �rm heterogeneity, but sweeping out
the worker heterogeneity algebraically, gives exactly the same solution as the LSDV
estimator.7

More precisely, the investigator must generate a dummy variable for each �rm:

F j
it = 1(j(i, t) = j) j = 1, . . . , J,

where 1( ) is the dummy variable indicator function and the function j(i, t) = j maps
worker i at time t to �rm j. Now substitute

ψj(it) =
J∑

j=1

ψjF
j
it (5)

into Equation (4).8 The θi are removed by time-demeaning (or di�erencing) over i:

yit − ȳi = (xit − x̄i)β + (wjt − w̄i)γ +
J∑

j=1

ψj(F
j
it − F̄ j

i ) + εit, (6)

where z̄i =
∑

t zit/Ti for any variable z. This means that J de-meaned (or di�erenced)
�rm dummies actually need creating.9 To distinguish this estimator from LSDV above,
hereafter we label this estimator FEiLSDVj. They are identical estimators, but di�er
in how they are computed. The covariance matrix for FEiLSDVj needs the standard
degrees-of-freedom adjustment, the formula for which is given in the next subsection.

We should note that (F j
it− F̄ j

i ) will be zero for all J dummies for any worker i who does
not change �rm. Furthermore, if we have a sample of �rms, it will only be non-zero for
workers who change from one �rm within the sample to another �rm in the sample.
This means that for samples such as the LIAB, only a tiny proportion of workers have
any non-zero terms. Identi�cation of ψj is driven by the total number of such movers in
each plant j. Some small plants may have no movers, in which case ψj is not identi�ed.
Other small plants may have only a very few movers, in which case estimates of ψj

7In linear models, there is no distinction between removing the heterogeneity algebraically or adding
two full sets of dummy variables, for workers and �rms, and so the terminology LSDV applies to both.

8Equation (5) shows that it would be better to use non-Greek letter for heterogeneity ψj(it), because
it is a variable, not a parameter.

9Di�erencing is ignored hereafter. There are various reasons why it is easier to implement the
covariance transformation. Normally, the decision whether to estimate the model in �rst di�erences
or use the covariance transform depends on which give the more e�cient estimates. Both estimators
are consistent. See Wooldridge (2002, Section 10.6.3).



8

will be very imprecise. This means that it may be not be sensible to estimate ψj for
small �rms, and instead one should group small �rms together (this is what AKM and
others do.)

To obtain estimates of the heterogeneity, �rst compute

ψ̂j(it) =
J∑

j=1

ψ̂jF
j
it (7)

and then
θ̂i = ȳi − ψ̂i − x̄iβ̂ − w̄iγ̂

where ψ̂i averages ψ̂j(it) over t.

There are two potential computational problems with this estimator. The �rst is
the number of �rms J , because the software needs to invert a matrix of dimension
(K + J) × (K + J). For many applications, the number of �rms is su�ciently small
that FEiLSDVj is computationally feasible. For example, StataSE inverts 11,000 x
11,000 matrices. In our own empirical work, for reasons explained below, we only need
to add approximately 2,000 �rm dummies. There are many other situations where the
number of �rms/schools/doctors is su�ciently small. However, some datasets have tens
of thousands of �rms, or even hundreds of thousands (for, example, AKM and ACK).
The second is the requirement that one must create and store J mean-deviations for N∗

observations, meaning that the data matrix is N∗×(K +J). This may be prohibitively
large for software packages which store all data in memory, such as Stata.

Some improvement in the storage e�ciency of the J mean-deviated �rm dummies
can be achieved in Stata by using the lowest common multiple of all values of Ti.
For example, if the data span a maximum of 5 years then Ti can be any value from
[1, 2, 3, 4, 5]. Multiplying F j

it − F̄ j
i by the lowest common multiple (in this case 60)

yields a set of integers which can be stored in Stata as single bytes rather than 4- or
8-byte fractions.10

The memory requirements of the data matrix for the FEiLSDVj estimator are then
approximately (N∗J)+4[N∗(K+1)] bytes. We require N∗J bytes for the mean-deviated
�rm dummies and 4[N∗(K + 1)] bytes for the remaining K explanatory variables and
the dependent variable, assuming each is stored as 4-bytes. In our example we have
N∗ = 5, 145, 098, J = 1, 821 and K = 64, meaning that we require about 10GB of
memory to proceed.

It is worth emphasising that �rm dummies are no di�erent from any multi-category
dummy, so long as workers can move from category to another over time (e.g. region

10Storing the mean-deviated �rm dummies as integers also appears to improve the accuracy of the
matrix inversion procedure.
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dummies, but not ethnicity dummies). This is why the notation wjt and qj is possibly
confusing, since both are de�ned over every row indexed it. (Note that AKM use the
notation J(i, t) to denote the mapping from worker i at time t to the �rm j in which
they are employed.) This means that the index j refers to the level of aggregation that
wjt actually varies over.

Identifying the unobserved firm effects

An important issue is establishing how many unique unobserved �rm e�ects can be
identi�ed. First, e�ects cannot identi�ed for �rms which have no turnover; otherwise,
F j

it − F̄ j
i = 0. Second, note that the �rm dummies, when in mean-deviations, form a

collinear set of variables
J∑

j=1

(F j
it − F̄ j

i ) = 0.

This is simply a consequence of having a collinear set of �rm dummies, which sum to
the constant before forming mean-deviations, and therefore sum to zero afterwards. In
such a situation, one drops one of the �rm dummies.

However, there is an additional identi�cation issue, discussed by ACK. Identi�cation of
�rm e�ects is only possible within a `group', where a group is de�ned by the movement
of workers between �rms. A group contains all the workers who have ever worked for
any of the �rms in that group, and all the �rms at which any of the workers were
employed. A second (unconnected) group is de�ned only if no �rm in the �rst group
has ever employed any workers in the second, and no �rms in the second group have
ever employed any workers in the �rst. If there are G separate groups of �rms, then it
is not possible to identify one �rm per group for the reason above.

ACK conclude that the number of estimable/identi�ed person and �rm e�ects is N +

J − G, where N is the number of workers observed twice or more. Thus the correct
degrees of freedom when estimating Equation (4) is N∗ − K − (J − G) − N . When
estimating Equation (6), the actual correct degrees of freedom are N∗ −K − (J −G),
and so estimated standard errors need scaling by

√
N∗ −K − (J −G)

N∗ −K − (J −G)−N
. (8)

A second implication of the grouping of �rms is that estimates of ψ̂j cannot be directly
compared across groups. This is because it is arbitrary which ψj is set equal to zero
for normalisation in each group. The same issue applies to the resulting θ̂i. ACK
suggest making the additional assumption that the average �rm e�ect is the same
across groups.
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We have implemented the grouping algorithm in Stata.11

Identifying the effects of time-invariant variables

If the investigator can implement the LSDV estimator on i-de-meaned data (FEiLS-
DVj), or implement one of AKM's other methods (discussed brie�y below), AKM
suggest that one can recover estimates of α̂i and φ̂j by estimating Equations (2, 3) as
follows. First, run the auxiliary regressions:

θ̂i = const + uiη + error (9)
ψ̂j = const + qjρ + error (10)

which give consistent estimates of η, ρ (AKM 1999, Section 3.4.4). Because αi is
dropped from (2), the identifying assumption is that Cov(ui, αi) = 0 or else there is
omitted variable bias. Similarly, Cov(qj, φj) = 0 is assumed in (3). One only needs N

observations to estimate (2) and J observations to estimate (3). AKM estimate these
equations by GLS, because of the aggregation to the �rm-level. Because there are other
causes of heteroskedasticity, one could use OLS and adjust the covariance matrix for
clustering at the �rm-level. Second, the investigator computes

α̂i = θ̂i − uiη̂ (11)
φ̂j = ψ̂j − qjρ̂ (12)

which are unbiased and asymptotic in Ti (Chamberlain 1984). θ and ψ can be de�ned
at three levels of aggregation:

i, t θi replicated Ti times ψj(i,t)

i θi ψ̄i =
∑Ti

t=1 ψj(it)/Ti

j θ̄j =
∑

(it)∈j θi/Nj ψj

(Nj is the total number of worker-years observed in �rm j.) AKM show that statistics
based on aggregating θ̂i and α̂i to the level of the �rm are consistent. To conclude, one
can analyse distributions of ψ̂j, θ̂i, speci�cally to see whether they are correlated.

11The Stata code to calculate a grouping indicator for linked employer-employee data can be down-
loaded from http://www.arbeitsmarkt.wiso.uni-erlangen.de/schank.htm.
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3.2 AKM's approximate methods

To deal with the large number of �rm dummies, AKM propose a number of techniques
in their (1999) paper that reduce the dimensionality of the problem. These require
imposing further (testable) orthogonality assumptions. We do not discuss these further
because ACK have recently developed a numerical solution for the LSDV estimator
above.

3.3 ACK's Direct Least Squares (DLS)

ACK, in addition to providing a more accessible discussion of their earlier papers,
provide a numerical solution to the LSDV estimator of (1). They call it a Direct Least
Squares Algorithm. They also make it clear that these methods are only relevant if one
wants to estimate the heterogeneities. Finally, they re-estimate their original models on
Washington and French data, and show that the AKM approximate methods reported
in their (1999) paper give poorish results for the French data. Their solution involves
an iterative technique that does not look easy to implement in standard software such
as Stata.12 More importantly, it is not regression based. The software is available from
Abowd's website http://instruct1.cit.cornell.edu/~jma7/abowdcv.html.

3.4 Spell FE

If one is not interested in the estimates of θi and ψj themselves, consistent estimates
of β and γ from Equation (4) are straightforward to obtain by taking di�erences or
by time-demeaning within each unique worker-�rm combination (or `spell'). This is
because for each spell of a worker within a �rm neither θi nor ψj vary. De�ning
λs ≡ θi + ψj as spell-level heterogeneity, which is swept out by subtracting averages at
the spell-level, both θi and ψj have disappeared:

yit − ȳs = (xit − x̄s)β + (wjt − w̄s)γ + (εit − ε̄s).

Again, the e�ects of u and q are not identi�ed, because ui − ūs = 0 and qj − q̄s = 0.
In addition, any variable xit or wjt which is constant within a spell will also not be
identi�ed. One observation per spell is used up in identifying each spell �xed e�ect.13

This is basically the method that AKM discuss in Section 3.3, except they use dif-
ferences rather than mean-deviations. AKM do not label this technique, so we call it

12Gruetter & Lalive (2003) also have an iterative technique, but it does not provide a covariance
matrix.

13If there is just one observation per spell, then yit − ȳs = 0, xit − x̄s = 0, wjt − w̄s = 0. This
`singleton' result can used to reduce the sample size (by not much).
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Spell FE or FE(s). AKM state that it is consistent, ine�cient, and �cannot be used to
identify separately the �rm intercept . . . and the person e�ect�. It is clearly consistent
as all the heterogeneity has been removed, and it is not the most e�cient estimator
because LSDV is. Because one cannot separate the worker and �rm heterogeneities,
AKM do not pursue this method further.

As when estimating any �xed-e�ects model, the standard errors may need correcting
for the number of spells that the software has `forgotten' about14

√
N∗ −K

N∗ −K − S
.

Unfortunately, given estimates of λ̂s, one cannot recover θ̂i and ψ̂j. Even if S > N +J ,
so that one could regress λ̂s on worker and �rm dummies, all that has happened is that
β has been partitioned out of the problem, reducing the size of the problem by just K.

It is worth emphasising, however, that for many researchers this `spell �xed e�ects'
method is a practical and simple solution which does not present any computational
di�culty, providing the investigator is not interested in analysing the heterogeneity
post-estimation.

Spell FE is trivial to implement in Stata.15

Identifying the effects of time-invariant variables: Spell FEIV

We develop this method further to estimate the e�ects of time-constant variables u and
q, which get swept away being constant within a spell. Consider the standard one-way
�xed-e�ects model (say, using worker-level data only)

yit = µ + xitβ + θi + uit. (13)

The standard FE estimator of β can be interpreted as an IV estimator (Verbeek 2004,
Section 10.2.5):

β̂FE = [ΣiΣt(xit − x̄i)
′(xit − x̄i)]

−1ΣiΣt(xit − x̄i)
′(yit − ȳi)

= [ΣiΣt(xit − x̄i)
′xit]

−1ΣiΣt(xit − x̄i)
′yit

xit − x̄i is an ideal IV for any scalar xit because: (i) it is uncorrelated with the unob-
servable θi, and (ii) it is correlated with xit.

14Stata has a command areg which does not need this correction. Also, it can correct the standard
errors for clustering, which, in this context, should be at the �rm level. Wooldridge (2002, p. 57)
explains why this correction is needed even when there is clustering.

15See do-�le downloadable from http://www.arbeitsmarkt.wiso.uni-erlangen.de/schank.htm.
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This implies one can estimate Equation (13) by IV GLS with xit − x̄i as an IV for xit.
The other extreme case uses xit as an IV, which generates the random e�ects estimator.

The objective here is to estimate the parameters of Equation (1), not Equation (4).
The above argument implies that it is possible to estimate the parameters on the time-
varying variables by time-demeaning them, and to estimate the parameters of the
time-invariant variables using random e�ects. This approach can be thought of as `in
between' the FE estimator (which cannot estimate the parameters on time-invariant
variables) and the RE estimator (which does not allow for any correlation between
the time-varying variables and the unobservable heterogeneity). All variables that are
correlated with unobservables (xit, wjt) are instrumented by their mean deviations
xit− x̄s and wjt− w̄s respectively. This is not possible for the time invariant variables,
(u, q), which can only be instrumented by themselves, which means we are assuming
that Cov(ui, αi) = 0 and Cov(qj, φj) = 0. In other words we are making exactly the
same assumptions for u and q as we have done throughout, which is why Spell FEIV
is a side-issue. This is a special case of Hausman & Taylor's (1981) estimator.

3.5 Two-step method

The main problem with the FEiLSDVj estimator is that it requires the inversion of a
(K + J) × (K + J) cross-product matrix. As noted, in some cases J may be only a
few thousand, and so the estimator is feasible. This is particularly true where we have
a sample of plants, and if we only attempt to identify the �rm e�ects for larger �rms.
There is another constraint however, which is the sheer number of observations, even
when J is su�ciently small. This is because the data matrix is N∗ × (K + J), and
might be prohibitively large for software packages that store data in memory rather
than on disk. To circumvent this problem, we propose the following two-step method,
based on the fact that only movers between �rms identify �rm e�ects.

In the �rst step, the investigator estimates Equation (6), but only using those obser-
vations that identify the ψjs. These are workers who move between �rms. As above,
compute ψ̂j(it) (and θ̂i) where they are identi�ed. ψ̂j(it) does not exist for plants that
have no movers, and a normalisation restriction is needed for each `group' of connected
plants.

In the second step, the investigator estimates the following version of Equation (4),
using all the data where ψ̂j(it) exists:

yit = xitβ +wjtγ + θi + δψ̂j(it) + εit.

In other words, the �rm-level heterogeneity term ψj is replaced by estimates from the
�rst stage (where δ is a scalar.) He then takes deviations from worker means, as per
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usual:
yit − ȳi = (xit − x̄i)β + (wjt − w̄i)γ + δ(ψ̂j(it) − ψ̂i) + εit (14)

Using ψ̂j(it) and the second-step estimates, denoted ,̃ the investigator then computes

θ̃i = ȳi − x̄iβ̃ − w̄iγ̃ − ψ̂i

θ̃i and ψ̂j can be analysed in the usual way, namely to compute the correlation between
them, and to run regressions (9,10) above to recover estimates on the time-invariant
variables.

3.6 A road map?

To conclude the discussion of the methods discussed in this section, we outline a �ow
chart that should help the investigator decide which method is appropriate for his
needs.

1. Does the investigator want to estimate employer and employee heterogeneity?

No Use Spell-level FE

Yes . . .

2. Are there too many �rm dummies to add `by hand'?

Yes Use AKM techniques

No . . .

3. Is there enough memory?

Yes Use (transformed) �rm dummies (FEiLSDVj)

No Use the Two-step method

For all methods, one can recover estimates on ui and qj making standard RE assump-
tions. The Stata code for estimating all of the models outlined in this section, apart
from ACK's DLS, can be downloaded from
http://www.arbeitsmarkt.wiso.uni-erlangen.de/schank.htm.
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4 The data (LIAB)

4.1 The IAB establishment panel (Betriebspanel)

The IAB (Institut für Arbeitsmarkt� und Berufsforschung) collect their own demand
side data: the Betriebspanel is an establishment panel of ≈ 8, 000 establishments lo-
cated in the former West Germany and ≈ 8, 000 establishments in the former East
Germany. It covers the period 1993�present (1996�present for East Germany) and
covers 1% of all plants and 7% of all employees in the population. The establishments
are selected using a fairly complicated weighting procedure. (See Kölling (2000) for
full details on the Betriebspanel.) Information on each establishment includes:16

• Total employment (also disagg'd) (size1-size10)

• Standard (lhbar) and overtime hours

• Wage recognition (B,B1,B2)

• Output

• Exports

• Investment (inv)

• Wage bill

• Urbanicity (urban1-urban10)

• Geographical location

• Nationality of ownership (foreign in 2000)

• Technology (subjective measure)

• Organisational change (subjective measure)

• Pro�tability (profit1-profit5)

• Age of plant (vin) and whether parent is a single-plant �rm (single)

16If variables are used in tables below, their acronyms are also given. For full de�nitions, see Table 2.
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4.2 The employment statistics register (Beschäftigtenstatistik)

On the other side of the labour market, the IAB has access to the employment statistics
register (Beschäftigtenstatistik). It is an administrative panel of all employees who are
covered by the social security system (about 80% of total employment), and is collected
by the plant. There is at least one compulsory noti�cation during each calendar year. It
covers 1975�present for West Germany and 1992�present for East Germany. It contains
about 400 million records, covering about 46 million employees. (See Bender, Haas &
Klose (2000) for full details on the Beschäftigtenstatistik.) Information on each worker
includes:

• Gender (female), age (age), nationality (foreign), marital status (married)

• Start and end dates of every employment spell (mjob for more than one job)

• Occupation (3-digit) (occ1-occ6)

• Daily wages (left truncated and right censored) (lw, but see below for more
information)

• Quali�cations: education/apprenticeship (qual1-qual6)

• Industry (ind1-ind10)

• Region

• Establishment identi�cation number

4.3 The linked IAB employer-employee data (LIAB)

By using the establishment identi�cation number, the IAB are able to associate each
worker in the Beschäftigtenstatistik with an establishment in the IAB panel. Note that
it is also possible to aggregate up all workers (not just those employed by establishments
in the panel) to the establishment level. The particular dataset we use for this study
was created by selecting all employees in the employment register who are employed by
the surveyed establishments on June 30th each year. The data we use cover 1990�97
and contain 118,399,405 observations (it rows).

4.4 Sample used for wage equations

To illustrate the techniques outlined above, we estimate various standard wage equa-
tions. The sample we use covers 1993�97, that is 1 ≤ Ti ≤ 5, and is for West Germany
only. We also drop observations for apprentices, part-timers, homeworkers and those
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with a daily wage of less than 10 DM . In addition, the data are right-censored.17 As
always, we also drop observations with missing values.

Workers change plants, and in particular, can change between plants that are surveyed
in the IAB panel and plants that are not. In this study, we keep only those years
(it rows) when a worker is working in an IAB-panel plant. This is because we don't
observe wjt or qj in those years when a worker is working for a non-IAB plant. Table 1
summarises the data, in exactly the same format used by AKM.

[TABLE 1 ABOUT HERE]

Identi�cation of unobserved plant-e�ects is driven only by those workers who change
plants. Thus an important sub-sample comprises those workers who have two or more
spells (Si > 1) in IAB plants (`IAB movers'). In Table 1, workers who return to the
same employer after an intervening spell with another employer are coded as starting a
new spell. In Section 3.4, a spell is de�ned as any unique worker/employer combination,
and so all periods a worker spends with a given employer are coded as a single spell.
This is why there are 1,954,242 spells in Table 1 but only 1,953,774 spells in the
regression sample. This, and the sample of IAB movers, is summarised below.

all IAB movers
No of obs 5,145,098 72,253
No of inds 1,930,260 23,393
No plants 4,376 1,821
Obs/inds 2.67 2.69
Inds/plant 441 997
No spells 1,953,774 46,635

The 72,253 observations comprise 23,272 workers with 2 spells and 121 workers with
3 spells. This makes 23,393 workers who have at least two spells. The total number
of spells is 2*23,272 + 3*121 = 46,635 spells, although only 23,272 + 2*121 = 23,514
spells are usable in spell-level �xed-e�ects regressions, as the �rst spell for each workers
is not used (which is why workers with only one spell are not in this sample.)

Are these samples representative? As already discussed, the IAB-panel plants over-
represent large plants in the population, and so workers in IAB plants are not a random
sub-sample of the population. It is also possible that the 23,393 workers who move
between IAB plants may not a random sub-sample of 1,930,260; exactly the same issue
arises in all panel data models, which rely on movers for identi�cation. (For example,
estimates of union wage di�erential based on a sample of joiners/quitters.)

Table 2 reports sample means: the �rst three columns average by workers whereas
columns four to six average by plants. For example, in column one, the regression

17In a paper that is concerned with methods, this is not as issue, although one could deal with this
in the same way as Gruetter & Lalive (2003, p.6).
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sample, 22.95% of workers are female whereas, on average, each plant employs 34.76%
females (column four). These sets of means are often di�erent from each other because
of the underlying nature of the plant-size distribution. Workers are much more likely to
work for large plants rather than small plants. Because large plants have higher wages,
average log earnings are much smaller in column four than in column one. There are
also big di�erences in sample means for whether married, quali�cations, industry, union
bargaining, investment and the age of the plant.

Column two corresponds to column one, but for the 23,982 workers who move between
IAB plants. The di�erence between columns one and two is in column three. Column
�ve corresponds to column four, but for the 1,821 plants that experience `IAB turnover',
that is employ workers who move between IAB plants. The di�erence between columns
four and �ve is in column six. As we only identify 1,821 plants out of 4,376, the obvious
question is whether these plants are observably the same, on average, as the 4,376? The
same question applies to whether the 23,393 movers are observably the same as the
1,930,260 workers. In fact, the 1,821 plants pay lots more (0.1678 log-points), employ
fewer females, employ more married workers, tend to be bigger �rms located in di�erent
industries, and invest more (column six). Looking at individual workers, movers only
get slightly more pay (0.0327 log-points), are younger, are less likely to be women,
are more highly quali�ed, and are employed at plants with lower investment (column
three).

[TABLE 2 ABOUT HERE]

Even if this sub-sample is not random, it does not follow that the estimates of 1,821 ψ̂j

are inconsistent. This depends on what causes movement. If based on match quality,
say f(α, φ), then estimates are consistent because α, φ are swept away. However, it
is a strong assumption to suggest that movement is independent of ε; any shock that
a�ects workers and �rms suggests that movement and ε are correlated.

We conclude this discussion on the identi�cation of unobserved plant-e�ects by counting
the number of movers for each plant. Figure 1 plots the cumulative frequency for the
number of plants against the number of movers. For example, one plant has 1,886
movers, but 472 plants only have one mover, and 2,555 plants have no movers at all.
This is a very skewed distribution, and is is a feature of linked employee-employer
datasets. The IAB panel is a 1% sample of plants. Even though it is a large sample,
the probability of observing a worker moving from one IAB plant to another is very
small. Even if one observed the population of plants, very small plants plants would
experience little or no turnover in a �ve-year period, making estimation of their ψj

very noisy.

One possible strategy the investigator might adopt is to only identify ψj for plants
with more than x movers, and group all remaining small plants into one plant (Abowd
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et al. 2002). Using Figure 1, we set x = 30, giving 211 large plants and one small plant
(albeit with a lot of employees). To conclude, it is important for the investigator to
be aware of how little information is sometimes used to identify each unobserved plant
e�ect, especially if plants are small.

5 Results

[TABLE 3 ABOUT HERE]

Table 3 reports three conventional models, so described because they control for het-
erogeneity from only one side of the market, at best. The �rst is labelled Pooled OLS,
which is Equation (1) where neither αi nor φj are controlled for, of which there are
three variants. The �rst only includes worker-level covariates, the second only plant-
level covariates, and third includes both sets. The idea here is to assess the extent to
which estimates on worker-level covariates are a�ected by the absence of plant-level
covariates, and vice versa�in other words, to assess the extent to which the two sets
of covariates are correlated with each other. A comparison of the estimates shows
that the estimates do change, but not by much. The plant-level covariates move more,
which is expected, given their standard errors are generally bigger.

The second model is labelled FE(i), i.e. the worker-level heterogeneity θi is controlled
for, but φj becomes part of the model's error term:

yit = µ + xitβ +wjtγ + qjρ + θi + (φj + εit)

Notice that the e�ects of the time-invariant worker-level variables ui are not identi�ed,
namely foreign and female. The extent to which an estimate moves compared with
Pooled OLS (previous column) depends on the extent to which θi is correlated with
observed covariates. Here there are some large movements. Notice that Stata reports
an estimate of the correlation between the deterministic part of the regression and
θi (`corr(ui,Xb)'), and there is very strong negative correlation of �0.66, which is a
di�erent manifestation of the same thing.18

The third model is labelled FE(j)

yit = µ + xitβ + wjtγ + uiη + ψj + (αi + εit)

Now the plant-level heterogeneity ψj is controlled for, but αi becomes part of the
model's error term. The e�ects of the time-invariant plant-level variables qj are not
identi�ed, namely industry dummies and a dummy for whether the plant is single.

18`corr(ui,Xb)' varies from model to model. For FE(i), it is the correlation between θ̂i and xitβ̂ +
wjtγ̂ + qjρ̂.
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This is not a model that one would normally estimate, but is useful if the investigator
cannot control for both ψj and αi simultaneously, because it at least indicates the
extent to which ψj is correlated with the observed covariates. Here the correlation
between ψj and the deterministic part of the model is much weaker, and positive, at
0.08.

What is missing, of course, is that we do not control for any correlation of both un-
observed �xed e�ects, φj and αi, with observable characteristics. Table 4 reports two
models that do exactly this.

[TABLE 4 ABOUT HERE]

The �rst of these is FE(s), the easy-to-use technique that removes spell-level hetero-
geneity (Section 3.4 above). The e�ects of all time-invariant covariates are not identi-
�ed, but the estimates of the time-varying covariates are consistent. If the investigator
is not interested in estimating the worker- and plant-heterogeneities, he can stop here.
Comparing these estimates with Pooled OLS and FE(i) in the previous table is of some
considerable interest, as these are the better estimates. Notice that the correlation be-
tween the deterministic part of the regression and λs is −0.56, which is approximately
equal to the sum of those from FE(i) and FE(j). Given that λs = θi + ψj, this is not
surprising. The IV version that estimates the e�ects of time-invariant variables, under
the extra assumptions Cov(ui, αi) = Cov(qj, φj) = 0, is reported in the second column.
The estimates of the time-varying covariates are virtually identical.

Following the `road-map' outlined in Section 3.6, the next decision is to ascertain
whether there are too many plant dummies to add `by hand' when estimating Equa-
tion (6). This technique, if feasible, is labelled FEiLSDVj. `By hand' means that
dummies for each plant are explicitly added to the regression like any other covariate;
that is, cannot be dealt with algebraically. In the models being estimated here, we
have 5,145,098 observations, and need J − G = 1, 821 − 33 = 1, 788 plant dummies,
these being those plants which have IAB turnover, i.e. movers to/from another IAB
plant. The memory needed is too prohibitive. As discussed on Page 8, we consider
implementing the trick whereby we multiply the dummies by 60 so that they are stored
as single bytes. This didn't work: we have N∗ = 5, 145, 098, J = 1, 821 and K = 64,
meaning that we still require about 10GB of memory to proceed.

Thus the only way forward is to use the Two-step method outlined in Section 3.5.
This is the second model in Table 4. In the �rst step, we estimate Equation (6),
but only using the 72,253 observations (23,393 IAB movers) that identify the 1,821
ψjs. This is reported in the column labelled `1st Step'. The estimates on the plant
dummies are then used to form the single variable ψ̂j, using Equation (7). Note that
we only identify 1,788 plants, not the 1,821 in the dataset. This is because there are
33 `groups' of unconnected plants, and one plant per group is not identi�ed. Each
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ψ̂j is normalised on the average ψ̂j for its group g. In the second step, ψ̂j is added
to a standard model with worker-level heterogeneity, which is removed using worker
mean-deviations, i.e. Equation (14). This is reported in the column labelled `2nd
Step'. Because 33 ψ̂js are not identi�ed, the resulting number of observations falls to
4,873,901, corresponding to 1,812,562 workers. The last two columns in Table 4 report
estimates of the auxiliary regressions shown in Equations (9, 10), whereby estimates
of the time-invariant covariates [ui,qj] are recovered, under the usual assumptions
Cov(ui, αi) = Cov(qj, φj) = 0.

In the Two-step method, one would expect that the estimate on ψ̂j(i,t) to be close to
unity, which might be viewed as some form of speci�cation check. The actual estimate
is 0.943, which is about three standard errors lower than unity.

The FE(s) and Two-step methods give very similar estimates of the time-varying co-
variates, which illustrates that the Two-step method also gives consistent estimates of
β and γ. However, the estimates of the time-invariant covariates do di�er, probably
because the estimates ψ̂j(i,t) used as a dependent variable in the last column are un-
reliable, given the discussion on their identi�cation above. The estimates for the θ̂i

regression are much closer to Spell FEIV.

As emphasised repeatedly, the advantage of the Two-Step method over FE(s) is that
estimates of θi and ψj are obtained. The means of these two distributions are not
identi�ed, but estimates of their variances are easily computed, as is the correlation
between them. It is the correlation that is particularly interesting, since it estimates
the extent to which unobservably `good' workers are employed in unobservably `good'
plants. The correlations between ψ̂j, the �rst-step estimates θ̂i, and the second-step
estimates θ̃i, are reported below. Correlations with the corresponding estimates α̃i =

θ̃i − uiη̃ and φ̂j = ψ̂j − qjρ̂ are reported for completeness (see Equations (11,12)) but
are of less interest:

θ̃ θ̂ ψ̂ α̃ φ̂

θ̃ 1.0000
θ̂ 0.9291 1.0000
ψ̂ -0.1684 -0.1608 1.0000
α̃ 0.9596 0.9055 -0.2097 1.0000
φ̂ -0.2021 -0.1846 0.9313 -0.2371 1.0000
Uses 4,883,331 it observations.

The important �nding is that corr(ψ̂, θ̃) = −0.1684. This correlation has the wrong sign
if one expects that unobservably `good' workers would be employed in unobservably
`good' plants. However, all of the literature (summarised brie�y in the Introduction)
�nds a negative correlation, which gives rise to the question as to whether this a
genuine economic phenomenon or whether we there is a technical issue insofar as this
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estimate is downwards biased. Our own view is that it is the latter (Andrews, Schank
& Upward 2004), and that the size of the bias decreases with the number of movers
used in estimating each ψ̂j.

Under the assumptions of the model, we have now consistent estimates of all the
components of the RHS of Equation (4)

yit = xitβ̂ + wjtγ̂ + θ̂i + ψ̂j + ε̂it

where the hat now refers to any consistent estimate (Two-step, FEiLSDVj, or AKM's
DLS). This allows us to analyse the correlations between the observed and unobserved
components of wages, on both sides of the market:

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.1684 1.0000
xitβ̂ 0.0235 0.0361 1.0000
wjtγ̂ 0.0306 -0.3198 0.0033 1.0000
Uses 4,883,331 it observations.

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.1574 1.0000
xitβ̂ 0.0148 0.0531 1.0000
wjtγ̂ 0.0028 -0.3558 -0.1138 1.0000
Averages to 1,816,368 i observations.

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.4339 1.0000
xitβ̂ 0.0508 0.1148 1.0000
wjtγ̂ 0.1006 -0.3974 -0.0267 1.0000
Averages to 1,821 j observations.

Even though aggregating information to the plant-level means that estimators remain
consistent, it is noticeable that correlations get bigger in absolute size. Looking at
the it-level correlations, they generally make sense, except for those involving ψ. In
particular, corr(ψ,wγ̂) = −0.3198 looks somewhat awry, as well as corr(ψ̂, θ̃) discussed
above. The observed components are uncorrelated with each other, corr(xβ̂,wγ̂) =

0.0033, which means that ignoring information from one side of the market does not
a�ect estimates from the other side. All of the other cross-market correlations are small:
corr(θ̂,wγ̂) = 0.0306 and corr(ψ̂,xβ̂) = 0.0361. Also, the unobserved and observed
components of workers' wages are uncorrelated, corr(θ,xβ̂) = 0.0235. In short, it is
the three correlations that involve ψ̂ that looks wrong, and con�rms these estimates of
ψ are often `poor', being identi�ed from plants that have very little turnover.
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To investigate this further, we group all but the smallest 211 plants into one plant,
reported in Table 5.19 Now all the plants are connected, i.e. G = 1. One advantage
of doing this is that we are able to estimate the model using FEiLSDVj (�rst three
columns), which is the estimator with the best properties. This allows us to make two
comparisons. The �rst is to re-estimate the model using the Two-Step method (�nal
three columns), thereby compare the two estimation methods directly. The second is
that this Two-Step method for a model with 212 plants can be compared with the same
method applied to the model that has 1,821 plants, discussed immediately above and
reported in Table 4. (Note that we do not report the 1st Step estimates in Table 5.)

The estimates reported in columns one and four are very similar to each other, as are
the standard errors, which illustrates clearly that our Two-Step method has a lot to
recommend it. One obvious reason why there are di�erences between the two methods
is that the sample sizes di�er, for reasons already explained. Also notice that the
estimate on on ψ̂j is 0.9872, and is now insigni�cantly di�erent from unity. The one
place where the two models di�er is that the estimates of the qj variables are somewhat
bigger, which suggests that the estimates ψ̂j for large plants exhibit sampling variation,
and therefore di�er across the two estimation methods. The sample correlation between
the ψ̂js for both models is 0.459 (but is much bigger for the second-step estimates of
θ).

The correlation between θi and ψj are −0.0172 for FEiLSDVj method and −0.0239

for the Two Step method. They are not exactly the same because the estimates of
ψ̂j di�er, but are considerably di�erent from the −0.1684 estimate that was discussed
above. This con�rms the main conclusion from Andrews et al. (2004) that the more
movers each plant has, the smaller is the downwards bias in the correlation. Thus the
estimate is a lower bound: we are not able to say is whether the true correlation is zero
or positive, but at least this rules out negative assortative matching.

6 An example: female and married

Here we look at the estimates on female (hereafter ui), married (hereafter xit), and
their interaction most of the estimators discussed thus far. These are summarised in
Table 6. Two further rows of estimates are reported, i.e. when the data are collapsed
to the plant-level by taking averages over all observations in a given plant. This is as if
we had plant-level data, but with observable covariates from both sides of the market.
One model is Pooled OLS, the other removes plant-level heterogeneity.

Our aim here is not to attempt to contribute to the literature on the e�ects of marriage
19Compared with the �gures given on Page 17, there are 62,668 movers, 20,313 individuals, 212

plants, and 40,719 spells.
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and gender, but simply to illustrate the e�ects on two-well known covariates of altering
the type of data observed (worker-level or plant-level) and the assumptions about
unobserved worker- and plant-level heterogeneity.

The �rst two rows report Pooled OLS estimates; of these, the �rst excludes plant-level
variables. Thus the second, in comparison, shows how the estimates move when data
from the plant are matched to worker-level data. The estimates change very little,
showing that both female and married are uncorrelated with, loosely speaking, the
plant-level covariates [qj,wjt]. Using the second row, we can see that marriage is good
for men, in terms of wages, by 0.0375 log-points, but is bad for women by a similar
amount, namely −0.0314 log-points (= 0.0375 − 0.0689). Comparing these estimates
with the next row, FE(i), we can see that the estimates become much smaller: 0.0058
on married and −0.0037 on the interaction. Comparing rows two and three suggests
that marriage for men is a proxy for unobserved heterogeneity αi and marriage for
women is a proxy for −αi, because the returns almost disappear once αi is controlled
for. This regression, as per usual, says nothing about the e�ect of gender on wages
(conditional on married, unmarried, or everyone), because gender is a �xed-e�ect.

Comparing Pooled OLS (row two) with FE(j) (row four) implies that plant-level het-
erogeneity is uncorrelated with either marriage or gender, because the estimates do not
move. This mimics the earlier result that cross-market correlations tend to be zero. At
this point we have controlled for both heterogeneity terms, but not together.

The next two rows are the two double heterogeneity methods, Spell FE and Two-
step. Both methods give very similar estimates�it does not matter which technique
is used�and again the estimates are small (less than one-half of one log-point). Also,
they are close to the estimates that only control for worker-level heterogeneity, FE(i).
An estimate on female can be obtained, making the usual random-e�ects assumption,
by regressing the estimates of θ̂i on all the time-invariant individual-level variables.
Not surprisingly, the estimate obtained −0.1369 is very close to the Pool OLS estimate
of −0.1436 (row two). This estimate, together with 0.0056 on married and −0.0036

on the interaction, represent the best that can obtained using these data.

The �nal two columns use the plant-level data. Here the covariates are proportion
of female workers in a plant, the proportion of married workers in a plant, and the
proportion of married female workers in a plant. The e�ect of aggregating the data
is seen by comparing the second column (Pooled OLS) with the penultimate column
(Plant-level, OLS), where all the estimates become much bigger in absolute values.20

Wooldridge (1999) analyses exactly this situation. The estimators are unbiased if the
worker-level model satis�es the Gauss-Markov assumptions and the worker-level errors
are independent of plant-size. These `errors' include αi and φj. One cannot assume

20It is easy to show that the e�ect of these estimates bear exactly the same interpretation after
aggregation.
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that unobservably good workers are equally likely to be employed in large and small
plants; similarly one cannot assume that unobserved plant-heterogeneity is uncorrelated
with plant-size. In other words, even if αi and φj were uncorrelated with observables
before aggregation, they might well be after aggregation. The second obvious source
of aggregation bias occurs because αjt and φj are correlated with the unobservables
before aggregation and remain so afterwards. In the model being estimated:

yjt = µ + xjtβ + ujη + φj + αjt + εjt,

one can control for plant-level heterogeneity by using plant-level �xed e�ects. This
makes the estimates on female*married much more in line with FE(j); the di�erence
between the -0.1241 and the -0.2669 estimates on married is due to the fact that
αjt is correlated with various observables and does suggest that the true estimate is
much larger than those that make the random-e�ects assumption. Thus one might
conclude that there is some bene�t to using aggregated plant-level data. If plants
do not experience turnover, their αjt are actually time-invariant, and get swept out,
together with φj, using plant-level �xed-e�ects. An estimate that assumes that αjt

is time-invariant when it is not (for those plants that experience turnover) might be
better than one that ignores αjt altogether.

7 Conclusions

The main objective of this paper is to illustrate that the analysis of matched employee-
employer datasets is more accessible than the investigators might imagine. We show
then show how they can be implemented in Stata. We illustrate with examples using
linked employer-employee data from Germany (the Linked IAB data).

There are two points worth emphasising. The �rst is that investigators who are in-
terested in estimating unobserved worker heterogeneity and unobserved worker het-
erogeneity, and who have a `large' number of plants, must use ACK's Direct Least
Squares algorithm. In this paper we explain how to make `large' as small as possible�
our Two Step method works well compared with the `correct' FEiLSDVj method�but
sometimes the regression-based techniques discussed here are not feasible.

The second point is to ask whether we actually learn we learn anything from these
estimates of the worker and �rm heterogeneities? It is important to emphasise that
the estimates of ψ̂j rely entirely on workers who change plants, as in any �xed-e�ects
model. If one has a sample of plants, as here, there are very few movers (we have
1.9 million workers, but only 23,000 movers). The estimates on ψ̂j need interpreting
with caution. Moreover, we suspect that the negative correlation usually found in such
studies is biased downwards, and this is caused by standard least-squares sampling
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error. This issue is investigated in a companion paper.

If we do not learn anything from these estimates of the worker and �rm heterogeneities,
or we are not interested in them, Spell-level FE (also labelled FE(s)) is very straight-
forward to use.
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Tables

Table 1: The regression samplea

Years in Number of Employers
Sample 1 1a 2 3 4 5 Total Percent
1 532,875 489,896 532,875 27.6%

1 1
2 479,653 448,502 7,604 487,257 25.2%

2 2 11
3 282,599 268,095 8,102 197 290,898 15.1%

3 3 21 111
4 325,833 312,517 5,082 220 0 331,135 17.2%

4 4 22 112 1111
5 285,907 273,965 2,018 168 2 0 288,095 14.9%

5 5 23 122 1121 11111
Total 1,906,867 1,792,975 22,806 585 2 0 1,930,260 100.0
Percent 98.8% 92.9% 1.2% 0.0% 0.0% 0.0% 100.0%

aFormat of this table copied from Table 1 in Abowd et al. (1999). We report the most
common employment con�gurations for each cell, which are described in terms of the number
of consecutive years spent with each of the worker's employers (e.g. con�guration 113 means
that the worker spent 1 year with his �rst employer, then 1 year with his second employer and
�nally 4 years with his third employer). Column 1a refers to the subset of workers with only
one employer whose employing plant had at least one other worker who had changed plants
at least once in his career.
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Table 6: Female and marrieda

female married female*married
Pooled OLS, w/o [qj ,wjt] -0.1568 (0.0049) 0.0401 (0.0050) -0.0723 (0.0041)
Pooled OLS -0.1436 (0.0040) 0.0375 (0.0031) -0.0689 (0.0032)
Within-i FE 0.0058 (0.0019) -0.0037 (0.0027)
Within-j FE -0.1241 (0.0026) 0.0419 (0.0015) -0.0641 (0.0023)
Within-s FE (Spell FE) 0.0056 (0.0020) -0.0036 (0.0028)
Two-step, 2nd step 0.0060 (0.0016) -0.0040 (0.0022)
Two-step, auxiliary -0.1369 (0.0059)
Plant-level, OLS -0.3050 (0.0245) 0.1204 (0.0200) -0.2316 (0.0405)
Plant-level, FE -0.2669 (0.0593) 0.0105 (0.0179) -0.0343 (0.0432)
aThe �rst seven regressions copied from Tables 3 and 4. See Section 6 for discussion

of the remaining two regressions.
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