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ABSTRACT 
 
This study explores the prevalence and nature of the regional divide for the Mexican 
manufacturing production across sub-national regions. We utilize a unique panel of 
municipality-level data from the manufacturing sector. An important contribution is the use of 
different panel methods to account for latent regional characteristics and the computation of 
performance indicators for each municipality which will enable detailed regional rankings.  

Firstly, we apply nested panel methods to estimate regional production functions and to 
analyze production characteristics and scale economies. Subsequently, we use stochastic 
frontier analysis methods to test for productivity and efficiency differences in manufacturing 
throughout the country.  

Our results suggest that the economic structure and productivity of southern Mexico is 
considerably different from the centrally located manufacturing belt and the north. 
Remarkably, rankings based on nested panel and stochastic frontier estimations confirm very 
similar regional patterns. Nevertheless, efficiency varies strongly within states, indicating that 
‘islands of excellence’ prevail in otherwise highly inefficient and lagging states. 
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1) Introduction 
 
Mexico represents a particularly interesting and relevant case for studying the distribution of 

economic activity across space due to its prevailing regional disparity. Pronounced lines of 

divide are running between the urban and rural and even more so between the northern and 

southern areas. Such geographical and sub-national conditions are receiving growing attention 

as channels of growth dynamics, thereby digressing from the view that developing countries 

across all regional levels are equivalently capable to absorb technology, grow or even 

converge with developed economies. 

 North-south disparity within a country is not an uncommon phenomenon, one 

prominent example being Italy; Mexico is however especially interesting due to its unique 

location as an industrializing country neighboring the world’s largest economy, the U.S. The 

regional divide manifests itself in widespread poverty, rudimentary infrastructure, high shares 

of indigenous population and in underdeveloped activities of the productive sector of the 

southern periphery.  

Mexico has been afflicted with regional differences and marginalization at least since 

colonization. Most of the wealth originated from mining in the north of the country at that 

time, favoring the development of these regions and the capital city. After Mexico followed a 

factual import substitution strategy since the 1940s, the manufacturing industry agglomerated 

at the Greater Mexico City Area. The New Economic Geography relates such location 

patterns to firms and industries exploiting location advantages of backward-forward linkages 

in the center, specifically proximity to suppliers and to the home market, and knowledge 

spillovers in a world with costly trade (Krugmann 1991). The self-reinforcing nature of 

agglomeration dynamics has been additionally spurred by Mexico city’s large and ever-

growing labor pool, its location at the core of the radial railway and motorway network and 

regional policies being biased towards the capital.  
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Over the last decades, trade liberalization and growing integration with Northern America 

have fueled manufacturing exports and remarkably altered regional structures. The south may 

have comparative advantages related to its crucial resources like oil and natural gas, favorable 

climate and hydration, but low transportation costs to the major trading partner have rather 

promoted new and specialized industrial centers at the northern border at the expense of the 

traditional manufacturing belt around Mexico City (Hanson 1998). Plenty of these sites are 

maquiladoras which have been established by the Border Industrialization Program of 1965 

as in-bond plants to assemble semi-finished inputs and to re-export the final goods like 

electronic equipment free of duty. Maquiladoras have as well been set up in non-border 

regions later on, though sparsely in the south (MacLachlan and Aguilar 1998).1  

Manufacturing production is of great relevance, as it exerts profound influence on the 

country’s modernization process, income generation and distribution and has traditionally 

drawn considerable attention of policy makers. We therefore consider it a meaningful 

approach to empirically explore the characteristics and performance of the Mexican 

manufacturing sector at detailed sub-national level. Our analysis builds on a unique panel 

comprising the majority of Mexican municipalities (2038 out of 2452) over the period 1989 to 

2004 - a time horizon including major changes such as the disruptive period of the 1994/1995 

economic crisis and the formation of the NAFTA.  

The outline of the paper is as follows: section 2 reviews central underpinnings of theories 

of production, followed by a presentation of the empirical framework with recent panel 

approaches as the nested error component model (NECM) and stochastic frontier analyses 

(SFA). Subsequently, section 3 introduces and surveys the database. Section 4 summarizes 

the most prominent empirical findings and highlights important implications. Last section 5 

concludes. 

 
                                                 
1 Maquiladoras no longer exist in a narrow sense after registration obligations and tariff preferential treatments 
have been fully phased out due to the NAFTA in 2001. 
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2) Theoretical Background and Econometric Specifications 
 

2.1 Production Economics  
 
The technological possibilities of firms and industries can be summarized by means of 

production functions which represent the technical relationship between the level of inputs 

and the resulting level of outputs.2 An econometric production function estimation from 

observed input output combinations therefore determines the average level of outputs that can 

be produced from a given level of inputs (Schmidt 1986). Production function estimation can 

be applied to firm-level data, as well as to analyze aggregated production within regions, 

municipalities or states. Different algebraic forms can describe the technology of the 

industry.3 The most frequently used in empirical application are the Cobb-Douglas4 and the 

Translog which depend on different assumptions regarding returns to scale and substitution 

elasticities.  

The Translog function which we will use in the empirical analysis is defined by a second 

order (all cross-terms included) log-linear form and represents a relatively flexible functional 

form, as it does not impose assumptions about constant elasticities of production nor 

elasticities of substitution between inputs (see Coelli et al. 2005).5  

 

 

 

                                                 
2 The principal properties of production functions that underpin the economic analysis are non-negativity, weak 
essentiality, non-decreasing and concavity in the different inputs (see Coelli et al. 2005 and Chambers 1988). 
3 Among the most important are the linear, the quadratic, the normalized quadratic, the generalized Leontief and 
the constant elasticity of substitution (CES) function. 
4 The Cobb-Douglas production function is characterized by more restrictive assumptions regarding returns to 
scale and the elasticity of substitution. The elasticity of substitution has a constant value of one - i.e. the 
functional form assumption imposes a fixed degree of substitutability on all inputs - and the elasticity of 
production is constant for all inputs. The Cobb-Douglas is a special case of the Translog production function for 
all kmβ  being zero. 
5 It thus allows the data to indicate the actual curvature of the function, rather than imposing a priori 
assumptions. 
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The multiple-input Translog production function in a general form is defined as:  

 

K K M

it 0 k kit km kit m
k 1 k 1 m 1

1ln y lnx ln x ln x it
2= = =

= β + β + β∑ ∑ ∑  

 

Where ln y represents the output in a log form, kln x  represents the different inputs, 

k mln x ln x the different squared and cross terms; 0β  the intercept or the constant term; 

and kβ and kmsβ are the parameters to be estimated. Within this framework a Hicks-neutral 

technical change is assumed; this means that the marginal rate of technical substitution is 

independent of time.  

 

2.2 The Unbalanced Nested Error Component Model 

The previous theoretical considerations serve as the base for an empirical model of regional 

production. We just present the econometric specification of the Translog specification; 

assumptions and reasoning are equivalently valid and applicable for the Cobb-Douglas 

function, as the latter is a special case of the former. The basic empirical representation is then 

as follows: 

 

 2 2
jt 0 1 jt 2 t 3 jt 4 jt 5 jt jt jty fa lj 0.5 l 0.5 fa l fa ,      j 1, ...n; t 1,...3= β + β + β + β + β + β + ε = =  (1) 

 
Index j refers to the respective municipality with n equal to 2038 and t indexes time, 

specifically the years 1989, 1999 and 2004, jty is the dependant variable, it is the natural 

logarithm of (real) value added, jtfa the logarithm of the (real) capital stock and itl the 

logarithm of the number of employees (see section 3 for a detailed presentation of the selected 

variables).  
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A pooled Least Squares (LS) estimation of equation (1) represents the base approach for our 

analysis. jtε  is assumed to have zero mean and to be identically and independently distributed 

(over time and municipalities): ( )2
jt ~ IID 0, εε σ . Given these assumptions, estimates will be 

unbiased and efficient. The error term reflects measurement errors or mal-specifications, but 

is as well likely to contain shocks unknown to the researcher - but not to the decision-making 

units. As these unobserved elements are likely to adhere to a regional pattern and to exert a 

role in the production environment, further attention is directed at the error specifications and 

refinements of modeling unobserved heterogeneity. Examples of these regional effects can be 

state-related corporate tax settings, climate conditions and location or transportation 

infrastructure. 

 We therefore proceed to an econometric model that addresses these shortcomings. An 

interesting feature of our dataset is its inherent natural grouping; each municipality is 

uniquely subordinated to one of the 32 states of Mexico (see Figure 1 and Table 2). Facing 

this nested structure, it is plausible that individual effects are associated with both state- and 

municipality-level. Unobserved factors such as railway connectivity or port access can be 

supposed to be municipality-specific, whereas corporate tax settings or production subsidies 

as state-specific. To account for this structure, we keep our basic Translog respectively Cobb-

Douglas specifications, but we adopt a single-nested error components model as suggested by 

Baltagi et al. 2001. It follows then: 

 

 
2 2

ijt 0 1 ijt 2 ijt 3 ijt 4 ijt 5 ijt ijt ijt

i

y fa l 0.5 l 0.5 fa l fa ,
        where i 1,....32   j 1, ...n ; t 1,...3

= β + β + β + β + β + β + ε

= = =
   (2) 

 

The model has one time-series dimension t, but two cross-section dimensions; as before index 

j refers to the jth municipality – but nested in state i here. The model is appropriate for our 

panel which is unbalanced in the sense that the number of municipalities per state, in , differs 
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from state to state (see Table 2). It utilizes a two-way error components specification as 

follows: iμ  represents the unobserved specific effect of state i and is assumed to be 

IID 2(0, )μσ , the effect ijυ  of the jth municipality in state i is assumed to be IID 2(0, )υσ  and ijtε  

is the remainder disturbance such as measurement errors or unforeseen shocks, again 

IID 2(0, )εσ . All three error components are further mutually independent from each other. 

 The distribution of the random state- and municipality-specific effects plays a role 

through the estimates of the variance components. LS yields unbiased and consistent 

estimates if the variance components 2
υσ and 2

μσ  are zero - however biased standard errors if 

variance components are nonzero. A consistent and efficient estimation of the random factors 

of the single-nested structure model can be obtained by the restricted maximum likelihood 

approach (REML) (Baltagi et al. 2001). This is based on partitioning the likelihood function 

and maximizing that part of the likelihood function which contains only variance components 

and no regression coefficients (for further details see Patterson and Thompson 1971).  

 Monte-Carlo studies by Baltagi et al. 2001 have shown that REML estimators perform 

specifically well in estimation of variance components, as well as for data with pronounced 

unbalanced pattern, but slightly less so with respect to regression coefficients. Being aware of 

this caveat, we have however preferred the more popular REML or alternatively maximum 

likelihood (ML) to other ANOVA-type approaches.  

  

2.3 Efficiency and Productivity Analysis 
 
We further want to relate our findings of the nested error component model to an econometric 

frontier efficiency analysis of the different municipalities in order to get an insight of the 

ranking and individual efficiencies of the municipalities.  

 First of all we want to test on municipality if larger municipalities in the north operate 

more efficient. Further, we want to figure out factors for explaining efficiency differentials. 
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We herby focus on different models of the stochastic frontier analysis (SFA). The SFA is a 

parametric approach for frontier estimation able to differentiate between efficient and less 

efficient decision making units, in our case the municipalities.6 Within this approach we 

assume a given functional form of the relationship between inputs and outputs and estimate 

the unknown parameters of the function by maximum likelihood techniques. Contrary to a 

Least Squares regression, the stochastic frontier model decomposes the residuals into two 

terms, a symmetric component representing statistical noise, and an asymmetric component 

representing inefficiency (see Greene 2004).7 The most general formulation, proposed by 

Aigner et al. 1977 is as follows (see Greene 2004): 

 

 2
u
2

v

y 'x v u,
u U
U ~ N[0, ]
v ~ N[0, ]

= β + −
=

σ
σ

 (3) 

 
where x represents the set of explanatory variables (inputs in the case of a production 

frontier), y the observed production of a firm; u represents the nonnegative random variable 

associated with inefficiency following a half normal distribution, and v  the symmetric 

random error accounting for noise. For the noise component v it is assumed that they are 

independently and identically distributed normal random variables with zero means and 

variances. As the model is usually specified in natural logs, the inefficiency term u can be 

interpreted as the percentage deviation of observed performance y from the unit’s own 

frontier performance (see Greene 2002).8  

                                                 
6 Other parametric non stochastic approaches are the corrected ordinary least squares (COLS) and the modified 
ordinary least squares (MOLS).  
7 The theory of stochastic frontier production functions was originally proposed by Aigner et al. 1977 as well as 
Meeusen and van den Broeck 1977. 
8 A large number of variants of the stochastic frontier model with regard to the distributional specifications of the 
inefficiency u have been proposed in the literature. In addition to the half normal distribution of u there are three 
further common alternatives: the truncated normal (see Stevenson 1980), the exponential and the gamma model 
(see Greene 1990). An extensive survey of the different models can be found in Kumbhakar and Lovell 2000 
who also provide the likelihood functions for the different models for estimation purposes.  
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Stochastic frontier analysis allows the computation of efficiencies of the individual 

decision units or the whole industry. A common measure of technical efficiency is the ratio of 

the observed output to the corresponding stochastic frontier output (see Coelli et al. 2005). In 

a general form, for both approaches, relative to the production frontier, the measures of 

technical efficiency TE are defined as: 

 

 ( ) ( ) ( )TE E y u,x / E y u 0,x Exp u= = = −  (4) 

 

where E is the conditional expectation (see Coelli et al. 2005). TE takes a value between zero 

and one and indicates the observed output of the jth unit relative to the output which could be 

produced by a fully efficient unit using the same input vector (production function approach). 

The above measures of technical efficiency rely upon the predicted value of the unobservable 

u (see Coelli et al. 2005). It is determined by means of conditional expectations of the 

functions of u, conditional upon the observed value of the whole error term: 

uν − 9 

   

We apply two different panel data specifications for SFA: the so called “true” random effects 

model (see Greene 2004, 2005) as well as the random effects specification by Battese and 

Coelli 1995. The first model allows for considering time invariant unobserved factors within 

the econometric specification in order to have a more robust and reliable ranking of the 

estimated technical efficiencies of the municipalities. With the second model we want to test 

if infrastructural conditions have a significant impact on the efficiency differences across 

municipalities. All models are based on the specification of inputs and outputs introduced in 

section 2.1. The specification of the random error varies across the specification. The 

                                                 
9 Jondrow et al. 1982 and Battese and Coelli 1992 derive the conditional predictor of u in detail.  
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following Table 1 provides a summary of the different model specifications and a description 

of the stochastic terms included in the model. Randomly distributed unit specific effects and 

error terms are added to the core specification. For a derivation of the estimation procedure as 

well as the respective maximum likelihood functions see Greene 2004, 2005 and Battese and 

Coelli 1995. 

 

Table 1     Model Specification for Stochastic Frontier Models 
 

 Model I 
True Random Effects 
Model (TRE Model ) 

Model II 
Random Effects Model  
(Battese and Coelli 1995)  

Functional form ititiit xy εβα ++= '  ititit xy εβ += '  

Unit-specific 
component iα  ),0(~ 2

ασα Ni  - 

Random Error itε  
ititit uv −=ε

),0(~ 2
uit Nu σ+

),0(~ 2
vit Nv σ  

iitit uv −=ε  
),'(~ 2

ui zNu σγ+  

),0(~ 2
vit Nv σ  

 

Greene 2005  

Model I deals with the following shortcomings of the traditional fixed and random effects 

models for stochastic frontiers (see e.g. Pitt and Lee 1981 for the random effects model for 

stochastic frontier models, or Schmidt and Sickles 1984 for the fixed effects model for 

stochastic frontiers): First, efficiency estimation in the traditional stochastic frontier models 

typically assumes that the underlying production technology is the same for all units. There 

might, however, be unobserved differences in technologies that would be inappropriately 

labeled as inefficiency if such variations in technology are not taken into account. Greene 

2005 summarizes that the models fail to distinguish between cross individual heterogeneity 

and inefficiency, because “fixed and random effects estimators force any time-invariant cross 

unit heterogeneity into the same term that is used to capture the inefficiency”. Another 
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shortcoming is that the conventional estimators assume inefficiency constant over time.10  The 

TRE model also belongs to the classes of normal-half normal stochastic frontier model.11 

Therefore the basic underlying assumption of this model is the existence of unit-specific 

and time-invariant factors that cannot be captured by environmental variables due to the 

variation of the latter over time and/or omitted variables. The model can be interpreted as a 

random-constant frontier model based on the structure of a normal, half-normal stochastic 

frontier model. With the additional inclusion of heterogeneity terms by means of the random 

unit-specific effect iα , the model is expected to provide a better distinction between 

inefficiency and other unexplained factors.12 

 

Battese and Coelli 1995 

Battese and Coelli 1995 proposed a random effects model for stochastic frontiers to measure 

technical efficiencies which have been adjusted to account for environmental influences such 

as geographical factors or infrastructural conditions, etc. We observe that two alternative 

approaches to this problem have been proposed in the efficiency measurement literature. One 

assumes that the environmental factors influence the shape of the technology while the other 

assumes that they directly influence the degree of technical inefficiency. The Battese and 

Coelli approach is based on the second one where environmental observable factors z directly 

influence the stochastic component with 2
i uu ~ N ( ' z, )+ γ σ see Table 1. 

The empirical results of both model specifications on the estimation outcomes and the 

inefficiency estimates are studied by a comparative analysis. 

                                                 
10 There are models relaxing the time invariance (see e.g. Battese and Coelli 1992, Lee and Schmidt 1993, 
Kumbhakar 1993), however the random component is still time-invariant which remains a substantive and 
detrimental restriction. 
11 Greene 2007 points out that it seems to be a model with three part disturbances which is certainly inestimable. 
Greene 2007 shows that this is not correct; it is a model with a time traditional random effect, with a further 
characteristic that the time-varying disturbance is not normally distributed. 
12 The true random effects model can be seen as a special case of the random parameters model, where the only 
random parameter in the model is the constant term. The model can be estimated by means of simulated 
maximum likelihood. For details on the estimation procedure and the identification problem mentioned 
previously see Greene 2004, 2005 and 2007. 
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3) Data Description 
 
The empirical model is estimated using a balanced panel based on regional production data of 

the manufacturing sector. Data have been taken from the economic census of the Mexican 

national statistical office “Instituto Nacional de Estadística Geografía e Informática” 

(INEGI). It is available for all municipalities (around 2400), each subordinated to one of the 

32 Mexican states (see Figure 1 and Table 2), and for the years 1989, 1999 and 2004.13 We 

are utilizing gross value added jtY  as a proxy for output and the inputs stock of private capital 

jtFa  and number of persons employed jtL  for our analysis. These variables are commonly 

used in estimations of conventional and regional production functions see e.g. Gerking 1994 

or Hsing 1996. We implicitly assume that land use, labor quality, etc. are essentially 

invariable over our short panel period. Further note that the panel completely excludes 

economic activity of the informal sector which plays notwithstanding a substantial role in 

Mexico.  

For selected SFA applications we additionally utilize two structural variables as an 

indication for the regional production environment. To account for the role of infrastructure 

services we include the proportion of households accessing piped water from the public line 

onto their estate ( jtWhh ) and secondly the share of households connected to the electric grid 

( jtElhh ). Both variables are being used since prior studies have pointed out to the notable 

differences in size and significance of differentiated infrastructure categories than in the case 

of a single composite public infrastructure index (see Garcia-Milà et al. 1996). 

 Monetary series value added and private capital stocks were deflated by the Banxico 

“Producer price index for finished goods excluding oil” to capture these variables in their real 

terms. Adjustments were undertaken with respect to the base period December 2003. By 

                                                 
13 Due to inconsistent reporting of variables for the year 1994, data from this year could not be considered in our 
panel. For all further analyses we therefore employ a balanced panel excluding the year 1994.  
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using a single national deflator, the law of one price is implicitly assumed. This is adequate if 

markets are not regionally segmented and companies serve the entire national or international 

market at competitive prices. The plausibility of this implicit assumption can unfortunately 

rarely be tested as regional price data are not reported in the required detail for most countries, 

including Mexico. 

Additionally, variables have been mean-corrected and transformed with natural logarithm 

to minimize the leverage of outliers and for ease of interpretation as straightforward 

elasticities with respect to value added (variables henceforth denoted with small letters). We 

have dropped all municipalities that do not report any production activity or have been newly 

constituted over the panel horizon, and we finally base our analysis on a balanced panel of 

6144 municipalities over the period 1989 to 2004 (see Table 2). 

Descriptive statistics in Table 3 reveal notable variations of production variables such as 

(real) value added with a mean of 448917 Peso and a standard deviation of 2226472 for 2004. 

The overall average employment is 1800 persons per municipality, with the highest mean 

value of 2132.96 in 1999 and again substantial variations. Concerning the proxies for the 

production environment, access to water is clearly lower than access to electricity (788% 

respectively 29% in 1989), with both of them rising over time. Of special interest is the 

regional dimension of these variations, as provided by Table 2. The last but one column 

displays sizeable disparities in average value added per worker across the states. Remarkably, 

the southern state of Tabasco is featuring a high level of this raw measure of productivity (119 

Pesos per worker), followed by the traditional manufacturing centre Distrito Federal (D.F.). 

Among the lower performing states are primarily southern ones such as Yucatan, Guerrero 

and Oaxaca (around 20 Peso per worker).  

The ratio of labor input per state relative to the national level is shown in the last column. 

The long-established and centrally located manufacturing agglomerations of Mexico and D.F. 

have the highest relative employment, whereas the lowest are in the northern state Baja 
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California Sur and in the southern Quintana Roo. Careful introspection of these figures 

indicates a strong role of the old industrial centre of Mexico City and a less clear-cut picture 

concerning the north-south divide.  

 

4) Empirical Results 
 

4.1 Nested Error Component Models 
 
Estimation results from the pooled Least Squares and error components estimations for the 

Translog and Cobb-Douglas case are provided in Table 4. A comparison of estimated 

elasticities is unfortunately rarely feasible, as equivalent studies have so far been only 

conducted on firm-level for Mexico (see for example Salgado Banda and Bernal Verdugo 

2007), respectively regional approaches only for developed countries (however, often with 

disparate methods and results, for an overview see Gerking 1994). As variables have been 

normalized by mean-correction, coefficients can be interpreted as output elasticities with 

respect to capital and labor for the average unit considered. 

 LS estimation of the Translog production function yields significant and positive 

estimates of the coefficients – with the exception of the insignificant quadratic capital term. 

The elasticity of output – here represented by (real) value added - with respect to the input 

labor is 0.613 and to capital is 0.525. The significant estimate of the quadratic labor term is 

positive (0.04), whereas the cross term is significantly negative (-0.016) - indicating 

substitutability of capital and labor inputs. We additionally test whether the production 

characteristics exhibit constant returns to scale, i.e. the joint hypothesis that the coefficients of 

squared and cross terms are insignificant and that those of capital and labor add up to one. 

This hypothesis is rejected, and there is clear evidence for variable, specifically increasing 

returns to scale (F (3, 6108): 426.33).  
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 In the Cobb-Douglas case all estimates are significantly estimated. However, when 

comparing between the two functional forms, the estimate for capital has risen (0.525 vs. 

0.572), whereas that for labor is rather lower (0.613 respectively 0.589) for the Cobb-Douglas 

form. The coefficient of determination in the Translog case is notable higher than in the 

Cobb-Douglas case (0.947 vs. 0.718), a slight indication in favor of the more flexible 

Translog form. 

Secondly, we proceed to a discussion of the results of the single-nested error components 

model which relies on a more adequate description of the unobserved regional components. 

The sign of the estimated coefficients resemble those of the LS estimation. Similarly, the 

coefficient of the quadratic term for capital is insignificant and the interaction of labor and 

capital is significantly positive. We refrain here from discussing coefficient estimates and 

their interpretations from the Cobb-Douglas form in detail, because they reveal somewhat 

similar insights from what has been discussed before for the LS case. 

The variance components are of special relevance in the nested error component 

specification. In the Translog case the estimated variance of the state-effects ( :μσ 0.264) is 

lower than for the municipality-effect ( :υσ  0.152) which is in turn clearly smaller than the 

idiosyncratic variance ( :εσ 648.0 ). All variance components are significantly different from 

zero which is an indication against the validity of a LS approach, since standard errors 

obtained from LS are biased whenever variance components are non-zero (Baltagi et al. 

2001).  

To discriminate between the two production functions, we have employed a Likelihood 

Ratio test for the nested ECM case.14 We can clearly reject the hypothesis that the log-

likelihood function evaluated at the restricted (Cobb-Douglas) and unrestricted (Translog) 

                                                 
14 The fixed effects part (i.e. the coefficient sets) of the NECM is differently specified in the Cobb-Douglas than 
in the Translog case which REML thus estimates as separate models. LR-tests for comparing models with 
different parameterizations of the FE-part are not possible then. Alternatively, models have been re-estimated 
with ML. Coefficient estimates from this ML estimation are very close to those obtained by REML. 
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model are not significantly different from zero (see Table 4). Underlying technology is thus 

not characterized by constant returns to scale over all levels of inputs, and we favor the more 

flexible Translog against the Cobb-Douglas model. 

 Apart from estimating the variance components and coefficients itself, we are 

additionally interested in obtaining the municipality- and state-specific intercepts with best 

linear unbiased predictions (BLUPs) in order to explore the actual regional differences. The 

ECM specification is especially suitable for our research question, as it is able to reveal the 

different relevance of unobserved factors depending on the respective regional level. Such 

level differences of regional production functions are considered as an indication for the level 

of technological development of the respective regional economy. Table 5 displays the 

systematic differences in size and sign of the intercepts between the states. These neutral 

shifts in the production functions at either state- or municipality-level are typically both 

negative for the Southern Highland states as Guerrero or the Yucatán Peninsula, but large and 

positive for the northern border states of Sonora or Chihuahua. The predicted intercepts on 

state-level are usually much higher than for the municipality. However, the variation among 

and within the states is substantial indicating that the perception of a north-south divide 

should be discussed cautiously under this reverse and on sufficiently detailed regional level. 

Table 6 shows the ten highest and lowest ranking municipalities according to the size of 

their aggregated state- and municipality-level effects. Among the top municipalities is for 

example Naco, Sonora, whose high positive level-shift can be presumed to be associated with 

its location as a twin border town with Naco, Arizona. Many of the low municipalities 

typically stem from the southern periphery, but interestingly one can find several 

municipalities from mediocre or low-performing states among the top 20 ranking 

municipalities as e.g. Cuautinchán from Puebla.15 Careful introspection of the regional effects 

thus provides evidence in favor of a north-south divide, but as well points out to the sizeable 

                                                 
15 Detailed lists of the ranking of the states and municipalities are available from the authors. 
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variation within the states – a phenomenon demonstrating that municipalities “flourish” in 

otherwise desolate states. 

 

4.2 Stochastic Frontier Analysis 
 
We now turn to the results of the parametric stochastic frontier analysis in order to analyze the 

efficiency differences on municipality- and state-level.16 With the SFA results we want in a 

first step test with Model I the hypothesis if there are still large and sustained differences 

between the municipalities in the north and the south of the country. In a second step we want 

to figure out with Model II if infrastructural differences have a significant impact on the 

efficiency levels and could therefore help to explain the efficiency differences. We start with 

the estimation of a true random effects model according to the Greene 2005. The estimation 

results are summarized in Table 7. 

 We have suggested the TRE (2004, 2005) model to overcome the problem that any 

unobserved time-invariant, but municipality-specific heterogeneity is considered as 

inefficiency. We focus in our analysis on the random effects specification outlined in section 

2.3.17 Estimation results show that the coefficients remain approximately the same, the 

estimated coefficients of labor and capital elasticities reflect the same trend as in the nested 

error components models.  

Special interest of the analysis lies in the estimation of the individual efficiencies of the 

municipalities in the sample.18 The hypothesis is that larger municipalities in the north of the 

country operate in a more productive and more efficient way. Table 8 summarizes the mean 

technical efficiencies and their standard deviations on state-level for the different SFA 

specifications. The mean technical efficiency level in the manufacturing sector is 0.67 across 
                                                 
16 We assumed for all SFA Models the more appropriate Translog specification, as shown in section 4.1. 
Predicted technical inefficiencies were calculated according to Jondrow 1982. 
17 The simulated maximum likelihood estimates as well as the inefficiency predictions were obtained using 
LIMDEP Version 9.0 (Greene 2007). 
18 As outlined in section 2.3, the efficiency of the municipalities would be: Efficiency exp( u)= − . 
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all states. This means that on average the same output could be produced with only 67 per 

cent of the actual input.  

We have then proceeded to analyze the different performance levels of the states. For this 

purpose we have calculated the average of the technical efficiency on municipality-level for 

each of the 32 states. It can be seen from Table 8 that Sonora, Chihuahua, Nuevo Leon, 

Coahuila de Zaragoza are among the best performing states. All lie at the US border in the 

north of the country. When we consider the worst performing states, we identify Oaxaca, 

Guerreo and Yucatán, all of them in the southern part of the country. Thus the empirical 

analysis confirms the hypothesis: large and sustained differences are still prevalent in the 

economic structure and performance of sub-national regions in Mexico. Southern states and 

municipalities still appear to suffer from a lack of technical efficiency in comparison to the 

north. This might be explained by the geographical closeness to the American boarder where 

the northern regions benefit from the connectivity to trans-border markets in the United 

States. A considerably different industrial structure of the south in comparison to the north 

might be another reason. Further, the south is dominated by micro firms with low-skilled 

employees; labor productivity is accordingly very low. The southern states are additionally 

confronted with lower levels of transport connectivity in opposition to the northern regions.  

It is also important to know to which extent the technical efficiency scores vary in each 

region to figure out the disparity in each state. We have obtained the standard deviation in 

each state and can observe that the states with a very low technical efficiency score feature a 

high standard deviation which indicates a high disparity in these states, as e.g. in Oaxaca and 

Nayarit. Thus, there are also municipalities which operate in a more efficient way. The 

disparity is also reflected when we do not look at the average in each state, but at the 

individual scores on municipality-level.  

Within this framework we find that the most productive municipality is Urique in 

Chihuahua, Hidalgo in Durango, Cuautinchán in Puebla and Malinaltepec in Guerrero. The 
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best and worst performing municipalities are outlined in Table 9. This shows that there are 

municipalities performing indeed very well in Oaxaca. The least productive municipalities are 

Tahmek, Quiriego and Yaxkukul.   

In Model II we explicitly take into account different infrastructural conditions of the 

municipality. We utilize the proportion of households with electricity as well as water access 

as proxies for the infrastructure conditions of regional production and test whether these 

variables have a significant impact on explaining the efficiency differences. The estimation 

output is shown by Table 7. The average efficiency estimates are outlined in Table 8. The 

relative water access is significant at the 5% level, whereas the variable electricity 

connectivity is not. Thus, the extent of penetration of the water network is a relevant factor for 

explaining the productivity and efficiency differentials across the municipalities, whereas 

electricity plays a negligible role in this regard. This surely reflects the pivotal role of water 

resources in the largely arid and semi-arid country, for which issues of water quality and 

connectivity have been frequently identified as serious risk factors for any economic activity 

(see for example Asad and Dinar 2006). 

The average technical efficiency in the Battese and Coelli 1995 specification is lower in 

comparison to the true random specification (Greene 2004 and 2005). This underpins the 

assumption that in the Battese and Coelli 1995 specification the inefficiency term also 

contains all other time invariant unmeasured sources of heterogeneity (see Greene 2005). In 

the true random effects model theses effects appears in the random constant. We can conclude 

that the inefficiency estimates are sensitive to the specification of unobserved community-

specific heterogeneity, and therefore the inefficiency scores obtained from the traditional 

specifications (including unobserved environmental factors) most likely overstate the 

inefficiency of the municipalities. However, the overall trend found in the other models 

remains valid: a substantial efficiency divide can be identified between the more efficiently 

operating northern municipalities and their southern lagging counterparts.   
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5) Conclusion 
 

In this paper, we analyzed the key characteristics of Mexican manufacturing on a regional 

disaggregated level. Using a balanced panel of municipality-level data from INEGI, we 

explore the hypothesis if there still are marked differences in the economic structure and 

productivity among the 32 states and their municipalities. We utilize regional production 

functions to describe production characteristics and technology in the spatial dimension. A 

special emphasis is given to explore the prevalence and dimension of these differentials, 

particularly along the north-south line. An important issue is to adequately address the 

presence of unobserved heterogeneity on regional level. Therefore, we have reverted to recent 

panel models as the nested error component model (Baltagi et al. 2001) to capture state and 

municipality heterogeneity and secondly different stochastic frontier models to figure out 

efficiency differentials, including the consideration of latent heterogeneity as with Greene’s 

true random effects model (Greene 2005) respectively by including observable variables for 

the infrastructure environment (Battese and Coelli 1995). 

Our findings provide new and unique insights for Mexican manufacturing on a very 

detailed regional base. Special emphasis has been given to obtain estimates for regional 

effects and efficiency scores for all municipalities and to provide relative regional rankings 

according to them. Remarkably, nested panel and stochastic frontier models lead to similar 

results and conclusions in this regard. Our results indicate that the underlying technology in 

the manufacturing sector is characterized by increasing returns to scale on municipality level. 

Predictions of regional-specific intercepts from the nested error component model show 

sustained differences between the states, primarily along the north-south divide. The 

respective signs of the predicted municipality- and state-effects typically move in the same 

direction, but the state-effects are clearly higher indicating a prominent role for factors at 

state-level to explain lagging regions in this model.  
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The different stochastic frontier model specifications reflect the same trend: the northern 

states operate more efficiently in manufacturing compared to the south of the country. There 

are still sustained differences in the economic structure, and southern municipalities appear to 

suffer from a lack of technical efficiency in comparison to the north. This phenomenon can be 

related to the geographical proximity to the U.S., such that the northern regions benefit from 

the connectivity to trans-border markets in the U.S. in terms of superior intermediate inputs 

and capital, spillovers such as knowledge- or technology transfer and competitive pressures 

fostering efficiency (learning by exporting effects). The traditional manufacturing belt with its 

less up-to-date technology and domestic market orientation is clearly lagging behind. The 

south is further marginalized; its economic structure is dominated by micro firms unable to 

exploit scale economies and low-skilled workforce. It is crucial to implement various types of 

skill upgrading and technology adoption programs in order to enhance productivity, as the 

lagging southern region may impede the development potentials of the still economically 

fragile country as a whole. A further explanation of lower productivity is related to the 

insufficient infrastructure - especially with regard to water - in the southern states in 

opposition to the northern regions. This implies the necessity of inter and intra regional 

infrastructure investments (such as in ports along the gulf to strengthen export opportunities 

to the U.S.) to improve the density and quality of the network to gain productivity. 

Last but not least, both nested panel and stochastic frontier results show marked 

differences in the efficiency scores for municipalities both within the states and between the 

states. This implies that single ‘islands of excellence’ exist, i.e. municipalities ranking among 

the most efficient ones nationwide - but being located in one of the otherwise worst 

performing states of Mexico. This phenomenon illustrates that windows of opportunities for 

municipalities in the south exist and indicates perspectives for well-managed policies on the 

municipality-level.  
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A) Figures 
 
FIGURE 1    Map United Mexican States  
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B) Tables 
 
TABLE 2    Regional Structure of Panel for 2004 

State 
Municipalities 
in respective 
state  

Municipalities 
included in 
panel 

Value added 
per employed 
person 

Regional 
employment 
share 

01 AG   11     9   89.954 0.015 
02 BC     5     4   89.940 0.060 
03 BCS     9     4   57.232 0.002 
04 CAMP   11     9   27.976 0.003 
05 COAH   38   32   91.231 0.052 
06 COL   10   10   84.822 0.003 
07 CHIS 119   98   27.244 0.008 
08 CHIH   67   52   49.436 0.085 
09 DF   16   15 109.729 0.097 
10 DGO   39   35   32.272 0.018 
11 GTO   46   46   79.739 0.054 
12 GRO   79   70   20.22 0.010 
13 HGO   84   77   59.123 0.017 
14 JAL 124 122   57.952 0.079 
15 MÉX 125 119   71.201 0.110 
16 MICH 113 112   32.502 0.020 
17 MOR   33   33   53.906 0.011 
18 NAY   20   18   37.804 0.003 
19 NL   51   47   20,307 0.079 
20 OAX 570 346   65.559 0.011 
21 PUE 217 203   79.954 0.052 
22 QRO   18   17   35.864 0.023 
23 QR     8     7   56.028 0.002 
24 SLP   58   53   42.052 0.024 
25 SIN   18   17   42.052 0.009 
26 SON   72   46   64.322 0.031 
27 TAB   17   17 118.860 0.005 
28 TAMPS   43   40   48.960 0.052 
29 TLAX   60   43   69.580 0.011 
30 VER 212 183   50.327 0.028 
31 YUC 106 103   19.030 0.020 
32 ZAC   57   51   39.263 0.006 
Total 2452 2038 - - 
Note: Column 2 presents the number of municipalities in the respective state for 
2004; column 3 is valid for all periods, as the panel is balanced. Column 4 
displays the average value added in Pesos per employed person.  
Source: INEGI; own calculations 
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TABLE 3    Variable Means and Standard Deviations 

Variable Year Mean Standard 
deviation 

Real value added 1989  217 964.30  1 378 776  
 1999  348 798  1 804 466  
 2004  448 916.90  2 226 472  

Private Capital Stock 1989  522 740.60  3 362 531  
 1999  509 510.20  2 476 162  
 2004  555 059.90  2 849 740  

Number of employed persons  1989      1 261.03         6 784  
 1999      2 132.96       10 544  
 2004      2 014.40         9 508  
Proportion of HHs  
with Electricity Access 1989             0.78                0.20 
 1999             0.89                0.11 
 2004             0.93                0.08 
Proportion of HHs  
with Water Access 1989             0.29                0.22 
 1999             0.34               0.25 
 2004             0.41               0.29 
Note: Real series refer to the base period December 2003. 
Source: INEGI, own calculations 
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TABLE 4    Estimates and Test Results from LS and Nested Error Components Models 

Translog Function Cobb-Douglas Function   

LS Nested ECM LS Nested ECM 

 .525  .503  .572  .528 Capital fa  
 .014 ***  .015 ***  .009 ***  .009 *** 
 .613  .637  .589  .615 Labor l  
 .018 ***  .020 ***  .011 ***  .012 *** 
-.004  .006 Capital squared 2fa  
 .007  .007 - - 

 .04  .046 Labor squared 2l  
 .015 **  .015 ** - - 
-.016 -.021 FaL 
 .010 *  .010 *** - - 

-.281 -.331 -.241 -.298 Constant 
 .019 ***  .036***  .018 ***  .035 *** 

        
 .152  .155  

 -  .023 ** -  .023 ** 
 .648  .649  

 -  .007 ** -  .007 ** 
 .264  .26  

 -  .015 ** -  .014 ** 
     
R squared  .947 -  .718 - 
Test: CRTS F(3,6108): 

426.33 *** 
chi2(3):  
779.28 *** 

F(1,6111):     
1240.96 *** 

chi2(1):  
786.45 *** 

Test: Joint 
significance 

F(5,6108) 
21796.53 *** 

Wald chi2(5) 
70143.08 *** 

 F(2,6111) 
54196.71 *** 

Wald chi2(2) 
70293.31 *** 

Test: Cobb-Douglas 
vs. Translog   

F(3,6108):     
47.92 *** 

LR chi2(3): 
64.5 *** 

  

Observations 6114 6114 6114 6114 

Note: Variables have been rescaled to have unit means and have been transformed 
with natural logarithm. Coefficients can be interpreted as elasticities with respect 
to value added.  
 The fixed effects part (i.e. the coefficient sets) of the NECM is differently 

specified in the Cobb-Douglas than in the Translog case which REML thus 
estimates as separate models. LR-tests for comparing models with different 
parameterizations of the FE-part are not possible then. Alternatively, models have 
been re-estimated with ML. 
Standard errors are given in parentheses. * denotes significant at 10%-level; ** 
significant at 5%-level; *** significant at 1%-level. 
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TABLE 5    Ranking of Mexican Regions according to NECM  
 

State State Effect State 
Mean 
Municipality 
Effect 

08 CHIH   0.2756  03 BCS  0.0209 
26 SON  0.2709  26 SON  0.0177 
05 COAH  0.1875  05 COAH  0.0176 
19 NL  0.1707  08 CHIH  0.0160 
15 MÉX  0.1390  22 QRO  0.0156 
28 TAMPS  0.1218  01 AG  0.0115 
22 QRO  0.0883  19 NL  0.01 
24 SLP  0.0467  28 TAMPS  0.0092 
14 JAL  0.0417  04 CAMP  0.0065 
01 AG  0.0345  15 MÉX  0.0035 
03 BCS  0.0278  24 SLP  0.0027 
04 CAMP  0.0194  09 DF  0.0021 
09 DF  0.0106  27 TAB  0.0012 
27 TAB  0.0068  14 JAL  0.0010 
17 MOR  0.0011  17 MOR  0.0001 
06 COL -0.0054  29 TLAX -0.0005 
29 TLAX -0.0075  13 HGO -0.0006 
02 BC -0.0129  16 MICH -0.0011 
13 HGO -0.0149  30 VER -0.0012 
23 QR -0.0185  07 CHIS -0.0015 
10 DGO -0.0302  06 COL -0.0016 
25 SIN -0.0309  21 PUE -0.0026 
18 NAY -0.0391  10 DGO -0.0026 
16 MICH -0.0406  20 OAX -0.0030 
07 CHIS -0.0484  11 GTO -0.0040 
11 GTO -0.0612  32 ZAC -0.0052 
30 VER -0.0745  25 SIN -0.0055 
32 ZAC -0.0881  18 NAY -0.0065 
21 PUE -0.1739  31 YUC -0.0067 
12 GRO -0.2269  23 QR -0.0080 
31 YUC -0.2284  02 BC -0.0097 
20 OAX -0.3412  12 GRO -0.0098 

Note: Calculations are based on BLUPs obtained from the Translog NECM. 
Rankings follow a decreasing order.  
The municipality effects represent the average of the respective municipality 
effects over all municipalities in the respective state. 
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TABLE 6    Best and Worst Ranking Municipalities from NECM 

Municipality State Regional Effect 
NECM  

Best Performing Municipalities 

26027 Fronteras 26 SON  0.704 
26067 Villa Hidalgo 26 SON  0.676 
8053   Praxedis G. Guerrero 08 CHIH  0.655 
5014   Jiménez 05 COAH  0.623 
8065   Urique 08 CHIH  0.617 
26039 Naco 26 SON  0.604 
26014 Baviácora 26 SON  0.588 
32025 Luis Moya 32 ZAC  0.587 
21040 Cuautinchán 21 PUE  0.585 
26016 Benjamín Hill 26 SON  0.585 

Worst Performing Municipalities 

20487 Santiago Tenango 20 OAX -0.727 
20564 Yutanduchi de Guerrero 20 OAX -0.739 
31074 Tahmek 31 YUC -0.748 
20511 Santo Domingo Nuxaá 20 OAX -0.872 
20126 San Cristóbal Amatlán 20 OAX -0.865 
20270 San Miguel Huautla 20 OAX -0.924 
20054 Magdalena Zahuatlán 20 OAX -0.981 
20201 San Juan Juquila Vijanos 20 OAX -0.996 
20230 San Lorenzo Victoria 20 OAX -1.022 

Note: Aggregated regional effects represent the combined state- and municipality-
level effect according to BLUPs from the NECM. Shown here are the municipalities 
with the ten highest and ten lowest figures. 
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TABLE 7     Results from Stochastic Frontier Model I and II 
 

 Model II  Model I 

 .521  .519 Capital fa  
 .010***  .009 *** 
 .622  .629 Labor L l  
 .014***  .013 *** 
 .016  .007 Capital squared 2fa  
 .003***  .003 ** 
 .065  .0565 Labor squared 2l  
 .006***  .006 *** 
-.035 -.030 FaL 
 .004***  .003 *** 
-.006  Constant 
 .021  
  .108 Mean random parameter iα  
  .023 *** 
 .506  - Electricity elhh 
 .438 ***  
-.474  - Water whh 
 .043  

   
 .693  .784 Variance parameter λ  
 .028 ***  .008 *** 
 .453  .933 Variance parameter uσ  
 .020 ***  .0463 *** 

   
  .285 Standard deviation random 

parameters   .007 *** 
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TABLE 8    Average State Efficiency from Model I and II 
 

State Average State 
Efficiency Model I 

Average State 
Efficiency Model II 

26 SON 0.70 0.71 
08 CHIH 0.69 0.71 
19 NL 0.69 0.69 
05 COAH 0.69 0.68 
15 MÉX 0.68 0.67 
22 QRO 0.68 0.67 
28 TAMPS 0.68 0.68 
03 BCS 0.68 0.66 
01 AG 0.68 0.65 
04 CAMP 0.68 0.65 
24 SLP 0.67 0.65 
14 JAL 0.67 0.65 
17 MOR 0.67 0.64 
13 HGO 0.67 0.63 
27 TAB 0.67 0.63 
07 CHIS 0.67 0.63 
16 MICH 0.67 0.63 
25 SIN 0.67 0.63 
06 COL 0.67 0.63 
23 QR 0.67 0.63 
10 DGO 0.67 0.63 
09 DF 0.67 0.63 
29 TLAX 0.66 0.63 
30 VER 0.66 0.62 
02 BC 0.66 0.62 
11 GTO 0.66 0.62 
32 ZAC 0.66 0.61 
18 NAY 0.66 0.62 
21 PUE 0.65 0.59 
31 YUC 0.65 0.58 
12 GRO 0.65 0.57 
20 OAX 0.64 0.55 
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TABLE 9   Best and Worst Performing Municipalities from Model I and II 
 

Municipality State Year Efficiency 
score model I  

Efficiency 
score model II 

Best Performing Municipalities 

8065   Urique 08 CHIH 2004 0.906 0.874 
10010 Hidalgo 10 DGO 1999 0.901 0.879 
21040 Cuautinchán 21 PUE 1999 0.886 0.918 
12041 Malinaltepec 12 GRO 1989 0.883 0.839 
26067 Villa Hidalgo 26 SON 1989 0.879 0.889 
32025 Luis Moya 32 ZAC 1989 0.873 0.914 
30152 Tampico Alto 30 VER 2004 0.888 0.851 
21145 S. Seb Tlacotepec 21 PUE 1999 0.886 0.844 
21089 Jopala 21 PUE 1989 0.885 0.813 
21032 Cohetzala 21 PUE 1989 0.888 0.808 

Worst Performing Municipalities 
11006 Atarjea 11 GTO 1999 0.233 0.267 
24047 Villa de Guadalupe 24 SLP 2004 0.213 0.363 
19047 Hidalgo 19 NL 2004 0.222 0.412 
20126 S. Crist. Amatlán 20 OAX 1999 0.236 0.213 
20201 S. J. Juq. Vijanos 20 OAX 1999 0.212 0.174 
31026 Dzemul 31 YUC 1989 0.193 0.381 
31086 Tepakán 31 YUC 1989 0.176 0.322 
26049 Quiriego 26 SON 1989 0.110 0.317 
31074 Tahmek 31 YUC 1989 0.084 0.236 
31105 Yaxkukul 31 YUC 1989 0.038 0.273 

Note: Ranking follows the scores from Model I in a decreasing order. The respective 
scores from Model II for the respective municipalities are provided by the last 
column. 

 
 
 




