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Abstract

This paper combines the problem of optimal income taxation with
the free-rider problem in public good provision. There are two groups
of individuals with private information on their earning ability and
their valuation of a public good. Adjustments of the transfer system
are needed to discourage the more productive from exaggerating the
desirability of public good provision. Similarly, the less productive
need to be prevented from understating their valuation. Relative to
an optimal income tax, which focuses solely on earning ability, income
transfers are increased whenever a public good is installed and are de-
creased otherwise.

Keywords: Income Taxation, Public Good Provision, Revelation of
Preferences, Two-dimensional Heterogeneity.

JEL: D71, D82, H21, H41

1 Introduction

This paper combines the problem of optimal income taxation with the free-
rider problem in public good provision. An optimal income tax is based on
the utilitarian desire to redistribute resources in favor of the less able. An
optimal solution of the free-rider problem has the property that a public
good is installed if and only if the aggregate valuation in the economy is

∗I am very grateful for numerous discussions with and encouragement from Martin
Hellwig. I also benefited a lot from comments of Christoph Engel, Thomas Gaube, Hendrik
Hakenes, Marco Sahm and Ingolf Schwarz. I thank participants of the ENTER Jamboree
2004 in Barcelona, the conference in tribute to J.-J. Laffont in Toulouse, 2005, as well as
seminar participants at the universities of Mannheim, Cologne and Munich.
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sufficiently high. The present paper studies the interaction between these
problems. It arises because expenditures on public goods and on income
transfers are linked through a public sector budget constraint. That is, they
compete for the same funds. Consequently, an individual’s view on the de-
sirability of public good provision will depend on the way he is treated by
the transfer system.
To illustrate this, consider a “welfare state”, which allocates a lot of re-
sources to a transfer system. Obviously, the beneficiaries of this system are
individuals with a rather low level of income. Suppose that the magnitude
of the transfer system depends on the level of public good provision. That
is, whenever tax revenues are used for a public good, there are less funds
left for transfers. Now consider asking a person with a high income about
her views on using public money for a certain project, say a highway or an
opera building. As she has a high income and does not receive transfers, she
will be inclined to exaggerate when asked about the desirability of public
good provision. Likewise, an individual with a low level of income tends
to understate the desirability of public good provision because he fears a
reduction of income transfers.
The difficulty in finding an optimal mechanism for both redistribution and
public good provision is that there are two incentive problems simultane-
ously. The first one is familiar from the theory of optimal income taxation
and is due to the fact that individuals have private information on their
earning abilities. This imposes incentive constraints on redistribution which
give rise to what is known as the equity-efficiency tradeoff.1 The second
problem is the classical free-rider problem, which arises because individuals
have private information on their valuation of a non-excludable public good.
The main insight from the joint analysis of these two incentive problems is
that the equity-efficiency tradeoff and the free-rider problem interact in a
systematic fashion. More able individuals can have an excessive desire for
public good provision, which they value as an instrument to limit the extent
of redistribution. Likewise, less able individuals may tend to understate the
desirability of provision in order to avoid a cut of transfers. Hence, a deci-
sion on provision that reflects the “true” aggregate valuation of the public
good necessitates an adjustment of the transfer system that corrects these
biases. This requires a complementarity between the level of redistribution
and the decision on public good provision, relative to an equity-efficiency
tradeoff without a free-rider problem: To prevent the more productive class
from exaggerating, public good provision has to be accompanied by an in-
creased level of redistribution. Similarly, the less productive are prevented
from understating their valuation of the public good by a reduced level of
redistribution if there is no public good provision.

1This literature starts with Mirrlees (1971). See Hellwig (2005) for a recent treatment.
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The model that is used to arrive at these results combines a screening prob-
lem with a problem of information aggregation and involves two dimensions
of individual heterogeneity, earning abilities as well as preferences for the
public good. More precisely, the following assumptions are made. Individu-
als either have a low or a high level of earning ability.2 Likewise, valuations
of the public good are either high or low. Moreover, public goods pref-
erences are assumed to be perfectly correlated with earning ability. That
is, all individuals with the same level of earning ability also have the same
valuation of the public good. With this specific information structure, the
screening problem is to identify which individual has been assigned which
level of earning ability. The problem of information aggregation is the elic-
itation of the public goods preferences of high and low ability individuals,
respectively.3

As is standard in the literature on optimal income taxation, the present
paper assumes that there is a continuum of agents. While this assumption
has a variety of convenient implications, it creates a difficulty when trying
to discuss problems of information aggregation under incentive constraints.
One might argue that, in a large economy, free-rider problems do not arise
as a single individual has no impact on public good provision and hence no
reason to hide his true valuation. However, the present paper takes a differ-
ent view, based on the observation that, in a continuum economy, collective
behavior of individuals has an impact on the perceived aggregate valuation
of the public good. Indeed as will be shown below, allocation rules based on
income tax schedules are vulnerable to coordinated manipulations by large
groups of agents. The notion of a collectively incentive compatible income
tax is introduced to deal with this issue. It specifies collective incentive con-
ditions that ensure that information aggregation may proceed even under
the threat of manipulative collective behavior.4

The remainder of the paper is organized as follows. Section 2 defines the en-
vironment. As a benchmark, Section 3 derives the optimal income taxation
without a free-rider problem. Section 4 contains the definition of a collec-
tively incentive compatible income tax. In section 5 the optimal collectively
incentive compatible income tax is characterized. The last section contains
concluding remarks. All proofs can be found in the appendix.

2This two-class economy is a special case that has received some attention in the
literature on optimal taxation. See e.g. Mirrlees (1975), Stiglitz (1982, 1987), Boadway
and Keen (1993), Nava et al. (1996) or Gaube (2005).

3Consequently, the screening problem is based on only one dimension of individual het-
erogeneity. There cannot be a discrimination between individuals with the same earning
ability but different public goods preferences, as in Hellwig (2004). This author however
assumes that there is no problem of information aggregation.

4This solution concept has been inspired by the literature on mechanism design prob-
lems under a threat of collusion among agents, most notably Bernheim and Whinston
(1986), Laffont and Martimort (1997, 1999) and Demange and Guesnerie (2001).
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2 The environment

The economy consists of a continuum of individuals j ∈ I := [0, 1]. An
individual has a pair of characteristics (wj , θj), where wj is a productivity
parameter and θj is a taste parameter for a public good. wj and θj are taken
to be the realizations of the binary random variables w̃j and θ̃j, respectively.
The possible values w1, w2 of w̃j and θL, θH of θ̃j are taken to be the same
for all j. Without loss of generality, w1 < w2 and θL < θH .
The random variables w̃j , j ∈ I, are assumed to satisfy a Law of Large
Numbers for large economies:5 while each individual has probability 1/2 for
a high or a low productivity realization, this uncertainty about productiv-
ity parameters disappears in the aggregate. Ex post, after the realization
of individual uncertainty, there are equal shares of more and less produc-
tive individuals in the population. For brevity, I refer to those individuals,
who end up with the low productivity parameter w1, as class 1 individuals.
Likewise, the individuals with productivity parameter w2 are called class 2
individuals.
The random variables θ̃j, j ∈ I, are assumed to be perfectly correlated
among all individuals with the same productivity parameter, i.e. ex post
all individuals of class t, t ∈ {1, 2}, have the same taste parameter. Let θt

be the common value of the taste parameter θ̃j for all individuals j with
w̃j = wt.
The taste parameters θ1 and θ2 are the realizations of random variables
θ̃1 and θ̃2. The economy as a whole is subject to uncertainty about these
random variables. There are four possibilities, or states, denoted by sLL ,
sLH ,sHL and sHH , where, e.g. sLL indicates that θ̃1 = θL and θ̃2 = θL.
Analogously, sLH indicates that θ̃1 = θL and θ̃2 = θH , etc. The set of states
is written as S = {sLL, sLH , sHL, sHH}.
All individuals of type t have the same utility function, which takes the form

Ut = θtQ + u(C) − v
(

Y

wt

)

. (1)

C denotes consumption of private goods and Y = Lwt denotes effective la-
bor or income. That is, wt can be interpreted as a wage rate and L denotes
hours worked to generate income Y . Obviously, to achieve a given income
Y individuals with a lower wage have to work more. Q ∈ {0, 1} stands
for a public project, which is either installed or not. The functions u and
v are strictly increasing and twice continuously differentiable. Moreover,
u is concave and v is convex. In addition, those functions satisfy the fol-
lowing boundary condition, which ensures interior solutions to optimization
problems: for all wt and all C > 0, there exists Y > 0, such that

u′(C) −
1

wt

v′
(

Y

wt

)

= 0 .

5For a formal discussion, see Judd (1985) or Al-Najjar (2004).
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Finally, note that preferences satisfy the single crossing condition with re-
spect to the productivity parameter. Accordingly, at any point in the Y-C
plane, the indifference curve of a less productive individual is steeper.

Information Structures

Throughout the analysis, I assume that the parameter values w1, w2, θL and
θH are common knowledge. In contrast, the assignment of any one individual
to the more or less productive class is that individual’s private information.
This privacy of information gives rise to assignment uncertainty.
Further, I distinguish between two model specifications according to whether
the realizations of θ̃1 and θ̃2 are common knowledge. The model has pure
assignment uncertainty if these realizations, and hence the state of the world
s ∈ S, are commonly known. The model exhibits private information on
taste parameters if only individuals of class t observe wether θ̃t = θL or θ̃t =
θH . In the latter case, in addition to the uncertainty regarding individuals’
class assignments, there is aggregate uncertainty with respect to unknown
class characteristics.

Anonymous Allocations and Income Tax Mechanisms

The analysis of admissible allocations is treated as a problem of mechanism
design. Attention is restricted to the class of anonymous allocation mecha-
nisms which are individually incentive compatible and feasible. In particular,
this class of allocation mechanisms is flexible enough to deal with both in-
formation structures.
An anonymous allocation mechanism specifies for each state s ∈ S a pub-
lic good provision level Q(s) and for each characteristic in (w, θ) ∈ Γ :=
{w1, w2} × {θL, θH} a consumption level C(w, θ, s) and an output require-
ment Y (w, θ, s). An anonymous allocation mechanism is individually incen-
tive compatible (I-IC) if ∀s ∈ S, ∀(w, θ) ∈ Γ and ∀(ŵ, θ̂) ∈ Γ,

u(C(w, θ, s)) − v
(

Y (w, θ, s)

w

)

≥ u(C(ŵ, θ̂, s)) − v

(

Y (ŵ, θ̂, s)

w

)

.

An anonymous allocation mechanism is feasible if ∀s ∈ S, ∀(w, θ) ∈ Γr(s),

Y (w1, θ1, s) − C(w1, θ1, s) + Y (w2, θ2, s) − C(w2, θ2, s) ≥ kQ(s) ,

where k denotes the cost of public good provision and Γr(s) the set of individ-
ual characteristics supported in state s, e.g. Γr(sLH) = {(w1, θL), (w2, θH)}.
Some explanatory remarks are in order. The I-IC constraints specify incen-
tives on the individual level. As the economy is large, those constraints are
stated for a given state s. This reflects the fact that, in a large economy,
no single individual is able to influence the state of the world as perceived
by the mechanism designer. In particular, no individual has a noticeable
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impact on public good provision.
If the information structure exhibits private information on taste parame-
ters, then the tax setting institution has to deduce the actual state from
individual reports. That is, the mechanism designer receives from each in-
dividual a statement which consists of an announced earning ability level
and an announced taste parameter. An evaluation of all individual reports
makes it possible to observe whether the less (more) able individuals have
a low or a high taste parameter. The fact that s can not be taken as given
explains why the message set in the revelation game equals Γ. However, if
the analysis is concerned with pure assignment uncertainty, the message set
Γr(s) is sufficient.6

The I-IC conditions require that truth-telling constitutes an equilibrium in
weakly dominant strategies.7 That is, truth-telling has to be a best-response
from an individual’s perspective, irrespective of the announcements of oth-
ers and irrespective of the actual state of the world. However, the I-IC
conditions specify individual incentives only in response to message profiles
that indicate a feasible state of the economy. A complete description of the
revelation game also requires a specification of what happens if this distrib-
ution is incompatible with what is commonly known about the set S. These
out-off-equilibrium payoffs have to preserve the incentive structure, i.e. they
have to be such that truth-telling is a weakly dominant strategy. This is, for
instance, achieved by choosing Q = 0 and a degenerate consumption-income
menu that contains only one C-Y -combination.
The final remark clarifies why the set of anonymous, feasible and I-IC allo-
cation mechanisms is of relevance for an analysis of income tax systems. To
this end, call an anonymous allocation mechanism an income tax mechanism
if there exists a function T : R+ × S → R such that ∀(w, θ) ∈ Γ,∀s ∈ S:

i) C(w, θ, s) = Y (w, θ, s) − T (Y (w, θ, s), s)

ii) Y (w, θ, s) ∈ argmaxY u(Y − T (Y, s)) − v
(

Y

w

)

.

and, moreover, such that ∀s ∈ S and (w1, θ1), (w2, θ2) ∈ Γr(s),

T (Y (w1, θ1, s)) + T (Y (w2, θ2, s)) ≥ kQ(s) .

As has been shown by Hammond (1979) and Guesnerie (1995), the set of
income tax mechanisms can be equivalently analyzed via the set of I-IC and
feasible allocation mechanisms. Formally, one has the following result: An
anonymous allocation mechanism is I-IC and feasible if and only if it is an
income tax mechanism.

6The revelation principle implies that any further element of the message set would be
superfluous.

7The advantage of implementation in dominant strategies – relative to other solution
concepts – is that individual behavior neither depends on a common prior assumption nor
on a specific form of strategic reasoning in case of multiple equilibria.
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The following lemma provides an alternative characterization of income tax
mechanisms which proves helpful in subsequent sections.

Lemma 1 An anonymous allocation mechanism is an income tax mecha-
nism if and only if it is feasible and possesses the following properties:

i) No discrimination of taste in terms of utility (NDT-U): ∀s ∈ S, ∀w ∈
{w1, w2}, ∀θ ∈ {θL, θH} and ∀θ′ ∈ {θL, θH},

u(C(w, θ, s)) − v
(

Y (w, θ, s)

w

)

= u(C(w, θ′, s)) − v
(

Y (w, θ′, s)

w

)

.

ii) Individual revelation of productivity (I-RP): ∀s ∈ S, ∀θ ∈ {θL, θH},
∀t ∈ {1, 2} and t 6= t′,

u(C(wt, θ, s)) − v
(

Y (wt, θ, s)

wt

)

≥ u(C(wt′ , θ, s)) − v
(

Y (wt′ , θ, s)

wt

)

.

The lemma follows from the fact that individuals take the state s and hence
the level of public good provision as given. Due to the additive separabil-
ity of preferences, this implies that individual incentive conditions become
independent of taste parameters. Consequently, an income tax mechanism
can use only individual differences in productivity as a screening device.

3 Pure assignment uncertainty

Contributions to the theory of optimal utilitarian income taxation are typ-
ically concerned with the case of pure assignment uncertainty. This section
recalls results from this literature for the special setup of a two-class economy
and derives a further comparative statics property. This provides a bench-
mark case, that proves helpful for the analysis of an information structure
with private information on taste parameters in later sections.

3.1 The optimization problem

Under pure assignment uncertainty the state s of the economy is commonly
known. Equivalently, for each taste parameter θ̃t, t ∈ {1, 2}, it is commonly
known whether the realization θt equals θL or θH . Consequently, assign-
ment uncertainty stems only from the fact that each individual i has private
information on whether her productivity parameter equals w1 or w2. This
considerably simplifies the analysis of anonymous allocation mechanisms.
Once individual productivity is revealed, an individual’s class assignment
is known, and so is the individual’s taste parameter. Hence, there is no
need to specify C-Y pairs that depend on declared taste parameters. For
the remainder of this section, I may thus suppress the dependence on taste

7



parameters and write Ct(s) and Yt(s) instead of C(wt, θt, s) and Y (wt, θt, s).
Under pure assignment uncertainty, an income tax mechanism is a collection
{Q(s), Y1(s), C1(s), Y2(s), C2(s)}s∈S , which satisfies, for all s, the feasibility
constraints

Y1(s) − C1(s) + Y2(s) − C2(s) ≥ kQ(s), Q(s) ∈ {0, 1} , (2)

and the I-RP constraints

u(C1(s)) − v
(

Y1(s)

w1

)

≥ u(C2(s)) − v
(

Y2(s)

w1

)

,

u(C2(s)) − v
(

Y2(s)

w2

)

≥ u(C1(s)) − v
(

Y1(s)

w2

)

.

(3)

Note that, under pure assignment uncertainty, the NDT-U property is moot.
There is no need to specify a C-Y pair for individuals who claim a “wrong”
taste parameter. The “true” taste parameter is known anyway once an
individual’s productivity level is revealed.
In state s, an income tax mechanism generates a utilitarian welfare level,
which is, in the following, written as

W (s) := (θ1 + θ2)Q(s) + u(C1(s)) − v
(

Y1(s)

w1

)

+ u(C2(s)) − v
(

Y2(s)

w2

)

.

Under pure assignment uncertainty, the state s is commonly known. Hence,
it might seem natural to define an optimal utilitarian income tax mecha-
nism such that, for given s, W (s) is maximized subject to the feasibility
constraints in (2) and the I-RP constraints in (3). I will, however, proceed
differently. Below a definition is stated which yields trivially the same set
of optimal allocations, but facilitates a comparison to the case of private
information on taste parameters discussed in later sections.
An income tax mechanism is evaluated from an ex ante perspective, which is
defined as a hypothetical situation where the actual state s is not yet known.
That is, the objective function is a weighted average of the welfare levels
in {W (s)}s∈S , with a probability weight attached to each state s. These
probability weights are taken to be the prior beliefs of the tax setting plan-
ner who perceives the actual state s of the economy as the realization of a
random variable s̃. The prior beliefs are denoted p := (pLL, pLH , pHL, pHH),
where pLL := prob(s̃ = sLL), pLH := prob(s̃ = sLH), etc. Expected welfare
from the planner’s ex ante perspective is accordingly given by

EW := pLLW (sLL) + pLHW (sLH) + pHLW (sHL) + pHHW (sHH) .

Definition 1 Under pure assignment uncertainty, an optimal income tax
mechanism solves the problem of choosing {Q(s), Y1(s), C1(s), Y2(s), C2(s)}s∈S

in order to maximize EW subject to the feasibility constraints in (2) and
the I-RP constraints in (3).
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For brevity, I refer to this optimal income tax problem under pure assign-
ment uncertainty as the informed problem and to its solution as the informed
optimum.

Characterizing the informed optimum

For a characterization of the informed optimum, it is helpful to introduce
the following auxiliary problem, which does not include a public good but
instead an exogenous revenue requirement r ≥ 0 in the budget constraint.

maxC1,Y1,C2,Y2 u(C1) − v
(

Y1
w1

)

+ u(C2) − v
(

Y2
w2

)

s.t. Y1 − C1 + Y2 − C2 ≥ r ,

u(C1) − v
(

Y1
w1

)

≥ u(C2) − v
(

Y2
w1

)

,

u(C2) − v
(

Y2
w2

)

≥ u(C1) − v
(

Y1
w2

)

.

(4)

A solution to problem (4) is parameterized by the revenue requirement r and
denoted (Y ∗

1 (r), C∗
1 (r), Y ∗

2 (r), C∗
2 (r)). The following result is well known (see

e.g. Stiglitz (1982)).

Lemma 2 At a solution to problem (4) the feasibility constraint and only
the I-RP constraint for t = 2 are binding, implying that there is a distortion
at the bottom and no distortion at the top:

MRS∗
1 :=

1
w1

v′

�
Y ∗

1
(r)

w1

�
u′(C∗

1 (r))
< 1 and MRS∗

2 :=
1

w2

v′

�
Y ∗

2
(r)

w2

�
u′(C∗

2 (r))
= 1 .

Intuitively, problem (4) is essentially a problem of redistribution under in-
centive constraints. As the more productive suffer less from the necessity to
generate income, a utilitarian planner wants them to work harder. This im-
plies a binding I-RP constraint for this class of individuals at the informed
optimum.
The informed optimum is now characterized with reference to problem (4).
I use a shorthand notation for the utility level at a solution to problem (4)
induces for type t individuals:8

Rt(r) := u(C∗
t (r)) − v

(

Y ∗

t (r)

wt

)

.

8I use the letter R to indicate that I refer to a utility level which is generated by a
solution to an optimization problem with an exogenous Revenue Requirement.
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Obviously, the informed utilitarian planner decides on public good provision
according to the following criterion: Q(s) = 1 if and only if

θ1 + θ2 ≥ R1(0) + R2(0) −
(

R1(k) + R2(k)
)

.

Under this criterion, the provision rule chosen by an informed planner de-
pends on the parameter values θL and θH . E.g. if

2θL > R1(0) + R2(0) −
(

R1(k) + R2(k)
)

,

then an informed planner chooses Q(s) = 1 for all s. To avoid a lengthy dis-
cussion of each conceivable parameter constellation, I focus on a particular
case.

Assumption 1 An informed planner chooses to install the public good in
all states except state sLL:9

θH + θL ≥ R1(0) + R2(0) −
(

R1(k) + R2(k)
)

≥ 2θL .

For ease of reference, I denote by Qi : Q = 0 ⇐⇒ s = sLL the provision rule
chosen by an informed planner. To complete the description of the informed
optimum, I denote by U i

1(s) and U i
2(s) the realized utility levels of class 1

and class 2 individuals. Obviously,

U i
1(s) =















R1(0), if s = sLL,
θL + R1(k), if s = sLH ,
θH + R1(k), if s = sHL,
θH + R1(k), if s = sHH

and

U i
2(s) =















R2(0), if s = sLL,
θH + R2(k), if s = sLH ,
θL + R2(k), if s = sHL,
θH + R2(k), if s = sHH .

I refer to the expression Rt(0)−Rt(k) as the utility loss of class t from paying
for public good provision at the informed optimum. Moreover, I say that
for class t individuals, the willingness to pay for the public good is positive
(negative) if the utility gain θt exceeds (falls short of) this utility loss, i.e. if
θt − (Rt(0) − Rt(k)) is positive (negative).

9Obviously, a parameter constellation such that Q = 1 is desired in every (no) state
of the world is not very interesting. Hence, the only alternative of interest is that Q = 0
is preferred in states sLH and sHL. An investigation of this case gives rise to an analysis
which is analogous to the one presented below.
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3.2 Conflicting interests at the informed optimum

Even though an optimal utilitarian income tax attaches equal weight to the
utility levels realized by the more and the less able class of individuals, the
informed optimum may give rise to conflicting views on the desirability of
public good provision. To illustrate this, suppose for the sake of concreteness
that

R1(0) − R1(k) > θH > θL > R2(0) − R2(k) . (5)

In this scenario, for the more productive individuals, the utility loss is so
small that their willingness to pay for the public good is positive in all states
s. By contrast, the less productive suffer so severely from the increased rev-
enue requirement if the public good is installed that they oppose provision
in every state of the world.
A clarification of the possible patterns of conflicting interests will be impor-
tant for an understanding of the additional incentive problems that come
into play under an information structure with private information on taste
parameters. Intuitively, if the scenario characterized by the inequalities in
(5) arises, less productive individuals want to prevent the public good from
being installed in every state s, and hence they have an incentive to report
a low taste realization even if in fact their taste parameter is high. Likewise,
the more able class wants to get the public good in every state and might
be tempted to report a high taste in case of a low taste realization.
The following lemma is important for an understanding of possible scenarios
of conflicting interests. It shows that for the less productive class of individ-
uals the utility loss is larger if in problem (4) the revenue requirement r is
increased. In more technical terms, the lemma establishes a property of de-
creasing differences according to which a lower productivity level translates
into a larger utility loss. The proof relies on the following assumption:

Assumption 2 The function v is strictly convex and satisfies10

∀x ≥ 0 :
1

w2
1

v′′
(

x

w1

)

≥
1

w2
2

v′′
(

x

w2

)

.

Lemma 3 Let v(·) satisfy Assumption 2. Let r′ > r. Then:

R1(r) − R1(r
′) > R2(r) − R2(r

′) > 0 .

The intuition behind this observation is as follows: Consider a solution
to problem (4) and suppose the revenue requirement is slightly increased.

10Note that a sufficient condition for Assumption 2 is v′′′
≥ 0. An alternative assump-

tion, which would also yield the result of Lemma 3, is that the function v is linear. For a
discussion of this quasi-linear case, see Weymark (1986) or Boadway et al. (2000).
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The more productive cannot be forced to cover the resulting small budget
deficit, as this would violate their I-RP constraint. To the contrary, less
able individuals can be made worse off without violating any constraint.
Consequently, the planner has to make them worse off if there is a need to
extract larger revenues.

Possible scenarios of conflicting interests

If combined with the observation that the utility loss is larger for less able
individuals, as shown in lemma 3, assumption 1 implies that the willingness
of less able individuals to pay is negative if θ1 = θL. Analogously, for the
more productive class, the willingness to pay is positive if θ2 = θH ,

R1(0) − R1(k) > θL and θH > R2(0) − R2(k) . (6)

These inequalities in conjunction with assumption 1 reduce the set of pos-
sible parameter constellations. The following three scenarios may arise.

Sc.1: θH ≥ R1(0) − R1(k) > R2(0) − R2(k) ≥ θL ,

Sc.2: θH ≥ R1(0) − R1(k) ≥ θL > R2(0) − R2(k) ,

Sc.3: R1(0) − R1(k) > θH > θL > R2(0) − R2(k) .

These inequalities are interpreted as follows.
Scenario 1: For individuals of any class t, willingness to pay for the public
good is positive if the taste realization is high, θ̃t = θH , and is negative
if the taste realization is low, θ̃t = θL. Scenario 1 hence gives rise to the
statement that, at the informed optimum, willingness to pay for the public
good is independent of earning ability.
Scenario 2: For the less productive class, as under Scenario 1, the willing-
ness to pay for the public good is positive only if the utility gain is high. In
contrast, more productive individuals, whose utility loss is smaller, have a
positive willingness to pay in any state s.
Scenario 3: For more productive individuals, as under Scenario 2, the will-
ingness to pay for the public good is always positive. In addition, less able
individuals suffer from such a heavy utility loss that their willingness to pay
is negative in any state s.

4 Private information on taste parameters

From now on, I consider an information structure with private information
on taste parameters. Consequently, a utilitarian planner faces the problem
of information aggregation simultaneously with the screening problem of
identifying which individual belongs to which class. This necessity of infor-
mation aggregation will in general cause additional incentive problems, on
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top of the I-RP requirement.
To illustrate this, suppose Scenario 2 applies and ask whether the informed
optimum is implementable. If one takes the view that individual incentives
are enough, the answer is yes. As all individuals take the mechanism de-
signer’s perception of the actual state as outside their influence, no isolated
individual has a reason to misreport her own taste parameter. However,
if the informed optimum is implemented, the more productive individuals
want to have the public good in all states of the world, that is, even if
θ̃2 = θL. And moreover, if class 2 individuals are able to convince the util-
itarian planner that their taste parameter is in fact high, they can ensure
the provision of the public good. As the decision on provision is based on a
revelation game, there is an obvious way to achieve this: a collective lie of
all class 2 individuals on their taste parameter.
These considerations highlight the following issues: First, with private in-
formation on taste parameters, a mechanism designer may not be able to
detect a deviation from the truth by a subset of agents. If all class 2 indi-
viduals make the same announcement θ̂2, it is not possible to tell whether
those individuals are jointly lying or are jointly telling the truth. Second,
such a deviation may be beneficial for such a subset of agents. Third, it
is not prevented by individual incentive compatibility. Given that all class
2 individuals lie about their taste parameter, there is no incentive for an
isolated class 2 individual to reveal the realization of θ̃2 truthfully. Due to
the NDT-U property of income tax mechanisms, this is a systematic fea-
ture. A collective deviation involving taste parameters is not undermined
by individual incentives.

4.1 Collective Incentive Compatibility

In the following a collectively incentive compatible (C-IC) income tax mech-
anism is defined. Such a mechanism ensures that truth-telling is an equilib-
rium outcome even under the threat of collective manipulations.
Denote by J the set of measurable subsets of the set of agents, I = [0, 1],
with positive length. A typical element is denoted J . Denote the true profile
of characteristics in J by γJ := {(wj , θj)}j∈J . Denote the reported profile

by γ̂J := {(ŵj , θ̂j)}j∈J .
Denote the cross-section distribution of announcements induced by γ̂J if
the true state of the economy is s ∈ S and all individuals not in J report
truthfully by δ(γ̂J , s). Note that any such distribution belongs to the set
∆(Γ) of probability distributions on Γ = {w1, w2} × {θL, θH}, i.e. it assigns
a probability weight to each of the four elements of Γ.
Denote by D := {dLL, dLH , dHL, dHH} the set of cross-section distributions
of characteristics which correspond in an obvious way to the possible states
of the world, e.g. dLH is a distribution which assigns equal mass to the
elements of Γr(sLH) = {(w1, θL), (w2, θH)}. For δ(γ̂J , s) ∈ D, denote by
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ŝ(γ̂J , s) ∈ S, the perceived state of the world, e.g. if δ(γ̂J , s) = dLH , then
ŝ(γ̂J , s) = sLH .

Definition 2 A coalition J is said to manipulate an income tax mechanism
if there exists s ∈ S and γ̂J 6= γJ with the following properties:

i) Undetectability. The induced distribution is feasible: δ(γ̂J , s) ∈ D.

ii) Unanimity. All coalition members are strictly better off when choosing
to report according to γ̂J instead of γJ . ∀j ∈ J :

θjQ(ŝ(γ̂J , s)) + u(C(ŵj , θ̂j, ŝ(γ̂J , s))) − v

(

Y (ŵj , θ̂j , ŝ(γ̂J , s))

wj

)

> θjQ(s) + u(C(wj , θj, s)) − v
(

Y (wj , θj , s)

wj

)

.

iii) Individual Stability. No coalition member departs – unilaterally – from
coalitional behavior. Given the I-IC -constraints, this requires, ∀j ∈ J :

θjQ(ŝ(γ̂J , s)) + u(C(ŵj , θ̂j, ŝ(γ̂J , s))) − v

(

Y (ŵj , θ̂j , ŝ(γ̂J , s))

wj

)

= θjQ(ŝ(γ̂J , s)) + u(C(wj , θj, ŝ(γ̂J , s))) − v
(

Y (wj , θj , ŝ(γ̂J , s))

wj

)

.

iv) Collective Stability. There does not exist a subcoalition K ⊂ J , with
an undetectable collective deviation γ̃K 6= γ̂K that induces a state
perception ŝ(γ̃K , γ̂J\K , s) that makes all members of K strictly bet-
ter off relative to ŝ(γ̂J , s) (unanimity), prescribes for all its members
individually best responses given the state perception ŝ(γ̃K , γ̂J\K , s)
(individual stability) and is not threatened by further collective ma-
nipulations, which satisfy all these requirements (collective stability).

An income tax mechanism is said to be collectively incentive compatible (C-
IC) if there exists no manipulating coalition.

According to this definition, a coalition considers a collective deviation in
response to truth-telling of all other individuals. The scope for manipulation
is limited by the requirement that it must not be detectable, i.e. the relevant
coalitional plans are only those for which it does not become apparent that
a manipulation has occurred. Moreover, coalition members have to agree
unanimously on a deviation and may not use side payments to reach such
an agreement. Finally, a coalition has to meet two stability requirements.
The incentives coalition members face individually must not conflict with
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the message profile used by the coalition; that is, collective manipulations
are a concern only in so far as they do not conflict with I-IC. In addition,
a conceivable collective manipulation must not provoke the formation of a
subcoalition which departs from the original coalitional plan. These stabil-
ity requirements have been introduced by Bernheim et al. (1986) in their
definition of a coalition-proof Nash-equilibrium.
A peculiarity of Definition 2 is that the collective stability of a coalition J is
defined with reference to the collective stability of a coalition K ⊂ J . Obvi-
ously, in a continuum economy, there is no chance of tracing these notions
back to the collective stability of some “smallest” coalitions. As will become
clear (see Proposition 1), for the purposes of this paper, this does not create
a problem. The structure of a two-class economy is sufficiently simple to
arrive at a complete characterization of C-IC income tax mechanisms.
With reference to the literature, different interpretations of the implicit as-
sumptions on coalition formation can be given. First, suppose that pre-play
communication resolves the uncertainty among individuals about the actual
state of the economy.11 The above definition then requires that truth-telling
is a best response from the perspective of a coalition whose members know
the true state of the world and presume that all individuals outside the
coalition tell the truth. Alternatively, C-IC can be framed as a robust-
ness-requirement.12 It implies that ex post, after the state of the world has
become commonly known, no subset of individuals would jointly want to re-
vise their announcements if they were, hypothetically, given the opportunity
to do so.

4.2 C-IC in the two-class economy

The definition of C-IC stated above is rather abstract in the sense that it
excludes any kind of coalitional manipulation. This concern can be simplified
by making use of the specific features of a two-class economy. As developed
below, it suffices to exclude manipulative threats of coalitions, which consist
of all individuals of one class. Moreover, individual and collective incentive
concerns can be separated: the latter require that individuals belonging to
the same class are prevented from a collective lie on their taste parameter,
while the former ensure a revelation of productivity parameters.

Definition 3 A utility allocation specifies for every state s ∈ S, utility
levels Ũ1(s) and Ũ2(s) for type 1 and type 2 individuals, respectively. A

11Such pre-play communication works if one assumes that individuals are able to solve
pure coordination problems by cheap talk, Farrell and Rabin (1996).

12Robustness requires that the set of implementable allocations does not depend on
assumptions about the prior beliefs of individuals. For a more extensive discussion, see,
e.g. Bergemann and Morris (2005); Chung and Ely (2004) or Kalai (2004).
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utility allocation is said to be implementable if there exists a C-IC income
tax mechanism such that ∀s ∈ S, and for all (wt, θt) ∈ Γr(s),

Ũt(s) = θtQ(s) + u(C(wt, θt, s)) − v
(

Y (wt, θt, s)

w

)

=: θtQ(s) + Vt(s) ,

where Vt(s) is a shorthand for the utility class t individuals derive in state
s from their consumption-income combination.
A utility allocation {Ũ1(s), Ũ2(s)}s∈S is said to be Pareto-optimal if it is
implementable and there does not exist some other implementable utility
allocation {Ũ ′

1(s), Ũ
′
2(s)}s∈S which yields, in all states s and for all t ∈ {1, 2},

a weakly larger utility level, Ũ ′
t(s) ≥ Ũt(s), and in some state s and for some

class t a strictly larger utility level, Ũ ′
t(s) > Ũt(s).

Proposition 1 Suppose there is no pooling of earning ability, that is, ∀s ∈
S, ∀(wt, θt) ∈ Γr(s), (C(w1, θ1, s), Y (w1, θ1, s)) 6= (C(w2, θ2, s), Y (w2, θ2, s)).

13

Then, a utility allocation is Pareto-optimal if and only if it is implementable
by a feasible allocation mechanism which satisfies I-RP and the following
properties:

i) Collective revelation of taste on the class level (C-RT-C): ∀x ∈ {L,H},
∀x̂ ∈ {L,H}, ∀y ∈ {L,H} and ∀ŷ ∈ {L,H}:

θxQ(sxy) + V1(sxy) ≥ θxQ(sx̂y) + V1(sx̂y) ,

θyQ(sxy) + V2(sxy) ≥ θyQ(sxŷ) + V2(sxŷ) .

ii) No discrimination of taste in terms of consumption and income (NDT-
CY): ∀s ∈ S, ∀w ∈ {w1, w2}, ∀θ ∈ {θL, θH} and ∀θ′ ∈ {θL, θH},

(C(w, θ, s), Y (w, θ, s)) = (C(w, θ′, s), Y (w, θ′, s)) .

The NDT-CY property requires that, for a given distribution of charac-
teristics in the economy, the allocation of private goods is independent of
taste parameters. This is a slightly stronger property as relative to NDT-U.
According to the C-RT-C -property, manipulations of coalitions consisting
only of individuals with the same type and which misreport only the taste
parameter are ruled out. Obviously, this condition is necessary for C-IC.
Proposition 1 states that it is also sufficient if one restricts attention to
Pareto-optimal allocations.

13Absence of pooling is required only to make the presentation more accessible. In
subsequent sections, optimal tax mechanisms are characterized without imposing this
assumption. It will turn out that an optimum does not involve pooling.
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The proof proceeds as follows. First it is shown that there cannot be an
undetectable collective manipulation that involves productivity parameters.
This would require some type 1 individuals to be willing to claim a high
productivity and some type 2 individuals to be willing to claim a low pro-
ductivity. Due to the single-crossing property, this is not compatible with
I-IC unless there is pooling. Then, it is observed that undetectability in
a two-class economy requires all individuals who report the same produc-
tivity parameter to agree on the reported taste parameter as well. Hence,
there remain only two kinds of collective manipulations: those where only
the individuals of one class lie on their taste parameter and those where
individuals of both classes jointly lie on their taste parameter. The former
kind of collective manipulation is ruled out by the C-RT-C property. The
latter would require that both classes prefer a different state perception.
It is shown that this situation can not arise under a Pareto-optimal utility
allocation.
Proposition 1 justifies the restriction to allocation rules with the NDT-
CY property. This implies that a more concise notation can be used.
In the following, the consumption and income for an individual of type
t, given that the state of the world is s, is written as (Ct(s), Yt(s)), with
the understanding that this pair equals both (C(wt, θL, s), Y (wt, θL, s)) and
(C(wt, θH , s), Y (wt, θH , s)). The I-RP property is hence written in the fol-
lowing as ∀s ∈ S, ∀t, ∀t′ 6= t,

u(Ct(s)) − v
(

Yt(s)

wt

)

≥ u(Ct′(s)) − v
(

Yt′(s)

wt

)

. (7)

The budget constraints now read as ∀s ∈ S,

Y1(s) − C1(s) + Y2(s) − C2(s) ≥ kQ(s) . (8)

The set of implementable allocation rules is represented in the remainder
of the paper by the collections {Q(s), Y1(s), C1(s), Y2(s), C2(s)}s∈S , which
satisfy the C-RT-C property, as well as the inequalities in (7) and (8). The
optimal utilitarian income tax mechanism is now defined as follows.

Definition 4 With private information on taste parameters, the optimal
C-IC income tax solves the problem of choosing {Q(s), Y1(s), C1(s), Y2(s),
C2(s)}s∈S , subject to the C-RT-C constraint, the I-RP constraints in (7)
and the feasibility constraints in (8), in order to maximize EW .

This optimization problem differs from the one analyzed in the previous
section by the presence of the C-RT-C constraints. Under pure assignment
uncertainty, there is no need to take collective incentives into account.
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5 Optimality under Collective Incentives

In this section, the properties of an optimal C-IC income tax are derived
for each scenario. This is achieved via a two step procedure. The first step
solves for an optimal C-IC income tax, taking the provision rule for the
public good as given. The second step determines the optimal provision rule.
This approach is tractable because of the fact that the C-RT-C constraints
limit the number of admissible provision rules.

Lemma 4 Under C-RT-C, provision rules are increasing in both arguments,
∀x ∈ {L,H} : Q(sxL) ≤ Q(sxH) and ∀y ∈ {L,H} : Q(sLy) ≤ Q(sHy).

The monotonicity constraints stated in the lemma imply that there are only
six candidate provision rules.14 The provision rule Qi : Q = 0 ⇐⇒ s = sLL,
which is part of the informed optimum, satisfies these constraints. The same
is true for provision rule Qi′ , defined by Q = 1 ⇐⇒ s = sHH , provision rule
Q1, which calls for public good provision if and only if class 1 individuals
have a high taste parameter Q1 : Q = 1 ⇐⇒ s ∈ {sHL, sHH}, and the
analogously defined provision rule Q2 : Q = 1 ⇐⇒ s ∈ {sLH , sHH}. Finally,
the monotonicity constraints are trivially satisfied by the constant provision
rules Q ≡ 0 and Q ≡ 1.
One of these six candidate provision rules is taken as given when undertaking
the first step. The subsequent analysis focuses on the problem of finding an
optimal C-IC income tax that implements the informed planner’s provision
rule Qi. Formally, this problem is denoted Problem P i and defined as follows.

The optimal C-IC income tax under Qi: Problem P i

An optimal C-IC income tax which implements provision rule Qi solves the
problem of choosing {Y1(s), C1(s), Y2(s), C2(s)}s∈S in order to maximize the
expected welfare contribution from consumption and income requirements

EWV := pLL[V1(sLL) + V2(sLL)] + pLH [V1(sLH) + V2(sLH)]

+pHL[V1(sHL) + V2(sHL)] + pHH [V1(sHH) + V2(sHH)]

subject to the C-RT-C constraints,15

V1(sLH) = V1(sHH) , θH ≥ V1(sLL) − V1(sHL) ≥ θL ,

V2(sHL) = V2(sHH) , θH ≥ V2(sLL) − V2(sLH) ≥ θL ,
(9)

14The lemma follows from standard arguments. See the appendix.
15One arrives at the inequalities in (9) by plugging Qi into the C-RT-C constraints.
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the I-RP constraints in (7) and the feasibility constraints

Y1(s) − C1(s) + Y2(s) − C2(s) ≥ 0, for s = sLL ,

Y1(s) − C1(s) + Y2(s) − C2(s) ≥ k, otherwise .
(10)

5.1 When does collective incentive compatibility matter?

With reference to problem P i, the Scenarios for which the informed opti-
mum survives the introduction of collective incentive requirements are easily
clarified. Recall that the informed optimum is obtained by maximizing EWV

subject to I-RP and feasibility, without taking C-RT-C into account. Obvi-
ously, the informed optimum satisfies C-RT-C if and only if the statements
in (9) remain true as one replaces Vt(s) by Rt(0) if s = sLL and by Rt(k) if
s 6= sLL. That is, the informed optimum satisfies C-RT-C if and only if

θH ≥ R1(0) − R1(k) ≥ θL and θH ≥ R2(0) − R2(k) ≥ θL . (11)

This statement coincides with the definition of Scenario 1, i.e. with a para-
meter constellation such that, at the informed optimum, “willingness to pay
for the public good is independent of earning ability.” These observations
are summarized in the following proposition.

Proposition 2 The informed optimum has the C-RT-C property if and
only if Scenario 1 holds.

The informed optimum satisfies C-RT-C under Scenario 1 even though, for
s = sLH and s = sHL, there are conflicting interests. One class of individuals
– the one with the high taste parameter – wants to have the public good,
while the other class opposes provision. However, this conflict does not cause
collective incentive problems. The class with a high taste parameter behaves
truthfully in order to ensure provision. Likewise, the class with a low taste
wants to avoid provision and hence does not deviate from the truth. Under
Scenarios 2 and 3, at least one of these properties is violated.

5.2 How to deviate from the informed optimum?

According to Proposition 2, under Scenarios 2 and 3 collective incentive
problems force a deviation from the informed optimum. To understand the
planner’s assessment of conceivable deviations, a characterization of the I-
RP constrained Pareto-frontier in a neighborhood of the informed optimum
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is needed. To this end, the following problem is considered.

maxC1,Y1,C2,Y2 u(C1) − v
(

Y1
w1

)

s.t. Y1 − C1 + Y2 − C2 ≥ r (BC) ,

u(C1) − v
(

Y1
w2

)

≤ V̄2 (I-RP2) ,

u(C2) − v
(

Y2
w2

)

= V̄2 .

(12)

I denote by P (V̄2, r) the utility level of class 1 individuals that is induced
by solution to problem (12).

Lemma 5 Let v(·) satisfy Assumption 2.

i) For all V̄2 and all r, Problem (12) has a unique solution. This solution
is such that (BC) is binding and there is no distortion at the top.

ii) For all r, P is a continuous and strictly concave function of V̄2 with a
unique maximum. For V̄2 = R2(r) – i.e. at the informed optimum – P
is strictly decreasing in V̄2.

iii) For all r, there is a maximal value R̂2(r) such that for V̄2 < R̂2(r),
(I-RP2) is binding, implying a distortion at the bottom. For V̄2 >
R̂2(r), (I-RP2) is not binding, and there is no distortion at the bottom.

Part ii) of Lemma 5 shows that there is a well defined range of parameters
such that there is indeed a tradeoff between the utility of the “rich” and the
utility of the “poor”.16 Moreover the informed utilitarian optimum does not
lie at the boundary of the region where the tradeoff prevails. That is, while
the utilitarian planner expands redistribution up to a level that gives rise to
incentive problems – recall that the informed optimum has a binding I-RP
constraint for class 2 – she does not aim at the maximal level of incentive
compatible redistribution.

5.3 Scenario 2

In the following, the optimal C-IC income tax for Scenario 2 is analyzed.
First, Problem P i is solved. Then, the circumstances under which a util-
itarian planner indeed wants to stick to provision rule Qi under C-RT-C
constraints are clarified.

16This is not trivial as there is a region where both classes can be made better off if V̄2

is increased. In that region, the potential utility gain from the fact that less resources are
needed to generate a utility level of V̄2 is overcompensated by the utility loss from a more
severe distortion at the bottom. See the appendix for a mathematical formulation.
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Problem P i under Scenario 2

Under Scenario 2, C-RT-C of the informed optimum fails as the more pro-
ductive want to induce public good provision even if θ2 = θL, i.e. the prefer-
ences of class 2 individuals cause a violation of the independence condition
(11), and one may thus think of class 2 as the source of collective incentive
problems. Proposition 3 characterizes the optimal utilitarian reaction to
this problem.

Proposition 3 Let v(·) satisfy Assumption 2. Let the parameters θL and
θH be such that Scenario 2 arises. There exists θ̄L such that if θL ≤ θ̄L,
then a solution to Problem P i has the following properties:

V1(sLL) < R1(0) and V2(sLL) > R2(0) ;

V1(sLH) = V1(sHL) = V1(sHH) > R1(k) and

V2(sLH) = V2(sHL) = V2(sHH) < R2(k) .

For all s, V1(s) = P (V2(s), kQi(s)), and there is a distortion at the bottom.
The C-RT-C constraint V2(sLL) − V2(sLH) ≥ θL for class 2 is binding, and
the C-RT-C constraints θH ≥ V1(sLL) − V1(sHL) ≥ θL for class 1 are not
binding.

Under Scenario 2, the informed optimum is not achievable, as class 2 indi-
viduals have a positive willingness to pay for the public good in any state s.
As the utility loss from public good provision is not large enough, class two
individuals will never admit a low taste realization. To prevent a collective
deviation from truth-telling, the planner has to deviate from the informed
optimum such that, from the perspective of the “rich” class, the utility loss
from public good provision goes up. This requires an increase in the level
of redistribution as compared to the informed optimum in states with pub-
lic good provision and a reduction in the level of redistribution in states
with non-provision. Hence, in state sLL, in which the public good is not
installed, class 2 individuals receive a C-Y pair that generates a utility level
above R2(0). In all other states, the public good is installed and class 2
gets a C-Y pair that implies a utility level below R2(k). These incentive
corrections are chosen such that the deviation from the informed optimum is
as small as possible in welfare terms. Consequently, the C-RT-C constraint
V2(sLL) − V2(sLH) ≥ θL for class 2 is binding.
The deviations from the informed optimum proceed along the I-RP con-
strained Pareto frontier; that is, class 1 individuals are made as well off as
possible, given the need to fix the collective incentive problem that stems
from class 2 individuals. In particular, this implies that the less productive
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can be made better off relative to the informed optimum in states with pub-
lic good provision. As class 2 individuals receive a utility level below R2(k),
this leaves room to raise the utility of class 1 individuals above R1(k). Anal-
ogously, in states without public good provision, class 1 individuals are worse
off. As the utility level of the “rich” class exceeds R2(0), a utility level of
R1(0) is out of reach for the “poor” class.
The main reason why Proposition 3 requires θL not to exceed some upper
bound θ̄L, is the requirement that the C-RT-C constraints of the less produc-
tive individuals are not binding.17 The correction of redistribution claimed
by Proposition 3 implies that the utility difference V1(sLL)−V1(sHL) shrinks
relative to the informed optimum. If the parameter θL is small, then there
is enough room for such an adjustment. That is, the incentive corrections
required to solve P i do not induce the less productive to prefer Q = 1 just
in order to prevent the reduction of transfers that accompanies Q = 0.
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Figure 1: The graph shows the I-RP constrained Pareto frontiers for the revenue

requirements 0 and k, respectively. Under Sc. 2, the difference R2(0) − R2(k) is

too small to satisfy C-RT-C for class 2. Under a modest incentive problem, the

planner deviates to points A and B. Under a severe incentive problem, the vertical

distance between these points is smaller than θL.

These considerations suggest the following terminology for a characteriza-
tion of collective incentive problems. If θL ≤ θ̄L, incentive problems are
modest in the sense that it is possible to correct for the “original” collective

17There is also a more subtle reason. Proposition 3 claims that the I-RP constraints
for class 2 are binding in all states. As is shown in the appendix, this is ensured if θL is
sufficiently small. However, the logic of the proof does not rely on binding I-RP constraints
of class 2 individuals, but on the shape of the Parteo frontier. As follows from Lemma 5,
this shape is not affected as one enters the region where (I-RP2) ceases to be binding.
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incentive problem which stems from class 2 individuals, without creating a
new one resulting from class 1 individuals. By contrast, collective incentive
problems are called severe if a solution to P i has two binding C-RT-C con-
straints. Here, severity refers to the fact that the attempt to restore C-RT-C
for one class of individuals, renders collective manipulations attractive for
the other class.

Definition 5 Denote by {V ∗∗
1 (s)}s∈S the utility levels realized by class 1

individuals at a solution to problem P i. Collective incentive problems under
Scenario 2 are called modest if

V ∗∗
1 (sLL) − V ∗∗

1 (sHL) > θL .

Otherwise collective incentive problems under Scenario 2 are called severe.

Is Qi the optimal provision rule under C-RT-C constraints?

I now turn to the question whether a utilitarian planner who faces C-RT-C
constraints indeed wants to implement provision rule Qi. Possibly, the wel-
fare burden of having to adjust the transfer system if Qi is chosen is such
that a different provision rule turns out to be superior, e.g. one alternative
scheme is to install the public good in every state of the world Q(s) = 1 for
all s ∈ S. While this provision rule has the disadvantage that resources are
used to cover the cost of provision even if s = sLL, there is no need to ask
individuals about their taste parameters. Hence, there is no need to devi-
ate from the utility levels R1(k) and R2(k), which result from the informed
optimum if the revenue requirement equals k.
In case of a modest incentive problem, it depends on the planner’s prior
whether or not provision rule Qi is chosen. To see this, suppose first that
pLL is very small. Then the provision rule Q ≡ 1 seems attractive, as the
state in which a deviation from the informed optimum occurs is very un-
likely, i.e. the smaller pLL, the more attractive provision rule Q ≡ 1 becomes
in comparison to Qi. As the welfare assessment EW is continuous in the
prior probabilities, there must exist prior probabilities for which Q ≡ 1 is
superior.
Now suppose that the parameters θL and θH are such that only a “small”
deviation from the informed optimum is needed to achieve collective incen-
tive compatibility – in terms of Figure 1, the points A and B are very close
to the informed optimum. In such a case, the adjustments of the transfer
system, required under Qi, are negligible in welfare terms. Consequently,
one may find priors such that this provision rule remains the optimal one.
In contrast, under a severe incentive problem, Qi will not be chosen. To see
this, suppose that the C-RT-C constraints

θL ≤ V1(sLL) − V1(sHL) and θL ≤ V2(sLL) − V2(sLH)
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are both binding. The two binding incentive constraints imply that all
individuals are indifferent between public good provision and non-provision
if s = sLL, i.e. given {V1(s), V2(s)}s∈S , all individuals are indifferent between
the provision rules Qi and Q ≡ 1. However, Q ≡ 1 avoids any departure
from R1(k) and R2(k), implying that utilitarian welfare is higher in every
state of the world. These considerations are summarized in the following
proposition.

Proposition 4 Let v(·) satisfy Assumption 2. Let the parameters θL and
θH be such that Scenario 2 arises.

i) If collective incentive problems are modest, then there exist prior beliefs
p such that Qi is part of an optimal C-IC income tax mechanism.

ii) If collective incentive problems are severe, then there do not exist prior
beliefs such that Qi is part of an optimal C-IC income tax mechanism.

I do not discuss in more detail which of the six candidate provision rules
may be supported by some prior beliefs as part of an optimal income tax
mechanism. This would require for each of these candidate provision rules
an analysis similar to the one conducted for Qi; that is, one would have to
determine, for each of them, the pattern of binding C-RT-C constraints and
the welfare implications of those binding constraints.
The main results are summarized as follows: if provision rule Qi – or any
other rule that makes the decision on provision dependent on the preferences
of class 2 individuals – is chosen for implementation, the planner has to
accept the necessity of excessive redistribution if the public good is installed,
and suboptimal redistribution if not. This may imply that the planner
prefers a different provision rule in order to limit the deviations from the
allocation of private goods prescribed by the informed optimum.

5.4 Discussion of Scenario 3

For the sake of completeness, I briefly discuss how these considerations have
to be modified under Scenario 3. Under this parameter constellation, at the
informed optimum, class 1 individuals oppose public good provision in any
state s and class 2 individuals desire provision in any state s, i.e. there are
two sources of collective incentive problems. In order to ensure collective
truth-telling of class 1, at a solution to Problem P i, the attractiveness of
public good provision has to be increased relative to the informed optimum.
Simultaneously for class 2, the attractiveness of public good provision has
to be decreased.
Fortunately, these incentive corrections tend to complement each other. To
see this, recall the properties of a solution to Problem P i under Scenario 2,
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which was dealing only with the collective incentive problem for class 2 indi-
viduals. This solution deviates from the I-RP constrained Pareto frontiers
for revenue requirements 0 and k, respectively, such that that the utility dif-
ference between provision and non-provision shrinks for class 1 individuals
relative to the informed optimum, i.e. this incentive correction points in the
right direction as it makes public good provision more attractive from the
perspective of class 1. Hence, under Scenario 3 the solution of Problem P i

may be such that the C-RT-C constraint for class 1 is not binding. In this
case, the solution of Problem P i is again characterized by Proposition 3.
More generally, one has to distinguish between modest and severe incentive
problems. Collective incentive problems are modest if, at a solution to Prob-
lem P i, only the C-RT-C constraint for one class is binding. Otherwise they
are called severe. These collective incentive problems may imply that Qi is
not part of an optimal C-IC income tax mechanism.

6 Concluding Remarks

The analysis has shown that an optimal utilitarian income tax is robust to
the introduction of a free-rider problem on public good provision if and only
if “willingness to pay for the public good” is independent of earning ability.
Otherwise, collective incentive considerations force a deviation from the op-
timal tax scheme. Such a deviation can take different forms, a modification
of the provision rule, an adjustment of the private goods allocation accom-
panying a given provision rule or both. The exact pattern depends on the
interaction of prior probabilities and the intensity of the collective incentive
problem.
This raises the question how to assess these deviations from a welfare per-
spective. As the analysis has shown, it is possible that those deviations make
one class better off while hurting the other class, i.e. that they do not cause
a departure from constrained efficiency. However, they place an additional
welfare cost on redistribution if the allocation mechanism in addition has to
achieve a surplus maximizing decision on public good provision. If the latter
requires that, say, the “rich” admit a low valuation of public goods, then one
can not simultaneously have an excessive level of redistribution in response
to such a low valuation. Consequently, one has to tradeoff the utilitarian
welfare gains from a more favorable solution of the equity-efficiency tradeoff
with those from a more favorable solution of the free-rider problem. This
tradeoff is solved such that a deviation from an optimal income tax, as typi-
cally defined in the literature, is desirable in order to improve the possibility
to aggregate information on the willingness to pay for public goods.
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A Appendix

Proof of Lemma 1: To proof the only if-part, note that, because prefer-
ences satisfy the separability property stated in equation (1), the NDT-U -
property is an implication of I-IC. Obviously I-RP is also an implication of
I-IC. To prove the if-part, suppose an NDT-U and I-RP allocation rule is
not I-IC. Then there exist (w, θ) and (ŵ, θ̂) and s such that

u(C(w, θ, s)) − v
(

Y (w, θ, s)

w

)

< u(C(ŵ, θ̂, s)) − v

(

Y (ŵ, θ̂, s)

w

)

.

Using NDT-U and I-RP one has:

u(C(ŵ, θ̂, s)) − v

(

Y (ŵ, θ̂, s)

w

)

= u(C(ŵ, θ, s)) − v
(

Y (ŵ, θ, s)

w

)

≤ u(C(w, θ, s)) − v
(

Y (w, θ, s)

w

)

.

Hence, a contradiction.

Proof of Lemma 3:

Claim 1.

dY ∗

2 (r)

dr
> 0 ;

dC∗

2 (r)

dr
< 0 .

Proof. These comparative statics are derived as follows: knowing that,
at a solution to problem (4), the I-RP -constraint for type 2, as well as
the budget constraint is binding allows us to setup the Lagrangean for the
planner’s problem. The first order conditions imply the following system of
equations:

u′(C∗

1 (r))

u′(C∗

2 (r))
=

(1 − MRS∗

1 ) + (1 − M̂RS
∗

)

MRS∗

1 − M̂RS
∗

, (13)

where M̂RS
∗

:= 1
w2

v′
(

Y ∗

1 (r)
w2

)

/u′(C∗
1 (r));

Y ∗
1 (r) − C∗

1 (r) + Y ∗
2 (r) − C∗

2(r) = r , (14)

u′(C∗
2 (r)) =

1

w2
v′

(

Y ∗

2 (r)

w2

)

, (15)
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u(C∗
1 (r)) − v

(

Y ∗

1 (r)
w2

)

= u(C∗
2 (r)) − v

(

Y ∗

2 (r)
w2

)

. (16)

Differentiating these equations with respect to r yields a system of equations
that can be used to solve for the derivatives of Y ∗

1 (r), C∗
1 (r), Y ∗

2 (r) and C∗
2 (r))

with respect to r. After some lengthy calculations, one finds that

dC∗

2 (r)

dr
=

(α − δ) + ǫ(1 − δ)

(α − δ)(γ − 1) + β(1 − δ)
,

dY ∗

2 (r)

dr
= γ

(α − δ) + ǫ(1 − δ)

(α − δ)(γ − 1) + β(1 − δ)
,

where α :=

u′′(C∗

1 (r))
h
2u′(C∗

2 (r)) + 1
w2

v′

�
Y ∗

1
(r)

w2

�
− 1

w1

v′

�
Y ∗

1
(r)

w1

�i
1

w2

1

v′′

�
Y ∗

1
(r)

w1

�
[u′(C∗

1 (r)) + u′(C∗

2 (r))] − 1
w2

2

v′′

�
Y ∗

1
(r)

w2

�
[u′(C∗

1 (r)) − u′(C∗

2 (r))]

and β :=

u′′(C∗

2 (r))
h
2u′(C∗

1 (r)) − 1
w2

v′

�
Y ∗

1
(r)

w2

�
−

1
w1

v′

�
Y ∗

1
(r)

w1

�i
1

w2

1

v′′

�
Y ∗

1
(r)

w1

�
[u′(C∗

1 (r)) + u′(C∗

2 (r))] − 1
w2

2

v′′

�
Y ∗

1
(r)

w2

�
[u′(C∗

1 (r)) − u′(C∗

2 (r))]
.

Note that, by Assumption 2, the common denominator of α and β is strictly
positive. The numerator of β is negative because of the distortion at the
bottom and the single crossing property, which imply that:

1

w2
v′

(

Y ∗

1 (r)

w2

)

<
1

w1
v′

(

Y ∗

1 (r)

w1

)

< u′(C∗
1 (r)) .

To see that the numerator of α is negative as well, note that equation (13)
implies:

2u′(C∗
2 (r)) +

1

w2
v′

(

Y ∗

1 (r)

w2

)

−
1

w1
v′

(

Y ∗

1 (r)

w1

)

=�
1

w1
v′

�
Y ∗

1 (r)

w1

��2
−

�
1

w2
v′

�
Y ∗

1 (r)

w2

��2
2u′(C∗

1 (r)) −
1

w2
v′

�
Y ∗

1 (r)

w2

�
−

1

w1
v′

�
Y ∗

1 (r)

w1

� > 0 .

Further,

γ :=
u′′(C∗

2 (r))

1

w2
2

v′′

�
Y ∗

2 (r)

w2

� ≤ 0 ,
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δ :=
u′(C∗

1 (r)) +
1

w2
v′

�
Y ∗

2 (r)

w2

�
1

w2
v′

�
Y ∗

1 (r)

w2

�
+

1

w2
v′

�
Y ∗

2 (r)

w2

� ≥ 1 ,

ǫ :=

1

w2
v′

�
Y ∗

2 (r)

w2

�
1

w2
v′

�
Y ∗

1 (r)

w2

�
+

1

w2
v′

�
Y ∗

2 (r)

w2

� ∈ ]0, 1[ .

The stated properties of α, β, γ, δ and ǫ imply that Claim 1 holds true.
Claim 2.

0 >
d

dr

[

u(C∗
2 (r)) − v

(

Y ∗

2 (r)
w2

)]

>
d

dr

[

u(C∗
1 (r)) − v

(

Y ∗

1 (r)
w1

)]

.

Proof. Recall that at a solution of problem (4), the I-RP -constraint of the
more productive type is binding (see equation (16)). Hence, it must be the
case that:

d

dr

[

u(C∗
2 (r)) − v

(

Y ∗

2 (r)
w2

)]

=
d

dr

[

u(C∗
1 (r)) − v

(

Y ∗

1 (r)
w2

)]

.

Due to the convexity of v(·) and
dY ∗

1 (r)

dr
> 0, one also has:

d

dr

[

u(C∗
1 (r)) − v

(

Y ∗

1 (r)
w2

)]

>
d

dr

[

u(C∗
1 (k)) − v

(

Y ∗

1 (r)
w1

)]

.

To see that also the first inequality holds, note that, using (15), one has:

d

dk

[

u(C∗
2 (r)) − v

(

Y ∗

2 (r)
w2

)]

= u′(C∗
2 (r))

[

dC∗

2 (r)

dr
−

dY ∗

2 (r)

dr

]

.

This expression is strictly negative by Claim 1.

Proof of Proposition 1: Before proceeding with the proof, an addi-
tional piece of notation is introduced. Recall that an income tax mecha-
nism specifies for each s the variables Q(s) and C1(w1, θL, s), Y1(w1, θL, s),
C1(w1, θH , s), Y1(w1, θH , s) and C2(w2, θL, s), Y2(w2, θL, s), C2(w2, θH , s),
Y2(w2, θH , s). I henceforth refer to this list of variables, as the allocation
A(s) for state s. An income tax mechanism M can hence be summarized
as a list M = (A(sLL), A(sLH), A(sHL), A(sHH)). If I want to describe
an income tax mechanism M ′ that, say, coincides with a predefined income
tax mechanism M in all states except sLL and chooses in this state the
allocation prescribed by M for state sLH , I write M ′ = (A(sLH), A(sLH),
A(sHL), A(sHH)).
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Claim 1. Consider an income tax mechanism M . Suppose there are no
pooling outcomes. Then, there is no manipulating coalition that misreports
productivity parameters.
Proof. It is first shown that there is no coalition that contains individuals
of both classes who both misreport productivity. Suppose, to the contrary,
that there exist s ∈ S, J ∈ J , containing individuals of both types and
δ(γ̂J , s) ∈ D such that individuals of both classes misreport productivity
and such that ∀j ∈ J :

θjQ(ŝ) + u(C(wj , θj , ŝ)) − v

�
Y (wj , θj , ŝ)

wj

�
= θjQ(ŝ) + u(C(ŵj , θ̂j , ŝ)) − v

 
Y (ŵj , θ̂j , ŝ)

wj

!
> θjQ(s) + u(C(wj , θj , s)) − v

�
Y (wj , θj , s)

wj

�
.

Evaluating this condition for both types and using the NDT-U property
implies that for all t ∈ {1, 2},

u(C(w1, θL, ŝ)) − v

�
Y (w1, θL, ŝ)

wt

�
= u(C(w1, θH , ŝ)) − v

�
Y (w1, θH , ŝ)

wt

�
= u(C(w2, θL, ŝ)) − v

�
Y (w2, θL, ŝ)

wt

�
= u(C(w2, θH , ŝ)) − v

�
Y (w2, θH , ŝ)

wt

�
.

Due to the single crossing property, those equalities hold for all t only if

(C(w1, θL, ŝ), Y (w1, θL, ŝ)) = (C(w1, θH , ŝ), Y (w1, θH , ŝ))

= (C(w2, θL, ŝ), Y (w2, θL, ŝ)) = (C(w2, θH , ŝ), Y (w2, θH , ŝ)) .

Hence, this contradicts the assumption that there is no pooling. We may
thus assume that all individuals of one class reveal their productivity para-
meter. But then non-detectability requires that all individuals of the other
class reveal their productivity parameter as well. Otherwise the announced
distribution would not be compatible with the commonly known fact that
half of the population has earning ability wt′ and half of the population has
earning ability wt.

Claim 2. Consider an income tax mechanism M . Suppose there are no
pooling outcomes. Suppose the induced utility allocation {Ũ1(s), Ũ2(s)}s∈S

has the C-RT-C property. Then, there is no manipulating coalition that
contains individuals of only one type.
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Proof. Suppose all individuals of type t′ reveal their characteristics truth-
fully. By Claim 1, all individuals of type t, t 6= t′ reveal their earning ability
truthfully. Moreover, all individuals of type t have to report the same taste
parameter. Otherwise the announced distribution does not belong to D.
Hence, any conceivable manipulation must involve a revelation of earning
ability and a collective misreport of taste on the class level. Those manipu-
lations are ruled, by the C-RT-C property.

Claim 3. Consider an income tax mechanism M = (A(sLL), A(sLH),
A(sHL), A(sHH)). Suppose there are no pooling outcomes. Suppose the
induced utility allocation {Ũ1(s), Ũ2(s)}s∈S has the C-RT-C property and is
Pareto-optimal within the set of utility allocations which are implementable
by an income tax mechanism with the C-RT-C property. Then, there is no
manipulating coalition that contains individuals of both types.
Proof. By Claim 1, individuals of both types reveal their productivity pa-
rameters. By non-detectability, all individuals who announce the same pro-
ductivity parameter also have to announce the same taste parameter. Hence,
the only conceivable manipulation that contains individuals of both types
is such that all type 1 individuals misreport θ1 and all type 2 individuals
misreport θ2. I show in the following, that Pareto-optimality within the
set of C-RT-C utility allocations implies that there does not exist a stable
joint manipulation of taste parameters that makes both type 1 and type 2
individuals strictly better off.
The proof proceeds by contradiction. Suppose there is a a joint lie on taste
parameters that makes both type 1 and type 2 individuals strictly better
off. Without loss of generality, assume that the true state is sLL.18 An
undetectable joint collective lie induces the state perception sHH . Such a
collective lie makes all coalition members better off only if

θLQ(sLL) + V1(sLL) < θLQ(sHH) + V1(sHH) ,

θLQ(sLL) + V2(sLL) < θLQ(sHH) + V2(sHH) .
(17)

Due to NDT-U, this collective deviation is individually stable, as it does
only involve misreports of taste parameters. To achieve collective stability
as well, the following C-RT-C constraints have to be binding,

θLQ(sLH) + V1(sLH) = θLQ(sHH) + V1(sHH) ,

θLQ(sHL) + V2(sHL) = θLQ(sHH) + V2(sHH) ;
(18)

otherwise a coalition consisting only of type 1 individuals or a coalition

18The reasoning that follows is applicable for any conceivable constellation under which
type 1 and type 2 individuals might consider a joint manipulation of taste parameters.
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consisting only of type 2 individuals would want to deviate once more after
the state perception sHH has been induced.

(a) Suppose that

θHQ(sHL) + V1(sHL) ≥ θHQ(sHH) + V1(sHH) ,

θHQ(sLH) + V2(sLH) ≥ θLQ(sHH) + V2(sHH) .
(19)

By (17), the following income tax mechanism M ′ = (A(sHH), A(sLH),
A(sHL), A(sHH)) is Pareto superior. It is easily verified that M ′

satisfies all C-RT-C constraints if (19) holds.

(b) Suppose that

θHQ(sHL) + V1(sHL) < θHQ(sHH) + V1(sHH) ,

θHQ(sLH) + V2(sLH) < θLQ(sHH) + V2(sHH) .
(20)

By (17), (18) and (20), the following income tax mechanism M ′ =
(A(sHH), A(sHH), A(sHH), A(sHH)) is Pareto superior. Obviously,
M ′ satisfies all C-RT-C constraints.

(c) Suppose that

θHQ(sHL) + V1(sHL) < θHQ(sHH) + V1(sHH) ,

θHQ(sLH) + V2(sLH) ≥ θLQ(sHH) + V2(sHH) .
(21)

The following income tax mechanism M ′ = (A(sHH), A(sLH), A(sHH),
A(sHH)) is Pareto superior. It follows from (17) that both types are
better off in state sLL. It follows from (18) that type 2 is not worse
off in state sHL, and it follows from (21) that type 1 is strictly better
off in state sHL. Moreover, it is easily verified that M ′ satisfies all
C-RT-C constraints.

(d) Suppose that

θHQ(sHL) + V1(sHL) ≥ θHQ(sHH) + V1(sHH) ,

θHQ(sLH) + V2(sLH) < θLQ(sHH) + V2(sHH) .
(22)

Then, along the same lines as under (c), one shows that M ′ = (A(sHH),
A(sHH), A(sHL), A(sHH)) is Pareto superior and satisfies C-RT-C.
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Claims 1 to 3 are summarized as follows: Suppose there are no pooling
outcomes. Then a utility allocation that is Pareto-optimal within the set
of utility allocations which are implementable by an income tax mechanism
with the C-RT-C property also possesses the (more demanding) C-IC prop-
erty. We have thus shown that the set of Pareto-optimal utility allocations
under C-IC income tax mechanisms coincides with the set of Pareto-optimal
utility allocations under C-RT-C income tax mechanisms. In the following,
I may hence focus on the latter set. Recalling Lemma 1, these utility allo-
cations are achievable by means of a feasible allocation mechanism with the
I-RP, the NDT-U and the C-RT-C property. The following claim remains
to be established:

Claim 4. If pooling can be excluded, a Pareto-optimal utility allocation
is implementable if and only if it is implementable by a feasible allocation
mechanism which satisfies the NDT-CY, the I-RP and the C-RT-C prop-
erty.
Proof. As the NDT-CY property implies the NDT-U property, the if-
part is trivial. To prove the only if-part, consider an implementable util-
ity allocation and the underlying coalition-proof income tax mechanism
Q(·), C(·), Y (·). Construct an allocation rule Q′(·), C ′(·), Y ′(·) which has the
NDT-CY property and coincides with Q(·), C(·), Y (·) “on the equilibrium
path” as follows: ∀s ∈ S, Q′(s) = Q(s) and ∀(wt, θ) ∈ Γr(s), C ′(wt, θ, s) =
C(wt, θ, s) and Y ′(wt, θ, s) = Y (wt, θ, s). For θ′ 6= θ, C ′(wt, θ

′, s) = C ′(wt, θ, s)
and Y ′(wt, θ

′, s) = Y ′(wt, θ, s). By construction, Q′(·), C ′(·), Y ′(·) is fea-
sible and inherits the NDT-U, the I-RP and the C-RT-C -property from
Q(·), C(·), Y (·).

Proof of Lemma 4: Consider for example the C-RT-C constraints for
class 1 given that θ2 = θL:

if θ1 = θL : θLQ(sLL) + V1(sLL) ≥ θLQ(sHL) + V1(sHL) ,

if θ1 = θH : θHQ(sHL) + V1(sHL) ≥ θHQ(sLL) + V1(sLL) .

Adding up these inequalities gives Q(sHL) ≥ Q(sLL). Similarly, one de-
rives the constraints Q(sLH) ≥ Q(sLL), Q(sHH) ≥ Q(sHL) and Q(sHH) ≥
Q(sLH).
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Proof of Lemma 5: The argument is only sketched. Consider the La-
grangean of problem (12):

L = u(C1) − v
(

Y1
w1

)

− µ[k + C1 + C2 − Y1 − Y2]

−λ[u(C1) − v
(

Y1
w2

)

− V̄2] − ν[V̄2 − u(C2) − v
(

Y1
w2

)

] .

Deriving first order conditions, one easily verifies that (BC) has to be bind-
ing, that there is no distortion at the top and a distortion at the bottom if
and and only if (I-RP2) is binding.
Denote the solution of problem (12) by (Ȳ1(V̄2), C̄1(V̄2), Ȳ2(V̄2), C̄2(V̄2)). Unique-
ness of this solution can be established as follows. Strict quasiconcavity of
preferences and the property of no distortion at the top uniquely determine
Ȳ2 and C̄2 as a function of V̄2. The fact that (BC) is binding yields a unique
iso-tax-revenue line Y1 − C1 = γ, with γ = C2(V̄2) − Y2(V̄2) + r, on which
the point (Ȳ1(V̄2), C̄1(V̄2)) can be found. More precisely, (Ȳ1(V̄2), C̄1(V̄2))
maximizes u(C1)− v(Y1/w1) subject to I-RP2 and Y1 −C1 = γ. Again, due
to strict quasiconcavity, the latter problem has a unique solution.
Denote the optimal values of the multipliers at the solution of problem (12)
by λ̄(V̄2) and ν̄(V̄2). These multipliers are used to study how P depends on
V̄2. The following property is used:19

∂P

∂V̄2
= λ̄(V̄2) − ν̄(V̄2) .

Similarly as for the proof of Lemma 3, comparative statics of the solution
of problem (12) with respect to V̄2 can be derived. Based on this exercise,
the comparative statics of the Lagrangean multipliers can be determined.20

The details of the computations are omitted. One arrives at the following
results:

(a) Suppose first that (I-RP2) is binding.21 Using Assumption 2, one
verifies that the function λ̄(V̄2) decreases in V̄2 and that the function

19λ̄(R̄2) ≥ 0 captures the effect that a lower level of V̄2 tends to reduce P due to a
worsening of incentive problems. The expression −ν̄(V̄2) ≤ 0 shows that a lower level of
V̄2 allows us to increase P as less resources are needed to equip type 2 individuals with a
utility level of V̄2.

20The first order conditions imply:

λ̄(V̄2) =
1 − MRS1

1 − M̂RS
and ν̄(V̄2) =

u′(C̄1)

u′(C̄2)

MRS1 − M̂RS

1 − M̂RS
, (23)

where MRS1 := 1
w1

v′

�
Ȳ1

w1

�
/u′(C̄1) and M̂RS := 1

w2

v′

�
Ȳ1

w2

�
/u′(C̄1).

21The existence of a value V̄2 such that (I-RP2) is binding follows from Lemma 2.
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ν̄(V̄2) increases in V̄2, i.e. as long as (I-RP2) is binding the function P
is strictly concave in V̄2 and one has:

∂2P

∂(V̄2)2
= λ̄′(V̄2) − ν̄ ′(V̄2) < 0 .

(b) Assume that (I-RP2) is not binding.22 The first order conditions imply
λ̄(V̄2) = 0 and ν̄(V̄2) = u′(C̄1)/u

′(C̄2). Again, the comparative statics
with respect to V̄2 reveal

∂2P

∂(V̄2)2
= −ν̄ ′(V̄2) < 0 .

(c) As λ̄(V̄2) decreases in V̄2, there is a critical value R̂2, such that if this
critical value is exceeded, (I-RP2) is not binding anymore. Moreover,
one can show that the function λ̄(V̄2) − ν̄(V̄2) is continuous at R̂2.

(d) P has a maximum as follows from the existence of a solution of the
following problem:

maxC1,Y1,C2,Y2 u(C1) − v
(

Y1
w1

)

s.t. Y1 − C1 + Y2 − C2 ≥ k ,

u(C2) − v
(

Y2
w2

)

≥ u(C1) − v
(

Y1
w2

)

.

(24)

Denote by Ṽ2 the utility level that results for type 2 individuals at a
solution to problem (24). Using the first order conditions of problem
(24) allows us to verify that λ̄(Ṽ2) − ν̄(Ṽ2) = 0.

(e) Finally, use the first order condition (13) of the informed problem to
substitute for u′(C̄1)/u

′(C̄2) in the formula for ν̄(V̄2) (see (23)), one
gets λ̄(R2(r)) − ν̄(R2(r)) = −1.

Proof of Proposition 3: I consider a relaxed version of Problem P i, re-
ferred to as Problem P i

x. P i
x takes only a subset of the constraints of P i

into account. I show below that a solution to P i
x satisfies these neglected

constraints.
Formally P i

x is defined as follows. Maximize EWV subject to the feasibility

22The existence of a value of V̄2 such that (I-RP2) is not binding can e.g. be established
by the laissez faire solution, where individuals of type t choose (Yt, Ct) to maximize utility
under the constraint Yt = Ct + k

2
.
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constraints in (10), the I-RP constraints for type 2 and the following subset
of the C-RT-C constraints:

V1(sLH) = V1(sHH) ,

V2(sHL) = V2(sHH) , V2(sLL) − V2(sLH) ≥ θL .

{V ∗∗
t,x(s)}s∈S denotes the utility levels realized by class t at a solution to P i

x.
The following assumption formalizes the statement in Proposition 3 that θL

must not exceed some upper bound θ̄L.

Assumption 3 θL < min{R̂2(0) − R2(k), P (R2(k) + θL, 0) − P (R2(0) −
θL, r)}.

As will become clear, θL ≤ R̂2(0) − R2(k) ensures that, in every state s,
there is a distortion at the bottom at a solution of P i

x. θL ≤ P (R2(k) +
θL, 0) − P (R2(0) − θL, r) ensures that a solution of P i

x does not violate the
neglected C-RT-C constraint for class 1.23

Under Assumption 3, Proposition 3 follows from the following observations.

(a) In every state s, the budget constraint is binding and there is no
distortion at the top.
Proof. This follows from setting up the Lagrangean of P i

x and deriving
first order conditions.

(b) V ∗∗
2,x(sLL) ≤ θL + R2(k).

Proof. Suppose, to the contrary, that V ∗∗
2,x(sLL) > θL+R2(k). Then the

planner could choose, instead, the allocation (Y ∗
1 (k), C∗

1 (k), Y ∗
2 (k), C∗

2 (k))
for s 6= sLL. For s = sLL, the planner could choose V ∗∗

2,x(sLL) =
θL +R2(k) and V1 = P (θL +R2(k), 0). Due to the monotonicity prop-
erties established in Lemma 5, this would increase utilitarian welfare
in every state s.

(c) V ∗∗
2,x(sLH) ≤ R2(k).

Proof. The C-RT-C constraints imposed under P i
x imply V ∗∗

2,x(sLH) ≤
V ∗∗

2,x(sLL) − θL. Combing this with (b) yields (c).

(d) V ∗∗
1,x(sLL) = P (V ∗∗

2,x(sLL), 0) and V ∗∗
1,x(sHL) = P (V ∗∗

2,x(sHL), k). More-
over, there is a distortion at the bottom in state sLL.

23Recall that under Scenario 2, θL > R2(0)−R2(k). If θL does not exceed R2(0)−R2(k)
by too much, i.e. θL ≃ R2(0) − R2(k), then, the assumption θL < P (R2(k) + θL, 0) −
P (R2(0) − θL, r) is satisfied. To see this: if θL ≃ R2(0) − R2(k), the continuity property
established in Lemma 5 implies that P (R2(k)+θL, 0)−P (R2(0)−θL, r) ≃ R1(0)−R1(k).
By definition of Scenario 2, the latter term exceeds θL.
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Proof. V ∗∗
1,x(sLL) 6= P (V ∗∗

2,x(sLL), 0) or V ∗∗
1,x(sHL) 6= P (V ∗∗

2,x(sHL), k) im-
mediately yields a contradiction to optimality. The distortion at the
bottom in state sLL follows from Assumption 3 and observation (b),
which imply that V ∗∗

2,x(sLL) < R̂2(0).

(e) V ∗∗
2,x(sLL) ≥ R2(0) and V ∗∗

1,x(sLL) ≤ R1(0).
Proof. Given (d), if (e) is false, then V ∗∗

2,x(sLL) < R2(0) and V ∗∗
1,x(sLL) >

R1(0) . Then, using the monotonicity properties established in Lemma
5, it is possible to increase V2(sLL) and to decrease V1(sLL) along the
(I-RP2) constrained Pareto frontier without violating the constraint
V2(sLL)−V2(sLH) ≥ θL, thereby increasing utilitarian welfare in state
sLL.

(f) V ∗∗
2,x(sLH) = V ∗∗

2,x(sHH) = V ∗∗
2,x(sHL) =: V ∗∗

2,x(sH) ≤ R2(k).

Proof. V ∗∗
2,x(sHH) = V ∗∗

2,x(sHL) is a C-RT-C constraint, and V ∗∗
2,x(sLH) ≤

R2(k) has been established in (c). Hence it remains to be shown that
V ∗∗

2,x(sLH) = V ∗∗
2,x(sHH). To the contrary, let V ∗∗

2,x(sLH) 6= V ∗∗
2,x(sHH).

Optimality requires that V ∗∗
1,x(sLH) = V ∗∗

1,x(sHH) is the utility level re-
alized at a solution to the following problem:
Choose (C1(sLH), Y1(sLH), C2(sLH), Y2(sLH)) and (C1(sHH), Y1(sHH), C2(sHH),
Y2(sHH)) in order to maximize

u(C1(sLH)) − v
�

Y1(sLH)
w1

�
subject to the following constraints: Feasibility,

Y1(sLH) − C1(sLH) + Y2(sLH) − C2(sLH) ≥ r (BC(sLH)) ,

Y1(sHH) − C1(sHH) + Y2(sHH) − C2(sHH) ≥ r (BC(sHH)) ,

the I-RP constraints for type 2,

u(C1(sLH)) − v
�

Y1(sLH)
w2

�
≤ V ∗∗

2,x(sLH) (I-RP2(sLH)) ,

u(C1(sHH)) − v
�

Y1(sHH )
w2

�
≤ V ∗∗

2,x(sHH) (I-RP2(sHH)) ,

the C-RT-C constraint,

u(C1(sLH)) − v
�

Y1(sLH)
w1

�
= u(C1(sHH)) − v

�
Y1(sHH )

w1

�
,

and the requirement to deliver the following utility levels to class 2,

u(C2(sLH)) − v
�

Y2(sLH)
w2

�
= V ∗∗

2,x(sLH) ,

u(C2(sHH)) − v
�

Y2(sHH )
w2

�
= V ∗∗

2,x(sHH) .
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Suppose, without loss of generality, that V ∗∗
2,x(sLH) < V ∗∗

2,x(sHH). One
can show that a solution to this problem has the following proper-
ties:24 (C1(sLH), Y1(sLH)) = (C1(sHH), Y1(sHH)), (BC(sHH)) and
(I-RP2(sLH)) are binding, while (BC(sLH)) and (I-RP2(sHH)) hold
with a strict inequality. However, a strict inequality in (BC(sLH))
contradicts (a).

(g) V ∗∗
1,x(sLH) = V ∗∗

1,x(sHH) = V ∗∗
1,x(sHL) =: V ∗∗

1,x(sH) = P (V ∗∗
2,x(sH), k) ≥

R1(k), implying a distortion at the bottom in states sLH , sHL and
sHH . Moreover, at a solution to Problem P i

x (C1(sHL), Y1(sHL)) =
(C1(sLH), Y1(sLH)) = (C1(sHH), Y1(sHH)) =: (C1(sH), Y1(sH)) and
(C2(sHL), Y1(sHL)) = (C2(sLH), Y1(sLH)) = (C2(sHH), Y1(sHH)) =:
(C2(sH), Y2(sH)).
Proof. The first statement follows from (d), (f), optimality considera-
tions and the monotonicity properties established in Lemma 5, making
use of the fact that V ∗∗

2,x(sH) ≤ R2(k). The equality of (Ct, Yt) pairs
across states follows from the uniqueness established in Lemma 5.

(h) V ∗∗
1,x(sH) 6= R1(k) and V ∗∗

2,x(sH) 6= R2(k) and V ∗∗
2,x(sLL) 6= R2(0) and

V ∗∗
1,x(sLL) 6= R1(0) and V ∗∗

2,x(sLL) − V ∗∗
2,x(sLH) = θL .

Proof. This follows from setting up the Lagrangean of P i
x and deriving

first order conditions using the above results on the pattern of binding
constraints. In particular, if the constraint V2(sLL) − V2(sH) ≥ θL

was not binding, then the first order conditions would result in the
informed optimum, which is known to violate this constraint. The
presence of the corresponding multiplier in the first order conditions
shows that, for all s, the resulting allocation differs from the one chosen
by the informed planner.

(i) θH > R1(0) − R1(k) > V ∗∗
1,x(sLL) − V ∗∗

1,x(sH)
Proof. This follows from (e) (g), (h) and the definition of Scenario 2.

(j) V ∗∗
1,x(sLL) ≥ P (R2(k) + θL, 0) and V ∗∗

1,x(sH) ≤ P (R2(0) − θL, r).
Proof. The first inequality follows from (b), (d) and the monotonicity
property established in Lemma 5. The second inequality is established
as follows: Analogously as in (b), one shows that V ∗∗

2,x(sH) ≥ R2(0)−θL

24I omit the details. They involve the following steps: Show that there is no distortion

at the top via an analysis of first order conditions. This determines (C2(sLH), Y2(sLH))
and (C2(sHH), Y2(sHH)) as functions of the utility levels V ∗∗

2,x(sLH) and V ∗∗

2,x(sHH),
respectively. Secondly, show that this implies that the feasible set for a choice of
(C1(sLH), Y1(sLH)) and (C1(SHH), Y1(sHH)) is effectively restricted only by (BC(sHH))
and (I-RP2(sLH)). Thirdly, use the geometry of this set, the strict quasiconcavity of
preferences, as well as the fact that V ∗∗

2,x(sLH) ≤ R2(k) established in (c), to show that
there is a unique optimal choice for both (C1(sLH), Y1(sLH)) and (C1(SHH), Y1(sHH))
and that at this solution (BC(sHH)) and (I-RP2(sLH)) are binding while (BC(sLH)) and
(I-RP2(sHH)) are slack.

37



and then uses V ∗∗
2,x(sH) = P (V ∗∗

2,x(sH), k) and again the monotonicity
property.

(k) At solution to P i
x, the neglected C-RT-C constraint for class 1 is sat-

isfied. I.e. θH > V ∗∗
1,x(sLL) − V ∗∗

1,x(sH) > θL

Proof. This follows from (i), (j) and Assumption (3).
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