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Abstract

We investigate the problem of modeling defaults of dependent cred-
its. In the framework of the class of structural default models we study
threshold models where for each credit the underling ability-to-pay
process is a transformation of a Wiener processes. We propose a model
for dependent defaults based on correlated Wiener processes whose
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1 Introduction

Given the explosive development of the credit derivatives market, the con-
straints of scarce capital resources, and the rules of regulatory authorities
concerning credit risk sophisticated default modeling becomes an indispens-
able requirement in practice.

The increase in securitization of credit risk via CDO’s and the growing
popularity of multi-credit derivatives like basket default swaps not only calls
for modeling default but, equally importantly, for modeling the dependencies
between defaults of different obligors.

Default models can be divided into two mainstreams, structural models
and reduced form models. In structural models, as pioneered by the work
of Merton [9], the default event is triggered by the value of the firm being
below a certain trigger level. Structural models, also called threshold mod-
els, are appealing because of their simplicity and intuition linking the credit
event to economic fundamentals of the firm. Structural models are relatively
straightforward to extend to the situation of multiple credits with correlated
defaults. However, the calibration to a given term structure of default prob-
abilities is, depending on the model, often not possible or computationally
involved.

The other major class of default models, the reduced form models, follow
a completely different approach. Instead of modeling the event of default by
some economic primitives, reduced form models rather focus on modeling the
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(infinitesimal) likelihood of default (cf. [1], [5], [4]). Reduced from models
offer a lot of analogy to interest rate term structure models, in particular,
they can be easily calibrated to a given term structure of default probabilities.
For the multi-credit case, introducing enough default dependence as required
in practice is quite involved in the framework of reduced form models ([11],
[10]).

In practice, for multi-credit products dependencies between defaults are
often modelled using copulas. In the simplest case the joint distribution of
default times is generated from the marginal distributions applying a normal
copula, see e.g. [8]. In this approach credit spreads are static until the time
of the first default (cf. [11]).

In this paper we follow the structural approach to model (dependent)
defaults. The model we propose is straightforward to calibrate to any given
term structure of defaults. Also, based on a result by Zhou [12], we derive
a analytic expression for the probability of joint default, which then allows
an efficient calibration of the model to given dependency information. Since
we follow a structural approach the credit spreads admit a certain stochastic
dynamic contrary to the above mentioned copula approach for dependent
defaults.

Recently, Hull and White [3] proposed a model for dependent defaults
which achieves the same goals but is computationally much more involved.

The paper is organized as follows. In Section 2 we formulate the problem.
The following Section 3 is devoted to a short review of the approach by
Hull and White. Our alternative model is introduced in Section 4 where
we also provide some example of calibrations and outline how the model is
implemented in practice. In Section 5 we given an application of the model
to the pricing of basket default swaps and compare the results of our model
with the results of the popular normal copula approach. The final Section 6
contains our main conclusions.

2 Formulation of the problem

Our goal is to develop a model for the random times τ1, . . . , τn of default of
credits i = 1, . . . , n. What is given, either derived from markets prices of
traded defaultable instruments like default swaps or from historical data, is
the distribution function Fi of the random variable τi:

P(τi < t) = Fi(t), t ≥ 0, i = 1, . . . , n. (1)

We assume that Fi is continuous, strictly increasing and Fi(0) = 0.

3



Information on the dependencies of the random default times involves, in
the most general case, some conditions on the joint distribution of (τ1, . . . , τn).
As this in unrealistic in practice, we restrict ourselves to given pairwise joint
default probabilities for a given fixed time horizon t0:

pij = P(τi < t0, τj < t0). (2)

The event correlation ρE
ij (for time t0) is defined as

ρE
ij =

pij − Fi(t0)Fj(t0)√
Fi(t0)(1− Fi(t0))Fj(t0)(1− Fj(t0))

. (3)

So specifying the joint default probability is equivalent to specifying the
event correlation. Observe that, in view of 0 ≤ P(τi < t0, τj < t0) ≤
min(Fi(t0), Fj(t0)), the event correlation admits the following natural bounds

−Fi(t0)Fj(t0)√
Fi(t0)(1− Fi(t0))Fj(t0)(1− Fj(t0))

≤ ρE
ij ≤

√
u(1− v)

v(1− u)
, (4)

where u = min(Fi(t0), Fj(t0)) and v = max(Fi(t0), Fj(t0)).

Problem: Given distribution functions Fi and joint default probabilities pij

(or, equivalently, event correlations) we are looking for stochastic processes
(Y i

t ) called ability-to-pay processes and barriers Ki(t) such that the default
time τi for credit i can be modelled as the first hitting time of the barrier
Ki(t) by the process (Y i

t ):

τi = inf{t ≥ 0 : Y i
t ≤ Ki(t)}. (5)

In other words, the hitting time τi defined by (5) satisfies equations (1) and
(2).

Given the analytical tractability of the Wiener process and the fact that
many other stochastic processes can be transformed into a Wiener process a
reasonable approach for finding appropriate processes (Y i

t ) would be to start
with correlated Wiener processes (W i

t ) and then to apply suitable transfor-
mations Gi:

Y i
t = Gi(W i

t , t).

As we shall see in the next section the recent approach by Hull and
White fits into this framework.

4



3 The Hull and White approach revisited

In their recent paper [3] Hull and White propose a model for dependent
defaults where the default time takes values in arbitrary fine discrete time
grind 0 = t0 < t1 < t2 . . . , δk = tk − tk−1. The default time for credit i is
defined as

τi = inf{tk : W i
tk

< Ki(tk), k = 1, . . . }, (6)

where (W i
t ) is a Wiener process. The default barriers Ki(tk) are calibrated

successively to match the default distribution function Fi for the time points
t1, t2, . . .

1:

Ki(t1) =
√

δ1N
(−1)(Fi(t1))

Fi(tk)− Fi(tk−1) =

∫ ∞

Ki(tk−1)

fi(tk−1, u) N

(
Ki(tk)− u√

δk

)
du.

where fi(tk, x) is the density of W i
tk

given that W i
tj

> Ki(tj) for all j < k:

fi(t1, x) =
1√
2πδ1

exp

(
− x2

2δ1

)
fi(tk, x) =

∫ ∞

Ki(tk−1)

fi(tk−1, u)
1√
2πδk

exp

(
−(x− u)2

2δk

)
du.

Numerical procedures have to be employed to evaluate the integrals recur-
sively.

In order to match given default dependencies as in equation (2) we have
to calibrate the correlations ρij of the Wiener processes W i, W j. To this end
one has to simulate the default times according to (6), estimate the joint
default probabilities from the samples, and calibrate over the results.

Summing up, the Hull & White approach provides an elegant solution
to problems (1), (2), at least on a discrete time grid. The major shortcom-
ing of the model is, however, that its calibration is computationally heavily
involved.

In the continuous time limit the Hull & White model also allows for
the following interpretation. Define

τi = inf{t ≥ 0 : W i
t < Ki(t)}.

If Ki(t) is absolutely continuous,

Ki(t) = Ki(0) +

∫ t

0

µi
sds,

1N denotes the standard normal distribution function and N(−1) its inverse.
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then the default time τi is the first hitting time of the constant barrier Ki(0)
for a Wiener process with drift:

Y i
t = W i

t −
∫ t

0

µi
sds

τi = inf{t ≥ 0 : Y i
t < Ki(0)}.

The drift can be interpreted as default trend: the higher µi
s the higher is the

increase in the likelihood of default.

In general, time dependent default barriers in threshold models can be
replaced by constant barriers at the price of some drift in the underlying firm
value or ability-to-pay process.

4 Time changed Wiener process

In this section we propose an alternative solution to the problem of modelling
dependent defaults which is intuitive and at the same time straightforward
to calibrate to both conditions (1) and (2). The idea is to utilize Wiener
processes with suitably transformed time scales. As we shall see below this
is in principle equivalent to using Wiener processes with time varying but
deterministic volatilities.

Given Wiener processes (W i
t ) and strictly increasing time transformations

(T i
t ):

T i|[0,∞) → [0,∞), T i
0 = 0,

we define2

Y i
t = W i

T i
s

(7)

τi = inf{s ≥ 0 : Y i
s < Ki}. (8)

4.1 Calibrating the term structure of defaults

The following result shows that it is straightforward to chose the time trans-
formation appropriately to match a given term structure of default probabil-
ities (1).

2Due to the space-time scaling properties of the Wiener process without restricting the
generality we could set the default barrier to be Ki = −1. But as we shall see later it is
useful to keep this degree of freedom.
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Proposition 1 Let Fi be a continuous distribution function, strictly increas-
ing on [0,∞) with Fi(0) = 0. If the time transformation (T i

t ) is given by

T i
t =

 Ki

N(−1)
(

Fi(t)
2

)
2

, t ≥ 0 (9)

then the default time τi defined by (8) admits the distribution function Fi,
i.e., condition (1) is satisfied.

Proof. The distribution of the hitting time of a Brownian motion W is
well-known to be (cf. [6])

P(min
s≤t

Ws < Ki) = 2 N(Ki/
√

t).

This yields for τi defined by (8)

P(τi < t) = P(min
s≤t

W i
Ts

< Ki)

= P(min
s≤T i

t

W i
s < Ki)

= 2 N
(
Ki/

√
T i

t

)
and the assertion follows. ♦

The time transformation (T i
t ) admits an obvious interpretation: the

higher the increase of the function T i
t , the higher is the speed at which the

ability-to-pay process Y i
t = W i

T i
t

passes along the Wiener path thereby in-

creasing the likelihood of default.
If the distribution function Fi admits a density F ′

i = fi, then the time
transformation (T i

t ) is absolutely continuous,

T i
t =

∫ t

0

(σi
s)

2ds, (10)

and by a well-know representation result the time transformed Wiener pro-
cess allows for a representation as stochastic integral with volatility σi

s:

W i
T i

t
=

∫ t

0

σi
sdW̃ i

s , (11)

with some new Wiener process W̃ i. The relationship between the volatility
σi

s and the distribution of τi is

σi
s =

√√√√√−

 Ki

N(−1)
(

Fi(s)
2

)
3

fi(s)

Kiϕ
(
N(−1)

(
Fi(s)

2

)) ,
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where ϕ is the density of the standard normal distribution.

The volatility σi
s can be interpreted as default speed. The higher the

default speed, the higher the volatility of the ability-to-pay process and the
higher the likelihood of crossing the default threshold Ki.

4.2 Calibrating joint default probabilities

In this section we show that our time changed Wiener process model can also
be easily calibrated to a set of pairwise joint default probabilities for a given
fixed time horizon. Based on a result by Zhou [12] we derive an analytic
expression for the joint default probability as a function of the correlation of
the underlying Wiener processes which then allows for a calibration of these
correlations.

Proposition 2 Let (W 1
t ) and (W 2

t ) be Wiener processes with correlation ρ.
For time changes (T i

t ), i = 1, 2, and default times τi, i = 1, 2, defined by (8)
we have the following expression for the joint survival probability3

P(τ1 > t0, τ2 > t0) = (12)

2
α T

e
−r2

0
2T

∑∞
n=1 sin

(
nπθ0

α

) ∫ α

θ=0

∫∞
r=0

sin
(

nπθ
α

)
re

−r2

2T Inπ
α

(
r r0

T

)(
−1 + 2N

(
r sin θ√

∆

))
dθdr, if∆ > 0,

2r0√
2πT

e
−r2

0
4T

∑
n=1,3,5,...

1
n

sin
(

nπθ0

α

)[
I 1

2
(nπ

α
+1)

(
r2
0

4T

)
+ I 1

2
(nπ

α
−1)

(
r2
0

4T

)]
if∆ = 0,

3The joint survival probability and the joint default probability are linked by

P(τ1 > t, τ2 > t) = 1−P(τ1 ≤ t)−P(τ2 ≤ t) + P(τ1 ≤ t, τ2 ≤ t).
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where

T = min(T 1
t0
, T 2

t0
)

∆ = max(T 1
t0
, T 2

t0
)−min(T 1

t0
, T 2

t0
)

θ0 =


tan(−1)

(
K2

√
1−ρ2

K1−ρK2

)
if

(
K2

√
1−ρ2

K1−ρK2

)
> 0

π + tan(−1)

(
K2

√
1−ρ2

K1−ρK2

)
otherwise

r0 =
−K2

sin θ0

α =


tan(−1)

(
−
√

1−ρ2

ρ

)
ρ < 0

π + tan(−1)

(
−
√

1−ρ2

ρ

)
ρ > 0

and Ik denotes the modified Bessel function with order k.

Proof. Assume T 1
t0
≤ T 2

t0
. Using the Markov property of the Wiener process

(W 1
t , W 2

t ) we obtain

P(τ1 > t0, τ2 > t0)

= P(W 1
s > K1, s ≤ T 1

t0
, W 2

u > K2, u ≤ T 2
t0
)

= E
(
1{W 1

s >K1,W 2
s >K2,s≤T}P(W 2

u > K2, u ∈ [T, T + ∆]|W 2
T )

)
= E

(
1{W 1

s >K1,W 2
s >K2,s≤T}

(
1− 2 N

(
K2 −W 2

T√
∆

)))
=

∫ −K1

−∞

∫ −K2

−∞
f(x1, x2, T, ρ)

(
1− 2N

(
K2 + x2√

∆

))
dx1dx2,

where f(x1, x2, T, ρ) is the density of (−W 1
T ,−W 2

T ) given that the barriers
−K1,−K2, respectively, have not been hit by time T . This density is explic-
itly calculated in the paper [12] by Zhou. Using his result and transforming
the integration variables appropriately yields the assertion.

The case ∆ = 0, i.e., T 1
t0

= T 2
t0

follows directly from the result by Zhou,
[12]. ♦

4.3 Calibration Examples

The calibration equation (9) allows some degree of freedom in determining
the default threshold Ki. It seems to be natural to choose Ki such that
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the time change T i
t is, in some sense, close to the original time scale, more

precisely, for a fixed final time horizon t0 > 0 we require

T i
t0

= t0. (13)

This implies

Ki = N(−1)

(
Fi(t0)

2

)√
t0. (14)

The following graph shows calibrated time transformations for default
times with Fi(t) = 1− exp(−λi t) and default intensities (hazard rates) λ1 =
1%, λ2 = 2%, λ3 = 3%. We applied the additional condition (13) with t0 =
5 and obtained the threshold barriers K1 = −4, 406, K2 = −3, 731, K3 =
−3, 306.
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Transformations of time

The sharp increase of the time changes near time zero is due to the
fact that for threshold models with continuous ability-to-pay processes the
likelihood of default over short time periods near zero is basically vanishing.
However, in the example above we have calibrated our model to a flat default
rate λi per time unit. Due to the time change, the ability-to-pay process,
although starting at zero, gets ”enough” randomness for very short times to
allow for the given non-vanishing default rate.

Remark: An alternative way to overcome the above mentioned problem
for threshold models with continuous ability-to-pay processes Y would be to
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allow for a random initial value Y0 with some distribution Q. Conditioning
on the values of Y0 and integrating w.r.t. Q it is straightforward to extend
our approach to this situation. We do not follow up with this idea here in
more detail.

In the following we present some numerical examples on the calibration
of the model to given dependency information (2). We express the joint
default probability via its event correlation (3). To simplify the exposition
we assume again that the default curves correspond to a flat default rate λi

Fi(t) = 1− exp(−λit).

Our final time horizon is again t0 = 5 and the event correlation we calibrate
to also refers to time t0, i.e., we calibrate to given pairwise default probabil-
ities for time t0. The calibration results are the correlations ρ between the
underlying Wiener processes.

In the table below the first column contains the event correlations ρE

ranging from 0% to 90%. The columns to the right show the calibrated
correlations ρ for the given pair (τ1, τ2) of underlyings with default rates
(λ1, λ2). Missing results indicate that the event correlation in the left most
column is not valid for that combination (cf. (4)).

ρE/(λ1, λ2) (1%,1%) (1%,2%) (1%,3%)
0,00% 0,00% 0,00% 0,00%
5,00% 18,51% 16,27% 15,28%
10,00% 31,59% 28,82% 27,68%
15,00% 41,96% 39,23% 38,29%
20,00% 50,60% 48,16% 47,63%
25,00% 57,98% 55,99% 55,99%
30,00% 64,40% 62,92% 63,55%
35,00% 70,03% 69,11% 70,46%
40,00% 74,98% 74,66% 76,82%
45,00% 79,35% 79,64% 82,77%
50,00% 83,21% 84,12% 88,49%
55,00% 86,58% 88,15%
60,00% 89,53% 91,79%
65,00% 92,07%
70,00% 94,23%
75,00% 96,02%
80,00% 97,47%
85,00% 98,59%
90,00% 99,37%
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ρE/(λ1, λ2) (2%,2%) (2%,3%) (3%,3%)
0,00% 0,00% 0,00% 0,00%
5,00% 13,98% 12,97% 11,94%
10,00% 25,52% 24,07% 22,48%
15,00% 35,43% 33,85% 31,94%
20,00% 44,13% 42,59% 40,52%
25,00% 51,87% 50,47% 48,32%
30,00% 58,78% 57,59% 55,44%
35,00% 64,99% 64,05% 61,92%
40,00% 70,56% 69,91% 67,82%
45,00% 75,55% 75,20% 73,16%
50,00% 80,01% 79,96% 77,97%
55,00% 83,96% 84,22% 82,27%
60,00% 87,43% 88,00% 86,07%
65,00% 90,45% 91,33% 89,40%
70,00% 93,03% 94,23% 92,25%
75,00% 95,19% 96,74% 94,65%
80,00% 96,94% 96,59%
85,00% 98,29% 98,09%
90,00% 99,24% 99,15%

Observe that in the examples above we only calibrate to non-negative
event correlations since in practice negative default correlations are rather
artificial.

4.4 Implementation

To implement our model for practical applications a Monte Carlo simula-
tion seems to be appropriate for most applications. We first choose a final
time horizon t0, naturally the maturity of the transaction to evaluate, and
determine the corresponding threshold level Ki according to (14). The time
changes for the underling Wiener processes are calibrated as outlined above.
The correlation matrix between the driving Wiener processes is derived from
given joint default probabilities or event correlations.

Now choosing a time discretization 0 = s0 < s1 < · · · < sm = t0 for our
time interval [0, t0] we simulate the random variables W i

T i
sj

, i = 1, . . . , n, j =

1, . . . ,m.

The first time sj with W i
T i

sj

< Ki we set τi = sj. However, since the first
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hitting time4

min{sj : W i
T i

sj
< Ki}

of the discrete path clearly overestimates the true default time τi we apply in
addition a Brownian bridge technique to capture the probability of possible
defaults in between the grid points sj. For simulation results α = W i

T i
sj

> Ki

and β = W i
T i

sj+1

> Ki the process W i
u, u ∈ [T i

sj
, T i

sj+1
] follows a so-called

Brownian bridge with starting point α and end point β. The probability of
crossing the boundary Ki during the time interval [T i

sj
, T i

sj+1
] is known to be

(cf. [6])

P( min
u∈[sj ,sj+1]

W i
T i

u
< Ki) = P( min

u∈[T i
sj

,T i
sj+1

]
W i

u < Ki)

= exp

(
−2(β −Ki)(α−Ki)

∆

)
,

with ∆ = T i
sj+1

−T i
sj

. For each time interval [sj, sj+1] given that the threshold

Ki has not been crossed before and that W i
T i

sj+1

> Ki we draw an additional

uniform random variable U i
j and set

τi = (sj + sj+1)/2 if U i
j < exp

(
−2(β −Ki)(α−Ki)

∆

)
and proceed with our simulations if U i

j ≥ exp
(
−2(β−Ki)(α−Ki)

∆

)
.

It turns out that this technique allows the simulation results to cap-
ture the true theoretical marginal default distribution Fi(t) quite accurately.
However, in case of non-vanishing correlations between the underling Wiener
processes we may lose some degree of ”correlation” in our implementation
since, theoretically, the uniforms U i

. would have to be somehow dependent.

As a result of our simulation we end up with simulated default times
τ1, . . . , τn which are the primary input to a Monte Carlo evaluation of any
multi-credit product.

4As usual we follow the convention min(∅) = ∞.
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5 Application example

In this section we apply our model to the pricing of a basket credit default
swap.

Credit default swaps are the dominating plain-vanilla credit derivative
product which serve also as a building block for many other credit products.
A credit default swap offers protection against default of a certain underlying
entity over a specified time horizon. A premium (spread) s is paid on a regular
basis (e.g., on a quarterly, act/360 basis) and on a certain notional amount
N as an insurance fee against the losses from default of a risky position of
notional N , e.g., a bond. The payment of the premium s stops at maturity
or at default of the underlying credit, whichever comes first. At the time
of default before maturity of the trade the protection buyer receives the
payment N(1 − R), where R is the recovery rate of the underlying credit
risky instrument.

A basket credit default swap is an insurance contract that offers protection
against the event of the kth default on a basket of n (n ≥ k) underlying
names. It is quite similar to a plain credit default swap but the credit event
to insure against is the event of the kth default. Again a premium (spread)
s is paid as insurance fee until maturity or the event of the kth default in
return for a compensation for the loss. We denote by skth the fair spread in
a kth-to-default swap, i.e., this is the spread making the value of this swap
today equal to 0.

Most popular are first-to-default swaps, i.e., k = 1, as they offer highly
attractive spreads to a credit investor (protection seller).

We apply our model to a basket with n = 5 names trading in the credit
default swap market with fair CDS spreads5 s1 = 0, 80%, s2 = 0, 90%, s3 =
1, 00%, s4 = 1, 10%, s5 = 1, 20% for all maturities. We suppose a recovery
rate of R = 15% for all credits. The riskless interest rate curve is assumed to
be flat at 5, 00%. As common in practice (see e.g. [7]) we extract from the
given CDS spreads and the recovery assumption the (risk-neutral) distribu-
tion functions Fi of the default time τi, i = 1, . . . , 5.

For various levels of correlations we price 5 years maturity kth-to-default
basket default swaps for k = 1, . . . , 5 and determine their fair spreads. In the
model we use a Monte Carlo simulation on a monthly time grid with 10000
simulations as described in section 4.4. The results are compared to alterna-
tive valuations of the same transactions using a Monte Carlo implementation
of a normal copula model as described in detail e.g. in [8],[11]. In current
practice the normal copula model is widely used to value basket credit deriva-

5On a quarterly act/360 basis.
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tives. The correlations in the normal copula model are calibrated to produce
the same pairwise default probabilities for the time horizon t0 = 5 as in our
time change model. Here is an example how a fixed correlation of ρ = 30%
between our underling Wiener processes translates into a (asset) correlation
matrix for the normal copula model:

100, 00% 32, 30% 31, 99% 31, 73% 31, 52%
32, 30% 100, 00% 32, 06% 31, 80% 31, 58%
31, 99% 32, 06% 100, 00% 31, 86% 31, 63%
31, 73% 31, 80% 31, 86% 100, 00% 31, 68%
31, 52% 31, 58% 31, 63% 31, 68% 100, 00%


The two models produced the following numerical results for the basket de-
fault swap valuations:

fair basket default swap spreads in the time change model

ρ 10% 20% 30% 40% 50% 60% 70%
sfirst 4,791% 4,563% 4,296% 3,953% 3,620% 3,252% 2,845%
s2nd 0,625% 0,799% 0,941% 1,055% 1,131% 1,201% 1,259%
s3rd 0,058% 0,130% 0,201% 0,296% 0,398% 0,523% 0,635%
s4th 0,003% 0,015% 0,040% 0,076% 0,126% 0,202% 0,306%
s5th 0,000% 0,003% 0,006% 0,013% 0,030% 0,057% 0,118%

fair basket default swap spreads in the normal copula model

ρ 10% 20% 30% 40% 50% 60% 70%
sfirst 4,704% 4,442% 4,137% 3,806% 3,486% 3,147% 2,764%
s2nd 0,670% 0,803% 0,941% 1,062% 1,151% 1,215% 1,257%
s3rd 0,074% 0,137% 0,219% 0,320% 0,413% 0,523% 0,640%
s4th 0,005% 0,016% 0,040% 0,084% 0,143% 0,222% 0,334%
s5th 0,001% 0,003% 0,008% 0,016% 0,041% 0,075% 0,135%

For the first-to-default basket compared to the normal copula model the
time change model seems to produce slightly higher spreads. For the other
cases the results are quite close. This is supported by repeated simulations
with different seeds for the random number generator. The seed variance of
fair the first-to-default spread is less than 0.10% and much smaller for the
other spreads. For the normal copula model we used a variance reduction
technique based on stratified sampling whereas for the time change model
we applied an in-sample orthogonalization of the increments of the Wiener
processes.

In [2] Finger compared the results of the pricing of multi-credit prod-
ucts for various stochastic default rate models. The models were calibrated
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against each other on a single period time horizon but then applied to a
multi-period valuation problem. One of the models in his study was the
normal copula model. The comparison results by Finger show much higher
discrepancies between the different models. To a certain extend this can be
attributed to the fact that the models were not calibrated for the final time
horizon. This might explain why our comparison yields much closer results.

6 Conclusions

We investigated models for dependent defaults based upon so-called struc-
tural models where default is triggered by an underlying ability-to-pay pro-
cess reaching a certain threshold barrier. We have introduced a model which
is based on correlated and suitably time changed Wiener processes. This
model is flexible and easy to calibrate to any given term structure of default
probabilities as backed out from market information, as, for example, CDS
spreads or bond prices. An analytic expression for pairwise joint default
probabilities is derived which allows to calibrate the model also efficiently to
given dependence information.

Potential applications of the model are the pricing of multi-credit deriva-
tive products or the valuation of counter-party default risks.

The model has been applied to the problem of pricing a basket credit de-
fault swap. A comparison of the results of our model to the widespread used
normal copula model, both calibrated to the same dependency information,
shows that both models give quite similar results with our model producing
slightly higher fair first-to-default premiums.
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