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1 Introduction

The use of master equation and maximum entropy is definitely not new in
economics, but it has been basically limited so far to financial analysis. Recent
works of Masanao Aoki (Aoki, 1996, 2002) and Aoki and Yoshikawa (2006) open
the possibility of an useful application of these tools in macroeconomic mod-
eling, in particular the analytical solution of heterogeneous agents models, for
which the problem of the aggregation appears particularly tricky. In this way,
they open the possibility of developing new analytical frameworks that over-
come the representative agent hypothesis and its unsound foundations (Keen,
2001; Kirman, 1992). Following the approach introduced in these works and
in Di Guilmi (2008), this paper presents a financial fragility model with het-
erogeneous agents, originally conceived by Greenwald and Stiglitz (1993) and
Delli Gatti et al. (2005), and solves it in a dynamic stochastic framework.

Greenwald and Stiglitz (1993) presented a financial fragility model in which
the representative firm, facing uncertain market conditions, adjusts its produc-
tion level in order to avoid bankruptcy, origining business fluctuations. Delli Gatti et al.
(2005) modify the original model allowing firms to be heterogeneous, as regards
size and financial conditions. The relevant performances of the latter model in
replicating empirical facts demonstrated once again that economy can be bet-
ter modeled as a complex dynamical system rather than a single and perfect
informed agent that produces and consumes.

Structures with non identical and interacting agents are usually solved by
means of computer simulations and their analytical solution cannot be reached
with conventional economic tools. Aoki, introducing in economics the concept
of mean-field interaction, made feasible the analytical modeling of indirect inter-
action among heterogeneous agents. Mean-field can be defined as the average
interaction model that approximates interactions among agents that, other-
wise, could not be analytically treated (Opper and Saad, 2001). Agents are
grouped according to their micro-state; the joint configuration of their micro-
states individuates and determines the aggregate behavior of the system, i. e.
the macro-state. Since economy is populated by a large number of agents, re-
searchers cannot predict all their possible configurations, but they can infer the
stochastic laws that describes units’ behavior. These laws can be estimated
through master equation’s solution techniques. As Aoki and Yoshikawa (2006)
stress: ”Precise behavior of each agent is irrelevant. Rather we need to recog-
nize that microeconomic behavior is fundamentally stochastic and we need to
resort to proper statistical methods to study the macroeconomy consisting of a
large number of such agents.”

The structure of the work is the following: in section 2, we specify the
hypothesis for firms and define the stochastic structure of the system; then, in
section 3, we develop and solve the MaxEnt analysis for inference about statical
probability; analysis about dynamic behavior of the system is performed in
section 4, where we introduce and solve the master equation that fully describe
our economy; section 5 concludes.
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2 Hypothesis

2.1 Firms’ behaviour

We set up a model in continuous time for a system of heterogeneous and in-
teracting agents, partitioned into groups or states. Firms behavior is modelled
following Greenwald and Stiglitz (1993) and Delli Gatti et al. (2005). The econ-
omy is populated by a fixed number of firms N = N(t), each indexed by i for any
given time. Firms are classified in two groups, according to their equity ratio, i.
e. the ratio among net worth and total assets. Firms with an equity ratio ai(t)
lower than the threshold ā(t) have a positive probability of bankruptcy. The
system’s vector of states ω is identified by firm’s equity ratio in the following
way:

ω = {ωi(t) = H (ai(t)| ā) ∀i ≤ N} : H(ai(t)|ā) =

{

1 ⇐⇒ ai(t) < ā

0 ⇐⇒ ai(t) ≥ ā

For analytical reasons we set a1(t) for firms which equity ratio is under the
threshold and a2(t) for firms which equity ratio is over the threshold. In this
way it is feasible to obtain the mean-field approximation of interactions among
agents. More precisely, aj : j = 0, 1 can be regarded as a statistic V of all the
equity ratios for each state:

aj = V {a1, ..., ai, ..., aN} : H(ai|ā) = j

The production function:

qi(t) = 2(ki(t))
1/2 (1)

where k is the physical capital, not subject to deterioration, and q is the physical
output, determines a demand of capital function equal to:

ki(t) =
1

2
(qi(t))

2 (2)

Firms sell all the output they optimally decide to produce and there are
no stocks. The uncertainty of the market is represented by an iid stochastic
multiplicative shock on price. In particular, each firm’s selling price is equal to:

pi(t) = P (t)ũi(t) (3)

where P (t) is the average price on the market and ũi(t) has uniform distribution
with a support that, without loss of generality, can be fixed in the interval
[0.75; 1.25], with E[ũ] = 1. Once a firm get failed, it faces bankruptcy costs
growing with the size of firm and quantified by:

Ci(t) = c(Pi(t)qi(t))
2 = c(P (t)ui(t)qi(t))

2 : 0 < c < 1 (4)
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2.2 Stochastic structure

2.2.1 Macro and micro states

The system is articulated in two micro states, corresponding to the two possible
types of firms. The cardinality of the j-th state, i. e. the number of firms in
state j = 0, 1 is given by

card N1(t) = #{ωi(t) = 1 ∀ i ∈ I} = N1(t)

N0(t) = N −N1(t)







⇒ N(t) =
(

N0(t), N1(t)
)

(5)
By assumption, the dynamics of the occupation number N j follows a contin-

uous time jump Markov process, defined over a state space Ω = (x, y) equipped
with the counting measure N(.)(.) : Ω×T → N, so that (Ω, N(.)(.)) is a countable
sample space. In the following x indicates the case of firms with equity ratio
below the threshold ā and y the alternative case:

ω = x⇔ ωi(t) = 1 ∨ ω = y ⇔ ωi(t) = 0 (6)

such that N(.)(.) evaluates the cardinality of microstates: N(ω)(t) = N1(t) ⇐⇒
ω = x and N(ω) = N0(t) ⇐⇒ ω = y. The relative frequency of firms
is indicated in small letters: nk = Nk/N . A-priori probability of ω = 1 is
indicated by η:

p(ω = x) = η ⇔ p(ω = y) = 1 − η

A firm entries the system in state x and fails (exiting from the system) only if
it is in state x; in order to maintain constant the number of firms N we assume
that each bankrupted firm is immediately substituted by a new one. Therefore
failures of firms do not modify the value of N1 := N(x).

2.2.2 Transition rates

Firms move from x to y or vice versa according to the following transition rates:

b(N j) = r(N j + 1|N j) = ζ N−Nj

N (1 − η)

d(N j) = l(N j − 1|N j) = ιN
j

N η
(7)

being ζ the transition probability from state y to x (firms whose financial po-
sition is deteriorated from a period to another, with equity ratio that becomes
lower than ā) and ι the probability of the inverse transition (firms whose equity
ratio improved becoming bigger than ā). b and d recall ”births” and ”deaths”
of stochastic processes while r (”right”) and l (”left”) stand for increment or
decrement in the cardinality. Having already indicated with N j the occupation
number of firms in state j, transition rates can be evaluated according to:

b(N j) = r(N j + 1|N j) = λ(N −N j) : λ = ζ(1 − η)
d(N j) = l(N j − 1|N j) = γ(N j) : γ = ιη

(8)
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In statistical mechanics terms, this kind of system can be defined as a sta-
tistical ensemble with conservative cardinality, described by a continuous time
Markov process over a discrete state space with the structure of a birth-death
process.

A firm goes bankrupted if its own capital Ai becomes null. Given that the
only variable that firms cannot know is the price shock, bankruptcy probability
can be conveniently expressed as a function of it. In particular, it is possible
to identify a failure condition in terms of a shock price threshold ūi(t) below
which Ai(t) becomes ≤ 0. It can be specified as:

ũ(t′) ≤
(

P (t)

P (t′)

)

(rki(t)/qi(t) − a1(t)
ki(t)

P (t′)qi(t)
) ≡ ūi(t

′)

where t′ − t = δt → 0+. Substituting equation (2) into the above expression
and normalizing reference price P (t) = P (t′) to 1, the r.h.s of above equation
becomes:

ū(t′) ≡ q1(t)

2
(r − a1(t)) (9)

Since the random variable ũ has a delimited support, in order to have con-
sistent values of the probability, the critical thresholds of shock prices should
be normalized according to:







ū = 0.75 ⇐⇒ ũi(t) < 0.75
ū ∈ (0.75; 1.25) ⇐⇒ 0.75 < ũi(t) < 1.25
ū = 1.25 ⇐⇒ ũi(t) > 1.25

(10)

Then, the probability of failure for a firm µ(t) can be expressed explicitly as
a function of ũ(t):

µ(t) = F (ũ(t)) = p(ũ(t) ≤ ū(t)) =
ū(t) − 0.75

0.5
= 2ū(t) − 1.5 (11)

As the threshold ā identifies the minimum value of equity ratio which ensures
the surviving of the firm, i. e. the value of ai(t) for which µi(t) = 0, it can be
then quantified by:

ā(t′) = r − 1.5

q1(t)
(12)

With an analogue procedure, the transition probabilities ζ and ι can be spec-
ified as dependent on the price shock. Indicating the critical values respectively
with ūζ(t) and ūι(t) we thus obtain:

ũi(t) ≤ q0(t)
2

(

r + ā(t) − a0(t)
)

≡ ūζ(t)

ũi(t) >
q1(t)

2

(

r + ā(t) − a1(t)
)

≡ ūι(t)

with ranges of variation of the two thresholds truncated as in (10). It is straight-
forward now to get the transition probability for each state:

ζ(t) = p(ũ(t) ≤ ūζ(t)) = 2ūζ(t) − 1.5 (13)

ι(t) = 1 − p(ũ(t) ≤ ūι(t)) = −2ūι(t) + 2.5 (14)
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2.2.3 Firms profit maximization

A firm decides the optimal quantity to produce in order to maximize its profit,
using all the available information. Under the stated hypothesis the object
function of a generic firm i can be then expressed as:

max
qi(t)

F (qi(t)) := {E [P (t)ui(t
′)qi(t)] − rki(t) − Ci(t)µ(t′)} (15)

By assumption, firms take into consideration the present level of failure prob-
ability, therefore E [µ(t′)] = µ(t) and prices are normalized such that E [P (t′)] =
P (t′) = P (t) = 1 without loss of generality. Using equation (2) and considering
that E[ũ] = 1, the argument of the (15) can be rewritten as:

qi(t) − rki(t) − Ci(t)µ(t) = qi(t) − r
1

2
(qi(t))

2 − c(qi(t))
2µ(t)

Consequently, two different optimal levels of production can be identified, for
firms in state x and for firms in state y, respectively:

q1∗ = (r + 2cµ(t))−1 (16)

q0∗ = r−1

since µ = 0 for firms in state y. Therefore the aggregate production:

Y (t) = N0(t)q0∗ +N1(t)q1∗ =
N1

r + 2cµ(t)
+
N0

r
(17)

comes out to be dependent on the occupation numbers.

3 The MaxEnt problem

The first step of model’s solution consists in estimating the statical probability
for a firm to be in one of the two states in a given instant. In particular, the
aim is to obtain an estimation without imposing any hypothesis that may drive
or restrict firms behavior but just imposing a macro-economic constraint to
make probability to be consistent with system’s structure. The inference here
performed is based on maximum entropy method (MaxEnt). Indeed, the use
of statistical entropy emerges as a particularly useful instrument for inference
in a context where so few information are available1. Maximization of the
entropy functional returns the maximum likelihood estimation of probability
distribution function in Gibbs form. The statistical entropy of the system is
measured, according to Aoki (1996), by the Shannon entropy.

Here arguments of maximization are the occupation numbers and the prob-
lem has the following formulation:

max
N1,N0

H(N1, N0) = −N1 log (N1) −N0 log (N0) (18)

1MaxEnt problems have been widely addressed in the works of Jaynes (see e. g. Jaynes
(1957)). For economic applications see Liossatos (2004) and Landini et al. (2008).
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s.t.

{

N1(t) +N0(t) = N
N1(t)y1(t) +N0(t)y0(t) = Y (t)

(19)

The first constraint ensures the normalization of the probability function, main-
taining the number of firms in each group below the total number of firms. In
the second, y1 and y0 represent the value of production of a single firm for both
states. This condition ensures the consistency of the estimation with the under-
lying economic model. Moreover, it represents a factor of indirect interaction
among agents, linking the estimation to aggregate production and, then, to the
situation of the other firms in the system. The lagrangean is:

ℓ = −N1(t) log (N1(t)) −N0(t) log (N0(t)) + δ1(t)N
1(t) + δ1(t)N

0(t) − δ1(t)N+
+δ2(t)N

1(t)y1(t) + δ2(t)N
0(t)y0(t) − δ2(t)Y (t)

with first order conditions2:



















∂ℓ
∂N1(t) = − log(N1(t)) − 1 + δ1(t) + δ2(t)y

1(t)
∂ℓ

∂N0(t) = − log(N0(t)) − 1 + δ1(t) + δ2(t)y
0(t)

∂ℓ
∂δ1(t)

= N −N1(t) −N0(t)
∂ℓ

∂δ2(t)
= Y (t) −N1(t)y1(t) −N0(t)y0(t)

(20)

Equating the (20) to 0, and substituting δ1(t) = 1−α(t) and δ2(t) = −β(t), we
obtain:















N1(t) = e−(α(t)+β(t)y1(t))

N0(t) = e−(α(t)+β(t)y0(t))

N1(t) +N0(t) = N
N1(t)y1(t) +N0(t)y0(t) = Y (t)

Substituting the first two equations in the third and rearranging, it becomes:

e−α(t) =
N

e−β(t)y1(t) + e−β(t)y0(t)

which, substituted in the last of the (20), generates:

e−β(t)y1(t)y1(t) + e−β(t)y0(t)y0(t) = Y (t)
e−β(t)y1(t) + e−β(t)y0(t)

N

Indicating ȳ(t) = Y (t)/N , we obtain therefore:

(y1(t) − ȳ(t))e−β(t)y1(t) + (y0(t) − ȳ(t))e−β(t)y0(t) = 0 (21)

that, in statistical mechanics terms, is defined as quantum anomalies equation.
Its l.h.s. measures the distance of the actual production from an ideal situation

2As demonstrated in (Landini, 2005, pag. 146) the first order condition are also sufficient.
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in which all firms, being safe from failure, are in the state with the higher level
of production. β(t) then emerges as a useful synthetic indicator for the situation
of the economy. Its estimation as a solution for equation (21) permits to explicit
the theoretical probability of an agent to be in state x or y, conditioned on the
present value of N1 and N0. Since:

N j(t) = e−α(t)e−β(t)yj(t)

for j = 0, 1, then:

pj(t) =
N j(t)

N
=
e−β(t)yj(t)

Z
(22)

where Z represents the partition function. Solution of equation (21) is the
estimation for β(t):

β(t) = ln

(

−y
1(t) − ȳ(t)

y0(t) − ¯y(t)

)

(

y1(t) − y0(t)
)−1

(23)

Using equations (16), we can express equation (23) in the following way:

β(t) = ln

(

N0(t)

N1(t)

)(

r + 2cµ(t)

2cµ(t)

)

= ln

(

N −N j(t)

N j(t)

)(

r + 2cµ(t)

2cµ(t)

)

(24)

If the proportion of firms in state x increases, β drops, until it becomes less than
0, revealing an under-performance of the economy due to the risk of bankruptcy
of heavily indebted firms. Indeed, the sign of β is determined by the relative
proportion of firms in the two states. The distance from 0 basically due to the
disproportion among the two occupation numbers (enforced by the interest rate
effect), given that:

(N1(t) → N) ⇒ β → −∞
(N1(t) → 0) ⇒ β → +∞

In this view β may be regarded also as an index of the uncertainty of the system,
given that in the case of an approximately equal proportion of firms in the two
states the parameter will tend to 0.

Now we can explicit equations (22) for j = 0, 1:

p0(t) = Z−1

(

N −N1(t)

N1(t)

)

1
2cµ(t)

(25)

p1(t) = Z−1

(

N −N1(t)

N1(t)

)

r+2cµ(t)
r2cµ(t)

(26)

These equations represent the maximum likelihood estimations for the proba-
bility density function for a firm to enter in state x or y, where Z is the partition
function.
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4 Dynamic analysis and master equation

Since the evolution of the occupation numbers is assumed to be a jump Markov
chain, the dynamics of the joint probabilities, and, by this way, the stochastic
evolution of the system can be conveniently described by a master equation3.
In particular, the dynamics of the probability of having Nk firms in state x at
time t can be described in the following way:

dP (Nk,t)
dt = b(Nk−1(t))P (Nk−1(t)) + d(Nk+1(t))P (Nk+1(t))+

−{[(b(Nk(t)) + d(Nk(t)))P (Nk(t))]}
(27)

with boundary conditions:
{

P (N, t) = b(N1(t))P (N1 − 1, t) + d(N(t))P (N, t)
P (0, t) = b(1)P (1, t) + d(0)P (0, t)

(28)

These conditions ensure that the distributions functions consider only consistent
values, that is to say N1 ∈ [0;N ]. Equation (28) is a balance flow equation
between probability fluxes in and out from state x.

An analytical solution for master equations can be obtained only under very
specific conditions (Risken, 1989), thus we solve it by means of an approxima-
tion method based on led and lag operators4. The state variable is modified,
assuming that the fraction of firms in state x at a given moment is determined
by its expected mean (m), the drift, and by an additive fluctuations component
of order N−1/2 around this value, the spread:

N1(t) = Nm(t) +
√
Ns (29)

In Appendix A it is demonstrated that, starting from (29) it is possible to obtain
an asymptotically approximated solution for each of the two components of the
dynamics:

dm

dτ
= λm(t) − (λ+ γ)m2(t) (30)

∂Q

∂τ
= [2(λ+ γ)m(t) − λ]

∂

∂s
(sQ(s))+

[

λm(t)(1 −m(t)) + γm2(t)
]

2

(

∂

∂s

)2

Q(s)

(31)
The ODE (30) describes the dynamics of the trend and can be defined as

macroeconomic equation. The probability flow of the spreading component is
quantified by equation (31), that is termed as Fokker-Planck equation. The
asymptotic solution of this PSDE identifies the stationary distribution for fluc-
tuations. In the same way, setting the l.h.s. of macroscopic equation (30) to 0,
we identify the steady state value for m:

m∗ =
λ

λ+ γ
(32)

3See Aoki (2002, chap. 3), Di Guilmi (2008, chap. 3) and Landini (2005, page 252).
4For a detailed exposition see Aoki (2002) or Landini (2005).
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The direct integration of equation (30) returns:

m(τ) =
λ

(λ+ γ) − ke−ψτ
:

{

k = 1 − m∗

m(0)

ψ = (λ+γ)2

λ

(33)

Solution of the equation for the spread component, presented in Appendix B, is
represented by the distribution function, here indicated with θ, for the spread
s, that identifies the probability distribution of fluctuations:

θ(s) = C exp

(

− s2

2σ2

)

: σ2 =
λγ

(λ+ γ)2
= m∗

γ

λ+ γ
(34)

Both the dynamics of fraction of firms occupying state 1 and the distribution
of fluctuations appear as fully dependent on transition rates.

The temporal evolution of aggregate production can be then quantified ac-
cordingly. Rearranging equation (17), using the (32), the long run level of
aggregate production can be expressed as:

Y e = N

[

1

r
− λ

λ+ γ

2cµ

r(r + 2cµ)

]

= N

[

1

r
− λ

λ+ γ

(

y1 − y0
)

]

(35)

Production dynamics appears then to be dependent on the transition rates λ
and γ and on the differences in firms level of production between microstates.
The dynamics of these factors are studied in the following section.

4.1 Equilibrium distribution and critical points

The analytical condition for the equilibrium probability is obtained by equating
the master equation to 0 for all the possible macro-states, condition known as de-

tailed balance. Considering the applicability in markovian spaces of the Brook’s
lemma (Brook, 1964) and making use of the Hammersley and Clifford theorem
(Clifford, 1990), the stationary probability of the process for N j , provided that
detailed balance holds, can be expressed by:

P e(N j) ∝ Z−1e−βNU(Nj) (36)

where U(N j) is the Gibbs potential (Picardello and Woess, 1999). This leads
to the identification of a functional form for the probability η:

η(N j) = N−1eβg(N
j) (37)

where g(N j) is a function that evaluates the relative difference in the outcome
as a function of N j . Large values of β associated with positive values of g(N j)
cause η(N j) to be larger than 1−η(N j), making transition from state y to state
x more likely to occur than the opposite one. On the other hand, values of β
close to 0, make η(N j) close to 0.5. In models with two states, for a great N ,
the equation of the potential is:

U(N j) = −2

∫ Nj

0

g(N j)dy − 1

β
S(N)

10



where S(N) is the Shannon entropy for the vector of occupation numbers. In
order to individuate the stationary points of probability dynamics, we have
to identify its peak. β is an inverse multiplicative factor for entropy: this
implies then that, for very large values of β, the entropy component has a
negligible impact and the stationary points can be unambiguously identified.
With reference to our economic system, a relative high value of β translates in
a low number of firms exposed at bankruptcy risk and a limited impact of the
bankruptcy’s probability µ (Aoki, 1996, pp. 55 and followings). On the contrary,
as β approaches 0, the weight of the entropy component grows. Aoki (2002)
shows that the points in which the potential is minimized are also the critical
point of the aggregate dynamics of pj . Therefore, in order to individuate the
peak of probability dynamic we need to find the local minimum of the potential.
The first order derivative of the potential with respect to N j :

g(N j) = − 1

2β

∂S(N j)

∂N j
= − 1

2β
ln

(

N j

N −N j

)

(38)

Setting U ′ = 0 and using equation (23), we get an explicit formulation for g(N1)
in stationary conditions:

g(N1) =
y0 − y1

2
(39)

that quantifies the mean difference (for states) of the outcome.
From equation (38), it follows that the point of local minimal of the potential
is given by:

U ′ = 0 ⇒ e2βg(N
j) =

N j

N −N j
(40)

that, if the rates of entries and exits are equated, (i. e. if ι = ζ), reproduces
exactly the (29). Therefore, making use of the (37) we can write:

P (N j) =
e2βg(N

j)

e2βg(Nj) + e−2βg(Nj)
(41)

that is the maximum likelihood estimation of the Gibbs distribution of the
number of firms in state j. Let us analyze the different behavior of the stationary
distribution for different values of β.

For β → ∞, equation (38) shows that the critical points in which the poten-
tial is minimized are also the zeros of the function g(N j):

U ′(m∗) = −2g(m∗) = 0 (42)

This suggests that β may be interpreted as an inverse index of uncertainty.
From equation (39) it follows that:

g(N j) = 0 ⇔ y0 − y1 = 0

Under these conditions, there is no uncertainty in the system, since no firm
can go bankrupted. Indeed β can go to infinity if N0 → N or if µ → 0, since
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both situation imply a convergence among the different targets of production
at micro level and, then, a minimum degree of uncertainty in the system.

For β → 0, in order to individuate the critical points, a further deepen-

ing is needed. β can go to 0 if and only if Nj

N−Nj → 1, that is to say, if the
system has the same proportion of firms in the two states. But this is not
informative about the behavior of the g(N) since the first factor of the equa-
tion (38) goes to infinity (given that β → 0) while the second goes to 0. We
can employ Cox and Miller hazard function (Cox and Miller, 1996), setting an
underlying density function analogous to a standard Brownian motion’s first-
passage(Grimmett and Stirzaker, 1992), and express it as a function of m:

F (m) =
[

1 + e−2βm
]−1 ⇒ h(m) =

2β

1 + e−2βm
(43)

The aim is to calculate the probability that a firm passes from a state to another
in response to a small variation in the difference of relative production, condi-
tional on the current difference among y0 and y1, quantified by g(m) in equation
(39). We can then rewrite the conditional hazard function in the following way:

P (v ≤ y1 − y0|m∗) =
[

1 + e−2βg(m∗)
]

−1

(44)

and then:

h(y1 − y0|m∗) =
2βη(m∗)

1 + e−2βg(m∗)
(45)

Supposing that η(m∗) = m∗, we finally obtain:

h(y1 − y0|m∗) = 2βm∗ (46)

Therefore, we may conclude that for values of β close to 0, the critical point
of probability dynamics, here found by minimizing the potential, is a value of
m∗ approximately equal to β itself. In other words, β may be considered the as
the conditional hazard rate in the range where β is small. The potential then is
minimized for a fraction m∗ of firms in state x when the value of the conditional
hazard function is approximately equal to β.

5 Concluding remarks

In this work we present an application of a statistical mechanic approach, in-
spired by Aoki’s methodology, to a macroeconomic model of financial fragility
of the type presented in Greenwald and Stiglitz (1993) and Delli Gatti et al.
(2005). The modeling of agents’ behavior as a mean field interaction and the
use of stochastic dynamic aggregation tools permit to identify a stable analytical
solution. Starting from very general conditions and hypothesis, embodied in a
stochastic framework, we finally obtain a system of coupled equations that de-
scribes the evolution of the system and its long term equilibrium solution. The
dynamics is analyzed by means of master equation solution techniques enriched
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by the use of MaxEnt and hazard function analysis.

Appendix A

The master equation (27) must be modified, according to equation (29), and
expressed as Q̇(s), a function of s:

Ṗ (Nk) =
∂Q

∂t
+
ds

dt

∂Q

∂s
= Q̇(s) (47)

with transition rates reformulated in the following way:

b(s) = λ
[

N −Nm−
√
Ns

]

(48)

d(s) = γ
[

Nm+
√
Ns

]

(49)

Since
ds

dt
= −N1/2 dm

dt
(50)

equation (47) can be expressed as:

Q̇(s) =
∂Q

∂t
−N1/2 ∂Q

∂s
ṁ (51)

Now we rewrite again the master equation (27) and the transition rates by
means of lead and lag operators. These operators make the two probability flows
(in and out) homogeneous. Specifically the transition probabilities (8) become:

L[d(Nk)P (Nk, t)] = d(Nk+1)P (Nk+1) (52)

L−1[b(Nk)P (Nk, t)] = d(Nk−1)P (Nk−1) (53)

so that the master equation will be expressed in this way:

Q̇(s) = (L− 1)[d(s)Q(s)] + (L−1 − 1)[d(s)Q(s)] (54)

Using the modified transition rates (52) and expanding the thus obtained
master equation in inverse powers of s to the second order we get:

N−1 ∂Q
∂τ −N−1/2 dm

dτ
∂Q
∂s =

N−1/2
(

∂
∂s

)

[d(s)Q(s)] +N−1 1
2

(

∂
∂s

)2
[d(s)Q(s)]+

−N−1/2
(

∂
∂s

)

[b(s)Q(s)] +N−1 1
2

(

∂
∂s

)2
[b(s)Q(s)] + ...

= N−1/2
(

∂
∂s

)

[(d(s) − b(s))Q(s)] +N−1 1
2

(

∂
∂s

)2
[(b(s) + d(s))Q(s)] + ...

(55)
where τ = t/N . At this point, in order to match the component of the same
orders of powers of N between and equations (47) and (55), we need to rescale
the variable τ = tN . Knowing that:

d(s) − b(s) = (λ+ γ)(Nm+
√
Ns) − λN = (λ+ γ)Nk − λN

d(s) + b(s) = (λ− γ)(Nm+
√
Ns) + λN = (λ− γ)Nk + λN
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and taking the derivatives, up to the second order, it is possible to obtain
what Aoki (2002) defines as diffusion approximation:

N−1 ∂Q
∂τ −N−1/2 dm

dτ
∂Q
∂s =

(λ+ γ)Q(s) +N−1/2(d(s) − b(s))
(

∂
∂s

)

Q(s) +N−1 1
2 (b(s) + d(s))

(

∂
∂s

)

Q(s)
(56)

Applying the polynomial identity principle to equation (56) for powers of N
of order −1 we get a formulation for the Fokker-Plank equation:

N−1 ∂Q
∂t = −b′(m)s∂Q∂s + b(m) 1

2

(

∂
∂s

)2
Q(s) − b′(m)sQ(s)

+d′(m)s
(

∂
∂s

)

Q(s) + d(m) 1
2

(

∂
∂s

)2
Q(s) − d′(m)Q(s)

= (d′(m) − b′(m))
(

∂
∂s

)

Q(s) + 1
2 (d(m) + b(m))

(

∂
∂s

)2
Q(s)

(57)

Then, generic asymptotic approximated solution for the master equation will
be given by the solution of the following coupled dynamical system of equations:







dm
dτ = ρ(m)
∂Q
∂τ = −ρ′(m)

(

∂
∂s

)

(sQ(s)) + 1
2α(m)

(

∂
∂s

)2
Q(s)

s.t. ρ(m) = b(m) − d(m), α(m) = b(m) + d(m)

(58)

In order to arrive at an explicit solution we introduce a modification in the
transition rates of equations (8), supposing that the probability η is equal to
the observed frequency of firms occupying state 1. The new transition rates are
then:

{

bn = r(Nk + 1|N) = ζ Nk

N
N−Nk

N

dn = l(Nk − 1|N) = ιNk

N
Nk−1
N

(59)

where the factor Nk

N allows to interpret, respectively, the probability transition
ζ as a constant of proportionality between the birth rate per individual and
the deviation from the upper bound N − Nk and the probability transition ι
as a constant of proportionality between the death rate per individual and the
deviation from the lower bound or Nk − 1. Given that, one can set the two
functions:

λ(Nk) = λNk

N

γ(Nk) = γNk

N

(60)

Substituting the transition rates (60) in the master equation (27) and col-
lecting terms with λ and γ, after some simple but tedious algebraic passages,
we obtain:

dP
dt = N−2 {γ [Nk(Nk + 1)L(P ) + 2nP ] +
−λ

[

(Nk − 1)(N −Nk + 1)L−1(P ) + (N − 2n+ 1)P
]} (61)

where L(P ) and L−1(P ) are lead and lag operators, reformulated in the
following way according to Aoki (1996) and Landini and Uberti (2008):
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L(P ) =

∞
∑

z=1

N−z/2

z!

(

∂

∂s

)z

Q(s) (62)

L−1(P ) =

∞
∑

z=1

(−)zN−z/2

z!

(

∂

∂s

)z

Q(s) (63)

Substituting the above indicated operators into equation (61), it becomes:

dP
dt = N−2

{

∑

∞

z=1 [D(Nk) + (−)zB(Nk)]
N−z/2

z!

(

∂
∂s

)z
Q(s)

}

+

+N−2 {[2γNk − λ(N − 2n+ 1)]Q(s)}
(64)

where:

{

B(Nk) = λ(Nk − 1)(N −Nk + 1) = λN(Nk − 1) − λ(Nk − 1)2 = B(m)
D(Nk) = γNk(Nk + 1) = D(m)

(65)
The specification of the drift displayed in equation (29) implies that:







Nk+1 = Nm+
√
N(s+N−1/2)

Nk = Nm+
√
Ns

Nk−1 = Nm+
√
N(s−N−1/2)

(66)

Using these specifications in equation (65), it turns out to be:

{

B(m) = λ
[

N2m(1 −m) +N3/2s(1 − 2m) +N(2m− s2 − 1) + 2N1/2s− 1
]

D(m) = γ
[

N2m2 +N3/22ms+N(m+ s2) +N1/2s
]

(67)
Now, expanding to the second order equation approximation equation (64),

that is to say for z = 1, 2, we get:































z = 1 : N−1/2 [D(m) −B(m)] =
N3/2

[

−λm(1 −m) + γm2
]

+N [2ms(λ+ γ) − λ〈s〉〈s〉] +
+N1/2

[

s2(λ+ γ) + (γ − 2λ)m+ 1λ
]

− 2λs+N−1/2(γs− λ)

z = 2 : N−1

2 [D(m) +B(m)] =
N

[

λm(1 −m) + γm2
]

+N1/2 [2ms(λ+ γ) − λs] +
+

[

s2(γ − λ) +m(γ + 2λ) − λ
]

+N−1/22λs+N−1(γs+ λ)
(68)

and substituting it into equation (64), it gives back the following approxi-
mated master equation:
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dP
dt =

{

N−1/2
[

−λm(1 −m) + γm2
]

+N−1 [2ms(λ+ γ) − λs]
}

∂
∂sQ(s)+

+
{

−N−3/2
[

s2(λ+ γ) + (γ − 2λ)m+ λ
]

−N−22λs+
−N−5/2(γs− λ)

}

∂
∂sQ(s) + 1

2

{

N−1
[

λm(1 −m) + γm2
]

+

+N−3/2 [2ms(λ+ γ) − λs]
} (

∂
∂s

)2
Q(s)+

+ 1
2

{

N−2
[

s2(γ − λ) +m(γ + 2λ) − λ
]

+

+N−5/2λs+N−3(γs+ λ)
} (

∂
∂s

)2
Q(s)+

+
{

N−1 [2m(λ+ γ) − λ] +N−3/2 [2s(λ+ γ)] −N−2λ
}

(69)
Considering that:

dP

dt
=
∂Q

∂t
−N−1/2 dm

dt

∂Q

∂s
(70)

in order to match the higher order terms in powers of N , we have rescale
time as t = Nτ :

dP

dt
=
∂Q

∂t
−N−1/2 dm

dt

∂Q

∂s
⇔ N−1 dP

dτ
= N−1 ∂Q

∂τ
−N−1/2 dm

dτ

∂Q

∂s
(71)

Then we have to equal the so obtained two formulations for the master
equation: equation (69) and equation (71). It can be done matching the terms
that have the same power of N . Then we collect terms of order N−1 in equation
(69) so as to match them with ∂Q/∂τ of equation (71) and those of order N−1/2

to set them equal to N−1/2ṁ∂Q
∂s . All the other terms asymptotically vanish as

N → ∞. In this way we get:

−N−1/2 dm

dτ

∂Q

∂s
= −N−1/2

[

λm(1 −m) − γm2
] ∂

∂s
Q(s) (72)

N−1 ∂Q
∂τ = N−1 [2m(λ+ γ) − λ] ∂

∂s (sQ(s))+

+N−1

2

[

λm(1 −m) + γm2
] (

∂
∂s

)2
Q(s)

(73)

Asymptotically approximated solution of master equation is given by the
following system of coupled equations:

dm

dτ
= λm− (λ+ γ)m2 (74)

∂Q

∂τ
= [2(λ+ γ)m− λ]

∂

∂s
(sQ(s)) +

[

λm(1 −m) + γm2
]

2

(

∂

∂s

)2

Q(s) (75)

Appendix B

We determine here in what follows a solution for Fokker-Planck equation
in terms of Q(s). Indicating with θ(s) the stationary probability for Q(s) and
setting the equilibrium condition Q̇ = 0 (that implies θ̇ = 0), it is possible to
obtain:
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− [2(λ+ γ)m∗ − λ] sθ(s) =

[

λm∗(1 −m∗) + γm∗2
]

2

(

∂

∂s

)

θ(s) (76)

Rewriting (76) more conveniently as:

2 [λ− 2(λ+ γ)m∗]

[λm∗(1 −m∗) + γm∗2]
s =

1

θ(s)

(

∂

∂s

)

θ(s) (77)

and integrating it with respect to s, we obtain:

log θ(s) = C + λ−2(λ+γ)m∗

λm∗(1−m∗)+γm∗2 s
2

m
θ(s) = C exp

(

λ−2(λ+γ)m∗

λm∗+(γ−λ)m∗2 s
2
)

(78)

Then, substituting m∗ = λ/(λ+ γ), we get the final result:

θ(s) = C exp

(

− s2

2σ2

)

: σ2 =
λγ

(λ+ γ)2
(79)
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