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Abstract

In this paper we analyze the world´s cross-national distribution of income and its

evolution from 1970 to 2003. We argue that modeling this distribution by a finite

mixture and investigating its number of components has advantages over nonparametric

inference concerning the number of modes. In particular, the number of components of

the distribution does not depend on the scale chosen (original or logarithmic), whereas

the number of modes does. Instead of so-called twin-peaks, we find that the distribution

appears to have only two components in 1970-1975, but consists of three components

from 1976 onwards, a low, average and high mean-income group, with group means

diverging over time. Here we apply recently developed modified likelihood ratio tests

for the number of components in a finite mixture. The intra distributional dynamics

are investigated in detail using posterior probability estimates.
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1 Introduction

The behavior of the cross-national income distribution is for many reasons of great inter-

est. In particular, the development of twin or even more peaks would characterize a world of

growing cross-country average income polarization and suggest the existence of multiple equi-

libria. Numerous papers (Barro, 1991; Barro and Sala-i-Martin, 1992; Levine and Renelt,

1992; Mankiw, Romer and Weil, 1992; Jones, 1997; Quah, 1996a,b; Sala-i-Martin, 1996;

Durlauf and Quah, 1999; Beaudry et al., 2005) have this debate at heart and discuss, which

type of convergence governs the development of the cross-national income distribution and

what is to be expected in the future. In particular, they show that a focus on β-convergence

is informative on the nature of intra-distributional dynamics but cannot convey information

concerning the development of the entire distribution, which appears to be polarizing. In

order to overcome this traditional shortcoming of the β-convergence debate, probabilistic

income mobility models are used to estimate likelihoods of convergence groups. Hence, there

is a discussion on whether the twin peak phenomenon is either persistent as probabilities of

switching are too low (Quah, 1996a,b) or is only a temporary occurrence due to increasing

frequencies of growth miracles (Jones, 1997). Thus, existing literature either shows a de-

scriptive picture of the cross-national income distribution by observing the development of

two income per capita peaks in the cross-national income distribution, or, alternatively, is

concerned with β-convergence in cross-national income growth regressions. Bianchi (1997)

employed a nonparametric test for multimodality based on kernel density estimation to the

cross-country income distribution. Further nonparametric approaches include those by An-

derson (2004), who used stochastic dominance techniques, and by Maasoumi et al. (2007),

who analyzed the cross-sectional distribution of growth rates. Regarding parametric model-

ing, for the cross-country income distribution, Paap and Dijk (1998) used a two-component

mixture, consisting of a truncated normal distribution and a Weibull distribution.

Using nonparametric density estimates, several authors find a twin-peaked cross-country

income distribution (Quah, 1996b; Bianchi, 1997). In particular, Bianchi (1997) observes
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increasing evidence for bimodality in the GDP per capita distribution across countries over

the period from 1970 to 1989 indicating global divergence rather than convergence. How-

ever, income data are often analyzed on a logarithmic scale, and the number of modes of

the log-income distribution may differ substantially from the number of modes of the income

distribution itself. In contrast, when modeling a density as a finite mixture, the number of

components of this mixture is independent of the chosen scale. Furthermore, if one wishes to

address convergence one can argue that it is not the number of modes in the cross-national

income density which contains the most relevant information, but rather the number of con-

vergence clubs, which correspond to the components in the finite mixture.

When modeling the cross-national income distribution by a finite mixture, determining its

number of components is an essential step in the analysis. In their model, Paap and Dijk

(1998) use a mixture with two distinct components, which resembles the fit of a histogram

of the cross-national income distribution. Thus, the ”stylized fact” of a distinction between

poor and rich countries is already built into their model. We argue that via a statistical

inference procedure, the data itself should determine the number of components and to this

end a finite mixture with normal components of the log-income distribution (or log-normal

components of the income distribution itself) is the appropriate tool. We shall apply the

recently developed modified likelihood ratio test methodology (cf. Chen et al. 2001, 2004,

and Chen and Kalbfleisch, 2005) for the number of components in a finite mixture to the

cross-national income distribution.

In contrast to the twin-peaks literature and also to Paap and Dijk (1998), we find evidence of

two components only at the beginnings of the 70s, whereas in the mid 70s, a third interme-

diate component emerges, which tends to separate itself ever more clearly from the poorest

component. Thus, we find statistical evidence for three components rather than “twin peaks”

in the cross-country income distribution.

After determining the number of components (three components from 1976 onward), we

contribute to the convergence debate by extensively investigating the evolution, number of
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components and the inter-distributional dynamics of the cross-country income distribution

by using the posterior probability estimates from our fitted model. In particular, we find

intra-distributional dynamics for Asian (upward mobility) and Latin American (downward

mobility) countries. The overall picture that we obtain is that of three diverging groups in

the cross-national income distribution.

The paper is structured as follows: Section 2 introduces the statistical methodology and

highlights the differences (and advantages) of our approach compared with those taken in

previous studies. Section 3 discusses our results, before we conclude.

2 Statistical Methodology & Data

2.1 Data

Following most other papers, our analysis is based on income data from the Penn World

Tables Version 6.2 (Summer, Heston & Aten, 2006), from which we extract the real PPP

GDP/per capita series of all years and countries available (chain series, base year 2000 in

international $). In order to compare our observations over time, we restrict ourselves to

those countries having more than half a million inhabitants, of which complete income data

for the whole time period are available. This restriction leaves 124 countries for the period

from 1970 to 2003 in our analysis. These countries represent about 95 percent of the world´s

population.

2.2 Testing for the Number of Components in a Finite Mixture –

the Modified Likelihood Ratio Test

Let fX denote the density of the cross-country income distribution of a fixed year, and let fY

be the corresponding density of the log-incomes, so that fY (y) = fX(ey)ey. Multimodality of
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fX can arise by fX being a finite mixture of other (unimodal) densities, so that

fX(x) = p1g(x; µ1, σ1) + . . . + pmg(x; µm, σm), x > 0, (1)

where the weights pi ≥ 0,
∑

i pi = 1 and g(x; µ, σ) is a parametric family of densities, e.g.

the log-normal distribution.

If fX is a finite mixture of densities g(·; µ, σ), there is no general simple connection between

the number of modes of fX and the number of components m. Typically, for unimodal g, the

number of modes of f will be at most m, but often will be less than m. Furthermore, one is

rather interested in the number of components m of the finite mixture than in the number

of modes. For example, in the cross-country income distribution the components correspond

to groups with different income level. Therefore, if we model the cross-country distribution

of income by a finite mixture, determining its number of components statistically is a task

of major importance, since this number will have essential economic consequences.

Note that the number of components is preserved if the data are transformed via a strictly

monotonic transformation. In fact, if the xi have density of form (1), the log-data yi = log(xi)

have the transformed density

fY (y) = p1g(ey; µ1, σ1)e
y + . . . + pmg(ey; µm, σm)ey.

Thus, the number of components is preserved, while the number of modes evidently may

not. Therefore, in this paper we model fX (and hence fY ) as a finite mixture and then

determine its number of components, mainly via hypothesis testing, but also by the use of

model selection criteria. We model fY as a finite mixture of normal distributions, so that fX

is a finite mixture of log-normal distributions.

Estimation in finite mixture models (with a fixed number of components) typically pro-

ceeds by maximum likelihood. However, as already discussed in Pittau (2005), the likelihood

function in a finite normal mixture with different variances is unbounded, thus, a global
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maximizer of the likelihood function does not exist. There are some solutions around this

problem. One is to look for the largest local maximum. Another is to the variances by

restrictions of the form σ2
i ≤ c σ2

j for all i, j = 1, . . .m and some c > 1 (cf. Hathaway 1985),

which again leads to the existence of a global maximum and, if the true parameters satisfy

the restriction, consistency. However, these solutions have practical problems, and therefore,

here and regarding the analysis in section 3 we shall use finite mixtures with equal variances.

For further discussion see section 4.

Testing in parametric models is often accomplished by using the likelihood ratio test (LRT).

However, in order to test for the number of components in finite mixture models, it has long

been known that the standard theory of the LRT does not apply. This is due to lack of

identifiability under the null hypothesis: The null can be realized either by a weight zero for

one of the components, or by equal parameters of two component distributions. Recently,

it has been discovered that the asymptotic distribution of the LRT concerning the testing

for the number of components in finite mixtures is the superior over a truncated Gaussian

process (Chen and Chen, 2001; Dacunha-Castelle and Gassiat, 1999). The covariance of this

process depends on the unknown true parameter, thus, the asymptotic distribution is too

complicated and the LRT looses its practical appeal.

In methodologically related studies, Pittau (2005) and Pittau and Zelli (2006) fitted finite

normal mixtures to the per-capita log GDP distribution across European regions in the years

1977–1996. They used a bootstrap version of the likelihood ratio test suggested by McLachlan

(1987) to determine the number of components. However, this approach is computationally

expensive and typically has low power properties, since under an alternative, the parame-

ters from which resamples are obtained, are not correctly estimated (cf. Chen, Chen and

Kalbfleisch, 2004, for related simulation results).

Recently, Chen et al. (2001, 2004) and Chen and Kalbfleisch (2005) suggested modified

LRTs to solve these problems, which retain a comparatively simple limit theory as well as

the good power properties of the LRT. We shall apply these tests to our problem concerning
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the number of groups in the income distribution. At this point, we want to mention that

the LRT and also the modified LRT are invariant under strictly monotonic transformation

of the data (if candidate densities are correspondingly transformed). Thus, we could test on

the level of the xi as well as on the level of the yi, the results are (in contrast to Silverman’s

test) completely consistent. For convenience, we shall use the log-data.

We first consider testing one against two components in a mixture. Suppose that φ(y; µ, σ)

is the normal distribution with mean µ and standard deviation σ, and consider the two-

component mixture

fY (y; p, µ1, µ2, σ) = pφ(y; µ1, σ) + (1 − p)φ(y; µ2, σ) (2)

with equal standard deviation σ. The testing problem is

H1 : fY is normally distributed against K1 : fY is of the form (2).

The modified likelihood function is given by

ln(p, µ1, µ2, σ) =
n

∑

i=1

log
(

pφ(yi; µ1, σ) + (1 − p)φ(yi; µ2, σ)
)

+ C log
(

4p(1 − p)
)

,

where C is a fixed constant (we set C = 2). Let (p̂, µ̂1, µ̂2, σ̂) maximize ln(p, µ1, µ2, σ) over the

full parameter space, and let (µ̂, σ̂) maximize ln(1/2, µ̂, µ̂, σ̂). The hypothesis H1 is rejected

for large values of the modified LRT statistic

Mn = 2
(

ln(p̂, µ̂1, µ̂2, σ̂) − ln(1/2, µ̂, µ̂, σ̂)
)

.

More precisely, Chen, Chen and Kalbfleisch (2001) show that for known σ, Mn asymptotically

follows the distribution 1/2χ2
0 + 1/2χ2

1, where χ2
0 is the point mass at zero. For unknown σ,

as formulated above, the precise asymptotic distribution of Mn is unknown, however, Chen

and Kalbfleisch (2007) show that the χ2
2 distribution is an upper bound to the asymptotic
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distribution of Mn.

Chen, Chen and Kalbfleisch (2004) also consider the problem of testing for two against more

components of a mixture distribution. More precisely, the problem is to test

H2 : fY is of the form (2) against K2 : fY has more than two components.

Here, we again assume equal variances for all components, also under the alternative. Fur-

thermore, one fixes a maximal number of components under the alternative (which can also

be estimated, e.g. m = 4). For a mixture with m components, slightly changing the notation,

the modified maximum likelihood estimators (MLEs) are defined as the maximizer of

ln(µ1, . . . , µm, σ) =

n
∑

i=1

log
(

p1φ(y1; µ1, σ) + . . . + pmφ(ym; µm, σ)
)

+ C log
(

m
∏

i=1

pi

)

.

These estimates are then inserted into the LRT statistic. Chen, Chen and Kalbfleisch (2004)

showed that given a known σ, this modified LRT is asymptotically distributed as qχ2
0 +

1

2
χ2

1 + (1 − q)χ2
2, where the proportion q depends on the mixing distributions. For unknown

σ, Chen and Kalbfleisch indicate that the χ2
3 distribution is an upper bound of the asymptotic

distribution.

As an illustration, we give the results of the analysis of the year 1976. The complete results

are discussed in section 3.1. First we fit a single normal distribution to the log-income

distribution (log to the base 10). Doing so, we obtain the following parameters: µ̂ = 3.52

and σ̂ = 0.46. The modified MLEs of the two-component mixture with equal variances

and penalization parameter C = 2 are calculated as p̂ = 0.51, µ̂1 = 3.15, µ̂2 = 3.89 and

σ̂ = 0.26. The resulting value of the modified likelihood ratio function is equal to Tn = 14.00,

which based on the upper bound of the χ2
2-distribution yields a p-value of 0.0009. Thus, the

hypothesis of a single component is clearly rejected.

Next we consider testing two against three (or more) components. Concerning the fit using

three components and equal variances, the parameter estimates based on penalized maximum
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likelihood are given by

p̂1 = 0.38, p̂2 = 0.34, µ̂1 = 3.04, µ̂2 = 3.58, µ̂3 = 4.07, σ̂ = 0.18. (3)

The resulting value of the modified LR statistic is Tn = 7.91. Based on the upper bound

by a χ2
3-distribution, this gives a p-value of 0.048, in favor of three components. The three-

component fit based on the modified MLEs, both for the yi’s as well as for the xi’s, are

displayed in figure 1. Apart from testing the number of components, we also compare the

mixture models via two popular model selection criteria, namely the Akaike information

criterion (AIC, c.f. Akaike, 1978) and the Bayesian information criterion (BIC, Schwarz,

1978), given by −2l + 2k and −2l + k log n, respectively, where l is the log-likelihood, k the

number of parameters and n the number of observations. The results are displayed in table

1. Here, the model selected by AIC is the model with three components, while BIC is slightly

in favor of a model with only two components. Although it is theoretically known that the

BIC is consistent in finite mixtures (Kerebin, 2000), in finite samples it often selects too

few components. Finally, in Fig. 1 we compare the fitted three-component density with a

nonparametric density estimate with bandwidth hc(3) (cf. Section 2.4). Such a comparison

could also be used for a formal goodness of fit test for our mixture model, cf. e.g. Fan (1994).

The nonparametric and our parametric estimate are quite close, thus, our model of the data

is appropriate. The whole picture that we get from our analysis of the log cross-country

income distribution in 1976, taking into account the modified likelihood ratio tests and the

model selection criteria as well as the shape of nonparametric density estimates, is clearly in

favor of three components.

2.3 Discriminant Analysis via Posterior Probabilities

Mixture models are routinely used for discriminant analysis, see e.g. Fraley and Raftery

(2002). In our analysis of the cross-country income distribution via mixtures, once we have
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a mixture fitted to the cross-country income distribution, each observation can be assigned

posterior probabilities which give the probability of the observation to belong to each of the

components in the mixture model.

Consider the log-income distribution in 1976. In section 2.2, we fitted a three-component

normal mixture

fY (y; p̂1, p̂2, µ̂1, µ̂2, µ̂3, σ̂) = p̂1φ(y; µ̂1, σ̂) + p̂2φ(y; µ̂2, σ̂) + (1 − p̂1 − p̂2)φ(y; µ̂3, σ̂), (4)

where the parameter estimates are given in (3). This yields three levels of income which we

label poor, middle and rich, with indices 1, 2, 3. The posterior probability of an observation

y to belong to group j, j = 1, 2, is equal to

p(j; y) =
p̂jφ(y; µ̂j, σ̂)

fY (y; p̂1, p̂2, µ̂1, µ̂2, µ̂3, σ̂)
,

and p(3; y) = 1 − p(1; y) − p(2; y). Therefore, we do not merely assign an income level to

each country, but rather a probability distribution, which makes transitions from one group

to the other much more transparent.

If one wishes to assign a single number to each country y, one has several possibilities. One is

the maximum a-posterior estimate (MPE), which assigns to observation y the j, j ∈ {1, 2, 3},

such that p(j; y) is maximal. One can also determine the thresholds tj,j+1, j = 1, 2, for the

values of y at which the MPE changes between the state j and j +1, by solving the equations

p(j, tj,j+1) = p(j + 1, tj,j+1), j = 1, 2, yielding the (in model (4)) unique solutions

tj,j+1 =
µ̂j + µ̂j+1

2
+ σ̂2

log(p̂j/p̂j+1)

µ̂j+1 − µ̂j

, j = 1, 2.

If the weights p̂1 and p̂2 are sufficiently close, the values tj,j+1 will indeed be between µ̂j and

µ̂j+1, in which case they may be properly interpreted. For example, for the year 1976 we get

t1,2 = 3.32 and t2,3 = 3.83, which on the original scale correspond to the values 2089.30 and
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6760.83, respectively. In 1976, by maximum a-posterior estimation there are 46 countries in

the poor group, 42 countries in the middle group and 36 countries in the rich group.

Another (more informative) possibility is the posterior mean (PM) of y, which is defined as

p(1; y) + 2p(2; y) + 3p(3; y), a number between one and three. In our situation, since the

choice of the values 1, 2, 3 is arbitrary, this should not be interpreted as a mean but rather

as a refined one-number summary of the posterior distribution. For example, if the PM of

y is 1.3, then the country will belong to group 1, but will have a tendency toward group

2. A tedious but straightforward computation shows that the posterior mean in model (4)

with equal σ̂2 is a monotonically increasing function of y. Thus, one can uniquely determine

thresholds sj,j+1, j = 1, 2, for which the PM is equal to i + 1/2. Solving these equations

numerically for the parameters in 1976 yields the values 3.32 and 3.84.

2.4 Nonparametric Kernel Density Estimation and Twin Peaks

In this section we draw attention to possible shortcomings of previous approaches based

on nonparametric kernel density estimation. Specifically, we show that the ”twin peak”

phenomenon in the cross-country income distribution is essentially not a structural feature,

but rather an artifact which arises in nonparametric kernel density estimates of heavy-tailed

distributions.

Indeed, the cross-country income distribution is concentrated in lower regions, and then has a

rather long, small tail at the upper end. For example, in 2003 most values are < 104, but there

is a tail up to 4 · 104 (cf. Fig. 2). Such a shape can lead to a very poor performance of kernel

estimates with a global bandwidth (cf. Wand and Jones 1995, p. 36). As an illustration,

we therefore also fitted a transformation kernel density estimate (Wand and Jones, 1995,

p. 43) based on the log-transform to the data (cf. Fig. 2). Evidently, the estimates differ

strongly, as the usual kernel density estimator puts too much mass to the tails. This leads

to the emergence of the second peak in the ”twin peaks” phenomenon of the cross-country

income distribution, which is just an artifact of direct kernel density estimation with global
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bandwidth of heavy-tailed data. Also note that the usual kernel estimator has a boundary

problem at 0 (cf. Wand and Jones 1995, p. 46).

In summary, for the cross-country income distribution itself, simple nonparametric kernel

density estimation and related inference techniques such as Silverman’s (1981) test should

not be used. Also note that Paap and Dijk (1998) choose their two-component mixture with

distinct components to resemble the histogram of the cross-country income distribution,

which is just a simple kernel estimator. Thus, their model (and in particular the number of

components) is motivated by an inappropriate preliminary estimate.

The situation is different in the case of log-incomes (which are non longer heavy-tailed),

for which kernel density estimates and Silverman’s (1981) test are valid tools. In order to

illustrate this issue, let us first briefly recall Silverman’s test. Formally, a mode of fX (and

similarly of the kernel estimator f̂) is a local maximum of fX (or f̂). Silverman (1981) showed

that the number of modes of f̂ is a right-continuous, monotonically decreasing function of

the bandwidth h if the normal kernel is employed for K: K(x) = (2π)−1 exp(−x2/2). This

allowed him to define the k-critical bandwidth hc(k) as the minimal h for which f(·; h) still

just has k modes and not yet k + 1 modes. Based on the notion of the k-critical bandwidth,

Silverman (1981) proposed a bootstrap test for the hypothesis

H̃k : f has at most k modes against K̃k : f has more than k modes,

where in our context, f = fX (or f = fY , the density of logarithms yi = log(xi)).

The results of Silverman’s test for the year 2003 are displayed in table 3. Here one typically

proceeds iteratively by testing H̃k for increasing k, starting with k = 1, until one finds k such

that H̃k cannot be rejected with a given level α (e.g. α = 0.05). Concerning the log-incomes

and their density fY , the hypothesis H̃1 cannot be rejected at a 5% (or even 10%) level.

However, the corresponding p-value is still comparatively small. Note that this result does

not mean that H̃1 is true, only that there is not enough evidence to reject it on a level of 5%

(or 10%). However, if one continues the analysis, one can clearly reject H̃2 (p-value < 0.001),
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but H̃3 has a high p-value of 0.45. Thus, there is some evidence of three modes in fY , but

none of only two modes. The associated density estimates with the critical bandwidths are

displayed in Fig. 3 (right).

As an illustration we also applied Silverman’s (1981) test to the original income data xi. The

hypothesis H̃1 is clearly rejected with a p-value of < 0.001, and the hypothesis H̃2 is not

rejected with a high p-value. Thus, the procedure stops at k = 2, strongly indicating two

modes. However, observe figure 3 (left). It shows (boundary corrected) plots of the densities

with bandwidths hc(1) and hc(2). For hc(2), the third mode (which is not statistically

significant according to Silverman’s test) is about to occur in the two highest observations

of the distribution (at about 35 · 103). Thus, the kernel density estimator is about to put a

spurious mode into the tail, and all that Silverman’s test tells us is that this mode is indeed

spurious. Thus, kernel estimation and Silverman’s (1981) test are inappropriate on the level

of the xi.

3 Results

3.1 Selecting the number of components

Applying the methodology above to the time range from 1970 to 2003 for the 124 countries

for which we have consistent GDP data yields some surprising and telling insights into the

evolution of the cross-country distribution of income. Table 4 displays the results of the

modified likelihood ratio test for one vs two components and two vs three components as

well as the AIC and BIC model selection criteria for the respective fitted models ranging

from 1 to 4 component mixtures (all having equal variances). First of all, we note that two

components are always preferable to one. In 1970 we cannot reject the hypothesis of two vs

three components, however, over the first years of the 1970s the p-values are decreasing and by

1976 the modified likelihood ratio test rejects a two component model at a level of 5%. This

is also supported by the values of the model selection criteria AIC and BIC, which initially
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are in favor of a two component model, but over time switch toward the three component

mixture model. In summary, our analysis shows that starting with a two-component (twin-

peak) mixture distribution in 1970, in between the “rich” and “poor” components, in the

middle of the 1970s a third component evolves in the cross-national distribution of income,

thus resulting in a three-component mixture model. All subsequent distributional analysis is

based on the three component mixture model from 1976 to 2003.

3.2 Evolution of the Cross-Country Distribution of Income

Table 5 summarizes the main distributional characteristics of the three component mixture

model after 1976. The first three columns display the weights p1, p2 and p3 of the three

components in the mixture model, which can be directly interpreted as the percentage of

data, i.e. the relative number of countries, ascribed to a certain component. As can be

seen in figure 9, the percentage of data ascribed to the first “poor” component, despite

small variation, dropped slightly over time from initially 37.9 percent in 1976 to 35.7 percent

in 2003. In comparison, the second component weight gained slightly over time from 33.8

percent to 35.3 percent, leaving the third component weight largely unaltered (28.4 percent

in 1970 and 29 percent in 2003). Hence, the relative number of countries ascribed to each

component is rather stable over the given observational period.

Regarding the log-income data, it can be observed that the mean of the first component

did not grow, but rather experienced stagnation and even slight decline. In comparison, the

mean of the second and third components clearly increased over the given time period from

3.59 to 3.73 and 4.08 to 4.33 respectively. The standard deviation parameter σ of the three

components remains also rather stable over the given time period. However, these model

parameters are harder to interpret on the logarithmic scale. Therefore, we also computed the

mean and the standard deviation of the log-normally distributed components for the original

income data.

Observing table 5 and figure 6 we note that the mean GDP per capita of the countries
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belonging to the first component decreased slightly over time from $1147 to $1128. The

countries belonging to the second component saw a strongly increasing income from on

average $3998 to $5504 which corresponds to an overall 37 percent increase between 1976

and 2003. However, over the same period the countries in the third (the richest) component

experienced an increase of mean income from $12335 to $21938 (increase of 77 percent).

Hence, from 1976 onwards the countries in the poorest component experienced stagnation in

or even slightly declining average income. Moreover, despite the clear emergence of a third

“transitional” component in the middle of the 1970s, the mean income gain experienced in

this component is not sufficient to facilitate any catch-up to the third “rich” component,

which in turn improves not only its absolute, but also its relative position. Thus, the three

components of our model of the cross-national distribution of income per capita actually

diverge over time. This leaves slightly over 1/3 of the poor economies in a poverty trap,

whereas slightly over 1/3 of the 124 countries, “the middle group”, experience growth, but

not fast enough to catch-up with the rich countries club, which consists of little less than

1/3 and which improved its absolute and relative position. Thus, one may claim that the

cross-national distribution of income is not converging.

3.3 Intra-distributional dynamics based on Posterior Probabilities

As mentioned in section 2.3, one major advantage of a mixture model with equal variances

for the components is that it makes accessible consistent posterior analysis. In the following,

we shall mainly use the posterior mean. In table 7 all countries are ranked by their change in

posterior mean. The biggest winner is China which increased its posterior probability mean

from 1 to 2 and is one of 14 countries which managed to move up by one component. Out

of these 14 countries, half moved from the 1st component to the 2nd component, leaving

the other half to move from the 2nd component to the 3rd component. Of the 12 countries

which dropped by one component 5 countries dropped from the 2nd to the 1st and 7 coun-

tries dropped from the 3nd to the 2rd component. The average posterior probability mean
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increased slightly from 1.91 in 1976 to 1.93 in 2003, which implies a slight increase in the size

of the second and/or third components. Comparing results in 1976 and 2003, we find that 26

out of 124 countries, about 21 percent, changed the component of the cross-national income

distribution (although a few further temporary changes might have taken place in between).

This implies a relative low mobility of countries as, comparing 1976 and 2003, only one out

of five countries changed its component position or group affiliation.

Figures 7 and 8 show a more detailed story for selected countries belonging to different re-

gions. Most notably Asia composes half of the 14 countries which improved by one component

and none of the South East Asian, East Asian or South Asian Countries experienced a dete-

rioration of their posterior mean. Thus, the Far East is generally the most upwards mobile

region, of which most countries belong to the second component and experienced on average

higher growth rates than the other countries belonging to this component. In particular,

China’s extraordinary growth is mirrored in the jump from the very bottom to a median

position of the cross-country mean income distribution. Obviously, it is these countries in

particular which account for the rising mean of the 2nd component over time. In fact, the

average growth rate of these countries is more than sufficient for a catch-up in mean income

to the richer group of countries.

However, a second region is also very prominent in the 2nd group which lowers the average

growth rate of this component, namely Latin America. Whilst only one country, Chile, man-

aged to improve by one component, Latin America accounts for one third of the countries

which moved down by one component. In particular, richer countries, like Argentina and

Venezuela lost relatively and were assigned to the 2nd component in 2003. This sub-average

performance of Latin America in general, of which most countries belong to the 2nd com-

ponent, helps to explain why the growth rate in the mean is not sufficient to facilitate any

catch-up of the entire component to the 3rd component.

The worst performing region by far is Sub-Saharan Africa, which accounts for 32 of the 46

countries, about 70 percent, belonging to the “poor” 1st component in 1976 and 32 of 44
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countries, about 73 percent in 2003 respectively. It is mostly the non-existing growth record

of these countries in Sub-Saharan Africa which accounts for the stagnant and even declin-

ing mean of the 1st poor component. Moreover, not only did the poorest countries remain

extremely poor, but those countries which were relatively well-off in 1976, namely South

Africa, and to a lesser extent Zimbabwe, belong to the group of countries, whose posterior

mean decreased most. Despite the overall bleak record of Sub-Saharan Africa, there are a

few examples which also show quite remarkable improvement, in particular Botswana and

Lesotho. Moreover,Cameroon, Mauritius and Equatorial New Guinea even improve by one

component and are the only three Sub-Saharan African Country that display upward mo-

bility. However, these few encouraging examples are not enough to change the Sub-Saharan

stagnant and very poor growth record.

Unsurprisingly, most Western countries belong firmly to the 3rd component displaying hardly

any change in their posterior probability mean. It is mainly their growth record which ac-

counts for the increase in the 3rd component mean. Eastern Europe lost in particular after

the breakdown of the Iron Curtain, but had resurging growth, which lead to a rather stable

position in between the 2nd and the 3rd components over time. Morocco and Egypt show

the success of some Arabic countries, whilst Iraq is the extreme opposite and is the country

which lost most over the time period 1976 to 2003.

Overall, the country specific data and posterior mean helps to explain the development of

the cross-national distribution of income from 1976 to 2003. The following general picture

emerges: First, Sub-Saharan Africa accounts mostly for the lowest component which remains

stagnant and “poor”. Second, the emergence of the “transition” component is mostly due

to the growth spurt of the Far East and the relative decline of Latin America. The con-

trary growth experience accounts mainly for the relatively slow growing mean of the 2nd

component. Whilst most Far Eastern countries grow fast enough to catch up with the richer

countries of the 3rd component, this is not the case for most of Latin America, which experi-

enced disappointing growth records in particular in the 1980s. Thus, the overall cross-national
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income distribution does not display absolute cross-national average income convergence, but

rather divergence over time, despite the fact that some countries, in particular in the Far

East, are rapidly catching-up. However, in the global picture this is counteracted by the rela-

tively poor growth record of Latin America and the average income stagnation in most parts

of Sub-Saharan Africa. In particular, almost all of Sub-Saharan Africa seems to be stuck

in a poverty trap in which the unit under scrutiny, the national economy, is not capable to

deliver any form of sustained per capita growth. However, our data also shows that some of

the most populous countries, in particular India and China, are doing extraordinarily well.

Thus, the global (and not cross-national) income distribution, which takes into account the

distribution of the income within countries as well as the sizes of their populations, might

indeed be converging.

4 Conclusions

Previous investigations on the twin-peak phenomenon in the world´s cross-country distribu-

tion of income were mostly based on nonparametric kernel density estimates, in particular

concerning the number of modes of such estimates.

In this paper we use finite mixtures in order to investigate the cross-country income distri-

bution, since a. the number of modes depends on the scale (original or logarithmic) whereas

the number of components in the mixture does not, b. finite mixtures allow for an accu-

rate analysis of the intra-distributional dynamics by using posterior probability estimates, c.

components in the mixture arguably correspond better to income clubs in the distribution

than its modes and d. the heavy tail of the cross-country income distribution on the original

scale can cause poor performance of nonparametric density estimates. Furthermore, we ar-

gue that, in contrast to Paap and Dijk (1998) who simply use a fixed two-component model

obtained by comparison with a histogram, the number of components in the mixture model

18



should be determined by statistical inference.

In contrast to the twin-peaks literature, we find evidence for an emerging intermediate com-

ponent in the 70s, resulting in a three-component distribution from 1976 onwards. This

alone is a strong indication of divergence within the distribution and might be an indica-

tor of convergence within groups. Diverging estimates of the three group means and very

different growth rates between the groups support this conclusion. While the mean of the

third (richest) component almost doubled from 1976 to 2003, the mean of the second (in-

termediate) component only increased by 40 percent (corresponding to a very low annual

growth rate), and the first (poor) component even stagnated. One should mention that up-

and downward movements of countries affect these growth rates. The growth of the third

component is slowed down by countries moving up from the second component. Regarding

the second component there are positive and negative effects, in which the negative effects

outweigh the positive effects, since only a few countries move from the third to the second

component. In the first component there should be positive effects from countries coming

from the second group, which however are counterbalanced by the poor overall growth record

within this component.

The regional differences are remarkable. While many Asian countries managed to catch up

to the third component, the opposite is true in the case of Latin American countries. Sub-

Saharan Africa seems to be stuck in the first component and looses more and more contact

with the other groups. The very populous countries China and India on the other hand per-

formed extremely well. This fact would foster convergence in a global distribution of income

which takes population size and within country inequality into account (i.e. Sala-I-Martin,

2006).

A possible application of our methodology, beyond the conclusions already drawn in this

paper, would be a classification of countries according to their mean income, as an alterna-

tive concept to the most prevalent “poor, middle and rich” classification of the World Bank.

Indeed, the maximum posterior estimates can be used to assign countries to certain groups.
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Due to its statistical nature, this approach would be less policy dependent than current ap-

proaches. The boundary points of income, separating the three groups, from our point of

view currently somewhat arbitrarily obtained, could be replaced by the incomes where the

maximum a-posterior estimate switches. For the year 2003 these are $2405 and $10859, re-

spectively (PPP, base year 2000). However, our main aim was not to suggest a new system of

classification of countries, but rather to obtain a better understanding of the cross-national

distribution of income, its development, number of components and its intra-distributional

dynamics over the past decades.

Appendix A: Mixtures with Distinct Variances

In Sections 2.2 and 3.1 we restricted the model class of finite normal mixtures to have equal

variances. There were several reasons for this restriction.

First, maximum likelihood inference in mixtures of normal distributions with distinct vari-

ances becomes technically difficult since the likelihood function is unbounded. Moreover, the

number of parameters increases drastically (up to 8 in a three-component mixture), which

increases the risk of overfitting the data (in a sample of merely 124 observations).

Second, as regards the economic content, we wanted a model class which is adequate for the

whole period 1976–2003 in order to draw conclusions about the evolution of the groups in

the income distribution, in particular concerning their number. Furthermore, equal variances

guarantee that groups are equally wide, i.e. that no components are fitted to a very small,

selective group.

Third, if distinct variances are allowed, the posterior analysis is no longer consistent. In fact,

higher observations can have smaller MPE or posterior mean than smaller observations, if

the variance of components with smaller mean are much larger than those with higher mean.

Thus, a posterior analysis does not make sense for such general models.

Nevertheless, in this section we briefly investigate the consequences if one allows the general
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model class (1) for the world’s cross-country income distribution, in particular if one allows

for some or even all variances to be distinct. We start the analysis with the year 1970. Table

2 gives the values of the model selection criteria AIC and BIC for distinct mixture models

with up to three components.

The AIC selects a model with three components and equal variances for the first two compo-

nents (with small means), while the BIC selects the model with two components and equal

variances (which would also be selected by the AIC3 as used in Pittau, 2005). These two

competing “best” models are rather incomparable. Observing in addition the plots in figure

4, of the income distribution in 1970, one would decide for the two-component model with

equal variances, since the third component in the three-component model, when compared

to the nonparametric density estimate, looks much like fitting an artifact.

The picture changes over time, and in 2003 is rather in favor of the three-component model

with two distinct variances, as can be observed from table 6. The resulting fit is visualized

in figure 5.

However, the standard deviation σ of the third component is about twenty times smaller

than the sigmas of the other two components. This makes the model inaccessible to pos-

terior analysis. For example, posterior analysis would assign the USA to the second group.

This is caused by the fact that mean income in the USA is much higher than the mean of

the third component, and is thus not captured in this component. Hence, we find that the

model with equal variances discussed in Section 3.1 is most adequate to describe and analyze

the data at hand.
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Figure 1: Left: Three-component mixture density with modified MLEs (solid line) and kernel
density estimate based on hc(3) (dashed line) for the log-data (logarithm to the base 10) for
1976. Right: Corresponding three-component log-normal fit (solid line) and transformation
kernel density estimate based on hc(3). Scale: x-axis 103, y-axis 10−3.
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Figure 2: Kernel density estimate (solid line) and transformation kernel density estimate
(dashed line) with log-transform, both with bandwidth estimated by direct plug-in, for 2003.
Scale: x-axis 103, y-axis 10−3.
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Figure 3: Left: Kernel density estimates with boundary correction at zero with bandwidths
hc(1) (solid line) and hc(2) (dashed line) for the cross-country income distribution in 2003.
Scale: x-axis 103, y-axis: 10−3. Right: Kernel density estimates with bandwidths hc(1)
(solid line) and hc(3) (dashed line) for the log-income distribution in 2003. For conveniently
interpreting the figure, we here use the logarithm to the base 10.
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Figure 4: Density estimates for 1970: Kernel density estimate with hc(3) (solid line), two-
component normal mixture with equal variances (dashed line) and three-component mixture
with two distinct variances (dotted line).
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Figure 5: Density estimates for 2003: Kernel density estimate with hc(3) (solid line) and
three-component mixture with two distinct variances (dotted line).
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Figure 6: Means of the distinct groups (solid lines). Income levels where the maximum
a-posterior estimates switch from one group to the other (dashed lines).
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Figure 7: Posterior means of selected African (left) and Asian (right) countries. Africa:
Cameroon (black), Nigeria (red), Republic of Congo (green), South Africa (blue) and Zim-
babwe (pink). Asia: China (black), Republic of Korea (red), India (green), Malaysia (blue)
and Indonesia (pink).
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Figure 8: Posterior means of selected Latin American (left) and other (right) countries. Latin
America: Colombia (black), Mexico (red), Brazil (green), Argentina (blue) and Venezuela
(pink). Rest of the World: Russia (black), Poland (red), USA (green), Morocco (blue) and
Egypt (pink).
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Figure 9: Weights of components. Poor (solid line), intermediate (dashed line) and rich
component (dotted line).

29



no. components - loglike. no. param. AIC BIC
1 77.86 2 159.72 165.41
2 70.86 4 149.72 161.10
3 66.90 6 145.80 162.87

Table 1: Model selection criteria for mixtures models fitted to log cross-country income
distribution 1976

no. components no. variances no. param. AIC BIC
1 1 2 152.47 158.16
2 1 4 142.64 154.01

2 5 142.81 157.03
3 1 6 145.88 162.95

2 7 139.73 159.64
3 8 141.51 164.27

Table 2: Model selection criteria for mixtures models fitted to log cross-country income
distribution 1970

hc(1) p1 hc(2) p2 hc(3) p3

yi’s 0.27 0.11 0.23 0.00 0.07 0.91
xi’s 5.72 0.01 2.14 0.44 1.83 0.24

Table 3: Results of Silverman’s test for 2003, 124 countries
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One Component Two Components Three Components Four Components
Year AIC BIC p of 1 vs 2 AIC BIC p of 2 vs 3 AIC BIC AIC BIC
1970 152.47 158.12 0.001 142.64 153.92 0.868 145.88 162.81 145.27 167.84
1974 159.30 164.94 0.001 149.64 160.92 0.243 149.45 166.37 149.46 172.02
1975 157.47 163.11 0.001 147.49 158.77 0.171 146.47 163.39 146.40 168.97
1976 159.72 165.36 0.001 149.72 161.00 0.048 145.80 162.73 145.43 167.99
1980 167.20 172.84 0.000 155.68 166.96 0.037 151.21 168.14 155.21 177.78
1985 173.07 178.71 0.001 162.51 173.79 0.023 156.95 173.87 157.43 179.99
1990 183.20 188.84 0.001 172.40 183.68 0.006 163.84 180.77 164.47 187.03
1995 200.08 205.72 0.001 189.17 200.46 0.004 179.83 196.75 183.83 206.39
2000 204.57 210.21 0.000 192.40 203.68 0.000 173.05 189.97 173.23 195.80
2003 206.50 212.14 0.000 191.62 202.90 0.000 173.58 190.50 174.50 197.06

Table 4: Component Test and Goodness of Fit, 1970-2003
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Year p1 p2 p3 µ1 µ2 µ3 σ Mean1 Mean2 Mean3 SE 1 SE 2 SE 3
1976 0.379 0.338 0.284 3.044 3.587 4.076 0.175 1147 3998 12335 310 1082 3337
1980 0.366 0.351 0.282 3.041 3.622 4.115 0.177 1141 4342 13526 313 1191 3710
1985 0.358 0.372 0.270 3.035 3.639 4.154 0.181 1126 4524 14806 316 1268 4149
1990 0.357 0.367 0.276 3.041 3.649 4.211 0.182 1140 4628 16887 320 1299 4741
1995 0.355 0.364 0.281 2.996 3.665 4.247 0.189 1032 4813 18396 303 1413 5400
2000 0.345 0.371 0.284 3.017 3.698 4.313 0.177 1079 5174 21312 295 1415 5830
2003 0.357 0.353 0.290 3.037 3.725 4.326 0.176 1128 5504 21938 307 1496 5962

Table 5: Fit of Three Component Model
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no. components no. variances no. param. AIC BIC
1 1 2 206.50 212.19
2 1 4 191.62 203.00

2 5 189.90 204.12
3 1 6 173.58 190.65

2 7 162.13 182.03
3 8 163.83 186.58

Table 6: Model selection criteria for mixtures models fitted to log cross-country income
distribution 2003
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Land Posterior
Mean
1976

Rank
1976

Posterior
Mean
2003

Rank
2003

Change
Pos-
terior
Mean

Group
1976
and
2003

China 1 115 2 60 1 1 to 2
Korea Republic of 1.999 60 2.984 27 0.985 2 to 3
Taiwan 2.041 47 2.994 25 0.953 2 to 3
Sri Lanka 1.087 87 1.996 66 0.909 1 to 2
India 1.014 97 1.891 76 0.877 1 to 2
Equatorial Guinea 1.787 72 2.639 36 0.852 2 to 3
Cyprus 2.195 42 2.997 22 0.802 2 to 3
Malaysia 2.018 55 2.723 34 0.705 2 to 3
Indonesia 1.291 81 1.994 69 0.703 1 to 2
Pakistan 1.035 90 1.673 79 0.638 1 to 2
Mauritius 2.339 39 2.972 29 0.633 2 to 3
Chile 2.117 43 2.724 33 0.607 2 to 3
Egypt 1.462 79 2 60 0.538 1 to 2
Botswana 1.603 74 2.077 44 0.474 2
Thailand 1.598 75 2.034 47 0.436 2
Cameroon 1.428 80 1.761 78 0.333 1 to 2
Bangladesh 1.024 93 1.255 82 0.231 1
Hungary 2.645 32 2.825 32 0.18 3
Portugal 2.832 30 2.981 28 0.149 3
Lesotho 1.001 112 1.148 85 0.147 1
Ireland 2.87 28 3 1 0.13 3
Swaziland 2.051 46 2.167 39 0.116 2
Hong Kong 2.906 26 3 1 0.094 3
Morocco 1.903 70 1.992 70 0.089 2
Singapore 2.918 24 3 1 0.082 3
Puerto Rico 2.917 25 2.998 19 0.081 3
Panama 2.036 48 2.091 43 0.055 2
Tunisia 2.003 59 2.048 46 0.045 2
Cuba 1.974 65 2.01 52 0.036 2
Dominican Republic 1.988 64 2.022 49 0.034 2
Trinidad + Tobago 2.961 21 2.989 26 0.028 3
Guinea 1.825 71 1.853 77 0.028 2
Philippines 1.951 68 1.977 73 0.026 2
Spain 2.977 19 2.996 23 0.019 3
Japan 2.991 18 2.999 11 0.008 3
Paraguay 1.993 62 2.001 59 0.008 2
Finland 2.992 15 2.999 11 0.007 3
Italy 2.992 15 2.998 19 0.006 3
Nepal 1.001 112 1.007 89 0.006 1
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Land Posterior
Mean
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Rank
1976

Posterior
Mean
2003

Rank
2003

Change
Pos-
terior
Mean

Group
1976
and
2003

Korea Dem. Rep. 1 115 1.006 92 0.006 1
United Kingdom 2.995 14 2.999 11 0.004 3
Israel 2.992 15 2.996 23 0.004 3
Laos 1.002 111 1.006 92 0.004 1
Austria 2.997 8 3 1 0.003 3
Australia 2.997 8 3 1 0.003 3
Belgium 2.996 13 2.999 11 0.003 3
Mongolia 1.016 95 1.019 87 0.003 1
Norway 2.998 5 3 1 0.002 3
Canada 2.998 5 3 1 0.002 3
Germany 2.997 8 2.999 11 0.002 3
France 2.997 8 2.999 11 0.002 3
United States 2.999 2 3 1 0.001 3
Denmark 2.999 2 3 1 0.001 3
Netherlands 2.998 5 2.999 11 0.001 3
New Zealand 2.997 8 2.998 19 0.001 3
Ghana 1.006 105 1.007 89 0.001 1
Mali 1 115 1.001 100 0.001 1
Switzerland 3 1 3 1 0 3
Sweden 2.999 2 2.999 11 0 3
Tanzania 1 115 1 105 0 1
Malawi 1 115 1 105 0 1
Cambodia 1 115 1 105 0 1
Guinea-Bissau 1 115 1 105 0 1
Ethiopia 1 115 1 105 0 1
Bhutan 1 115 1 105 0 1
Burkina Faso 1 115 1 105 0 1
Oman 2.97 20 2.969 30 -0.001 3
Greece 2.961 21 2.96 31 -0.001 3
Burundi 1.001 112 1 105 -0.001 1
Rwanda 1.006 105 1.003 97 -0.003 1
Uganda 1.004 107 1.001 100 -0.003 1
Chad 1.003 109 1 105 -0.003 1
Gambia 1.003 109 1 105 -0.003 1
Turkey 2.008 58 2.004 57 -0.004 2
Mozambique 1.012 101 1.008 88 -0.004 1
Central African Rep. 1.004 107 1 105 -0.004 1
Guatemala 1.993 62 1.988 71 -0.005 2
Jordan 1.994 61 1.986 72 -0.008 2
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Benin 1.013 98 1.004 96 -0.009 1
Kenya 1.01 103 1.001 100 -0.009 1
Niger 1.009 104 1 105 -0.009 1
Madagascar 1.011 102 1 105 -0.011 1
Sudan 1.013 98 1.001 100 -0.012 1
Somalia 1.013 98 1 105 -0.013 1
Congo Dem Rep. 1.015 96 1 105 -0.015 1
Papua New Guinea 2.015 57 1.999 64 -0.016 2
Fiji 2.017 56 2 60 -0.017 2
Nigeria 1.018 94 1.001 100 -0.017 1
Colombia 2.027 54 2.008 54 -0.019 2
Sierra Leone 1.027 92 1 105 -0.027 1
Algeria 2.035 50 2.007 55 -0.028 2
Romania 2.033 52 2.005 56 -0.028 2
Togo 1.03 91 1 105 -0.03 1
El Salvador 2.031 53 2 60 -0.031 2
Jamaica 2.036 48 1.999 64 -0.037 2
Ecuador 2.035 50 1.995 67 -0.04 2
Syria 1.193 83 1.153 84 -0.04 1
Bolivia 1.959 67 1.895 75 -0.064 2
Zambia 1.064 89 1 105 -0.064 1
Mauritania 1.077 88 1.007 89 -0.07 1
Namibia 2.089 45 2.004 57 -0.085 2
Senegal 1.1 86 1.006 92 -0.094 1
Congo Republic of 1.113 85 1.006 92 -0.107 1
Peru 2.114 44 1.995 67 -0.119 2
Honduras 1.503 78 1.384 81 -0.119 2 to 1
Poland 2.387 37 2.205 38 -0.182 2
Liberia 1.184 84 1 105 -0.184 1
Russia 2.861 29 2.672 35 -0.189 3
Mexico 2.298 40 2.068 45 -0.23 2
Brazil 2.274 41 2.031 48 -0.243 2
Costa Rica 2.376 38 2.124 42 -0.252 2
Comoros 1.283 82 1.002 98 -0.281 1
South Africa 2.525 35 2.153 41 -0.372 3 to 2
Uruguay 2.534 34 2.155 40 -0.379 3 to 2
Zimbabwe 1.968 66 1.532 80 -0.436 2
Cote d’Ivoire 1.598 75 1.155 83 -0.443 2 to1
Solomon Islands 1.549 77 1.036 86 -0.513 2 to 1
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Nicaragua 2.523 36 1.965 74 -0.558 3 to 2
Argentina 2.937 23 2.371 37 -0.566 3 to 2
Ukraine 2.645 32 2.012 50 -0.633 3 to 2
Afghanistan 1.651 73 1 105 -0.651 2 to1
Iran 2.8 31 2.012 50 -0.788 3 to 2
Venezuela 2.891 27 2.01 52 -0.881 3 to 2
Iraq 1.912 69 1.002 98 -0.91 2 to 1

Table 7: Results Posterior Estimation
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