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Abstract

The paper studies outside �nance in a model of two-dimensional
moral hazard, involving risk choices as well as e¤ort choices. If the
entrepreneur has insu¢ cient funds, a �rst-best outcome cannot be im-
plemented. Second-best outcomes involve greater failure risk than �rst-
best outcomes. For a Cobb-Douglas technology, second-best e¤ort and
investment levels are smaller than �rst-best; for other technologies,
they depend on the elasticity of substitution. If �rm returns not too
noisy signals of behaviour, suitable incentives can be provided by some
mix of debt and equity issues. If �rm returns involve too much noise,
this is not possible.
Key Words: Financial Contracting, Debt Finance, Equity Finance,

Moral Hazard, RiskChoices.
JEL Classi�cation: D86, G30, G32.

1 Introduction

This paper takes a new look at the approach to outside �nance that was
developed by Jensen and Meckling (1976) some thirty years ago. Their

�This revision of Hellwig (1994) was prepared for the ECGI-JFI-CFS-Mannheim con-
ference on Financial Contracting. Without implicating them, I thank Helmut Bester,
Patrick Bolton, Margaret Bray, Christoph Engel, Mike Fishman, Thomas Gehrig, Mark
Hahmeier, Andreas Nicklisch, Jean Tirole, and Elu von Thadden for helpful discussions
and comments. I am also grateful for �nancial support of the original research by the
Scheizerischer Nationalfonds.
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approach is summarized by the following propositions:

� Outside �nance involves "agency costs" because relations between, on
the one hand, �nanciers and, on the other hand, entrepreneurs or
managers are a¤ected by moral hazard.

� Di¤erent forms of outside �nance involve di¤erent forms of moral haz-
ard and, therefore, di¤erent types of agency costs. Outside equity
�nance is mainly a¤ected by moral hazard with respect to the level of
e¤ort that the manager exerts. Outside debt �nance is mainly a¤ected
by moral hazard concerning the risks inherent in the entrepreneur�s
strategy.

� The equilibrium capital structure of the �rm minimizes the sum of all
agency costs. To the extent that monitoring and bonding activities
a¤ect moral hazard as well, the equilibrium capital structure is deter-
mined jointly with these activities so as to minimize the sum of all
agency, monitoring, and bonding costs.

Beyond the narrow issue of how to explain capital structure, the work of
Jensen and Meckling has initiated the general research program to explain
observed �nancing patterns and �nancial institutions in terms of optimal (n-
th best) responses of market participants to problems of moral hazard and
incomplete information. This research program has shaped the entire litera-
ture.1 In the nineties, the direction of research has shifted from "complete"
to "incomplete" contracts, focussing on control rights assignments, rather
than return patterns associated with di¤erent securities.2 However, the
incomplete-contracts approach also follows the overall program of explain-
ing observed �nancing patterns as optimal solutions to contracting problems
with moral hazard and incomplete information.

This paper returns to the original Jensen-Meckling problem of explaining
capital structure in terms of the incentive implications of return patterns
associated with di¤erent mixes of instruments for outside �nance. I am
not trying to suggest that control rights are unimportant. However, the
incentive implications of di¤erent return patterns are also important, even
for the incomplete-contracts approach. Thus, Dewatripont and Tirole (1994)
refer to these incentive implications when they study why control rights
assignments and return patterns tend to be linked the way they are for
debt and equity. They rely on the original insights of Jensen and Meckling

1For an early survey, see Harris and Raviv (1991).
2See, e.g., Aghion and Bolton (1989, 1992) or Hart (1993, 1995).
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that outside equity �nance is more susceptible to moral hazard concerning
e¤ort choices and outside debt �nance is more susceptible to moral hazard
concerning risk choices.

Jensen and Meckling did not actually provide the encompassing analysis
that their conclusions would seem to have required. They provided piecemeal
analyses of (i) the incentive e¤ects of outside equity �nance when moral
hazard concerns e¤ort choices only and (ii) the incentive e¤ects of outside
debt �nance when moral hazard concerns risk choices only. They did not
put the di¤erent pieces of the puzzle together in a model with both sources
of moral hazard at the same time. This is where the present paper steps in.

The paper develops an integrated model with moral hazard that involves
e¤ort choices and risk choices at the same time.3 It turns out that there
is a natural interdependence between these two sources of moral hazard.
The moral-hazard problem as a whole takes on an extra dimension if the
entrepreneur is able to conceal a low e¤ort choice behind a relatively high
return realization made possible by a high risk choice. Separate, piecemeal
analyses of the di¤erent types of moral hazard by themselves do not capture
this extra dimension. It is therefore inappropriate to think of the total
agency cost that is associated with a given mix of debt and equity �nance
as a sum of the agency costs of the debt issue and the agency costs of the
equity issue, one concerning risk choices and the other concerning e¤ort
choices. In the integrated model, risk choices and e¤ort choices are two
sides of the same coin. It makes no sense to talk about their agency costs
separately.

It also makes no sense to talk separately about the agency costs of debt
instruments and the agency costs of equity instruments. Outside equity �-
nance and outside debt �nance jointly determine the total investment that
can be �nanced and the overall incentive scheme that the entrepreneur or
manager faces as he takes his e¤ort-and-risk choices. One must think com-
prehensively in terms of overall incentive e¤ects of a given package of �nan-
cial instruments on the combination of e¤ort and risk levels that is chosen.

Indeed, it is not at all clear that an optimal incentive scheme for the
given moral-hazard problem should take a form that can be interpreted
in terms of standard �nancial instruments. Standard �nancial instruments
induce incentive schemes that have a special mathematical structure, making
the entrepreneur�s income a piecewise linear, continuous function of realized

3A rudimentary form of the model was already used in Bester and Hellwig (1987). The
model here is more general and therefore more suitable for dealing with the issues raised
by Jensen and Meckling.
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overall returns. Why should a scheme with such a structure be optimal in
dealing with the given incentive problem? Standard incentive theory often
comes up with much more complicated, highly nonlinear, somtimes even
discontinuous incentive schemes.4

Following most of the literature on �nancial contracting, the paper as-
sumes that all parties are risk neutral. Risk sharing considerations play no
role. Incentive considerations arise because of limitations to the entrepre-
neur�s ability to pay, more precisely, because, in each state of the world, the
entrepreneur�s ability to repay his �nanciers depends on the return realiza-
tion in that state; this return realization in turn depends on the entrepre-
neur�s prior risk and e¤ort choices.

Under risk neutrality, the integrated moral-hazard problem with both
risk and e¤ort choices is more serious than either a pure risk choice problem
or a pure e¤ort choice problem. For either problem by itself, the assumption
of risk neutrality implies that, despite the limitations on the entrepreneur�s
ability to pay, there always exists an incentive scheme which implements a
�rst-best outcome. For the integrated problem studied here, such an incen-
tive scheme never exists if the entrepreneur�s initial wealth is insu¢ cient to
�nance the �rst-best level of investment.

If the entrepreneur�s initial wealth is insu¢ cient to �nance the �rst-
best level of investment, second-best outcomes always involve excessive risk
taking in the sense that a marginal increase in e¤ort designed to reduce the
entrepreneur�s failure risk would raise the expected aggregate surplus. If
the technology is separable, failure risk is strictly greater in a second-best
outcome than in a �rst-best outcome.

By contrast, the characterization of second-best levels of investment and
e¤ort depends on the underlying technology, in particular, the elasticity
of substitution between these two inputs. If the elasticity of substitution
between investment and e¤ort is equal to one, second-best investment and
e¤ort levels are both below their surplus-maximizing values, but, conditional
on second-best risk and e¤ort choices, the investment level is actually e¢ -
cient. If the elasticity of substitution between investment and e¤ort di¤ers
from one, the di¤erence a¤ects the wedges in the conditions for both, ef-
fort and investment, enhancing one wedge and reducing the other, so that,
conditional on second-best risk and e¤ort choices, there is overinvestment
if the elasticity of substitution is less than one and underinvestment if the

4The exception is Holmström and Milgrom (1987). However, in their model, moral
hazard concerns e¤ort choice only, and they are quite explicit that the model cannot be
extended to allow for risk choices as well (1987, p. 324).
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elasticity of substitution is greater than one. The overall size of the ven-
ture is always too small in that a proportional increase in both e¤ort and
investment would raise expected aggregate surplus.

If investment and e¤ort are close to being perfect substitutes, a second-
best contract comes close to maximizing the expected aggregate surplus. In
this case, the level of outside �nance is close to zero, and the entrepreneur�s
e¤ort substitutes for the shortfall in investment. If investment and e¤ort are
close to being perfect complements, a second-best contract also comes close
to maximizing the expected aggregate surplus. In this case, investment,
e¤ort, and risk choices are close to their �rst-best values; the investment-
e¤ort ratio is slightly above the �rst-best level.

These �ndings suggest that, in assessing the impact of double moral
hazard, we must pay more attention to the technology. Relations of comple-
mentarity and substitutability a¤ect the severity of the agency problem, as
well as the comparative statics properties of the di¤erent decision variables.

As for the research program of "explaining" capital structure in terms
of the incentive implications of the return pattern of the entrepreneur�s
retained inside equity, the paper�s results are ambivalent: On the one hand,
it provides an interesting class of cases in which optimal incentive schemes
can indeed take a form that corresponds to a combination of debt and equity
issues. On the other hand, it also gives examples where optimal incentive
schemes cannot be interpreted in terms of debt and equity packages. Even
in those cases where optimal incentive schemes can be generated by debt
and equity instruments, this �nding seems to re�ect a certain arbitrariness
of optimal schemes under risk neutrality, rather than any inherent structural
properties of these �nancial instruments.

In the following, Section 2 introduces the basic model, presents the as-
sumptions about the technology, and demonstrates the impossibility of im-
plementing �rst-best when the entrepreneur has insu¢ cient funds of his own.
Section 3 provides a systematic analysis of second-best contracts under the
assumption that the observation of return realizations involves no "noise"
and permits a precise inference about certain aspects of the entrepreneur�s
choices. This section contains the results on excessive risk taking and on the
role of the elasticity of substitution between investment and e¤ort that were
mentioned above. Section 4 gives conditions under which the second-best
outcomes considered in Section 3 are robust to the introduction of "noise".
Section 5 discusses whether the incentive schemes that are used to support
these outcomes can be interpreted as the results of outside debt and equity
�nance.
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2 A Model of Outside Finance with Double Moral
Hazard

2.1 The Model

An entrepreneur with initial assets A � 0 wants to raise external funds
I �A in order to �nance a project with an overall investment I: When the
investment is made, he chooses an e¤ort level ` from a set L � R+ and a
risk class � from a set � � R+: Given I; `; �; the project earns the random
gross return ~y where

~y = ~�f(I; `; �) with probability � (2.1)

and
~y = 0 with probability 1� �: (2.2)

In (2.1), ~� is a positive-valued random variable with a given distribution
function F ; without loss of generality, I assume that E~� = 1: The risk class
� is identi�ed with the project�s success probability. A project of risk class
� fails altogether with probability 1��: The project�s return in the event of
success depends on the e¤ort ` and the risk class �; as well as the investment
I: The function f is increasing in I and ` and decreasing in �: An increase
in the success probability � necessitates either a decrease in the project�s
return in the event of success or an increase in I or `.

The functions F and f are assumed to be common knowledge. I also
assume that the investment I is observable and veri�able. However, outside
�nanciers cannot observe the chosen e¤ort level ` and risk class �. These
choices will depend on the incentives that the �nance contract provides to
the entrepreneur.

Besides the investment I and the outside funding I � A; the contract
must stipulate the division of the gross return ~y between the entrepreneur
and his �nanciers. I assume that the realizations of ~y are observable and
veri�able. The portion ~w of the return that goes to the entrepreneur and
the portion ~r = ~y� ~w that goes to the �nanciers can therefore be taken to be
arbitrary functions of ~y; without any additional incentive considerations.5

The entrepreneur and the �nanciers are taken to be risk neutral. Ex-
pected payo¤s are speci�ed as E ~w� ` for the entrepreneur and E~r� (I�A)
for the �nanciers. Because of risk neutrality, there is no loss of generality in
assuming that ~w and ~r = ~y � ~w are given by deterministic functions of ~y;

5The setting is thus di¤erent from the costly-state-veri�cation literature initiated by
Townsend (1979) and Gale and Hellwig (1985).

6



any randomization in ~w conditional on ~y could be averaged out without any
change in expected payo¤s and in incentives. Expected payo¤s can therefore
be written as

U(I; `; �; w(�)) = �

Z
w(�f(I; `; �))dF (�) + (1� �)w(0)� ` (2.3)

for the entrepreneur and

V (I; `; �; w(�)) = �

Z
[�f(I; `; �)� w(�f(I; `; �))] dF (�)�(1��)w(0)�(I�A)

(2.4)
for the �nanciers.

If there is Bertrand competition among �nanciers, the overall contracting
problem can be written as

max
I�0;`2L

�2�;w(�)2W

U(I; `; �; w(�)) (2.5)

subject to the �nanciers�participation constraint

V (I; `; �; w(�)) � 0 (2.6)

and the incentive compatibility constraint

U(I; `; �; w(�)) � U(I; `0; �0; w(�)) for all `0 2 L and all �0 2 �: (2.7)

In this formulation, W is a set of admissible incentive schemes.
Problem (2.5) encompasses several speci�cations of agency problems in

the literature as special cases:

� Jensen and Meckling�s (1976) analysis of e¤ort choice and equity �-
nance corresponds to the speci�cation

~� � 1;L = R+;� = f1g; (2.8)

and

W = fw(�)j for some � 2 [0; 1]; w(y) = (1� �)y for all yg: (2.9)

In this speci�cation, � is the share of outside equity in the �rm.
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� The analysis of risk choice and debt �nance in Jensen and Meckling
(1976), Keeton (1979), or Stiglitz and Weiss (1981) corresponds to the
speci�cation

L = f0g;� = [0; 1]; (2.10)

and

W = fw(�)j for some R � 0; w(y) = max(0; y �R) for all yg: (2.11)

In this speci�cation, R is the entrepreneur�s debt service obligation to
his creditors.

� The analysis of e¤ort choice under any form of outside �nance in Innes
(1990) corresponds to the case where ~� is a nondegenerate random
variable with range R+; L = R+;� = f1g; and

W = fw(�)j w(y) � 0; y � w(y) � 0 for all y; (2.12)

and y � w(y) is nondecreasing in y:

By contrast to these contributions, I will consider the general speci�ca-
tion

L = R+;� = [0; 1]; (2.13)

and
W = fw(�)j w(y) � 0 für all yg: (2.14)

Thus, I allow for moral hazard with respect to e¤ort and risk choices at
the same time. Moreover, I impose hardly any restrictions on the set of
admissible incentive schemes. I propose this generalization for the following
reasons.

� First, if the research program is to explain observed �nancing pat-
terns in terms of optimal incentive contracting, one does not want to
impose the prior assumption that the implied incentive scheme must
take the form w(y) = (1� �)y or even w(y) = (1� �)max(0; y � R):
If such an assumption were imposed, one could not really claim to
explain the use of contracts that correspond to a mix of debt and
equity issues.6 Therefore, I only impose the condition that w(y) be
nonnegative, so that r(y) = y � w(y), the portion of the return that
goes to the �nanciers, does not exceed y: This condition is motivated

6This point underlies the di¤erence between Townsend (1979), Gale and Hellwig (1985),
and Innes (1990) on the one hand and Jensen and Meckling (1976) on the other hand.
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by the consideration that any source of funds that is available to the
entrepreneur is already included in the initial assets A. Once these
assets are brought into the �rm, there are no further funds to provide
for payments in excess of y going to the �nanciers.

� Second, if one believes that the mix of outside debt and equity �-
nancing of a �rm represents an optimal response to a combination of
moral-hazard problems involving risk choices and e¤ort choices, then
one ought to study the matter in a model that actually involves a dou-
ble moral-hazard problem. Separate analyses of moral hazard with re-
spect to e¤ort choices and of moral hazard with respect to risk choices
are not enough because such analyses cannot take account of the in-
terdependence between the two moral-hazard problems.

2.2 A Reformulation of the Contracting Problem

To highlight the interdependence of e¤ort choices and risk choices, I intro-
duce the variable

�y = f(I; `; �): (2.15)

This variable represents the conditional expectation of the random return ~y
given the event of success. According to equation (2.1), the impact of ` and
� on the conditional distribution of ~y given the event of success is entirely
determined by their impact on �y: In particular, the conditional expectation
of the incentive payment ~w = w(~y) given the event of success is equal to
�w(�y) :=

R
w(��y)dF (�); which depends on ` and � only through the e¤ects

of ` and � on �y: The overall incentive problem can therefore be decomposed
into two subproblems:

� Taking �y as given, how can the entrepreneur be motivated to choose
the desired combination of ` and � to achieve �y?

� How can the entrepreneur be motivated to aim for the desired �y?

In the �rst of these subproblems, one has to take account of the fact
that a given �y can be achieved by a low-e¤ort/high-risk strategy, as well as
a high-e¤ort/low-risk strategy. Financiers would prefer the latter, but the
entrepreneur is unwilling to comply unless he is given proper incentives. This
requires that the di¤erence �w(�y)�w(0) between the conditional expectations
of payments in the event of success and in the event of failure must be
su¢ ciently large.
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Proceeding formally, let

D := f(�y; I; �) 2 R2+ � [0; 1]jf(I; `; �) � �y for some `g; (2.16)

and, for (�y; I; �) 2 D, let

�(�y; I; �) = minf` � 0jf(I; `; �) � �yg (2.17)

be the smallest e¤ort level that achieves the conditionally expected return
�y in the event of success. Further, for any �y; v; and I; de�ne

U�(�y; v; I) := sup
�2[0;1]

[�v � �(�y; I; �)] : (2.18)

Problem (2.5), with the constraints (2.6) and (2.7), can then be rewritten
as:

max
(�y;I;�)2D
w(�)2W

[� �w(�y) + (1� �)w(0)� �(�y; I; �)] (2.19)

subject to the constraints that

�(�y � �w(�y))� (1� �)w(0)� (I �A) � 0; (2.20)

�( �w(�y)� w(0))� �(�y; I; �) = U�(�y; �w(�y)� w(0); I); (2.21)

and
U�(�y; �w(�y)� w(0); I) � U�(�y0; �w(�y0)� w(0); I) (2.22)

for all �y0 such that (�y0; I; �) 2 D; in (2.19) - (2.22), �y = f(I; `; �); U�(�; �; �)
is de�ned by (2.18) and, for any �y0;

�w(�y0) :=

Z
w(��y0)dF (�): (2.23)

A solution to this problem will be referred to as an optimal contract.
In this formulation, the incentive constraint (2.7) has been decomposed

into two conditions: For the stipulated �y; I; and v = �w(�y)�w(0); the desired
� must achieve the supremum in (2.18), and the entrepreneur must consider
�y to be at least as attractive as any other return target �y0:
The new problem formulation makes the formal structure of the overall

incentive problem clearer. Except for incentive considerations, the �nanciers
do not care about the entrepreneur�s e¤ort at all. They care about the con-
ditional expectation �y of returns given the event of success, the investment
level I; and the success probability �: From their perspective, the problem
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is to motivate the entrepreneur to put in the e¤ort �(�y; I; �) that will, for
given I; produce the contractually stipulated pair (�y; �): In this problem,
the variables �y and � play very di¤erent roles. Neither variable is directly
observable. However, some information about �y is provided by the return
~y = ~��y in the event of success; when there is no noise, i.e., in the case ~� � 1;
�y is actually revealed by ~y: By contrast, the only observable variable that
provides information about the success probability � is the incidence of suc-
cess or failure as such. To meet the incentive constraint (2.21), therefore,
the incentive payment to the entrepreneur in the event of success must in-
volve a su¢ ciently high premium over the payment he receives in the event
of failure.

2.3 Basic Assumptions and Preliminary Lemmas

Throughout the analysis, I assume that the function f is continuous on
R2+ � [0; 1]; as well as twice continuously di¤erentiable on R2++ � (0; 1):
Moreover,

f(I; `; 1) = f(0; 0; �) = 0 (2.24)

for all I; `; �: On R2++ � (0; 1); f is strictly increasing in I and ` as well as
decreasing in �; i.e.,

fI(I; `; �) > 0, f`(I; `; �) > 0; f�(I; `; �) < 0: (2.25)

Further, f is assumed to be di¤erentiably strictly concave in I and `, concave
in �; and di¤erentiably strictly quasiconcave in ` and �:7

Finally, to eliminate the possibility of boundary solutions, I impose the
boundary conditions that

lim
I0#0

fI(I
0; `; �) =1; lim

`0#0
f`(I; `

0; �) =1 (2.26)

for all I > 0; ` > 0; and � 2 (0; 1); that, for some �0 and �0; one has

lim
I#0

f(I; �0I; �0)

I
=1 (2.27)

and that, for any sequence f(Ik; `k; �k)g with Ik + `k going out of bounds,
one has

lim
k!1

f(Ik; `k; �k)

Ik + `k
= 0: (2.28)

7The quali�er "di¤erentiably" means that the corresponding measures of curvature in
terms of second derivatives are nonzero. Thus, the Hessian of f with respect to I and ` is
assumed to be negative de�nite, and the �-`- isoquants of f are assumed to have strictly
positive Gaussian curvature.
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The following lemma uses these boundary conditions to show that, under
an optimal contract, the variables �y; I; `; and � do not take boundary values.8

The proof is given in the Appendix.

Lemma 2.1 Any optimal contract satis�es �y > 0; I > 0; ` > 0; � 2 (0; 1);
and

U�(�y; �w(�y)� w(0); I) = ��y � `� I +A > A: (2.29)

The following lemma provides a characterization of the e¤ort cost func-
tion � that was de�ned in (2.17) and (2.16) above.

Lemma 2.2 The e¤ort cost function � is continuous on its domain D. At
any point (�y; I; �) 2 D where �(�y; I; �) > 0; the e¤ort cost function is twice
continuously di¤erentiable, strictly increasing in �y; strictly decreasing in I;
and strictly increasing in �: The e¤ort cost function is also di¤erentiably
strictly convex in �y and I and di¤erentiably strictly convex in �:

Proof. Continuity of � follows from the maximum theorem. Di¤erentia-
bility at any point (�y; I; �) at which �(�y; I; �) > 0 follows from the implicit
function theorem. The derivatives are given as

��y(�y; I; �) =
1

f`(I; �(�y; I; �); �)
> 0; (2.30)

�I(�y; I; �) = �
fI(I; �(�y; I; �); �)

f`(I; �(�y; I; �); �)
< 0; (2.31)

and

��(�y; I; �) = �
f�(I; �(�y; I; �); �)

f`(I; �(�y; I; �); �)
> 0: (2.32)

Di¤erentiably strict convexity in �y and I; as well as di¤erentiably strict
convexity in � follow by routine calculations, e.g.,

���(�y; I; �) = �f`f�� + f`f�`�� � f�f`� � f�f``��
f2`

= �f
2
` f�� � 2f�f`f`� + f2�f``

f3`
;

8The reader should note that the lemma requires the "joint" Inada condition (2.27)
as well as the separate conditions in (2.26). For instance, the speci�cation f(I; `; �) =
X(�)c ln(1 + (I`)

1
2 ) satis�es (2.26), but, if c�X(�) �

p
8 for all �, one �nds that, for

A = 0; there is no contract with I > 0 that satis�es the �nanciers�participation constraint
as well as the entrepreneur�s incentive constraints. Yet, for this speci�cation, �rst-best
investment and e¤ort levels are strictly positive if c�X(�) > 2 for some �:
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which is positive by the assumption that f is di¤erentiably strictly quasi-
concave in ` and �:

Strict convexity of � in � implies that the entrepreneur�s objective func-
tion in (2.18) is strictly concave. The incentive constraint (2.21) can there-
fore be handled by a �rst-order approach. Formally, ��� > 0 implies:

Lemma 2.3 A contract (I; `; �; �y; w(�)) with (�y; I; �) 2 R2++ � (0; 1) satis-
�es the incentive constraint (2.21) if and only if it satis�es the �rst-order
condition

�w(�y)� w(0) = ��(�y; I; �); (2.33)

Because �nanciers have no direct control over the entrepreneur�s choice
of �; the only way to implement the stipulated � is to provide appropriate
monetary incentives through the premium �w(�y)�w(0) of the entrepreneur�s
expected return in the event of success over his return in the event of failure.

2.4 The Impossibility of Implementing First-Best

The need for such monetary incentives may collide with the �nanciers�desire
to recover the opportunity cost of their funds. For a given triple (�y; I; �); it
may not be possible to �nd a contract that implements (�y; I; �) and satis�es
the �nanciers�participation constraint. As an example, consider an outcome
(�y�; I�; ��) that maximizes the expected aggregate surplus ��y�I��(�y; I; �):9
Such a �rst-best outcome satis�es the �rst-order condition

�y� = ��(�y
�; I�; ��): (2.34)

Implementation of (�y�; I�; ��) through a contract satisfying the incentive
constraint (2.21) would therefore require that �w(�y�) � w(0) = �y�: The pre-
mium of the entrepreneur�s return in the event of success over his return in
the event of failure would then be equal to the entire return from the suc-
cess of his venture. If the entrepreneur�s own funds do not su¢ ce to �nance
the �rst-best investment I�; such an arrangement violates the �nanciers�
participation constraint. Thus, one obtains:

Proposition 2.4 A �rst-best outcome with I� > A cannot be implemented.

9Because I have not assumed that the product �f(I; `; �) is concave, there may be
more than one such triple.
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The logic behind this result is the same as the logic behind the results
of Jensen and Meckling (1976) that, if the entrepreneur has not enough
funds of his own, then, in a model of moral hazard with respect to e¤ort,
a �rst-best outcome cannot be reached by issuing equity to outsiders, and,
in a model of moral hazard with respect to risk-taking, a �rst-best outcome
cannot be reached by issuing debt to outsiders.10 By contrast to these
results, Proposition 2.4 makes no assumption about the form of the �nance
contract. In the pure e¤ort choice model of Jensen and Meckling, a �rst-
best outcome can be implemented by using debt �nance rather than equity
�nance. In the pure risk choice model of Jensen and Meckling, Keeton,
or Stiglitz and Weiss, a �rst-best outcome can be implemented by using
equity rather than debt �nance.11 In the combined e¤ort-and-risk choice
problem studied here, the implementability of a �rst-best outcome cannot be
reestablished by changing the class of incentive schemes that are considered.
The combined e¤ort-and-risk choice problem is thus more robust than either
the pure e¤ort choice problem or the pure risk choice problem alone.

3 Optimal Contracts in the Absence of Noise

3.1 Optimality Conditions for the Case ~� � 1
Lemma 2.3 implies that the incentive constraint (2.21) can be replaced by
equation (2.33). This equation can also be used to substitute for �w(�y) in the
objective function (2.19) and the �nanciers�participation constraint (2.20).
The contracting problem then takes the form

max
I�0;�2[0;1]
�y�0;w(�)

[���(�y; I; �) + w(0)� �(�y; I; �)] (3.1)

subject to the incentive constraints (2.33), (2.22), and (2.23) and the par-
ticipation constraint

�(�y � ��(�y; I; �))� w(0)� (I �A) � 0: (3.2)

In this section, I study this problem under the additional assumption
that ~� � 1. Under this assumption, the observed return ~y in the event of
10On the latter result, see also Stiglitz and Weiss (1981) and Bester and Hellwig (1987).
11As discussed by Bester and Hellwig (1987), the analysis of moral hazard with respect

to risk choices in Stiglitz and Weiss (1981) presumes that �nanciers cannot observe the
level of returns in the event of success; otherwise, equity �nance would solve the problem.
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success is equal to the target return �y; so (2.23) implies �w(y) = w(y) for
all y: By observing the entrepreneur�s return in the event of success, the
�nanciers obtain full information about the target that the entrepreneur
was aiming for. Therefore, a forcing device can be used to ensure that the
incentive compatibility condition (2.22) is satis�ed.

Lemma 3.1 If ~� � 1; any contract (I; `; �; �y; w(�)) that satis�es

w(y) = w(0) if y < �y; (3.3)

w(y) = w(0) + ��(�y; I; �) if y � �y; (3.4)

and
U�(�y; w(�y)� w(0); I) � 0; (3.5)

is incentive-compatible.

Proof. If ~� � 1; then, for any contract satisfying (2.23), equations (3.3)
and (3.4) imply

�w(y) = w(0) if y < �y (3.6)

and
�w(y) = w(0) + ��(�y; I; �) if y � �y: (3.7)

By Lemma 2.3, (3.7) implies that the incentive constraint (2.21) is satis�ed.
I next consider the incentive constraint (2.22). For �y0 < �y; (3.6) and the

speci�cation of U� imply

U�(�y0; �w(�y0)� w(0); I) = ��(�y0; I; 0) � 0: (3.8)

The inequality (2.22) follows from (3.8) and (3.5). For �y0 > �y; (3.7) and
(3.4) imply that

U�(�y0; �w(�y0)� w(0); I) = U�(�y0; w(�y)� w(0); I): (3.9)

Because, by inspection of (2.18) and Lemma 2.2, U� is nonincreasing in
output, the inequality (2.22) holds in this case as well.

Lemma 3.1 implies that, when ~� � 1; the constraints (2.33), (2.22), and
(2.23) are moot in the sense that, for given �y; I; �;and w(0); they are auto-
matically satis�ed if �w(�) = w(�) and w(�) satis�es (3.3) and (3.4). Because
the values of �w(�) and w(�) at y 6= 0 do not enter the entrepreneur�s ob-
jective function in (3.1) or the �nanciers�participation constraint (3.2), the
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contracting problem simpli�es to the problem of choosing scalars �y; I; �;and
w(0) so as to maximize the objective in (3.1) subject to (3.2).

The Lagrangian for this problem can be written as:

��y��(�y; I; �)� I +A+(�� 1)[�(�y���(�y; I; �))�w(0)� (I �A)]: (3.10)

The necessary �rst-order conditions can be written as:

� � ��y =
�� 1
�

(����y � ��y); (3.11)

��I � 1 =
�� 1
�

(���I � �I); (3.12)

�y � �� =
�� 1
�

����; (3.13)

and
�� 1 � 0; (3.14)

with equality if w(0) > 0; in (3.11) - (3.13), the terms ��y; ���y; etc. are
all evaluated at (�y; I; �): The left-hand sides of equations (3.11) - (3.13)
indicate the impact of the maximization variables on the aggregate surplus
��y � �� I: The right-hand sides re�ect the di¤erences between the impact
of maximization variables on the �nanciers� participation constraint and
on the aggregate surplus. These di¤erences are relevant because, from the
�nanciers�point of view, the e¤ort cost of the outcome (�y; I; �) corresponds
to the expected incentive payment ���(�y; I; �); rather than the actual cost
�(�y; I; �):

3.2 Excessive Risk Taking

If � = 1; equations (3.11) - (3.13) reduce to the �rst-order conditions maxi-
mizing the aggregate surplus ��y� �� I: By the argument used to esatblish
Proposition 2.4, this is only possible if A � I: If A < I; one must have � > 1
and w(0) = 0:

If � > 1; equation (3.13) implies that, at an optimal contract, the suc-
cess probability � is �xed at a value that is ine¢ ciently low in the sense
that a small increase in � would raise expected returns by more than the
entrepreneur�s e¤ort cost. The reason is that, with ��� > 0; an increase in
� necessarily raises the expected incentive payment ��� by more than the
actual e¤ort cost �: Given the convexity of the e¤ort cost function in �; this
observation yields:

16



Proposition 3.2 Assuming that ~� � 1; let (I; `; �; �y; w(�)) be an optimal
contract, and let �̂ = argmax�[��y � �(�y; I; �)� I]: If A < I; then

� < �̂ and ` < �(�y; I; �̂): (3.15)

Conditional on the other variables of the contract, an optimal contract
always involves excessive risk taking and too little e¤ort to reduce the prob-
ability of failure. The reason is that the tradeo¤ between the success prob-
ability � and the e¤ort �(�y; I; �) that is relevant for aggregate surplus is
more favourable than the tradeo¤ between the success probability � and the
requisite incentive payment ���(�y; I; �). To the extent that the participa-
tion constraint ��y � ���(�y; I; �) � I � A for the �nanciers is relevant, the
latter tradeo¤ plays a role and contributes to reducing both � and �(�y; I; �).
The result can be understood as an instance of the general principle that,
in the presence of agency costs, some deviation from �rst-best is desirable
because, at a �rst-best outcome, the e¢ ciency loss of such a deviation is
small relative to the savings in agency costs.12

All this is conditional on the other variables of the optimal contract.
To move beyond such a conditional assessment, I impose the additional
assumption that the return function f takes separable form

f(I; `; �) = X(�)g(I; `): (3.16)

For this speci�cation, I will show that, if the entrepreneur needs outside
funds, then the success probability � under an optimal contract is smaller
than the success probability in a �rst-best outcome.

I being with two lemmas showing that, for the separable speci�cation
(3.16), the �rst-best outcome is unique and that one must have � > 1 if the
entrepreneur�s own funds are less than the �rst-best investment level.

Lemma 3.3 If f takes the separable form (3.16), there is a unique �rst-best
outcome (�y�; I�; `�; ��): The �rst-best success probability �� is the unique
solution to the equation

X(��) + ��X 0(��) = 0: (3.17)

12This principle seems to have been �rst established in the Ramsey-Boiteux theory of
optimal indirect taxation and public-sector pricing, and, indeed, equations (3.11) - (3.13)
bear some semblance to optimal tax formulae. For early statements in the context of
agency models with hidden actions, see Holmström (1979) and Shavell (1979).
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Proof. For the separable speci�cation (3.16), any �rst-best outcome in-
volves a risk choice �� that maximizes [�X(�)g(I�; `�)� I� � `�] and there-
fore also �X(�): Under the given assumptions on f , the function X(�) in
the separable speci�cation (3.16) is decreasing and concave. The second
derivative of the product �X(�) with respect to �; �X 00 + 2X 0; is there-
fore negative, and the product �X(�) is strictly concave in �: The solu-
tion to the problem max�X(�) is unique and coincides with the unique
solution to equation (3.17). A �rst-best outcome also satis�es (�y�; I�) 2
argmax[���y��(�y; I; ��)� I +A]: By Lemma 2.2, the solution to this prob-
lem is unique.

Lemma 3.4 If f takes the separable form (3.16) and if A < I�; then, in the
�rst-order conditions for an optimal contract, one has � > 1 and w(0) = 0:

Proof. If f takes the form (3.16), (2.30) - (2.32) take the form

��y =
1

Xg`
; �I = �

gI
g`
; �� = �

X 0

X

g

g`
: (3.18)

Therefore, if � = 1; conditions (3.11) - (3.13) imply �X(�)g` = 1; gI = g`;

and X(�)g = �X0(�)g
X(�)g`

: The �rst and last of these conditions together yield
X = ��X 0(�): Then � must be a solution to equation (3.17). By Lemma
3.3, this implies � = ��: Given that � = ��; the strict concavity of g
implies that the conditions �X(�)g` = 1 and gI = g` have a unique solution;
moreover, for � = ��; this solution must coincide with the �rst-best input
pair (I�; `�): For f taking the form (3.16), � = 1 thus implies that the
outcome (�y; I; `; �) is equal to the unique �rst-best outcome (�y�; I�; `�; ��):
By Proposition 2.4, it follows that A � I�: Conversely, if A < I�; one cannot
have � = 1:

Given these lemmas, the following result translates the conditional as-
sessment of the second-best choice of � that is provided by Proposition 3.2
into a comparison of � with the �rst-best success probability ��.

Proposition 3.5 Assume that ~� � 1: If f takes the separable form (3.16)
and if A < I�; then, any optimal contract satis�es � < ��:

Proof. From (3.18), one computes

��� =
�XX 00 +X 02

X2

g

g`
+ ���y

��
��y
: (3.19)
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Condition (3.13) therefore takes the form:

Xg � �� =
�� 1
�

�

�
�XX 00 +X 02

X2

g

g`
+ ���y

��
��y

�
: (3.20)

If one multiplies (3.11) by ��=��y and subtracts the resulting equation from
(3.20), one obtains

�
X + �X 0� g = �� 1

�

�
�
(�XX 00 +X 02)

X2
+
(�X 0)

X

�
g

g`
: (3.21)

Because � > 1 and because, under the given assumptions on f , the function
X(�) is decreasing and concave, the right-hand side of (3.21) is positive.
Therefore, one has

X(�) + �X 0(�) > 0: (3.22)

Given the concavity of the function � ! �X(�) and the �rst-order condition
(3.17) for ��, (3.22) yields � < ��:

3.3 Investment and E¤ort Levels: The Cobb-Douglas Case

The conditions for �y and I; equations (3.11) and (3.12), are more di¢ cult to
disentangle. They do not involve any incentive considerations concerning the
variables �y and I as such. They re�ect the consideration that �y and I a¤ect
the di¤erence ����� between the expected incentive payment ��� and the
e¤ort cost �: If, at the margin, an increase in �y or I raises ��� � �; then, in
the optimal contract under consideration, the variable in question is �xed
at a value that is ine¢ ciently low in the sense that a small increase would
raise the aggregate surplus. If an increase in �y or I lowers the di¤erence
��� � �; the variable in question is �xed at a value that is ine¢ ciently high
in the sense that a small decrease would raise the aggregate surplus.

Which of these possibilities arises depends on the technology. I �rst
consider the Cobb-Douglas speci�cation

f(I; `; �) = X(�)g(I; `) = X(�)Ia`b; (3.23)

where X(�) is again decreasing and concave, a and b are positive, and a+b <
1: For this speci�cation, one has

�(�y; I; �) =

�
�y

X(�)Ia

� 1
b

(3.24)
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and

��y =
�

b�y
; �I = �

a�

bI
; �� =

(�X 0)

bX
�: (3.25)

The di¤erence between the expected incentive payment and the e¤ort cost
is given as

��� � � =
�
(��X 0)

bX
� 1

�
�; (3.26)

which, for given �; is just proportional to �: Conditions (3.11) and (3.12)
can therefore be rewritten as

� � ��y = K��y (3.27)

and
��I � 1 = K�I ; (3.28)

where

K :=
�� 1
�

�
(��X 0)

bX
� 1

�
: (3.29)

The wedges between the marginal bene�ts and and the marginal e¤ort
costs of increasing �y and I are proportional to each other and have the
same sign. The following result shows that these wedges are in fact positive.
Investment and e¤ort are below their surplus maximizing levels. They are
even below the levels Î(�) and ^̀(�) that maximize surplus when � is taken
as given.

Proposition 3.6 Assume that ~� � 1: If f takes the form (3.23) and if
A < I�; then, any optimal contract satis�es

I < Î(�) and ` < ^̀(�); (3.30)

where, for any �;

(Î(�); ^̀(�)) := argmax
(Î;^̀)

h
�X(�)Îa ^̀b � ^̀� Î

i
: (3.31)

Proof. By routine calculations, conditions (3.27) and (3.28) yield

�y = X(�)

�
(�X(�))a+baabb

1 +K

� 1
1�a�b

; (3.32)

I =

�
�X(�)a1�bbb

(1 +K)b

� 1
1�a�b

; (3.33)
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and

` = �(�y; I; �) =

�
�X(�)aab1�a

(1 +K)1�a

� 1
1�a�b

: (3.34)

By (3.26) and (3.29), one has

K =
�� 1
�

��� � �
�

: (3.35)

By Lemma 3.4, A < I� implies � > 1: By Lemma 2.1 and (2.18), ��� �� >
A � 0: The constant K is therefore positive, and equations (3.33) and (3.34)
yield

I <
h
�X(�)a1�bbb

i 1
1�a�b

(3.36)

and
` <

�
�X(�)aab1�a

� 1
1�a�b : (3.37)

These inequalities are equivalent to (3.30).

Because � < �� and �X(�) < ��X(��); the pair (Î(�); ^̀(�)) is strictly
smaller than the �rst-best pair (I�; `�): Trivially, therefore, Proposition 3.6
also implies I < I� and ` < `�:

Despite the apparent symmetry of results about investment and e¤ort,
Proposition 3.6 should be interpreted as an undere¤ort result rather than an
underinvestment result. Underinvestment arises only because there is too
little e¤ort and, in ths Cobb-Douglas speci�cation, the marginal return to
investment depends positively on `: Conditional on ` and �; the investment
level in an optimal contract for the Cobb-Douglas speci�cation is in fact
e¢ cient. By contrast, conditional on I and �; the e¤ort level is ine¢ ciently
low.

Proposition 3.7 Assume that ~� � 1: If f takes the form (3.23) and if
A < I�; then, any optimal contract satis�es

I = argmax
Î
[�X(�)Îa`b � `� Î] (3.38)

and
` < argmax

`
[�X(�)Ia ^̀b � ^̀� I]: (3.39)

Moreover
I

`
>
I�

`�
: (3.40)
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Proof. By standard calculations, one has

argmax
Î
[�X(�)Îa`b � `� Î] =

h
a�X(�)`b

i 1
1�a

:

Upon using (3.34) to substitute for ` and simplifying, one �nds that this is
equal to the right-hand side of (3.33). One also has

argmax
`
[�X(�)Ia ^̀b � ^̀� I] = [b�X(�)Ia]

1
1�b :

Upon using (3.33) to substitute for I and rearranging terms, using (3.34),
one obtains

argmax
`
[�X(�)Ia ^̀b�^̀�I] = (1+K)

1
1�b

�
�X(�)aab1�a

(1 +K)1�a

� 1
1�a�b

= (1+K)
1

1�b `;

which proves (3.39). For (3.40), it su¢ ces to note that (3.33) and (3.34)
imply

I

`
= (1 +K)

a

b
= (1 +K)

I�

`�
:

If one compares Propositions 3.6 and 3.7 with Propositions 3.5 and 3.2,
one sees that there are two distinct undere¤ort results, which correspond to
the two dimensions of returns to e¤ort, the success probability � and the
conditional return expectation �y: Propositions 3.5 and 3.2 assert that, at
an optimal contract, additional e¤ort devoted to raising � would raise ex-
pected surplus. Propositions 3.6 and 3.7 assert that, at an optimal contract,
additional e¤ort devoted to raising �y would raise expected surplus.

The underlying reasons for the two undere¤ort results are di¤erent. Both
are due to the fact that � is not observable and that an increase in e¤ort
to raise � or �y raises the requisite incentive payment ��� by more than
it raises �. However, for an increase in e¤ort devoted to raising �; this
wedge arises naturally from the convexity of the e¤ort cost function. For an
increase in e¤ort devoted to raising �y; the wedge arises from the particular
mathematical structure of the e¤ort cost function in the Cobb-Douglas case.
Because ��y = �

b�y , the inequality ���y� � ��y > 0 is directly implied by the
inequality ��� � � > 0:
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3.4 The Role of the Elasticity of Substitution

The Cobb-Douglas speci�cation (3.23) is very special. Therefore, it is of
interest to see which of the preceding results are robust to changes in the
speci�cation of the technology. For this purpose, I will consider the more
general separable homogeneous speci�cation

f(I; `; �) = X(�)g(I; `) = X(�) (I; `)� ; (3.41)

where  is linearly homogeneous and 0 < � < 1.13 I will be particularly
interested in the role of the elasticity of substitution between investment
and e¤ort, � =  ` I

  `I
: In the general case of (3.41), this elasticity depends on

the investment-e¤ort pair that is chosen. However, for the CES speci�cation

f(I; `; �) = X(�)[a1��I� + (1� a)1��`�]
�
� ; (3.42)

with � < 1; � 6= 0; and 0 < � < 1; it is an exogenous constant,

� =
1

1� �: (3.43)

In the Cobb-Douglas speci�cation (3.23), of course, the elasticity of substi-
tution is also constant and equal to one.

For the separable homogeneous speci�cation (3.41), (3.18) takes the form

��y =
1

�X ��1 `
; �I = �

 I
 `
; �� = �

X 0

�X

 

 `
: (3.44)

The di¤erence between the expected incentive payment ��� and the e¤ort
cost � is therefore computed as

��� � � =
�
r(�)

�

 

 `�
� 1

�
�; (3.45)

where

r(�) :=
��X 0(�)

X(�)
: (3.46)

Whereas, in the Cobb-Douglas case, the ratio  
 `�

is a constant and plays
no role in assessing the e¤ects of changes in �y or I on the di¤erence �����;
13As a special case of the yet more general homothetic speci�cation g(I; `) = h( (I; `));

the homogeneous speci�cation (3.41) involves a constant ratio h( )=h0( ) : As shown in
Hellwig (1994), the results presented here generalize to the case where h( )=h0( ) is
nondecreasing in  :
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in the general homogeneous case, the ratio  
 `�

depends on �y and I; as well
as �: Changes in �y or I a¤ect the di¤erence ��� � � through their e¤ects
on this ratio, as well as their e¤ects on �: The �rst-order conditions (3.11)
and (3.12) for �y and I now take the form:

� � ��y =
�� 1
�

�
��� � �

�
+
r(�)

�

 II

 ``

1� �
�

�
��y (3.47)

and

��I � 1 =
�� 1
�

�
��� � �

�
+
r(�)

�

 

 ``

1� �
�

�
�I : (3.48)

The �rst terms on the right-hand sides of (3.47) and (3.48) correspond to the
wedge K = ��1

�
�����
� in the Cobb-Douglas case; these terms re�ect the fact

that, for a given value of the ratio  
 `�
, the change in � that is induced by a

change in �y or I is accompanied by an even greater change in the incentive
payment ��. The other terms re�ect the e¤ects of changes in �y or I on the
ratio  

 `�
: At the margin, these e¤ects depend on whether the elasticity of

substitution between investment and e¤ort is greater or less than one. This
�nding can be understood by observing that  

 `�
is the inverse of the "share"

of e¤ort in the "output"  when the "inputs" ` and I are valued at their
marginal products.

Because of the e¤ects of �y and I on the ratio  
 `�

in (3.45), investment
in an optimal contract no longer exhibits the conditional-e¢ ciency property
of Proposition 3.7 when � 6= 1. Instead, one obtains:

Proposition 3.8 Assume that ~� � 1: If f takes the separable homogeneous
form (3.41) and if A < I�; then, any optimal contract satis�es

I S argmax
Î
[�X(�) (Î ; `)� � `� Î] as � T 1: (3.49)

Proof. Upon multiplying (3.47) by �I
��y
and subtracting the result from

(3.48), using the fact that, by homogeneity,  =  II +  ``; one obtains

���I
��y
� 1 = �� 1

�

r(�)

�

1� �
�

�I : (3.50)

By (3.44), it follows that

��X ��1 I � 1 = �
�� 1
�

r(�)

�

 I
 `

1� �
�

(3.51)
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and, hence, that
��X ��1 I T 1 as � T 1: (3.52)

The proposition follows immediately.

The left-hand side of equation (3.51) indicates the di¤erence between
the expected marginal product of an increase in I and the opportunity cost
of the requisite funds when ` and � are taken as given. The right-hand
side corresponds to the e¤ect of this increase on the ratio  

 `�
in (3.45).

If � > 1; an increase in I and �y, keeping ` and � constant, raises the
ratio  

 ``
= 1 +  II

 ``
; if � < 1; the increase in I lowers this ratio. At an

optimal contract, therefore, the expected return from a marginal increase
in I is strictly greater than the cost if � > 1 and less than the cost if
� < 1: Conditional on ` and �; investment under an optimal contract is
ine¢ ciently low if � > 1 and ine¢ ciently high if � < 1: The conditional
e¢ ciency of investment in the Cobb-Douglas case thus marks the boundary
between the cases � > 1 and � < 1:

The corresponding e¤ect in the �rst-order condition for the return target
�y works in the opposite direction. From (3.47), one �nds that

� � ��y
��y

T �� 1
�

��� � �
�

as � S 1: (3.53)

Whereas, in the Cobb-Douglas case, the wedge in the condition for �y was
given by K := ��1

�
�����
� ; in the more general speci�cation considered here,

the wedge is greater or less than K depending on whether the elasticity
of substitution is less than or greater than one. If � � 1; the conditional
undere¤ort result of Proposition 3.7 is thereby enhanced.

Proposition 3.9 Assume that ~� � 1: If f takes the separable homogeneous
form (3.41) and if A < I�; then, for any optimal contract, one has

` < argmax
^̀
[�X(�) (I; ^̀)� � ^̀� I] (3.54)

and
I

`
>
I�

`�
(3.55)

if � < 1:

Proof. By the same argument as in the proof of Proposition 3.6, one has
��1
�

�����
� > 0: By (3.47), it follows that � < 1 implies ����y

��y
> 0; hence, by
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(3.44), ��X(�) ��1 ` � 1 > 0; which yields (3.54). By (3.48), � < 1 also
implies ��I�1�I

> 0; hence  `
 I

> 1; which yields (3.55).

For � > 1; the di¤erent e¤ects work in opposite directions. If � is close
to one, the inequalities (3.54) and (3.55) will still be valid because the term
involving � � 1 is dominated. The following proposition shows that (3.55)
is reversed if � is a su¢ ciently large constant. The proof of this proposition
is given in the Appendix.

Proposition 3.10 Assume that ~� � 1: If f takes the separable CES form
(3.42) and if A < I�; then, for any optimal contract, one has

I

`
<
I�

`�
(3.56)

if � > max(2; 1�a):

Because of the e¤ects of � di¤ering from one, I do not have an analogue of
the separate �ndings of unconditional underinvestment and undere¤ort that
Proposition 3.6 provides for the Cobb-Douglas case. However, the following
result shows that the sum of investment and e¤ort and the resulting output
are smaller than they would be under surplus maximization.

Proposition 3.11 Assume that ~� � 1: If f takes the separable homogeneous
form (3.41) and if A < I�; then, any optimal contract satis�es

I + ` < Î(�) + ^̀(�) and  (I; `) <  (Î(�); ^̀(�)); (3.57)

where, for any �;

(Î(�); ^̀(�)) := argmax
(Î;^̀)

h
�X(�) (Î ; ^̀)� ^̀� Î

i
: (3.58)

Proof. By (3.44), (3.47) can be rewritten as

��X ��1 ` � 1 =
�� 1
�

�
��� � �

�
� r(�)

�

 II

 ``

� � 1
�

�
:

If one multiplies this equation by ` = �(�y; I; �) and equation (3.51) by I
and adds the results up, one obtains

��X (I; `)��1[ ``+  II]� I � ` = K`; (3.59)
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where again K := ��1
�

�����
� : and, by the same argument as in the proof of

Proposition 3.6, K > 0:14 By the linear homogeneity of  , it follows that

��X (I; `)� > I + `: (3.60)

The �rst-order conditions for Î(�) and ^̀(�) imply

��X (Î(�); ^̀(�))��1 ` = ��X (Î(�); ^̀(�))��1 I = 1;

hence

��X (Î(�); ^̀(�))��1[ ` ^̀(�) +  I Î(�)]� ^̀(�)� Î(�) = 0: (3.61)

By the linear homogeneity of  ; it follows that

��X (Î(�); ^̀(�))� = Î(�) + ^̀(�): (3.62)

From (3.60) and (3.62), one obtains

 (I; `)�

I + `
>
 (Î(�); ^̀(�))�

Î(�) + ^̀(�)
: (3.63)

One also has  (Î ; ^̀) = '(Î(�)+ ^̀(�)) and  (I; `) � '(I + `); where, for any
R; '(R) := maxI  (I;R� I): Thus, (3.63) implies

'(I + `)�

I + `
>
'(Î(�) + ^̀(�))�

Î(�) + ^̀(�)
: (3.64)

Given that  is linearly homogenous and 0 < � < 1, the function R !
'(R)� is strictly increasing and strictly concave. Therefore (3.64) implies
I + ` < Î(�) + ^̀(�) and '(I + `) < '(Î(�) + ^̀(�)): Since  (I; `) � '(I + `)
and  (Î ; ^̀) = '(Î(�) + ^̀(�)); the proposition is thereby proved.

By the same logic as in the Cobb-Douglas case, Proposition 3.11 also
implies that I + ` < I�+ `� and  (I; `) <  (I�; `�): Upon combining these
�ndings with Propositions 3.9 and 3.10, one also obtains:

Corollary 3.12 If � < 1; the optimal contract in Proposition 3.9 also
satis�es ` < ^̀(�) < `�: If f takes the separable CES form (3.42) and if
� > max(2; 1�a); the optimal contract satis�es I < Î(�) < I�:

14Note that the left-hand side of (3.59) is the derivative of the function � !
�X(�) (�I; �`)� � �I � �` at the point � = 1: A proportional increase in both, I and
`; would thus raise expected surplus.
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3.5 The Case of Nearly Perfect Substitutes

If e¤ort and investment are perfect substitutes, the investment-e¤ort mix is
a matter of indi¤erence. In this case, a �rst-best outcome can be achieved
without recourse to outside �nance, with entrepreneurial e¤ort substituting
for investment. A �rst-best outcome can also be achieved with outside
�nancing of investment su¢ cient to substitute for the entrepreneur�s e¤ort.
Both arrangements are incentive-compatible, the �rst one because there is
no outside �nance, the second one because the entrepreneur need not be
given any incentives.15

Given that a �rst-best outcome can be implemented when e¤ort and
investment are perfect substitutes, it seems plausible that payo¤s close to
�rst-best should be attainable when e¤ort and investment are imperfect
substitutes provided the elasticity of substitution is large. For the separa-
ble CES speci�cation (3.42), the following result shows that this intuition
is justi�ed. If the elasticity of substitution is large, an optimal contract
will be close to the contract with e¢ cient e¤ort and zero outside �nance
that is �rst-best when investment and e¤ort are perfect substitutes. By
contrast, optimal contracts are far from the contract with zero e¤ort and
e¢ cient investment that is �rst-best when investment and e¤ort are perfect
substitutes.

The CES speci�cation (3.42) is parametrized so that �rst-best outcomes
are independent of �:16 Regardless of �; �rst-best investment and e¤ort
levels are computed as17 I� = aC� and `� = (1� a)C�; where

C� = [���X(��)]
1

1�� : (3.65)

The corresponding surplus,

W � =
1� �
�

C�; (3.66)

is also independent of �: In the limiting case of perfect substitutes, with

f(I; `; �) = X(�)(I + `)� ; (3.67)
15By contrast, the argument underlying Proposition 2.4 can still be used to show that

one cannot implement �rst-best input combinations that involve outside �nance and a
positive e¤ort by the entrepreneur.
16The Cobb-Douglas speci�cation (3.23) does not conform to this requirement. For this

purpose, (3.23) would have to be replaced by the modi�ed Cobb-Douglas speci�cation
f = X(�)(I=a)a�(`=(1� a))(1�a)� :
17To see this, observe, �rst, that the �rst-order conditions for I� and `� imply I�

a
= `�

1�a ;
hence, I� = aC� and `� = (1 � a)C� for some C�: The value of C� is obtained by
maximizing ��X(��)C� � C with respect to C:
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a �rst-best outcome still satis�es I + ` = C� and yields the surplus W � =
1��
� C�: However, in this limiting case, any pair (I; `) with I + ` = C� is
�rst-best, in particular, also the pair (A;C� � A); which does not involve
any outside �nance.

Proposition 3.13 Assume that ~� � 1, let f take the separable CES form
(3.42) and suppose that A < I�. For any �; let (I(�); `(�); �(�); �y(�); w(�j�))
be an optimal contract when the exponent in � = ��1

� . As � goes out of
bounds, (I(�); `(�)) converges to (A;C� � A), �(�) converges to ��; and
�y(�) converges to X(��)C�� : The entrepreneur�s payo¤ from the optimal
contract converges to W � +A:

Proof. For � > 1; let (I0(�); `0(�); �0(�); �y0(�); w0(�j�)) be the optimal
contract with zero investment (and zero outside �nance). Thus, I0(�) = 0;
`0(�) = �(�y0(�); 0; �0(�)j�);

(�y0(�); �0(�)) 2 argmax
�y;�
[��y +A� �(�y; 0; �j�)]; (3.68)

and w0(yj�) = A+ y for all y: From (3.68), one obtains �0(�) = ��,

�y0(�) =
1

���

h
���X(��)(1� a)(1��)

�
�

i 1
1��

;

and

`0(�) =
h
���X(��)(1� a)(1��)

�
�

i 1
1��

: (3.69)

The surplus generated by the entrepreneur�s project is

W0(�) =
1� �
�

h
���X(��)(1� a)

(1��)�
�

i 1
1��

; (3.70)

and the corresponding payo¤ for the entrepreneur is W0(�) + A: As � goes

out of bounds and � = 1 � 1
� converges to one, the term (1 � a)

(1��)�
�

in (3.70) converges to one, and W0(�) converges to the �rst-best surplus
1��
� [���X(��)]

1
1�� =W �:

Let U��(�) be the entrepreneur�s expected payo¤ from an optimal con-
tract. Because, trivially, the contract (I0(�); `0(�); �0(�); �y0(�); w0(�j�)) is
incentive-compatible and satis�es the �nanciers� participation constraint,
U��(�) cannot be less than W0(�) + A: It also cannot be greater than the
�rst-best payo¤W �+A: Given thatW0(�) converges to the �rst-best surplus
W � when � becomes large, it follows that

lim
�!1

U��(�) =W � +A: (3.71)
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From (3.1) and the fact that an optimal contract satis�es the �nanciers�
participation constraint with equality, one has

U��(�) = �(�)�y(�)� I(�)� �(�y(�); I(�); �(�)) +A: (3.72)

Thus, (3.71) implies

lim
�!1

[�(�)�y(�)� I(�)� �(�y(�); I(�); �(�))] =W � (3.73)

From (3.73), it follows that, as � becomes large, �(�) converges to ��; I(�)+
`(�) converges to C�; and �y(�) converges to X(��)C�� :

It is now su¢ cient to show that I(�) converges to A: From the �nanciers�
participation constraint and Lemma 3.4, one has

I(�) = A+ �(�)�y(�)� �(�)��(�y(�); I(�); �(�)): (3.74)

By (3.44) and (3.46),

�(�)��(�y(�); I(�); �(�)) =
r(�(�))

�

 (I(�); `(�))

 `(I(�); `(�))

=
r(�(�))

�

a1��I(�)� + (1� a)1��`(�)�
(1� a)1��`(�)� `(�)

=
r(�(�))

�

�
a

1� a�(�)
� + 1

�
`(�)

=
r(�(�))

�

a
1�a�(�)

� + 1
a
1�a�(�) + 1

(I(�) + `(�)); (3.75)

where �(�) := (1�a)
a

I(�)
`(�) . As mentioned, the term I(�) + `(�) in (3.75)

converges to C� as � goes out of bound. The term r(�(�)) converges to
r(��); which, by (3.46) and Lemma 3.3, is equal to one. By Proposition
3.10, �(�) = `�

I�
I(�)
`(�) remains bounded between zero and one; therefore,

lim
�!1

1 + a
1�a�(�)

1� 1
�

1 + a
1�a�(�)

= 1:

Equation (3.75) thus yields

lim
�!1

�(�)��(�y(�); I(�); �(�)) =
1

�
C� =

1

�
[���X(��)]

1
1�� : (3.76)
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Because �(�) converges to �� and �y(�) converges to X(��)C��; one also has

lim
�!1

�(�)�y(�) = ��X(��)C�� = ��X(��) [���X(��)]
�

1�� =
1

�
[���X(��)]

1
1�� :

(3.77)
The terms �(�)�y(�) and �(�)��(�y(�); I(�); �(�)) in (3.74) thus converge to
the same limit, which proves that I(�) must converge to A:

Although the entrepreneur�s payo¤ converges to the �rst-best payo¤
when � goes out of bounds, the input pairs (I(�); `(�)) remain bounded
away from the �rst-best pair (aC�; (1 � a)C�). The following corollary to
Proposition 3.13 shows that, when � is large, an optimal contract actually
involves overe¤ort relative to `� and undere¤ort relative to the level that
would maximize expected surplus when I(�) and �(�) are taken as given.
The di¤erence re�ects the fact that I(�) is less than the �rst-best level I�.
When investment and e¤ort are close to perfect substitutes, this shortfall in
investment raises the level of e¤ort that would be required for surplus max-
imization. The contractually chosen e¤ort level takes account of this need
and is therefore greater than `�: However, conditional on I(�) and �(�); it
is still ine¢ ciently low.

Corollary 3.14 If � is su¢ ciently large, the optimal contracts in Proposi-
tion 3.13 satisfy

`� < `(�) < argmax
^̀
[�(�)X(�(�)) (I(�); ^̀)� � ^̀� I(�)]: (3.78)

Proof. The �rst inequality in (3.78) follows from the fact that `(�) con-
verges to C� � A > C� � I� = (1 � a)C� = `�: To establish the second
inequality in (3.78), I note that the �rst-order condition (3.47) for �y can be
rewritten as

�(�)

��y
� 1 = �� 1

�

�
r(�(�))

�
+
r(�(�))

�

1

�

 II

 ``
� 1

�
: (3.79)

Because �(�) converges to �� and, therefore, r(�(�)) converges to r(��) = 1
as � goes out of bounds, one has r(�(�)) > � if � is su¢ ciently large. The
right-hand side of (3.79) is then positive, and one has �(�)

��y
> 1; or

��(�)X(�) (I(�); `(�))��1 `(I(�); `(�)) > 1;

which yields the second inequality in (3.78)
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3.6 The Case of Nearly Perfect Complements

When investment and e¤ort are nearly perfect complements, outcomes under
optimal contracting are also close to being e¢ cient.

Proposition 3.15 Assume that ~� � 1, let f take the separable CES form
(3.42) and suppose that A < I�. For any �; let (I(�); `(�); �(�); �y(�); w(�j�))
be an optimal contract when the exponent is � = ��1

� . As � converges to
zero, (I(�); `(�)) converges to (I�; `�) = (aC�; (1 � a)C�), �(�) converges
to ��; and �y(�) converges to X(��)C��: The entrepreneur�s payo¤ from the
optimal contract converges to W � +A:

Proof. As in the proof of Proposition 3.13, let U��(�) be the entrepreneur�s
expected payo¤ from the contract (I(�); `(�); �(�); �y(�); w(�j�)) when the
elasticity of substitution between investment and e¤ort is �: I claim that,
for any " > 0 and any � su¢ ciently close to zero, one has U��(�) � Ŵ (")+A
where

Ŵ (") := max
C
[��X(��)C� � (1 + "a)C]: (3.80)

To establish this claim, let

Ĉ(") =

�
���X(��)

(1 + "a)

� 1
1��

:

be the maximizer in (3.80) and consider the contract (I"; `"; �"; �y"; w"(�j�;B))
with I" = (1 + ")aĈ("), `" = (1 � a)Ĉ("), �" = ��, �y" = X(��)Ĉ(")�; and
w"(yj�;B) = A + B for y < �y"; w"(yj�;B) = A + B + ��(�y"; I"; �

�) for
y � �y"; where B is a positive constant. By Lemma 3.1, this contract is
incentive-compatible. It provides the �nanciers with the expected payo¤

��X(��)Ĉ(")� � ����(�y"; I"; ��)� I" �B: (3.81)

By the same calculation as in (3.75), using the fact that r(��) = 1; expression
(3.81) can be rewritten as

��X(��)Ĉ(")� � 1

�

a1��I�" + (1� a)1��`�"
(1� a)1��`�"

`" � I" �B

= ��X(��)Ĉ(")� � 1

�

a(1 + ")� + (1� a)
(1� a) (1� a)Ĉ(")� (1 + ")aĈ(")�B

=
1

�
Ĉ(") [1 + "a� a(1 + ")� � (1� a)� �(1 + ")a]�B

=
1

�
Ĉ(")[a(1 + ")(1� �)� a(1 + ")�]�B:
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As � converges to zero and � = ��1
� converges to �1; (1+ ")� converges to

zero, and the �nanciers�expected payo¤s from the incentive-compatible con-
tracts (I"; `"; �"; �y"; w"(�j�;B)) converge to 1

� Ĉ(")a(1+ ")(1��)�B; which
is positive if B < 1

� Ĉ(")a(1 + ")(1 � �): For B satisfying this inequality,
therefore, the contract (I"; `"; �"; �y"; w"(�j�;B)) satis�es the �nanciers�par-
ticipation constraint with a strict inequality if � is su¢ ciently small. This
�nding in turn implies that, if � is su¢ ciently small, there exists B("; �) > 0
such that, for B = B("; �); the contract (I"; `"; �"; �y"; w"(�j�;B)) satis�es the
�nanciers�participation constraint with equality. Since B("; �) > 0; one has
w"(�j�;B("; �)) 2 W. For any su¢ ciently small �; therefore, the entrepre-
neur�s expected payo¤ U��(�) from an optimal contract cannot be less than
the payo¤ he gets from the contract (I"; `"; �"; �y"; w"(�j�;B)): Because the
�nanciers�participation constraint holds with equality, the entrepreneur ap-
propriates the entire surplus Ŵ ("); and his payo¤ is Ŵ (") + A: For any
" > 0; one therefore has Ŵ (") + A � U��(�) � W � + A for any su¢ ciently
small �:

By inspection of (3.80), Ŵ (") converges to the �rst-best surplus W �

when " goes to zero. Because Ŵ (") + A � U��(�) � W � + A for any
su¢ ciently small �; it follows that U��(�) converges to W � + A as � goes
to zero. One easily checks that this is only possible if (I(�); `(�)) converges
to (I�; `�) = (aC�; (1� a)C�), �(�) converges to ��; and �y(�) converges to
X(��)C�� as � goes to zero.

The logic behind this result can be understood by looking at the case of
perfect complements itself. For this purpose, consider the speci�cation

f(I; `; �) = X(�)min

"�
I

a

��
;

�
`

1� a

��#
; (3.82)

which yields the same �rst-best outcomes as the CES speci�cation (3.42),
namely, I� = aC�, `� = (1�a)C�; �y� = X(��)C��, with C� given by (3.65).
When f is given by (3.82), the e¤ort cost function � is given by

�(�y; I; �) = (1� a)
�

�y

X(�)

� 1
�

if
�
I

a

��
� �y

X(�)
: (3.83)

If
�
I
a

��
< �y

X(�) ; �(�y; I; �) is unde�ned because, for the given I and �; the
value of f cannot be raised to �y:

The �rst-best outcome lies on the boundary of the domain of the e¤ort
cost function. At this point, the e¤ort cost function has a left-hand partial
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derivative

��(�y
�; I�; ���) = 1

�

�
�X 0(��)

X(��)

�
�(�y�; I�; ��); (3.84)

but no right-hand derivative. For given �y = �y� and I = I�; setting � = ��

now maximizes the entrepreneur�s payo¤ � �w(�y�)+(1��)w(0)��(�y�; I�; �)
if and only if

�w(�y�)� w(0) � ��(�y
�; I�; ���): (3.85)

Thus, in the case of perfect complements, the incentive compatibility condi-
tion for the risk choice � is an inequality, rather than an equation. This in-
equality provides enough leeway to eliminate the con�ict between incentive
compatibility and �rst-best e¢ ciency that was the subject of Proposition
2.4.

To see this, consider an incentive scheme satisfying w(y) = A if y <
�y� and w(y) = A + �y� � I�

�� if y � �y�: This incentive scheme provides
�nanciers with the payment I�

�� if the entrepreneur�s project succeeds. They
are therefore happy to put up the requisite funds for the investment I�: I
claim that, in the absence of noise, with �w(�) = w(�); this incentive scheme
also satis�es the incentive compatibility condition (3.85). Because �y� =

X(��)C��, I� = aC�, and C� = [���X(��)]
1

1�� ; one computes

w(�y�)� w(0) =
1

��
[��X(��)C�� � aC�] = 1

��

�
1

�
� a

�
C�

=
1

��

�
1� a
�

+
1� �
�

a

�
C� =

1

��

�
1

�
`� +

1� �
�

I�
�
:(3.86)

Because `� = �(�y�; I�; ��) and, by the �rst-order condition for ��; one has
1
�� =

�X0(��)
X(��) ; (3.86) and (3.84) yield �w(�y�) � w(0) > ��(�y

�; I�; ���): The
incentive compatibility condition (3.85) holds with a strict inequality.

4 Does Noise Make a Di¤erence?

If the random variable ~� is nondegenerate, the observation of the realized
return in the event of success does not permit the �nanciers to determine
precisely whether ` and � have been chosen so as to provide for the stipulated
�y. The observation of ~y still provides some information about �y, but this
information is not perfect. The question is what di¤erence this noise in ~y
makes for optimal contracting.

The distribution of ~� determines the relation between the incentive scheme
w(�) and the conditional expectation �w(�y) of the incentive payment w(~y) =
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w(~��y) when the entrepreneur has chosen e¤ort and risk so that f(I; `; �) =
�y. This matters for the incentive compatibility condition that the entrepre-
neur should prefer the stipulated �y over any alternative �y0. If ~� � 1; one
has w(�y0) = �w(�y0); and a forcing contract ensures that this incentive condi-
tion is trivially satis�ed. If ~� is nondegenerate, a forcing device is no longer
available. The question then is whether another incentive scheme can serve
the same purpose.18

The question is illustrated in Figure 1. To implement a given outcome
(Î ; ^̀; �̂; ŷ); the excess �w(ŷ) � w(0) of the entrepreneur�s conditional payo¤
expectation in the event of success over his payo¤ in the event of failure
must take the value v̂ = ��(ŷ; Î ; �̂). The smooth curve v̂(�) in Figure 1
represents the entrepreneur�s indi¤erence curve through the point (ŷ; v̂), i.e.
the locus of all points (�y; �v) for which U�(�y; �v; Î) = U�(ŷ; v̂; Î): The question
is whether one can �nd an incentive scheme w(�) such that

�w(ŷ) =

Z
w(ŷ�)dF (�) = w(0) + v̂ (4.1)

18For a systematic discussion of this kind of problem, see Caillaud, Guesnerie and Rey
(1992) and the references given there. Because I require that w(y) � 0 for all y; I cannot
rely on their results.
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and

�w(�y) =

Z
w(�y�)dF (�) � w(0) + v̂(�y) (4.2)

for all �y 6= ŷ; so that, as shown in the �gure, the graph of the function
�v(�) := �w(�)�w(0) lies nowhere above the entrepreneur�s indi¤erence curve
through (ŷ; v̂) and touches it in (ŷ; v̂) itself. In the case ~� � 1, the answer
to this question is given by the thinly drawn step function in the �gure.
In the general case, the question is whether the smoothing that is induced
by noise leaves enough scope for adapting the slope and curvature of the
function �v(�) to the requirements of incentive compatibility. To investigate
this, I �rst consider the indi¤erence curve v̂(�):

Lemma 4.1 If f takes the separable form (3.16), the slope of the indi¤er-
ence curve v̂(�) is given by

dv̂

d�y
(�y) =

1

r(��(�y; v̂(�y); Î))

v̂(�y)

�y
; (4.3)

where, for any �y; �v; and I; ��(�y; �v; I) := argmax�[��v � �(�y; I; �)]:
If, in addition, the e¤ort cost function � satis�es

����y(�y; I; �)� ��y(�y; I; �) � 0 (4.4)

for all (�y; I; �) for which ����� > 0; the elasticity �y
v̂(�y)

dv̂
d�y (�y) of the entrepre-

neur�s indi¤erence curve through any point (ŷ; ��(ŷ; Î ; �̂)) with �̂��(ŷ; Î ; �̂)�
�(ŷ; Î ; �̂) > 0 is a nondecreasing function of �y:

Proof. For any �y and �v; (2.18) implies

U�(�y; �v; Î) = ��(�y; �v; Î)�v � �(�y; I; ��(�y; �v; Î)); (4.5)

where ��(�y; �v; Î) := argmax�[��v � �(�y; Î; �)]: The indi¤erence curve v̂(�) is
thus implicitly de�ned by the equation

��(�y; v̂(�y); Î)v̂(�y)� �(�y; Î; ��(�y; v̂(�y); Î)) = U�(ŷ; v̂; Î): (4.6)

By the implicit function theorem and the envelope theorem, therefore,

dv̂

d�y
(�y) = �

U��y (�y; v̂(�y); Î)

U�v (�y; v̂(�y); Î)
=
��y(�y; Î; ��(�y; v̂(�y); Î))

��(�y; v̂(�y); Î)
: (4.7)

For the separable speci�cation (3.16), with

��y =
1

Xg`
= � ��

X 0g
= �X

X 0
��
�y
;
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it follows that

dv̂

d�y
(�y) =

1

r(��(�y; v̂(�y); Î))

��(�y; Î; ��(�y; v̂(�y); Î))

�y
; (4.8)

where, as before, for any �; r(�) = ��X0(�)
X(�) : By Lemma 2.3, this yields (4.3).

From (4.5) and the �rst-order condition v̂(�y) = ��(�y; Î; ��(�y; v̂(�y); Î));
one computes

���� � � = U�(�y; v̂(�y); Î) = �̂��(ŷ; Î ; �̂)� �(ŷ; Î ; �̂) (4.9)

and
d

d�y
��(�y; v̂(�y); Î) = � �����y � ��y

�����
; (4.10)

where �� = ��(�y; v̂(�y); Î); and ��; �; ���y; ��y; and ��� are all evaluated at
(�y; I; ��): Under the premises of the second statement of the lemma, (4.9)
yields ���� � � > 0 and, therefore, �����y � ��y � 0: By (4.10), it fol-
lows that ��(�y; v̂(�y); Î) is nonincreasing in �y: Under the given monotonicity
and curvature assumptions on f , and, thereby, on X(�); the ratio r(�) =
��X0(�)
X(�) is everywhere increasing in �: Under the given assumptions, there-

fore, r(��(�y; v̂(�y); Î)) is nonincreasing in �y: The second statement of the
lemma follows from (4.3).

4.1 A Bothersome Result

Lemma 4.1 and Proposition 3.5 imply that, at �y = ŷ; the elasticity of the
indi¤erence curve v̂(�) is equal to 1

r(�̂) and is strictly greater than one. If

the distribution of the random variable ~� is very �at, so to say, "close to a
uniform distribution on R+", it may not be possible to bring the slope of �v(�)
at ŷ to this level of steepness. For such distributions, the elasticity of the
function �y ! �w(�y) = Ew(~��y) may be bounded, uniformly for all incentive
schemes w(�) 2 W: If the bound on the elasticity of �w(�) is too small, the
outcome (Î ; ^̀; �̂; ŷ) cannot be implemented by any incentive scheme.

Proposition 4.2 Assume that f takes the separable form (3.16) and that
A < I�: Let (Î ; ^̀; �̂; ŷ; ŵ(�)) be an optimal contract for the case ~� � 1: For
k > 1; let ��(k) = 2(k� 1)=k; and assume that the distribution of ~� takes the
form

F (�) =
k

k + 1

�
��(k)

if � � ��(k); (4.11)
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F (�) = 1� 1

k + 1

���(k)
�

�k
if � > ��(k): (4.12)

If k 2 (1; 1
r(�̂)); there exists no incentive scheme w(�) 2 W that implements

the outcome (Î ; ^̀; �̂; ŷ) and satis�es the �nanciers�participation constraint
when ~� has the distribution F that is given by (4.11) and (4.12).

Proof. Suppose that, for some k 2 (1; 1
r(�̂)); the outcome (Î ;

^̀; �̂; ŷ) is
implemented by an incentive scheme w(�) 2 W. As discussed in the text, let
v̂ = ŵ(ŷ)�ŵ(0) and let v̂(�) be the entrepreneur�s indi¤erence curve through
(ŷ; v̂): For �v(�) = �w(�) � w(0); the incentive compatibility conditions (2.21)
and (2.22) require that

�v(ŷ) = ��(ŷ; Î ; �̂) = v̂ (4.13)

and
dv̂

d�y
(ŷ) =

d�v

d�y
(ŷ): (4.14)

For the function �v(�); one computes

�v(�y) =

Z ��(k)

0
w(��y)

k

k + 1

�
��(k)

d� +

Z 1

��(k)
w(��y)

k

k + 1

��(k)k

�k+1
d� � w(0)

=

Z ��(k)�y

0
w(x)

k

k + 1

1
��(k)�y

dx+

Z 1

��(k)�y
w(x)

k

k + 1

��(k)k �yk

xk+1
dx� w(0)

Because the density of F is continuous and, for w(�) 2 W, w(x) � 0 for all
x; one obtains

d�v

d�y
(ŷ) = �

Z ��(k)ŷ

0
w(x)

k

k + 1

1
��(k)ŷ2

dx+

Z 1

��(k)ŷ
w(x)

k2

k + 1

��(k)k ŷk�1

xk+1
dx

� k

ŷ

Z 1

��(k)�y
w(x)

k

k + 1

��(k)k ŷk

xk+1
dx � k

[�v(ŷ) + w(0)]

ŷ

<
1

r(�̂)

[�v(ŷ) + w(0)]

ŷ
: (4.15)

Since, trivially, �̂ = ��(ŷ; v̂(ŷ); Î); (4.3) implies

dv̂

d�y
(ŷ) =

1

r(�̂)

v̂

ŷ
: (4.16)
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Upon combining (4.14), (4.15), and (4.16), one obtains w(0) > 0; hence,

�̂ŷ � �̂�v(ŷ)� w(0)� Î +A < �̂ŷ � �̂v̂ � Î +A: (4.17)

However, by Lemma 3.4, �̂ŷ � �̂v̂ � ŵ(0) � Î + A = �̂ŷ � �̂v̂ � Î + A = 0:
With w(0) > 0; therefore, the contract (Î ; ^̀; �̂; ŷ; w(�)) violates the �nanciers�
participation constraint.

4.2 A Reassuring Result

Distributions that satisfy (4.12) involve hazard rates that go to zero as �
goes out of bounds. They are thus quite special. Under more standard as-
sumptions about the distribution of ~�; the problem discussed in Proposition
4.2 cannot arise. For a large class of cases, the presence of noise does not
a¤ect the outcome that can be reached under optimal contracting.

Proposition 4.3 Assume that f takes the separable form (3.16) and that
the e¤ort cost function � satis�es

����y(�y; I; �)� ��y(�y; I; �) � 0 (4.18)

for all (�y; I; �) satisfying ��� � � > 0: Let (Î ; ^̀; �̂; ŷ; ŵ(�)) be an optimal
contract for the case ~� � 1: If the distribution F has a compact support or
if F satis�es

lim
�!1

E[~�j~� � �]

�
= 1; (4.19)

there exist constants � < 1 and R > 0 such that, for w(�) given by

w(y) = (1� �)max(y �R; 0); (4.20)

the contract (Î ; ^̀; �̂; ŷ; w(�)) is an optimal contract when ~� has the distribu-
tion F: The constants R and � satisfy the equations

E[~�j~� � R=ŷ]

E[~�j~� � R=ŷ]�R=ŷ
=

1

r(�̂)
(4.21)

and

1� � = 1

r(�̂)

v̂

ŷ

1R1
R=ŷ �dF (�)

: (4.22)
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Before turning to the proof of this proposition, I make two remarks on
its scope. First, if f takes the separable homogeneous form (3.41), the
additional assumption that is imposed in Proposition 4.3 is automatically
satis�ed if the elasticity of substitution between investment and e¤ort is
everywhere less than or equal to one. In this case,

����y � ��y =
�
��� � �

�
+
r(�)

�

 II

 ``

1� �
�

�
��y;

and one has ����y���y � 0 if ����� > 0 and � � 1: I do not know whether
the conclusion of Proposition 4.3 might also hold if � were greater than one.

Second, if the distribution of ~� has a density ', then, by l�Hospital�s rule,
condition (4.19) is equivalent to the condition that lim�!1

�'(�)
1�F (�) =1: This

is necessarily satis�ed if the hazard rate '
1�F is bounded away from zero.

The argument for Proposition 4.3 is illustrated in Figure 2, which uses
a logarithmic scaling for both �y and �v. With this double-logarithmic scal-
ing, i.e., in ln �y-ln �v-space, rather than �y-�v-space, Lemma 4.1 implies that
the slope of the entrepreneur�s indi¤erence curve in ln �y-ln �v-space is given
by the elasticity �y

v̂(�y)
dv̂
d�y (�y): Under the additional assumptions on f and �;

this elasticity is nondecreasing in �y; the entrepreneur�s indi¤erence curve
in ln �y-ln �v-space is convex and lies nowhere below a supporting tangent.
In particular, the entrepreneur�s indi¤erence curve in ln �y-ln �v-space lies
nowhere below the straight line with slope 1

r(�̂) that goes through the point

(ŷ; v̂) = (ŷ; ��(ŷ; Î ; �̂)): To prove the proposition, it is therefore su¢ cient
to �nd an incentive scheme w(�) 2 W so that, as shown in the �gure, pair
(ln �y; ln �v(�y)) that is given by the induced �v(�) = �w(�) � w(0) touches the
straight line with slope 1

r(�̂) that goes through (ŷ; v̂) in the point (ŷ; v̂) itself
and lies nowhere above it. The following lemma, whose proof is given in
the Appendix, gives an additional condition on the distribution of ~� under
which this is possible.

Lemma 4.4 Let � > 1 and suppose that the distribution F has a compact
support or that

E[~�j~� � �]

�
< � (4.23)

for any su¢ ciently large �: Then, for any (ŷ; v̂) � (0; 0); there exist con-
stants R > 0 and � < 1 such that, for the incentive scheme w(�) given by
(4.20), the induced functions �v(�) and �w(�) satisfy

�v(ŷ) = �w(ŷ) = v̂ (4.24)
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and, for all �y > 0;

ln �v(�y) = ln �w(�y) � ln v̂ + �(ln �y � ln ŷ): (4.25)

The constants R and � satisfy

E[~�j~� � R=ŷ]

E[~�j~� � R=ŷ]�R=ŷ
= � (4.26)

and

1� � = v̂

ŷ

�R1
R=ŷ �dF (�)

: (4.27)

Proof of Proposition 4.3. If the distribution F has a compact support
or if F satis�es condition (4.19), then, for � = 1

r(�̂) ; the premise of Lemma
4.4 is satis�ed. For the incentive scheme w(�) that this lemma yields for the
given ŷ; v̂ = ��(ŷ; Î ; �̂); and � = 1

r(�̂) ; and for the induced �v(�) = �w(�)�w(0);
one obtains �v(ŷ) = v̂ and

ln �v(�y) � ln v̂ + 1

ln   , ln 

ln
ln    (exp ln y) ln   (exp ln y)

ln y

FIGURE 2

v �v

�v
�v v

�v

r(π̂)
(ln ȳ − ln ŷ) (4.28)
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curve v̂(�) through (ŷ; ��(ŷ; Î ; �̂)) is a nondecreasing function of �y; and one
has

ln v̂(�y) � ln v̂ + 1

r(�̂)
(ln �y � ln ŷ) (4.29)

for all �y > 0: From (4.28) and (4.29), one obtains v̂(�y) � �v(�y); hence,
U�(ŷ; v̂; Î) = U�(�y; v̂(�y); Î) � U�(�y; �v(�y); Î) for all �y > 0: The contract
(Î ; ^̀; �̂; ŷ; w(�)) thus satis�es the incentive constraint (2.22) as well as the
other constraints of the contracting problem. Given that this contract pro-
vides the entrepreneur with the same payo¤ as the contract (Î ; ^̀; �̂; ŷ; ŵ(�))
that is optimal when the constraint (2.22) is not imposed, it follows that
(Î ; ^̀; �̂; ŷ; w(�)) is optimal when ~� has the distribution F and the constraint
(2.22) has to be taken into account.

For an incentive scheme of the form (4.20), one computes

�w(�y) = (1� �)
Z 1

R=�y
(��y �R)dF (�) (4.30)

and

�y

�w(�y)

d �w

d�y
(�y) =

R1
R=�y ��ydF (�)R1

R=�y(��y �R)dF (�)
=

E[~�j~� � R=�y]

E[~�j~� � R=�y]�R=�y
: (4.31)

Condition (4.26) thus �xes R so that the elasticity of �w(�) at ŷ is equal
to the stipulated �; this corresponds to the requirement that, in the point
(ln ŷ; ln v̂) in Figure 2, the straight line with slope � = 1

r(�̂) is tangent to the
graph of the function relating ln �w to ln �y. Given R; condition (4.22) �xes
� so that �w(ŷ) reaches the stipulated v̂:

The additional assumption about the distribution of ~� ensures that equa-

tion (4.21) actually has a solution; if E[
~�j~���]
� converges to one as � becomes

large, one can make the elasticity (4.31) as large as one wants simply by
choosing R to be su¢ ciently large. By contrast, for the distributions consid-

ered in Proposition 4.2, in the preceding subsection, one has E[~�j~���]
� = k

k�1
for � � ��(k) so that the left-hand side of (4.21) is bounded above by k; for
� > k; therefore, this equation has no solution. For these distributions, the
requirement that the entrepreneur should be willing to choose the stipulated
ŷ over any �y 6= ŷ can only be satis�ed if 1

r(�̂) � k: If the e¤ort cost function

satis�es the additional premises of Proposition 4.3, the inequality 1
r(�̂) � k

is also su¢ cient to ensure that the requirement that the entrepreneur should
be willing to choose the stipulated ŷ over any �y 6= ŷ can be satis�ed. The
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presence of noise with such a distribution imposes the additional constraint
that �̂ � r�1( 1k ); i.e. that failure risk should not be "too great".

If the distribution of ~� is such that, as � becomes large, the ratio E[~�j~���]
�

decreases monotonically to a constant C > 1; then, for an e¤ort cost function
with the stipulated properties, the requirement that the entrepreneur should
be willing to choose the stipulated ŷ over any �y 6= ŷ can be satis�ed if and
only if �̂ > r�1(C�1C ). This condition de�nes an open set. Therefore, it may
well be that, for noise having such a probability distribution, the contracting
problem has a supremum, but not a maximum.

5 Does the Jensen-MecklingModel Provide a The-
ory of Debt and Equity Finance?

To conclude the paper, I discuss the interpretation of the model as a model
of debt and equity �nance. Throughout the analysis, I have studied the
model as a model of outside �nance supported by a suitable incentive scheme
w(�): I could have assumed that the incentive scheme must correspond to
the residual claims that are left after debt and equity as the instruments
of outside �nance have been served. However, such an assumption would
hardly be deemed to provide a proper basis for an "explanation" of the issue
of debt and equity instruments as an incentive device.

For the case ~� = 1; I have relied on forcing contracts, under which the
�nanciers get the realization y of the �rm�s return if this is less than the
stipulated �y; and they get the di¤erence y � �y if y is greater than �y. This
arrangement could be interpreted as a wage contract with a wage payment
conditioned on reaching the target �y; it cannot be interpreted as the result
of some mix of debt and equity �nance.

However, these forcing contracts are vulnerable to the introduction of
noise. For the case of nondegenerate ~�; the contracts that were stipulated in
Proposition 4.3 look as if they could be interpreted as the result of debt and
equity �nance. Under these contracts, the entrepreneur receives nothing if
the return realization y is less than R; and he receives a constant multiple
(1� �) of any excess of y over R: The parameter R is positive and may be
interpreted as a debt service obligation. The multiple (1� �) looks like the
share that is retained when outside �nanciers hold a fraction � of the �rm�s
equity.

The positivity of the parameter R is a corollary of the result that an
optimal contract involves excessive risk taking. This parameter is a solution
to equation (4.21). Because �̂ < �� and, therefore, r(�̂) < r(��) = 1; the
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right-hand side of this equation is greater than one. At R < 0; the left-
hand side of equation (4.21) is less than one, at R = 0; it is equal to one.
Any solution to equation (4.21) must therefore satisfy R > 0: There is thus
a direct link between the desirability of excessive risk taking in a second-
best contract and the observation of Jensen and Meckling that debt �nance
provides a way of reducing entrepreneur�s share �w(�y)

�y of (conditionally) ex-

pected returns without reducing the slope d �w
d�y and thereby weakening e¤ort

incentives.
The "share" parameter is more di¢ cult to interpret. After substituting

for v̂ = ��(ŷ; Î ; �̂); one can use (3.18) to rewrite (4.22) in the form

1� � = ��y(ŷ; Î ; �̂)

�̂

1R1
R=ŷ �dF (�)

: (5.32)

The �rst-order condition (3.11) indicates that, under the assumptions of
Proposition 4.3, one has �̂ > ��y(ŷ; Î ; �̂): Equation (5.32) therefore implies
that � is positive if

R1
R=ŷ �dF (�) is close to one and negative if

R1
R=ŷ �dF (�)

is close to zero. The following results show that, depending on the data of
the model, both possibilities can actually arise.

Proposition 5.5 If the distribution of the random variables ~� is such that,
for some " 2 (0; r(�̂));

F (1� ") < 1

1� " min(r(�̂)� "; 1�
��y(ŷ; Î ; �̂)

�̂
); (5.33)

and, moreover, the ratio E[~�j~� � �]=� is a nonincreasing function of �; then
the parameter � in Proposition 4.3 is positive, and the incentive scheme
w(�) that is given by (4.20) can be interpreted as the result of giving outside
�nanciers a debt service obligation R > 0 and equity amounting to a share
� in the �rm.

Proof. By de�nition, E[~�j~� � 1� "] � 1
1�F (1�") : By (5.33), it follows that

E[~�j~� � 1� "] � 1� "
1� "� r(�̂) + " =

1� "
1� r(�̂) :

By the monotonicity assumption on E[~�j~� � �]=�; it follows that E[~�j~� �
�] � �

1�r(�̂) for all � � 1� ": Hence,

E[~�j~� � �]=�

E[~�j~� � �]=�� 1
=

E[~�j~� � �]

E[~�j~� � �]� �
>

1
1�r(�̂)
1

1�r(�̂) � 1
=

1

r(�̂)
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for all � � 1�": Equation (4.21) therefore implies that R=ŷ < 1�": Because
the unconditional mean of ~� is equal to one, one also hasZ 1

R=ŷ
�dF (�) � 1� F (R=ŷ) > 1� F (1� "):

By (5.33), it follows thatZ 1

R=ŷ
�dF (�) � ��y(ŷ; Î ; �̂)

�̂

and, therefore, that the right-hand side of (5.32) is less than one. Thus,
� > 0:

Proposition 5.6 If the distribution of the random variables ~� is such that,
for some " 2 (0; 1�r(�̂)); F (1�r(�̂))�F (") is close to one19, and, moreover,
the ratio E[~�j~� � �]=� is a nonincreasing function of �; then the parameter
� in Proposition 4.3 is negative, and the incentive scheme w(�) that is given
by (4.20) cannot be interpreted as the result of issuing a suitable mix of debt
and equity to outside �nanciers.

Proof. I �rst claim that, under the assumptions of the proposition, one
must have R

ŷ > 1� r(�̂): To establish this claim, I begin by noting that, on
the support of the distribution F; the conditional expectation E[~�j~� � �] is
strictly increasing in �: Thus, F (1�r(�̂)) > 0 implies E[~�j~� � 1�r(�̂)] > 1:
By the monotonicity assumption on the ratio E[~�j~� � �]=�; it follows that,
for all � � 1� r(�̂); one has

E[~�j~� � �]

�
>

1

1� r(�̂) ;

and, therefore, that R = �ŷ cannot be a solution to equation (4.21).
Given that R

ŷ > 1� r(�̂); equation (5.32) implies

1� � > ��y(ŷ; Î ; �̂)

�̂

1R1
1�r(�̂) �dF (�)

:

19Using Chebyshev�s inequality, one easily veri�es that this is the case whenever the
variance of ~� is close to zero.
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To prove the proposition, it therefore su¢ ces to show that, under the given
assumptions,

R1
1�r(�̂) �dF (�) is close to zero. By the monotonicity assump-

tion on E[~�j~� � �]=�; one hasZ 1

1�r(�̂)
�dF (�) � (1� r(�̂))(1� F (1� r(�̂)))E[

~�j~� � "]

"

� 1� r(�̂)
"

1� F (1� r(�̂))
1� F (")

� 1� r(�̂)
"

�
1� F (1� r(�̂))� F (")

1� F (")

�
� 1� r(�̂)

"
[1� (F (1� r(�̂))� F ("))]:

Hence, if (F (1� r(�̂))�F (")) is close to one,
R1
1�r(�̂) �dF (�) is close to zero.

To understand these results, it is useful to rewrite equation (5.32) as

(1� �)
"Z 1

R=ŷ
�dF (�)

#
�̂ = ��y(ŷ; Î ; �̂); (5.34)

or

(1� �)
"Z 1

R=ŷ
�dF (�)

#
�̂X(�̂)g`(Î ; ^̀) = 1: (5.35)

These conditions are just the �rst-order conditions for the entrepreneur�s
choice of �y with e¤ort cost �(�y; Î; �̂) or, equivalently, the entrepreneur�s
choice of ` when �y = f(Î ; `; �̂): The entrepreneur�s share 1� � in the �rm�s
equity appears as an incentive device supporting the stipulated �y = ŷ and
` = �(ŷ; Î ; �̂): In �xing this share, attention must be paid to the fact that
the entrepreneur�s incentives to work for an increase in �y are blunted if the
bene�ts of the increase do not accrue entirely to "equity holders". With R >

0; the "bankruptcy portion"
R R=ŷ
0 �dF (�) of the total e¤ect

R 1
0 �dF (�) = 1 of

a unit increase in �y accrues to "creditors" rather than "equity holders". To
compensate for this e¤ect, the entrepreneur�s "equity share" 1� � must be
adjusted upwards. The amount of adjustment depends on the distribution
of ~�: If the "default probability" is small, not much of an adjustment is
needed, and, with �̂ > ��y(ŷ; Î ; �̂); one has � 2 (0; 1): In this case, the
interpretation of Proposition 4.3 as a result about debt and equity �nance
is unproblematic.
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By contrast, if
R1
R=ŷ �dF (�) is close to zero, the entrepreneur�s "equity

share" 1 � � under the optimal contract in Proposition 4.3 must be very
large. Thus, 1 � � must eventually exceed 100%, at which point the �-
nanciers would have to "hold" negative equity. Alternatively, one could
think of an arrangement under which the �nanciers hold 100% of the equity
and the entrepreneur has a call option to buy an equity share 1� � at the
exercise price R per unit. Under this arrangement, if

R1
R=ŷ �dF (�) is close to

zero, the �nanciers�obligation under the call option held by the entrepre-
neur is strictly greater than the 100% equity that they hold. Under either
arrangement, from a traditional �nance perspective, the optimal contract in
Proposition 4.3 seems somewhat outlandish.

One may object that, for
R1
R=ŷ �dF (�) close to zero, the contract in Propo-

sition 4.3 cannot be taken seriously because the analysis has not taken
account of possible limitations on the �nanciers� ability or willingness to
provide the entrepreneur with a return w(~y) above the �rm return ~y: This
objection is valid and important, but it is somewhat besides the point un-
der discussion here. By imposing the additional constraint that w(y) � y
for all y; one rules out incentive schemes of the form (4.20) with � < 0;
but one does not eliminate the desire to raise the sensitivity of w(y) to an
increase in y in order to compensate for the blunting of incentives that is
due to the noise. The analysis of Innes (1990) or Dionne and Viala (1992)
suggests that such considerations should lead to contracts with discontinu-
ous incentive schemes of the form w(y) = 0 for y < y� and w(y) = y for
y � y�; for some y�; the jump at y� making an extra contribution to the
slope of the function �w(�): This would seem to lead us even farther from the
world of traditional �nance contracts and into the world of abstract incentive
schemes.

Innes (1990) proposes to eliminate this e¤ect by imposing the additional
requirement that y � w(y) must be nondecreasing in y. I suspect that in
the context of Proposition 5.6, as in Innes�s own analysis, this constraint
would lead to the optimality of pure debt �nance, i.e. an incentive scheme
of the form (4.20) with � = 0; inducing a lower �y and a higher �: How-
ever, the monotonicity requirement on y �w(y) is problematic. To support
this requirement, Innes invokes a free-disposal option for �nanciers or, al-
ternatively, an option that the entrepreneur has of faking a higher return
realization by borrowing the shortfall from a third party, thereby winning
a yet higher increase in his own payo¤, part of which serves to repay the
amount borrowed. Both these arguments are moot if returns are observable
and veri�able.

Doubts about the relation between incentive contracting and �nancial
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packaging must run even deeper. Even the rather comforting conclusion
of Proposition 5.5 is due to a certain arbitrariness of optimal incentive
schemes rather than any substantive virtues of piecewise linearity of in-
centive schemes, let alone debt and equity instruments. Using the same
arguments as in the proof of Proposition 4.3, one can in fact show that the
conclusion of that proposition remains true if the piecewise linear scheme
(4.20) is replaced by a piecewise quadratic scheme of the form

w(y) = (1� �)max[y �R� �(y �R)2; 0]; (5.36)

where � is an arbitrary small positive number. The reason is that, when
all parties are risk neutral, the precise form of the incentive scheme does
not matter provided that, in expected-value terms, it provides the requisite
payo¤s and incentives.20

20Along the lines of Innes�s arguments, the reader may object that, for y�R 2 [ 1
2�
; 1
�
];

the scheme (5.36) decreasing in y; which is not incentive-compatible if the entrepreneur can
freely destroy output. The argument is valid, but hardly matters if noise is small enough
so that the return realization ~�ŷ does not actually reach the region of nonmonotonicity.
If, instead, the range of ~� is all of R+, the basic point remains valid if (5.36) is modi�ed
so that, for y � R+ 1

2�
, w(y) remains constant at (1� �) 1

4�
:
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A Appendix

Proof of Lemma 2.1. I �rst show that an optimal contract satis�es
��y > 0: For this purpose, it su¢ ces to show that there exists a contract that
dominates the best available contract with ��y = 0: Trivially, the entrepre-
neur�s expected payo¤ from the best available contract with ��y = 0 is equal
to A; the amount he can earn by investing his initial holdings in the market.
I will show that, under the given assumptions on f; there exists a contract
that provides him a payo¤ greater than A:

It su¢ ces to consider contracts that involve simple sharing rules w�(�),
where, for any y,

w�(y) = A+ (1� �)y: (A.1)

Under such a sharing rule, expected payo¤s are

A+ (1� �)�f(I; `; �)� ` (A.2)

for the entrepreneur and
��f(I; `; �)� I (A.3)

for the �nanciers. For any � 2 (0; 1) and I � 0; let  (�; I) be the set of
pairs (`; �) that maximize the entrepreneur�s expected payo¤ (A.2), and let
(`(�; I); �(�; I)) 2  (�; I). Then the contract C(�; I); which stipulates the
return target �y(�; I) = f(I; `(�; I); �(�; I)); the investment level I; then
entrepreneur�s choice (`(�; I); �(�; I)) and the incentive scheme w�(�); is
incentive-compatible.

By construction, the entrepreneur�s payo¤ from this contract satis�es

A+ (1� �)�f(I; `; �)� ` � A+ (1� �)�0f(I; �0I; �0)� �0I

� A+ I

�
(1� �)�0

f(I; �0I; �0)

I
� �0

�
;(A.4)

where �0; �0 are as given in the Inada conditions. By equation (2.27) in the
text, it follows that the entrepreneur�s payo¤ from the contract C(�; I) is
strictly greater than A if I is su¢ ciently close to zero.

By the same logic, the �nanciers�payo¤ from the contract C(�; I) satis-
�es

��f(I; `; �)� I � �

1� � [(1� �)�f(I; `; �)� `]� I

� �

1� � [(1� �)�0f(I; �0I; �0)� �0I]� I

= I

�
��0

f(I; �0I; �0)

I
� �

1� ��0 � 1
�
: (A.5)
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By equation (2.27) in the text, the right-hand side of (A.5) is strictly positive
if I is su¢ ciently close to zero.

For � 2 (0; 1) and I > 0 su¢ ciently close to zero, the contract C(�; I)
thus satis�es the �nanciers�participation constraint, as well as being incentive-
compatible and providing the entrepreneur with a payo¤ greater than A:
Therefore, an optimal contract must provide the entrepreneur with a payo¤
greater than A: Therefore, an optimal contract satis�es ��y > 0: Trivially,
this implies �y > 0 and � > 0: By (2.24), one must also have � < 1:

By (2.24), one must also have I > 0 or ` > 0: It remains to be shown
that both these inequalities hold. Suppose �rst that I = 0: Then one must
have w(�) = w0(�); ` = `(0; 0) > 0; and � = �(0; 0) > 0: The entrepreneur�s
expected payo¤ must be

A+ �(0; 0)�y(0; 0)� `(0; 0) > A: (A.6)

The optimality of the contract implies

�(0; 0)�y(0; 0)� `(0; 0) � (1� �)�(�; I)�y(�; I)� `(�; I) (A.7)

for all �; I for which
��(�; I)�y(�; I) � I: (A.8)

Because, for any � and I; the pair (`(�; I); �(�; I)) maximizes (A.2), it
is easy to see that the map (�; I) ! �(�; I)�y(�; I) is nonincreasing in �
and nondecreasing in I: Suppose that, for any � and I; (`(�; I); �(�; I)) is
actually chosen so that the product �(�; I)f(I; `(�; I); �(�; I)) is minimal in
 (�; I). Then, by the maximum theorem, the function � ! �(�; 0)�y(�; 0)
is continuous from the right. In particular, for any " > 0; there exists � > 0
such that, for � 2 [0; �); one has

�(�; 0)�y(�; 0) � 1

1 + "
�(0; 0)�y(0; 0): (A.9)

By the monotonicity of �(�; I)�y(�; I) in I; � 2 [0; �) also implies

�(�; I)�y(�; I) � 1

1 + "
�(0; 0)�y(0; 0) (A.10)

for all I: The �nanciers�participation constraint (A.8) is therefore satis�ed
whenever I is su¢ ciently small so that, for

� =
(1 + ")I

�(0; 0)�y(0; 0)
; (A.11)
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ane has � � �: For such � and I; revealed preference implies

(1� �)�(�; I)�y(�; I)� `(�; I) � (1� �)�(0; 0)f(I; `(0; 0); �(0; 0))� `(0; 0):

By the mean value theorem, it follows that, for some I 0 2 [0; I]; one has

(1� �)�(�; I)�y(�; I)� `(�; I) � �(0; 0)�y(0; 0)� `(0; 0) (A.12)

+�(0; 0)fI(I
0; `(0; 0); �(0; 0))I

���(0; 0)f(I; `(0; 0); �(0; 0)):

By (A.11), the last two terms on the right-hand side can be rewritten as

I

�
�(0; 0)fI(I

0; `(0; 0); �(0; 0))� (1 + ")f(I; `(0; 0); �(0; 0))
f(0; `(0; 0); �(0; 0))

�
:

By the Inada condition (2.26) for fI , this expression is strictly positive if I
and, therefore, I 0 are close to zero. Therefore, (A.12) implies

(1� �)�(�; I)�y(�; I)� `(�; I) > �(0; 0)�y(0; 0)� `(0; 0) (A.13)

if I is close to zero. The assumption that I = 0 has thus led to a contradic-
tion and must be false.

Finally, suppose that ` = 0: Because of the Inada condition (2.26) for
f`; incentive compatibility implies that �w(�y) = w(0). The incentive scheme
may therefore be taken to be constant. Given the �nanciers�participation
constraint, it follows that w(y) = A+ ��y� I; regardless of y: The entrepre-
neur�s expected payo¤ from the optimal contract is also equal to A+��y� I
By the argument given above, this must be greater than A; i.e. one must
have I < ��y:

Consider the contract C(�; I) that is given by the sharing rule w�(�);
with � = I

��y ; and the investment I: Because I < ��y; one has � < 1: By the
monotonicity of the map �! �(�; I)�y(�; I); the �nanciers�payo¤ from the
contract C(�; I) satis�es

��(�; I)�y(�; I)� I � ���y � I = 0;

which shows that their participation constraint is satis�ed. Because of the
Inada condition (2.26) for f`; � < 1 also implies that the pair (`(�; I); �(�; I))
is strictly better for the entrepreneur than the pair (0; �): Therefore, his pay-
o¤ from the contract C(�; I) satis�es

A+ (1� �)�(�; I)�y(�; I)� `(�; I) > A+ (1� �)��y: (A.14)
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By construction, the right-hand side is equal to A + ��y � I: The entrepre-
neur�s payo¤ from the contract C(�; I) is thus strictly greater than his payo¤
from the optimal contract. The assumption that ` = 0 has thus led to a
contradiction and must be false.

Proof of Proposition 3.10. Using (3.44) and (3.45), one can rewrite
(3.48) as

�1 +  `
 I

=
�� 1
�

�
1

�

r(�)

�

 

 ``
� 1

�
=

�� 1
�

�
1

�

r(�)

�

�
1 +

 II

 ``

�
� 1

�
: (A.15)

If  is given as
 (I; `) = [a1��I� + (1� a)1��`�]

1
� ; (A.16)

one has
 `
 I

=

�
(1� a)I
a`

�1��
: (A.17)

The �rst-order conditions for I� and `� imply  `(I
�; `�) =  I(I

�; `�): For
the CES speci�cation (A.16), one therefore has

I�

`�
=

a

1� a: (A.18)

It is convenient to introduce new variable

� :=
I

`

`�

I�
=
(1� a)I
a`

; (A.19)

so that (A.17) becomes  `
 I
= �1��; and (A.15) can be rewritten as

�1�� � 1 = �� 1
�

�
1

�

r(�)

�

�
1 +

a

1� a�
�

�
� 1
�
: (A.20)

The proposition is equivalent to the claim that any solution to this equation
must satisfy � < 1 if � = 1

1�� is su¢ ciently large.
To prove this claim, I �rst observe that, for � = 0; the left-hand side

of this equation is �1 and the right-hand side is greater than ���1
� > �1;

i.e., the left-hand side is smaller than the right-hand side. For � = 1; the
left-hand side is equal to zero. As for the right-hand side, Proposition 3.5
and (3.46) imply that r(�) < 1: For � = 1; the right-hand side of (A.20) is
therefore equal to ��1

� times a factor that is less than 1
��(1�a) � 1; which is
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negative if � > 1
�(1�a) : For � >

1
�(1�a) ; therefore, the left-hand side of (A.20)

is greater than the right-hand side. Equation (A.20) then has a solution that
lies between zero and one.

If � > 2 or, equivalently, � > 1
2 ; the solution is in fact unique. To see

this, it su¢ ces to note that the di¤erence between the left-hand side and the
right-hand side of (A.20) has a derivative with respect to � that is equal to

(1��)������ 1
�

1

�

r(�)

�

a

1� a��
��1 = (1��)���

�
1� �� 1

�

r(�)

�

a

1� a��
2��1

�
:

If � > 1
2 ; the term in brackets is decreasing in �, i.e., if this term is negative

for some �; it must also be negative for all �0 > �: Given that the di¤erence
between the left-hand side and the right-hand side of (A.20) is positive for
� = 0 and zero at a solution to (A.20), it follows that this di¤erence must
be decreasing and therefore be negative at all higher values of �: It follows
that, for � > 2; the solution to (A.20) is unique. If, in addition, � > 1

�a ; the
solution satis�es � < 1; which is just (3.56).

Proof of Lemma 4.4. Given the distribution F; de�ne a left-continuous
and nondecreasing function �̂F (�) by setting

�̂F (�) = E[~�j~� � �] if F (�) < 1 (A.21)

and
�̂F (�) = � if F (�) = 1: (A.22)

If the support of F is compact or if F satis�es condition (4.23), then for the
given � > 1; one has

�̂F (�)

�
< � (A.23)

for any su¢ ciently large �. I further de�ne a function �(�) by setting

�(z) = �z �
Z z

0

�̂F (e
t)

�̂F (et)� et
dt: (A.24)

By construction, F (ez) < 1 implies that, for t � z; �̂F (e
t) � et is bounded

away from zero. Therefore, �(z) is well de�ned.
I claim that the function �(�) has a global maximum at some z� satisfying

�̂F (e
z�)

�̂F (ez
�)� ez�

= �: (A.25)
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To establish this claim, I �rst show that, at any z < ln(1 � 1
� ); the

function �(�) is strictly increasing. For this purpose, I note that, by the
assumption that E~� = 1; one has �̂F (0) =

R1
0 �dF (�) = 1: Because the

function �̂F (�) is nondecreasing, it follows that �̂F (et) � 1 for all t. For
z < ln(1� 1

� ); it follows that

�0(z) = � � �̂F (e
z)

�̂F (ez)� ez
� � � 1

1� ez > 0:

(If �̂F (�) is discontinuous at ez; the inequality still holds for the one-sided
derivatives of �(�):)

I next note that, by (A.23), there exists �z such that, for all z > �z; one
has

�̂F (e
z)

�̂F (ez)� ez
=

�̂F (e
z)

ez

�̂F (ez)
ez � 1

>
�

� � 1 > �

and, therefore,

�0(z) = � � �̂F (e
z)

�̂F (ez)� ez
< 0:

Thus, at any z > �z, the function �(�) is nonincreasing.
Because the function �(�) is obviously continuous on its domain, the re-

striction of this function to the compact interval [ln(1�1
� ); �z] has a maximum,

say at z� 2 [ln(1� 1
� ); �z]. Because �(�) is increasing at any z < ln(1�

1
� ) and

nonincreasing at any z > �z; z� is in fact a global maximizer of �(�): Thus,
one has Z z�

z

�̂F (e
t)

�̂F (et)� et
dt � �(z� � z) (A.26)

for all z 2 R:
Upon taking limits in (A.26) as z converges to z� from below, using the

left-contunity of the function �̂F (�), one has

�̂F (e
z�)

�̂F (ez
�)� ez�

= lim
t"z�

�̂F (e
t)

�̂F (et)� et
� �: (A.27)

Similarly, taking limits in (A.26) as z converges to z� from above, one obtains

lim
z#z�

sup
t2(z�;z)

�̂F (e
t)

�̂F (et)� et
� �: (A.28)
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Because �̂F (�) is nondecreasing, one also has

�̂F (e
z�)

�̂F (ez
�)� ez�

� lim
z#z�

sup
t2(z�;z)

�̂F (e
t)

�̂F (et)� et
: (A.29)

From (A.27) - (A.29), one obtains (A.25).
From (A.25), one also obtains �̂F (ez

�
) > ez

�
and F (ez

��) < 1: Therefore,
one can de�ne

R = ŷez
�

(A.30)

and

� = 1� v̂

ŷ

1�
�̂F (ez

�)� ez�
�
(1� F (ez��))

: (A.31)

For the incentive scheme w(�) that is de�ned by w(y) = (1��)max(y�R; 0);
one obtains

�w(�y) =

Z 1

0
(1� �)max(��y �R; 0)dF (�)

=
v̂

ŷ

R1
R=�y�(��y �R)dF (�)R1
ez��(� � ez

�)dF (�)
= v̂

R1
R=�y�(��y �R)dF (�)R1
R=ŷ�(�ŷ �R)dF (�)

:

Clearly, �w(ŷ) = v̂: Moreover,

d �w

d�y
(�y) = v̂

R1
R=�y� �dF (�)R1

R=ŷ�(�ŷ �R)dF (�)
=
�w(�y)

�y

R1
R=�y� �dF (�)R1

R=�y�(� �
R
�y )dF (�)

=
�w(�y)

�y

�̂F (
R
�y )

�̂F (
R
�y )�

R
�y

=
�w(�y)

�y

�̂F (e
z�+ln ŷ�ln �y)

�̂F (ez
�+ln ŷ�ln �y)� ez�+ln ŷ�ln �y

:

For the function s! 
(s) := ln �w(es); one therefore �nds

d


ds
=

es

�w(es)

d �w

d�y
(es) =

�̂F (e
z�+ln ŷ�s)

�̂F (ez
�+ln ŷ�s)� ez�+ln ŷ�s

and


(ln �y)� 
(ln ŷ) =

Z ln �y

ln ŷ

�̂F (e
z�+ln ŷ�s)

�̂F (ez
�+ln ŷ�s)� ez�+ln ŷ�s

ds

=

Z z�

z�+ln ŷ�ln �y

�̂F (e
t)

�̂F (et)� et
dt;
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the last equation following by the change of variables t = z� + ln ŷ � s: By
(A.26), it follows that

ln �w(�y)� ln �w(ŷ) = 
(ln �y)� 
(ln ŷ) � �(ln �y � ln ŷ)

for all �y:
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