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1 Introduction

The natural environment is being damaged by the stocks of various pollutants,

which are produced in different sectors of the economy, accumulate according to

different dynamic relationships, and damage different environmental goods. As an

example, think of the two economic sectors ‘agriculture’ and ‘industry’. Nitrate

and pesticide run-off from agricultural cultivation accumulates in groundwater and

decreases its quality as drinking water (UNEP 2002); carbon dioxide emissions

from fossil fuel combustion in the industrial sector accumulate in the atmosphere

and contribute to global climate change (IPCC 2001). In general, the different

pollutants differ in their internal dynamics, i.e. natural degradation processes, and

in their harmfulness. This has implications for the optimal dynamics of both the

scale and structure of the economy. By scale we mean the overall level of economic

activity, measured by total factor input; by structure we mean the composition of

economic activity, measured by relative factor inputs to different sectors.

In this paper, we look into these coupled environmental-economic dynamics

from a macroeconomic point of view. In particular, we are interested in the fol-

lowing questions: How should the macroeconomic scale and structure change over

time in response to the dynamics of environmental pollution? Is this dynamic pro-

cess monotonic over time, or can a trade-off between long-run and short-run con-

siderations (e.g. lifetime versus harmfulness of pollutants) induce a non-monotonic

economic dynamics? What is the time scale of economic dynamics (i.e. change

of scale and structure), and how is it influenced by the different time scales and

constraints of the economic and environmental systems? These questions are rel-

evant for the current policy discussion on the sustainable biophysical scale of the

aggregate economy relative to the surrounding natural environment (e.g. Arrow et

al. 1995, Daly 1992, 1996, 1999), and how economic policy should promote struc-

tural economic change as a response to changing environmental pressures (e.g. de
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Bruyn 1997, Winkler 2005).

We address these questions based on a model which comprises two economic

sectors, each of which produces one distinct consumption good and, at the same

time, gives rise to one specific pollutant. Both pollutants accumulate to stocks

which display different internal dynamics, in the sense that the respective natu-

ral deterioration rates differ, and cause welfare decreasing environmental damage

independently of each other. Of course, this relatively simple model cannot offer

detailed policy prescriptions. However, it is detailed enough to clarify the underly-

ing theoretical issues. In fact, we perform a total analysis of economy-environment

interactions in a twofold manner. First, we analyze a multi-sector economy, which

is fully specified in terms of resource endowment, technology, preferences and en-

vironmental quality. Second, we consider a ‘disaggregate’ natural environment.

This goes beyond many contributions to environmental economics, where either

only one (aggregate) pollutant is considered or different pollutants give rise to the

same environmental problem.

Many studies in the extant literature assume that it is the flow of emissions

which causes environmental problems. This neglects stock accumulation and, thus,

an essential dynamic environmental constraint on economic action. Stock pollution

has been taken into account by some authors (e.g. Falk and Mendelsohn 1993,

Forster 1973, Luptacik and Schubert 1982, Van der Ploeg and Withagen 1991).

This is usually done at a highly aggregated level, such that only one pollutant is

taken into account. The case of several stock pollutants which all contribute to

the same environmental problem (climate change) has been studied by Michaelis

(1992, 1999). He is interested in finding cost-effective climate policy measures

in the multi-pollution case for a given structure of the economy and does not

explicitly consider the dynamics of the production side of the economy. Aaheim

(1999) goes beyond Michaelis in that he analyzes numerically the dynamics of a

two-sector economy which gives rise to three different stock pollutants and which
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is constrained by an exogenously given policy target concerning the aggregate

level of pollution. Moslener and Requate (2001) challenge the global warming

potential as a useful indicator when there are many interacting greenhouse gases

with different dynamic characteristics. Faber and Proops (1998: chap. 11) and

Keeler et al. (1972) explicitly study the dynamics of different production sectors

with pollution, assuming one single pollutant. Winkler (2005) analyzes optimal

structural change of a two-sector economy characterized by two stock quantities:

the capital stock and the stock of a pollutant which is emitted from the more

capital-intense sector. Baumgärtner and Jöst (2000) study the optimal (static)

structure of a vertically integrated two-sector economy where both sectors produce

a specific by-product. The first sector’s by-product can be used as a secondary

resource in the second sector.

In this paper, we determine the optimal dynamic scale and structure of a

multi-pollution economy within an optimal control framework. We use a linear

approximation around the steady-state to obtain analytical results, and a numer-

ical optimization of the non-approximated system to check for their robustness.

The methodological innovation of our analysis is that we derive a closed form

solution to the intertemporal optimization problem, which includes explicit ex-

pressions for the time scale of economic dynamics and the point in time where

a non-monotonicity may occur. Our analysis shows that along the optimal time-

path (i) the overall scale of economic activity may be less than maximal; (ii) the

time scale of economic dynamics is mainly determined by the lifetime of pollu-

tants, their harmfulness and the discount rate; and (iii) the control of economic

scale and structure may be non-monotonic.

Although our modeling approach is inspired by Ramsey-type optimal growth

models, which have previously been used to study steady state growth with envi-

ronmental pollution (e.g. Gradus and Smulders 1993, 1996, Jöst et al. 2004, Keeler

et al. 1972, Plourde 1972, Siebert 2004, Smith 1977, Van der Ploeg and Withagen
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1991), we are essentially concerned with the issue of dynamic change in both scale

and structure of economic activity. Therefore, in this paper we do not restrict the

analysis to steady states but focus on the explicit time-dependence of the solu-

tion. Furthermore, we study an economy without any potential for steady state

growth, as this highlights the structural-change-effect, which may be obscured by

growth effects otherwise. The sole genuine generator of dynamics in our model is

the accumulation of pollutant stocks in the natural environment.

The paper is organized as follows. In Section 2 we present the model. Section 3

is devoted to a formal analysis of the optimal dynamic scale and structure of the

economy, based on a linear approximation around the stationary state. Section 4

confirms the analytical results thus obtained by a numerical optimization of the

non-approximated system. Section 5 concludes.

2 The model

We study a two sector economy with one scarce non-accumulating factor of pro-

duction, say labor, two consumption goods, and two pollutants that accumulate

to stocks. Welfare is determined by the amounts consumed of both consumption

goods, as well as by the environmental damage caused by the two pollutant stocks.

The production of consumption goods in sectors 1 and 2 of the economy is

described by two production functions, yi = P i(li) for i = 1, 2, where li denotes

the amount of labor allocated in sector i. With index l denoting derivatives with

respect to the sole argument li, P i
l ≡ dP i/dli and P i

ll ≡ d2P i/dl2i , the production

functions are assumed to exhibit the following standard properties:

P i(0) = 0 , P i
l > 0 , lim

li→0
P i

l = +∞ , P i
ll < 0 (i = 1, 2) . (1)

Since we want to analyze an economy without potential for steady state growth,

we assume a fixed supply of labor, λ > 0. Consumption possibilities are described

5



by

yi = P i(li) (i = 1, 2) , (2)

l1 + l2 ≤ λ . (3)

In addition to the consumption good, each sector yields a pollutant which comes

as a joint output in a fixed proportion to the desired output. Without loss of

generality,

ei = yi (i = 1, 2) . (4)

Both flows of pollutants, e1 and e2, add to the respective stock of the pollutant,

which deteriorates at the constant rate δi:
1

ṡi = ei − δisi with δi > 0 (i = 1, 2) . (5)

Instantaneous social welfare V depends on consumption of both goods, y1 and

y2, and on the damage to environmental quality which hinges upon the stocks of

pollutants s1 and s2. We consider the following welfare function:

V (y1, y2, s1, s2) = U(y1, y2) −
[σ1

2
s2
1 +

σ2

2
s2
2

]

with σ1, σ2 > 0 , (6)

where σi indicates the harmfulness of pollutant i (i = 1, 2) and U represents welfare

gains due to consumption. The function U is assumed to exhibit the usual property

of positive and decreasing marginal welfare in both consumption goods. In order to

have an additively separable welfare function in all four arguments (y1, y2, s1, s2),

we assume that neither consumption good influences marginal welfare of the other.

With index i denoting the partial derivative with respect to argument yi, i.e.

Ui ≡ ∂U/∂yi and Uij ≡ ∂2U/∂yi∂yj with i, j = 1, 2, the assumptions are:

Ui > 0 , lim
yi→0

Ui = +∞ , Uii < 0 , Uij = 0 (i, j = 1, 2 and i 6= j) . (7)

1In general, the decay rate may depend on emissions and the stock: δi = δi(ei, si). For

analytical tractability, we assume δi to be constant.
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Both stocks of pollutants exert an increasing marginal damage, which is captured

in the welfare function V , for the sake of tractability, by quadratic damage func-

tions. Furthermore, both stocks decrease welfare independently. This is plausible

if they damage different environmental goods. Thus, the welfare effect of one ad-

ditional unit of one pollutant does not depend on the amount of the other. Note

that the overall welfare function V is strictly concave.

Since we are interested in studying questions related to the scale as well as

the structure of economic activity, and in order to simplify the analysis of corner

solutions in the optimization problem, we introduce new dimensionless variables

in the following way:

c =
l1 + l2

λ
and x =

l1
l1 + l2

. (8)

The variable c stands for the scale of economic activity. It indicates what fraction

of the total available amount of labor is devoted to economic activity, and may

take values between 0 and 1. The remaining fraction 1− c is left idle. This can be

interpreted as an implicit form of pollution abatement. By not using all available

labor in the production of the consumption goods (and, consequently, emissions)

but leaving part of the labor endowment idle, the variable c can be thought of

as measuring the scale of economic activity in the sectors producing consumption

goods and pollution, whereas the fraction 1 − c of labor may be thought of as

being employed in (implicit) pollution abatement.2 The variable x stands for the

structure of economic activity. It indicates the fraction of the total labor employed

in production, l1 + l2, that is allocated to sector 1, and may take values between

0 and 1. The remaining fraction 1 − x is allocated to sector 2. The variables l1

2Not taking into account potential abatement activities for the scale of economic activity is in

line with arguments from the ‘green national product’ discussion, according to which defensive

and restorative activities should not be counted as augmenting the net national product (e.g.

Ahmad et al. 1989, World Bank 1997).
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and l2 can then be expressed in terms of c and x:

l1 = l1(c, x) = cxλ and l2 = l2(c, x) = c(1 − x)λ .

This allows us to replace l1 and l2 in the problem. For notational convenience,

we introduce new production functions F i which depend directly on c and x, and

which are defined in the following way:

F i(c, x) ≡ P i(li(c, x)) for all c, x . (9)

From (1) and (9) one obtains that the F i have the following properties:

F 1
c = xP 1

l λ > 0 , lim
c→0

F 1
c (x 6= 0) = +∞ , (10)

F 1
x = cP 1

l λ > 0 , (11)

F 2
c = (1 − x)P 2

l λ > 0 , lim
c→0

F 2
c (x 6= 1) = +∞ , (12)

F 2
x = −cP 2

l λ < 0 . (13)

3 Optimal scale and structure of the economy

Taking a social planner’s perspective, we now determine the optimal scale and

structure of the multi-pollution economy described in the previous section. The

control variables are the scale (c) and the structure (x) of economic activity. In

terms of pollution, the choice over c and x is a choice over (i) how much pollution

to emit overall, and (ii) what particular pollutant to emit. These are the two

essential macroeconomic dimensions of every multi-pollution allocation decision.

3.1 Intertemporal optimization

We maximize the discounted intertemporal welfare over c and x,

∫

∞

0

[

U(y1, y2) −
σ1

2
s2
1 −

σ2

2
s2
2

]

e−ρtdt , (14)
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where ρ denotes the discount rate and yi = F i(c, x) (i, j = 1, 2), subject to the

dynamic constraints for the two state variables s1 and s2 which are given by

Equations (5):

ṡi = F i(c, x) − δisi with δi > 0 (i = 1, 2) . (15)

In addition, the following restrictions for the control variables c and x hold:

0 ≤ c ≤ 1 and 0 ≤ x ≤ 1 . (16)

Corner solutions with x = 0 or x = 1 cannot be optimal since either case would

imply, due to Assumptions (1) and (7), that the marginal utility of one consump-

tion good would go to infinity while the marginal utility of the other would remain

finite. Similarly, a corner solution with c = 0 cannot be optimal since in that case

the marginal utility of both consumption goods would go to infinity while the

marginal damage from environmental pollution would remain finite. Hence, the

only remaining restriction, which we have to control for explicitly, is:

c ≤ 1 . (17)

We introduce two costate variables, p1 and p2, and a Kuhn-Tucker parameter, pc.

The current value Hamiltonian of the problem then reads

H(c, x, s1, s2; p1, p2, pc) = U(F 1(c, x), F 2(c, x)) −
σ1

2
s2
1 −

σ2

2
s2
2

+ p1

[

F 1(c, x) − δ1s1

]

+ p2

[

F 2(c, x) − δ2s2

]

+ pc [1 − c] . (18)

Since both control variables, c and x, are always strictly positive, the two state

variables, s1 and s2, are always nonnegative and the Hamiltonian H is continuously

differentiable with respect to c and x, the first order conditions of the control
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problem are:

U1F
1
c + U2F

2
c + p1F

1
c + p2F

2
c − pc = 0 , (19)

U1F
1
x + U2F

2
x + p1F

1
x + p2F

2
x = 0 , (20)

σ1s1 + (δ1 + ρ)p1 = ṗ1 , (21)

σ2s2 + (δ2 + ρ)p2 = ṗ2 , (22)

pc ≥ 0 , pc(1 − c) = 0 , (23)

plus the dynamic constraints (15) and the restriction (17). These necessary con-

ditions are also sufficient if, in addition, the transversality conditions

lim
t→∞

pi(t) e−ρt · si(t) = 0 (i = 1, 2) , (24)

hold (see Appendix A.1). Note that the optimal path is also unique.

3.2 Stationary state

Setting ṗ1 = 0, ṗ2 = 0, ṡ1 = 0 and ṡ2 = 0 in the system of first order condi-

tions (15), (17) and (19)–(23) yields the necessary and sufficient conditions for an

optimal stationary state (c⋆, x⋆, s⋆
1, s

⋆
2), in which neither the scale nor the structure

of economic activity nor the stocks of pollution accumulated in the environment

change over time. From conditions (21) and (22) one obtains for the costate

variables pi (i = 1, 2):

pi = −
σis

⋆
i

δi + ρ
(i = 1, 2) . (25)

Inserting (25) in (19) and (20), and rearranging terms, yields the following neces-

sary and sufficient conditions for an optimal stationary state:

U⋆
1 −

σ1s
⋆
1

δ1 + ρ
=

pcF
2
x

⋆

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ , (26)

U⋆
2 −

σ2s
⋆
2

δ2 + ρ
=

−pcF
1
x

⋆

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ , (27)
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where U⋆
i and F i

j
⋆

(i = 1, 2 ; j = c, x) denote functions evaluated at stationary

state values of the argument. From the signs of the F i
j and pc stated in (10)–(13)

and (23), it follows that:

U⋆
i ≥

σis
⋆
i

δi + ρ
(i = 1, 2) , (28)

where the “>” sign indicates a corner solution (c⋆ = 1). Furthermore, from the

equations of motion (15) one obtains

s⋆
i =

F i⋆

δi
= const. (i = 1, 2) . (29)

The interpretation of the two conditions (28) is that in an interior (corner) optimal

stationary state the scale and structure of economic activity are such that for each

sector the marginal welfare gain due to consumption of that sector’s output equals

(is greater than) the aggregate future marginal damage from that sector’s current

emission which comes as an inevitable by-product with the consumption good.3

An optimal stationary state exists if the system (23), (26), (27) and (29) of

five equations for the five unknowns (c⋆, x⋆, s⋆
1, s

⋆
2) and p⋆

c has a solution with

0 < c⋆ ≤ 1 and 0 < x⋆ < 1. With the properties of the utility and production

functions assumed here, a unique optimal stationary state always exists.

Proposition 1:

(i) There exists a unique stationary state (c⋆, x⋆, s⋆
1, s

⋆
2), which is given as the

solution to (23), (26), (27) and (29).

(ii) The optimal stationary state of the economy is an interior solution with

c⋆ < 1, if the total available amount of labor λ in the economy is strictly

greater than some threshold value λ̄ = l̄1 + l̄2, where the l̄i are specified by

3Note that taking account of discounting and the natural degradation of the respective pol-

lution stock, the net present value of the accumulated damage of one marginal unit of pollution

sums up to the right-hand-side of (28), as
R

∞

0
σis

⋆
i e−(ρ+δi)tdt = σis

⋆
i /(ρ + δi) (i = 1, 2) .
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the following implicit equations:

Ui(P
1(l̄1), P

2(l̄2)) =
σiP

i(l̄i)

δ2
i + δiρ

(i = 1, 2) .

Proof: see Appendix A.2.

In the following, we shall concentrate on the case of an interior stationary state

with c⋆ < 1. Hence, we assume that the total labor amount λ exceeds λ̄ as specified

in Proposition 1. In order to study the properties of the interior optimal stationary

state (c⋆, x⋆) some comparative statics can be done with Conditions (26), (27) and

(29). The results are stated in the following proposition.

Proposition 2:

An interior optimal stationary state, if it exists, has the following properties:

dc⋆

dδ1
> 0 ,

dx⋆

dδ1
> 0 ,

dc⋆

dδ2
> 0 ,

dx⋆

dδ2
< 0 ,

dc⋆

dσ1
< 0 ,

dx⋆

dσ1
< 0 ,

dc⋆

dσ2
< 0 ,

dx⋆

dσ2
> 0 ,

dc⋆

dρ
> 0 ,

dx⋆

dρ
≥
<0 for

[U⋆
22δ2(δ2 + ρ) − σ2](δ2 + ρ)

[U⋆
11δ1(δ1 + ρ) − σ1](δ1 + ρ)

≥
<

σ2F
2⋆

F 1
c

⋆

σ1F 1⋆F 2
c

⋆ .

Proof: see Appendix A.3.

These results can be interpreted as follows. For both pollutants i (i = 1, 2), the

lower is the natural deterioration rate δi and the higher is the harmfulness σi, the

lower is the relative weight of the emitting sector in the total economy and the

lower is the overall scale of economic activity in the stationary state. An increase

in the discount rate ρ increases the optimal stationary scale of economic activity,

c⋆, while its effect on the optimal stationary structure of economic activity, x⋆, is

ambiguous.
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3.3 Optimal dynamic path and local stability analysis

In the following we solve the optimization problem by linearizing the resulting

system of differential equations around the stationary state. Since our model is

characterized by only mild non-linearities,4 we expect the linear approximation to

yield insights which should also hold for the exact problem. In Section 4 below,

we shall numerically optimize the exact problem, and confirm this expectation.

As we have assumed an interior stationary state, the optimal path will also be

an interior optimal path at least in a neighborhood of the interior stationary state.

Hence, we restrict the analysis to the case of an interior solution, i.e. c⋆ < 1. As

shown in Appendix A.4, the optimal dynamics of the two control variables c, x

and the two state variables s1, s2 can be described by a system of four coupled

first order autonomous differential equations:

ċ =
[U1(δ1 + ρ) − σ1s1]U22F

2
x − [U2(δ2 + ρ) − σ2s2]U11F

1
x

U11U22df
, (30)

ẋ =
[U2(δ2 + ρ) − σ2s2]U11F

1
c − [U1(δ1 + ρ) − σ1s1]U22F

2
c

U11U22df
, (31)

ṡ1 = F 1 − δ1s1 , (32)

ṡ2 = F 2 − δ2s2 , (33)

with df ≡ F 1
c F 2

x−F 1
xF 2

c < 0. Linearizing around the stationary state (c⋆, x⋆, s⋆
1, s

⋆
2)

yields the following approximated dynamic system (see Appendix A.5):





















ċ

ẋ

ṡ1

ṡ2





















≈ J⋆





















c − c⋆

x − x⋆

s1 − s⋆
1

s2 − s⋆
2





















with (34)

4Remember that the welfare function V is additively separable in all four arguments.

13



J⋆ =

























ρ + δ1F 1
c

⋆
F 2

x
⋆
−δ2F 1

x
⋆
F 2

c
⋆

df⋆
(δ1−δ2)F 1

x
⋆
F 2

x
⋆

df⋆ − σ1F 2
x

⋆

U⋆
11df⋆

σ2F 1
x

⋆

U⋆
22df⋆

(δ2−δ1)F 1
c

⋆
F 2

c
⋆

df⋆ ρ + δ2F 1
c

⋆
F 2

x
⋆
−δ1F 1

x
⋆
F 2

c
⋆

df⋆
σ1F 2

c
⋆

U⋆
11df⋆ − σ2F 1

c
⋆

U⋆
22df⋆

F 1
c

⋆
F 1

x
⋆

−δ1 0

F 2
c

⋆
F 2

x
⋆

0 −δ2

























.

The Jacobian evaluated at the stationary state, J⋆, has four real eigenvalues (see

Appendix A.5), two of which are strictly negative (ν1, ν2) and two of which are

strictly positive (ν3, ν4). Hence, the system dynamics exhibits saddlepoint sta-

bility, i.e. for all initial stocks of pollutants, s0
1 and s0

2, there exists a unique

optimal path which asymptotically converges towards the stationary state. Be-

cause of the transversality conditions (24) the optimal path is restricted to the

stable hyperplane, which is spanned by the eigenvectors associated with the nega-

tive eigenvalues. Given the eigenvalues and the eigenvectors, which are calculated

in Appendix A.5, the explicit system dynamics in a neighborhood around the

stationary state is given by:

c(t) = c⋆ + (s0
1 − s⋆

1)
F 2

x
⋆
(ν1 + δ1)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν1 t −

(s0
2 − s⋆

2)
F 1

x
⋆
(ν2 + δ2)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν2 t , (35)

x(t) = x⋆ − (s0
1 − s⋆

1)
F 2

c
⋆
(ν1 + δ1)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν1 t +

(s0
2 − s⋆

2)
F 1

c
⋆
(ν2 + δ2)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν2 t , (36)

s1(t) = s⋆
1 + (s0

1 − s⋆
1) eν1 t , (37)

s2(t) = s⋆
2 + (s0

2 − s⋆
2) eν2 t , (38)

where s0
i = si(0) (i = 1, 2) denote the initial pollutant stocks.

As a measure of the overall rate of convergence of a process z(t) which asymp-

totically approaches z⋆, we define the characteristic time scale of convergence τz

by

τz
−1 ≡

∣

∣

∣

∣

ż(t)

z(t) − z⋆

∣

∣

∣

∣

, (39)
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where the horizontal bar denotes the average over time. The greater is the time

scale τz, the slower is the convergence towards z⋆. With this definition, it is obvi-

ous from Equations (37) and (38) that the pollutant stock si (i = 1, 2) converges

towards its stationary state value s⋆
i with a characteristic time scale τsi

= 1/ |νi|.

As the system approaches the stationary state for t → ∞, the scale c and struc-

ture x (Equations 35 and 36) converge towards their stationary state values c⋆

and x⋆ with a characteristic time scale which is determined by the eigenvalue

with the smaller absolute value, τc = τx = 1/min{|ν1|, |ν2|} (see Appendix A.6).

Proposition 3 summarizes these results.

Proposition 3:

For the linear approximation (34) around the stationary state (c⋆, x⋆, s⋆
1, s

⋆
2) the

following statements hold:

(i) The stationary state is saddlepoint-stable.

(ii) The explicit system dynamics is given by Equations (35)–(38).

(iii) The characteristic time scale of convergence towards the stationary state is

given by

• τc = τx = 1/min{|ν1|, |ν2|} for the control variables c and x, and by

• τsi
= 1/ |νi| for stock variable si (i = 1, 2).

As shown in Appendix A.5 the eigenvalues ν1 and ν2 are given by

ν1 =
1

2

[

ρ −

√

(ρ + 2δ1)2 −
4σ1

U⋆
11

]

< 0 , (40)

ν2 =
1

2

[

ρ −

√

(ρ + 2δ2)2 −
4σ2

U⋆
22

]

< 0 . (41)

Hence, the absolute value of νi (time scale of convergence) decreases (increases)

with the discount rate ρ and the curvature of consumption welfare in the stationary

state |U⋆
ii| (i = 1, 2). It increases (decreases) with the harmfulness σi and the

deterioration rate δi of the pollutant stock.
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We now turn to the question of the (non-)monotonicity of the optimal path.

According to Equations (37) and (38), the stocks of the two pollutants converge

monotonically towards their stationary state values s⋆
1 and s⋆

2. In order to show

that the optimal paths for the control variables c and x may be non-monotonic,

we differentiate Equations (35) and (36) with respect to t:

ċ(t) = ν1(s
0
1 − s⋆

1)
F 2

x
⋆
(ν1 + δ1)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν1 t −

ν2(s
0
2 − s⋆

2)
F 1

x
⋆
(ν2 + δ2)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν2 t , (42)

ẋ(t) = −ν1(s
0
1 − s⋆

1)
F 2

c
⋆
(ν1 + δ1)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν1 t +

ν2(s
0
2 − s⋆

2)
F 1

c
⋆
(ν2 + δ2)

F 1
c

⋆F 2
x

⋆ − F 1
x

⋆F 2
c

⋆ eν2 t . (43)

The optimal path is non-monotonic if ċ or ẋ change their sign, i.e. if the paths

c(t) or x(t) exhibit a local extremum for positive times t. According to the signs

of the νi and F i
j (i = 1, 2 and j = c, x) and given that ν1 6= ν2, c(t) exhibits a

unique local extremum if sgn(s0
1 − s⋆

1) 6= sgn(s0
2 − s⋆

2), and x(t) exhibits a unique

local extremum if sgn(s0
1 − s⋆

1) = sgn(s0
2 − s⋆

2).
5 Solving ċ(t) = 0 and ẋ(t) = 0 for

t, using expressions (42) and (43) for ċ and ẋ, yields:

t̂ =



















ln
[

ν2(s0
2−s⋆

2)F 1
x

⋆
(ν2+δ2)

ν1(s0
1−s⋆

1)F 2
x

⋆(ν1+δ1)

]

(ν1−ν2)
−1 , if sgn(s0

1−s⋆
1) 6= sgn(s0

2−s⋆
2)

ln
[

ν2(s0
2−s⋆

2)F 1
c

⋆
(ν2+δ2)

ν1(s0
1−s⋆

1)F 2
c

⋆(ν1+δ1)

]

(ν1−ν2)
−1 , if sgn(s0

1−s⋆
1) = sgn(s0

2−s⋆
2)

.

(44)

According to this equation, it is possible that t̂ may be negative or infinite, which

is meaningless in the context of this analysis. In this case we would observe

monotonic optimal paths for both control variables c and x for times 0 < t < +∞.

For instance, t̂ is negative if
∣

∣s0
2 − s⋆

2

∣

∣ is sufficiently small, that is, the second

pollutant stock is initially already close to its stationary state level. Furthermore,

t̂ equals (plus or minus) infinity if either
∣

∣s0
1 − s⋆

1

∣

∣ = 0 or |ν1 − ν2| = 0, that

5Note that νi + δi < 0, which can easily be verified from Equations (A.26) and (A.27).
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is, the first pollutant stock is initially already at its stationary state level or the

eigenvalues are identical. The following proposition summarizes the behavior of

the optimal control path.

Proposition 4:

In the linear approximation (34) around the stationary state (c⋆, x⋆, s⋆
1, s

⋆
2), the

following statements hold for the optimal path:

(i) The stocks of pollutants s1(t) and s2(t) converge exponentially, and hence

monotonically, towards their stationary state values s⋆
1 and s⋆

2.

(ii) If and only if t̂ as given by Equation (44) is strictly positive and finite, then

the optimal control is non-monotonic over time and t̂ denotes the time at

which the optimal control has a unique local extremum. In particular, if

sgn(s0
1 − s⋆

1) 6= sgn(s0
2 − s⋆

2), c(t) is non-monotonic and x(t) is monotonic.

If sgn(s0
1 − s⋆

1) = sgn(s0
2 − s⋆

2), x(t) is non-monotonic and c(t) is monotonic.

4 Numerical optimization

In this section we illustrate the results derived in Section 3 by numerical optimiza-

tions of the original, non linearized optimization problem (14)–(16). The results

thus obtained confirm that the insights from analyzing the linearized system also

hold for the exact solution. All numerical optimizations were carried out with the

advanced optimal control software package MUSCOD-II (Diehl et al. 2001), which

exploits the multiple shooting state discretization (Leineweber et al. 2003).

There are four different qualitative scenarios which have to be examined. (i)

Both stocks of pollutants exhibit the same harmfulness but differ in their deteriora-

tion rates, i.e. σ1 = σ2, δ1 < δ2. (ii) The two pollutants differ in their harmfulness

but have equal deterioration rates, i.e. σ1 < σ2, δ1 = δ2. (iii) The pollutants differ

in both harmfulness and deterioration rates and the more harmful pollutant has

17



the higher deterioration rate, i.e. σ1 < σ2, δ1 < δ2. (iv) Both harmfulness and

deterioration rates are different, and the more harmful pollutant has a lower dete-

rioration rate, i.e. σ1 < σ2, δ1 > δ2. Furthermore, each of the four scenarios splits

into four subcases, depending on the initial stocks of pollutants (both initial stocks

below, only first stock above, only second stock above and both stocks above the

stationary state levels).

In the following we discuss these four different scenarios. The parameter values

used for the numerical optimization have been chosen so as to illustrate clearly

the different effects, and do not necessarily reflect the characteristics of real envi-

ronmental pollution problems. For all numerical examples, the total labor supply

λ has been chosen so as to guarantee an interior stationary state scale c⋆ < 1. As

it is not possible to optimize numerically over an infinite time horizon, the time

horizon has been set to 250 years and all parameters have been chosen in such a

way that the system at time t = 250 is very close to the stationary state. For a

more convenient exposition, the figures show the time paths up to t = 125 only.

The parameter values for the numerical optimization are listed in Appendix A.7.

In the first scenario (σ1 = σ2), both stocks of pollutants exhibit the same

harmfulness but the deterioration rate is smaller for the first pollutant than for the

second. Figure 1 shows the result of a numerical optimization of this case. In this

example the initial stocks for both pollutants are above their stationary state levels

(s0
1 = 30, s0

2 = 30). The optimal path for the structure exhibits non-monotonic

behavior as expected from Proposition 4. Further, we expect that the optimal

stationary state structure x⋆ is clearly below 0.5, indicating that relatively more

labor is employed in the second sector, because as the second stock of pollutant

deteriorates at a higher rate the aggregate intertemporal damage of one unit of

emissions is smaller for the second pollutant.6 This expectation is confirmed by

6Note that both consumption goods are equally valued by the representative consumer, i.e.

µ1 = µ2 (see Appendix A.7).
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the numerical optimization.
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Figure 1: Optimal paths for scale and structure (left) and the two pollutant

stocks (right) for the case σ1 = σ2, δ1 < δ2. Parameter values used for the

numerical optimization are given in Appendix A.7.

In the second scenario (σ1 < σ2, δ1 = δ2), the two stocks of pollutants are of

different harmfulness but the deterioration rate for the two pollutants are equal.

The result of a numerical optimization of this case is presented in Figure 2. In

this example the initial stock for the first (second) pollutant is above (below)

their stationary state levels (s1 = 40, s2 = 0). Now, the optimal path for the

scale exhibits a non monotonic behavior as expected from Proposition 4. Further,

we expect that the optimal stationary state structure x⋆ is clearly above 0.5,

indicating that relatively more labor is employed by the second sector, because as

the second stock of pollutant is less harmful the aggregate intertemporal damage

of one unit of emissions is smaller for the second pollutant. This expectation is

confirmed by the numerical optimization.

The third scenario (σ1 < σ2, δ1 < δ2) – both harmfulness and deterioration

rates are different and the more harmful pollutant has the higher deterioration

rate – is the most interesting as neither of the two pollutants exhibits a priori

more favorable dynamic characteristics for the economy. Hence, we are not able

to predict which production sector will be used to a greater extent in the station-
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Figure 2: Optimal paths for scale and structure (left) and the two pollutant

stocks (right) for the case σ1 < σ2, δ1 = δ2. Parameter values used for the

numerical optimization are given in Appendix A.7.

ary state. Furthermore, non monotonic paths – if they occur – are likely to be

more pronounced than in the other cases. Figure 3 shows the optimal paths for

a numerical example for all four subcases (initial pollutant stocks above or below

stationary state levels for one and both pollutants). Of course, the long run sta-

tionary state to which the economy converges, is the same in all four subscenarios,

as all parameters are identical except for the initial stocks of the two pollutants.

Nevertheless, the optimal paths and especially their convergence towards the sta-

tionary state is quite different for the four subcases. As expected from Proposition

4, we observe that – if at all – the optimal path for the structure is non-monotonic

if both stocks start above or below their stationary state levels (subcases a and d)

and the optimal path for the scale is non-monotonic if one initial stock is higher

and one is lower than their stationary state levels (subcase b). We also see that

both, structure and scale, may exhibit monotonic optimal paths (subcase c).

In the fourth scenario (σ1 < σ2, δ1 > δ2), where both pollutants exhibit differ-

ent harmfulness and deterioration rates but the second pollutant is more harmful

and has the lower deterioration rate, the first pollutant exhibits clearly more favor-

able dynamic properties than the second pollutant. In this case the economy will
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a) both stocks below stationary state level
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b) first stock above, second stock below stationary state level
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c) first stock below, second stock above stationary state level
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d) both stocks above stationary state level
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Figure 3: Optimal paths for scale and structure (left) and the two pollutant

stocks (right) for the case σ1 < σ2, δ1 < δ2 and all four subscenarios. Parameter

values used for the numerical optimization are given in Appendix A.7.
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nearly exclusively use the first production sector. Although non-monotonicities in

the optimal paths for scale and structure can occur according to Proposition 4,

they are not pronounced. As nothing new can be learned from this case, we do

not show a numerical optimization example.

5 Conclusion

In this paper, we have studied the mutual interaction over time between the scale

and structure of economic activity on the one hand, and the dynamics of multiple

environmental pollution stocks on the other hand. We have carried out a total

analysis of a two-sector-economy, in which each sector produces one distinct con-

sumption good and one specific pollutant. The pollutants of both sectors were

assumed to differ in their environmental impact in two ways: (i) with respect to

their harmfulness and (ii) with respect to their natural deterioration rates in the

environment.

Most of the results are intuitive. First, it may be optimal not to use all avail-

able labor endowment in the production of consumption goods in order to avoid

excessive environmental damage. Second, under very general conditions a change

in scale and structure of economic activity over time is optimal. Thus, the opti-

mal economic dynamics is driven by the dynamics of the environmental pollution

stocks. The less harmful is a pollutant, the higher are the relative importance

of the emitting sector and the overall scale of economic activity in the stationary

state. The shorter lived is a pollutant, the higher are the relative importance of

the emitting sector and the overall scale of economic activity in the stationary

state. If emissions differ either in their environmental harmfulness or in their de-

terioration rates, we should have structural change towards the sector emitting

the less harmful or the shorter-lived pollutant. However, if the harmfulness and

deterioration rates differ and if the environmentally less harmful emission is also
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the longer-lived pollutant, no general conclusion concerning the direction of struc-

tural change can be drawn. Third, the characteristic time scale of convergence of

scale and structure towards the stationary state is given by (the inverse of) the

eigenvalue with the smaller absolute value. It increases with the discount rate and

the curvature of consumption welfare in the stationary state; it decreases with the

harmfulness and the deterioration rate of the respective pollutant stock.

Most importantly, our formal analysis as well as the numerical optimizations,

show that it is likely that the optimal control paths, i.e. the change in the scale

and structure of the economy, are non-monotonic over time.7 If a non-monotonic

control is optimal, our numerical optimizations suggest that the local extremum

of the control path may be pronounced and that it occurs at the beginning of the

control path.

These results have implications for the design of environmental indicators and

policies. First, the traditional view is that different environmental problems –

such as e.g. acidification of soils and surface waters, groundwater contamination

by nitrates or pesticides, and climate change due to anthropogenic greenhouse gas

emission – can be regulated by independent environmental policies. In contrast,

our total analysis of a multi-sector economy with several independent environ-

mental pollutants, shows that these problems – even without any direct physical

interaction – interact indirectly because they all affect social welfare, and the mit-

igation of all of them is constrained by the available economic resources. As a

result, even for non-interacting environmental pollutants the optimal regulation

has to take an encompassing view, taking into account all of the environmental

problems together.

7Non-monotonic optimal control paths, in particular limit-cycles, are known to exist for control

problems with two or more state variables, and for time-lagged and adaptive control problems,

even with one single state variable (e.g. Benhabib and Nishimura 1979, Feichtinger et al. 1994,

Wirl 2000, 2002, Winkler 2004).
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Second, indicators and policies which are solely based on the harmfulness of

environmental pollutants – which is predominant in current environmental politics

– fall short of optimally controlling environmental problems. In a dynamic set-

ting, the lifetime of pollutants is an equally important determinant of the optimal

environmental policy.

Third, the non-monotonicity-result challenges common intuition which sug-

gests that policies should achieve optimal change in a monotonic way. In contrast

to this simple intuition, our analysis shows that if pollutants accumulate on dif-

ferent time scales and if they differ in environmental harmfulness, the optimal

policies may be non-monotonic. In particular, the optimal time-path of structural

change towards the stationary state structure may be characterized by ‘optimal

overshooting’; that is, the optimal relative importance of a sector starts below

(above) the stationary state level, increases (decreases) to a point above (below)

the stationary state level, and finally decreases (increases) again. The same goes

for the optimal dynamics of the overall economic scale.

Summing up, in order to develop sustainable solutions to the multiple environ-

mental problems that we face in reality – such as climate change, depletion of the

ozone layer, groundwater contamination, acidification of soil and surface water,

biodiversity loss, etc. – we should adopt an encompassing view and base policy

advice on a total analysis of economy-environment interactions. As our analysis

shows, the resulting optimal policies need to take account of the history, the em-

pirical parameter values and the dynamic relationships of all of the problems, and

these policies might be non-monotonic.
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Appendix

A.1 Concavity of the optimized Hamiltonian

We show that the Hamiltonian H, without taking into account the restriction

c ≤ 1, i.e. pc = 0, is strictly concave whenever the necessary conditions are

satisfied. Thus, the unique optimal solution is the local extremum of H if we

have an interior solution; it is a corner solution with c = 1 if the local extremum

of H is reached for unfeasible c > 1.

A sufficient condition for strict concavity of the Hamiltonian is that its Hessian

H = ∂2H

∂i∂j
(i, j = c, x, s1, s2) is negative definite. The Hessian H reads:

H =





















Hcc Hcx 0 0

Hxc Hxx 0 0

0 0 −σ1 0

0 0 0 −σ2





















(A.1)

Due to its diagonal form, H is negative definite if the reduced Hessian H ′ =

∂2H

∂i∂j
(i, j = c, x) is negative definite, i.e. Hcc,Hxx < 0 and detH ′ > 0.

Hcc = U11(F
1
c )2 + (U1 + p1)F

1
cc + U22(F

2
c )2 + (U2 + p2)F

2
cc , (A.2)

Hxx = U11(F
1
x )2 + (U1 + p1)F

1
xx + U22(F

2
x )2 + (U2 + p2)F

2
xx , (A.3)

Hcx = U11F
1
c F 1

x + (U1 + p1)F
1
cx + U22F

2
c F 2

x + (U2 + p2)F
2
cx . (A.4)

Along the optimal path, the necessary conditions have to be satisfied. In partic-

ular, for an interior solution, i.e. c⋆ < 1, the necessary and sufficient conditions

(19) and (20) become:

(U1 + p1)F
1
c + (U2 + p2)F

2
c = 0 , (A.5)

(U1 + p1)F
1
x + (U2 + p2)F

2
x = 0 . (A.6)

Thus, for an interior optimal path the following equations hold:

pi = −Ui (i = 1, 2) . (A.7)
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With this, one obtains:

Hcc = U11(F
1
c )2 + U22(F

2
c )2 < 0 , (A.8)

Hxx = U11(F
1
x )2 + U22(F

2
x )2 < 0 , (A.9)

detH ′ = HccHxx −H2
cx

= U11U22

[

(F 1
c )2(F 2

x )2 + (F 1
x )2(F 2

c )2 − 2F 1
c F 1

xF 2
c F 2

x

]

> 0 . (A.10)

Hence, whenever H has an extremum it is a maximum. As a consequence, the

necessary conditions (plus the transversality condition 24) are also sufficient.

A.2 Proof of Proposition 1

(i) Inserting Equations (29) into Equations (26) and (27), and using the relation-

ship between F i and P i, as given from Equation (9), one obtains:

U⋆
i =

σiP
i⋆

δi(δi + ρ)
+

pc

λP i
l

⋆ (i = 1, 2) . (A.11)

With the properties for P i, as given by (1), and the properties for Ui, as given

by (7), the left-hand-side of Equation (A.11) is strictly decreasing while the right-

hand-side is strictly increasing in li. Thus, there exists at most one l⋆i which

satisfies Equation (A.11). The existence of such a solution is guaranteed by the

properties limli→0 P i
l = +∞ and limyi→0 Ui = +∞.

(ii) We derive l̄i by solving (A.11) for l⋆i assuming pc = 0. Thus, l̄i is the maximal

amount of labor which will be assigned to production process i in an optimal

stationary state without taking account for the restriction c ≤ 1. If l̄1 + l̄2 ≥ λ the

labor supply is short of the optimal labor demand and thus the stationary state

is a corner solution. If, on the other hand, the total labor supply λ exceeds the

sum l̄1 + l̄2, then not all labor will be used for economic activity and the optimal

stationary state will be an interior solution.
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A.3 Proof of Proposition 2

Setting pc = 0 in Equation (A.11) yields for an interior stationary path:

U⋆
i =

σiF
i⋆

δi(δi + ρ)
(i = 1, 2) . (A.12)

By implicit differentiation of (A.12) with respect to δj (j = 1, 2) one obtains:

(

F j
c

⋆ ∂c⋆

∂δj
+ F j

x

⋆ ∂x⋆

∂δj

)(

U⋆
jj −

σj

δj(δj + ρ)

)

= −
σjF

j⋆
(2δj + ρ)

δ2
j (δj + ρ)2

(j = i) ,

(

F i
c

⋆ ∂c⋆

∂δj
+ F i

x

⋆ ∂x⋆

∂δj

)(

U⋆
ii −

σi

δi(δi + ρ)

)

= 0 (j 6= i) .

Solving for ∂c⋆/∂δj and ∂x⋆/∂δj yields:

∂c⋆

∂δj
=

σjF
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, (A.13)

∂x⋆
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⋆
(2δj + ρ)

(F j
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⋆
F i

x
⋆ − F i

c
⋆F j

x
⋆
)(U⋆

jjδj(δj + ρ) − σj)δj(δj + ρ)
. (A.14)

From the signs of the F i
j (i = 1, 2; j = c, x) it follows that

∂c⋆

∂δ1
> 0 ,

∂c⋆

∂δ2
> 0,

∂x⋆

∂δ1
> 0,

∂x⋆

∂δ2
< 0 . (A.15)

By implicit differentiation of (A.12) with respect to σj (j = 1, 2) one obtains:

(
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c

⋆ ∂c⋆

∂σj
+ F j

x

⋆ ∂x⋆

∂σj

)(
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)
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F j⋆

δj(δj + ρ)
(j = i) ,

(

F i
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⋆ ∂c⋆

∂σj
+ F i

x

⋆ ∂x⋆

∂σj

)(

U⋆
ii −

σi

δi(δi + ρ)

)

= 0 (j 6= i) .

Solving for ∂c⋆/∂σj and ∂x⋆/∂σj yields:

∂c⋆

∂σj
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F i
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⋆

(F j
c

⋆
F i

x
⋆ − F i

c
⋆F j

x
⋆
)(U⋆

jjδj(δj + ρ) − σj)
, (A.16)

∂x⋆

∂σj
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(F i
c
⋆F j

x
⋆
− F j

c
⋆
F i

x
⋆)(U⋆

jjδj(δj + ρ) − σj)
. (A.17)

From the signs of the F i
j (i = 1, 2; j = c, x) it follows that

∂c⋆

∂σ1
< 0 ,

∂c⋆

∂σ2
< 0,

∂x⋆

∂σ1
< 0,

∂x⋆

∂σ2
> 0 . (A.18)
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Implicit differentiation of (A.12) with respect to ρ yields:

F 1
c

⋆ ∂c⋆

∂ρ
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x
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c
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+ F 2

x
⋆ ∂x⋆

∂ρ
= −

σ2F
2⋆

[U⋆
22δ2(δ2 + ρ) − σ2](δ2 + ρ)

,

Solving for ∂c⋆/∂ρ and ∂x⋆/∂ρ yields:
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, (A.19)
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From the signs of the F i
j (i = 1, 2; j = c, x) it follows that

∂c⋆

∂ρ
> 0 ,

∂x⋆

∂ρ
≥
<0 ⇔

[U⋆
22δ2(δ2 + ρ) − σ2](δ2 + ρ)

[U⋆
11δ1(δ1 + ρ) − σ1](δ1 + ρ)

≥
<

σ2F
2⋆

F 1
c

⋆

σ1F 1⋆F 2
c

⋆ . (A.21)

A.4 Derivation of the differential equation system

Differentiation of pi = −Ui (Equation A.7) with respect to time and inserting

into Equations (21) and (22) yields, together with the equations of motion (15),

a system of four differential equations in the four unknowns c, x, s1 and s2:

σ1s1 − U1(δ1 + ρ) + U11(F
1
c ċ + F 1

x ẋ) = 0 , (A.22)

σ2s2 − U2(δ2 + ρ) + U22(F
2
c ċ + F 2

x ẋ) = 0 , (A.23)

ṡ1 − F 1 + δ1s1 = 0 , (A.24)

ṡ2 − F 2 + δ2s2 = 0 . (A.25)

The conditions (A.22)–(A.25) for an interior optimal solution can be rearranged

to yield the system (30)–(33) of four coupled autonomous differential equations.

A.5 Eigenvalues and eigenvectors of the Jacobian

We obtain the Jacobian J∗ by differentiating the right-hand-sides of Equations

(30)–(33) with respect to c, x, s1 and s2 and evaluating them at the stationary
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state. Taking into account that in the interior stationary state (28) holds with

equality, Ui = σis
⋆
i /(δi + ρ), one obtains for the Jacobian J⋆:

J∗ =
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


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
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.

The eigenvalues νi and eigenvectors ξi are the solutions of the equation J⋆ ·ξ = ν ·ξ.

The four eigenvalues are:

ν1 =
1

2

[

ρ −

√

(ρ + 2δ1)2 −
4σ1

U⋆
11

]

< 0 , (A.26)
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< 0 , (A.27)
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> 0 , (A.28)
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> 0 . (A.29)

The eigenvectors associated with the negative eigenvalues ν1 and ν2 are:

ξ1 =

(

F 2
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⋆
(ν1 + δ1)

df⋆
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F 2
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⋆
(ν1 + δ1)

df⋆
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, (A.30)
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−
F 1

x
⋆
(ν2 + δ2)

df⋆
,
F 1

c
⋆
(ν2 + δ2)

df⋆
, 0, 1

)

. (A.31)

A.6 Time scale of convergence

Equations (35) and (36) are of the following type:

z(t) = z⋆ + Aeν1t + Beν2t (ν1, ν2 < 0) , (A.32)

with real constants A and B. Without loss of generality assume that |ν1| <

|ν2|. Since we are interested in the system dynamics in a neighborhood of the

stationary state, we calculate the characteristic time scale of convergence for z as
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t → ∞. According to (39), the characteristic time scale of convergence of z in a

neighborhood of the stationary state z⋆ is given by:

τ−1
z =

∣

∣

∣

∣

lim
t→∞

Aν1eν1t + Bν2eν2t

Aeν1t + Beν2t

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
t→∞

Aν1 + Bν2e(ν2−ν1)t

A + Be(ν2−ν1)t

∣

∣

∣

∣

= |ν1| . (A.33)

Hence, for t → ∞ the characteristic time scale of convergence is constant and

given by 1/min{|ν1|, |ν2|}.

A.7 Parameter values for the numerical optimization

We used a Cobb-Douglas welfare function for the numerical optimizations,

U(y1, y2) = 0.5 ln(y1) + 0.5 ln(y2) , (A.34)

and the following production functions:

P 1(l1) =
√

l1 , P 2(l2) =
√

l2 . (A.35)

For all numerical optimizations we set λ = 1 and ρ = 0.03. In addition, we used

the following parameter values for the different scenarios:

Figure σ1 σ2 δ1 δ2 s1 s2

1 0.01 0.01 0.02 0.1 30 30

2 0.003 0.03 0.05 0.05 40 0

3a 0.002 0.02 0.02 0.1 0 0

3b 0.002 0.02 0.02 0.1 50 0

3c 0.002 0.02 0.02 0.1 0 25

3d 0.002 0.02 0.02 0.1 50 25
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ual’, Preprint 2001–25, Interdisciplinary Center for Scientific Computing, Uni-

versity of Heidelberg.

de Bruyn, S. (1997), ‘Explaining the environmental Kuznets curve: structural

change and international agreements in reducing sulphur emissions’, Environ-

ment and Development Economics, 2, 485–503.

31



Faber, M. and J.L.R. Proops (1998), Evolution, Time, Production and the Envi-

ronment, 3rd revised ed., Heidelberg: Springer.

Falk, I. and R. Mendelsohn (1993), ‘The economics of controlling stock pollu-

tants: an efficient strategy for greenhouse gases’, Journal of Environmental

Economics and Pollution, 25, 76–88.

Feichtinger, G., A. Novak and F. Wirl (1994), ‘Limit cycles in intertemporal ad-

justment models: Theory and application’, Journal of Economic Dynamics

and Control, 18, 353–380.

Forster, B.A. (1973), ‘Optimal capital accumulation in a polluted environment’,

Southern Economic Journal, 39, 544–547.

Gradus, R. and S. Smulders (1993), ‘The trade-off between environmental care

and long-term growth’, Journal of Economics, 58, 25–51.

Gradus, R. and S. Smulders (1996), ‘Pollution abatement and long-term growth’,

European Journal of Political Economy, 12, 506–532.

Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change

2001. The Scientific Basis (Contribution of Working Group I to the Third

Assessment Report of the IPCC), Cambridge: Cambridge University Press.
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