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Abstract

We provide a simple proof of the equivalence between ex ante and ex post budget balance

constraints in Bayesian mechanism design with independent types when participation decisions

are made at the interim stage. The result is given an interpretation in terms of efficient allocation

of risk.
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1 Introduction

In many applications of mechanism design, a key aspect of the implementation problem is to

ensure that the budget is balanced. For example, when mechanisms are designed for the provision

of public goods, the contributions need to cover the costs of producing the good. In bilateral trade,

the buyer’s payment needs to equal the seller’s revenue. In the dissolution of partnerships, the

transfers must add up to zero.

If there is a risk neutral lender with sufficient liquidity available, who does not otherwise par-

ticipate in the mechanism, budget balance is most naturally imposed as an ex ante constraint. If

resources are balanced in expectation, the outside lender is willing and able to offer an insurance

contract to the mechanism designer that guarantees a zero deficit in every state of the world. How-

ever, in some applications, such as the bilateral trade example, the assumption of a risk neutral

outsider seems to run counter to the spirit of the model. In such cases it appears more natural to

require that the budget is balanced ex post.

Ex post budget balance tends to be analytically less tractable than ex ante budget balance.

Fortunately, in many settings one can show that the restrictions are equivalent in the sense that

an ex ante balanced mechanism can be transformed into an ex post balanced mechanism without

upsetting the incentive constraints, and without changing the allocation rule. That is, payments

are rearranged, but “real” decisions are unaffected. These sort of results appear in two different

versions. In one version participation constraints are either absent, or they are imposed ex ante, so

that agents must choose whether to participate behind the veil of ignorance. In another version,

participation constraints are interim, so that agents can still opt out after learning their types.

The literature that does not impose interim participation constraints goes back to the seminal

contributions by d’Aspremont and Gérard-Varet (1979) and Arrow (1979). A concise summary of

this work can be found in d’Aspremont, Crémer and Gérard-Varet (2004). This literature provides

a more or less complete characterization for when it is possible to implement an efficient decision

rule and when it possible to implement any decision rule, while maintaining a balanced budget in

any state of the world.

For the case of interim participation constraints a result that guarantees the existence of an

equivalent ex post budget balanced mechanism for any ex ante budget balanced mechanism has
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been obtained in some special contexts, such as bilateral trade (Myerson and Satterthwaite’s, 1983,

Theorem 1), resolution of partnerships (Cramton, Gibbons and Klemperer’s, 1987, Lemma 4) and

public goods (Mailath and Postlewaite, 1990, Theorem 1). Moreover, Krishna and Perry (1998) has

shown that there exists an individually rational Vickrey-Groves-Clarke mechanism that balances the

budget ex ante if and only if the corresponding AGV mechanism (the class of mechanisms introduced

in d’Aspremont and Gérard-Varet 1979), which also fulfills individual rationality, balances the

budget ex post.1 All these special results concern the case of independent types. For the case with

correlated types, Fudenberg, Levine and Maskin (1995) and Kosenok and Severinov (2002) have

provided a general result that holds under generic conditions on the type distribution.

This focus of this paper is on the case of independent types. The purpose of the paper is twofold.

Firstly, we point out that independence of types guarantees equivalence between ex ante and ex

post budget balance with interim participation constraints not just in the special cases covered by

the literature so far, but in general. Secondly, our proof provides a simple interpretation of this

result in terms of efficient, incentive compatible, and interim individually rational allocation of risk.

That is, we begin the analysis by asking when a risk averse agent and a set of partially informed

risk neutral agents can agree on an efficient risk sharing agreement. Whenever this is possible, it

follows more or less immediately that, regardless of the details of the implementation problem, ex

ante and ex post budget balance are equivalent.

To obtain some intuition for our result, note first that we assume, as most of the literature

does, that agents have additively separable preferences, are risk neutral in transfers, and have no

liquidity constraints. Thus, in principle, the agents are able and willing to provide insurance to the

mechanism designer just as an outside lender would be. However, the insurance scheme is agreed

upon after agents observe their private information, implying that it must give all agents’ incentives

to participate and to report their private observations truthfully. These problems can be resolved if

agents’ private signals are independent. The scheme used in the proof designates one of the agents,

the “primary insurer”, to provide insurance for the budget deficit in as far as it is not predictable on

the basis of this agent’s own signal. Some other agent, the “secondary insurer”, provides insurance

for the part of the budget deficit that can be predicted using the first agent’s signal. The role of

the independence assumption is to ensure that truth-telling is incentive compatible for the primary

1We thank Phil Reny for pointing out the connection between our result and Krishna and Perry (1998).
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insurer and that the participation constraints hold for the secondary insurer.

We also show that the same idea can be used to obtain a weaker result in the case when there

exist two types with conditionally independent signals, a condition that first appeared in Crémer

and Riordan (1985). Then, we can guarantee that participation constraints are satisfied for all but

a single agent.2

Our paper is most closely related to d’Aspremont, Crémer and Gérard-Varet (2004). While they

focus on first best efficient mechanisms and do not consider the implications of interim participation

constraints, the insurance scheme that we consider is the same as a construction used in one of

their proofs.3 Our contribution may thus be viewed as clarifying that, in a slightly more general

setting than theirs, this construction preserves interim incentives to participate, and to provide an

explanation based on elementary insurance theory.

The remainder of this paper is organized as follows. In Section 2 we consider an insurance

problem with privately informed insurance providers. We then use the analysis of the insurance

problem to prove our main result in Section 3 for the case that agents’ signals are independent. In

Section 4 we prove the extension with the weakened independence assumption. Section 5 contains

some further discussion of the literature.

2 The Insurance Problem

Consider a risk-averse agent facing some uncertain expenditure (or income) that depends on N

random variables s̃i where i ∈ I = {1, 2, ..., N}. For i ∈ I denote by si ∈ Si a generic realization of

the i-th random variable, and define s ≡ (s1, s2, ..., sN ) and S ≡ ×N
i=1Si. The expenditure that the

risk averse agent faces is a function x : S → R.

¿From textbook economic theory we know that if there exists a risk neutral agent who is not

privately informed about s, this agent is willing to fully insure the risk averse agent at an actuarially

fair rate. This would generate an ex ante Pareto efficient allocation. No such uninformed risk

neutral agent is available in our setup. Instead, there are N partially informed risk neutral agents,

where for each positive integer i ≤ N , the risk neutral agent i knows the realization si at the time

2This result is a slight generalization of the main result in Crémer and Riordan (1985), where the added generality

is that it applies to arbitrary allocation rules rather than the surplus maximizing rule.
3See part (i) of the proof of Theorem 2 d’Aspremont, Crémer and Gérard-Varet (2004).
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at which the risk averse agent seeks to purchase insurance.4

Definition 1 An insurance contract is a pair 〈p, m〉 , where p ∈ RN and m : S → RN .

We write p = (p1, p2, ..., pN ) for what can be interpreted as up-front payments and adopt the

convention that a positive pi is a transfer to agent i. Similarly, we write m(s) = (m1(s), ..., mN (s))

and treat a positive value mi(s) as a transfer from i to the agent that seeks insurance.

An insurance contract provides full insurance if the payments by the N agents cover the un-

certain expenditure. It is actuarially fair if the up-front payments equal the expected expenditure.

We consider two incentive constraints. The first is non-manipulability. This requires that truthful

reporting of the signals by the N agents is a Bayesian equilibrium. The second condition is interim

individual rationality. We imagine that each agent i observes her signal si, but not that of any

other agent, before signing the insurance contract, and that agents cannot be forced to sign the

contract. All agents must therefore earn a weakly positive expected profit in order to be willing

to accept the contract.

To formalize the four properties listed in the previous paragraph, we will assume that all relevant

expectations are well-defined and let E[z|y] denote the expected value of z conditional on y.5

Definition 2 An insurance contract 〈p, m〉

• provides full insurance if
N∑

i=1

mi(s) = x(s)

for every s ∈ S;

• is actuarially fair if
N∑

i=1

pi = E

[
N∑

i=1

mi(s̃)

]
;

4It is without loss of generality to assume away any “residual uncertainty” in addition to s, since such uncertainty

can be insured away as a first step of the analysis.
5There are potentially multiple versions of the conditional expectations to which we refer in the text. These

expectations are uniquely defined only up to sets of measure zero of realizations of the variable on which we are

conditioning. Our conditions in Definition 2 should be interpreted as requiring that there exists some version of the

conditional expectations such that the conditions are satisfied. If multiple conditions are required to hold at the same

time, then this should be interpreted as the requirement that there exists one version of conditional expectations for

which all relevant conditions hold, i.e. the version must not be different in different conditions.
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• is non-manipulable if

E[mi(si, s̃−i)|si] ≥ E[mi(ŝi, s̃−i)|si]

for each i ∈ I and all si, ŝi ∈ Si;

• is interim individually rational if

pi ≥ E[mi(s̃)|si]

for each i ∈ I and si ∈ Si.

Proposition 1 relies on the following condition.

(IND) The random variables s̃1, s̃2, ..., s̃N are independent.

If (IND) is satisfied and the set of signals Si is discrete, non-manipulability is a consequence

of interim individually rationality and actuarial fairness.6 In general, individual rationality and

actuarial fairness guarantee that non-manipulability is satisfied for almost all pairs (si, ŝi), but

may fail on a set of measure zero. Since non-manipulability fails if just a single type earns a higher

payoff than all others, we need the definition in general.

We are now ready to state the result:

Proposition 1 If (IND) holds and N ≥ 2, then there exist insurance contracts that are interim

individually rational, provide full insurance, are actuarially fair, and are non-manipulable. More-

over, for any i, j ∈ I with i 6= j, there is some such insurance contracts that has the property that

agent j’s payment does not depend on his type, and that agents other than agents i and j make

zero payments in all states.

Proof: Take as the starting point an insurance scheme where pi = E[x(s̃)], mi(s) = x(s), and

where pk = mk(s) = 0 for all k 6= i and s ∈ S. That is, agent i provides full insurance at an

actuarially fair rate and all other agents are inactive. The problem with this scheme is that it will

in general fail individually rationality and non-manipulability, since x(s) in general varies in si.

But, since si is independent from s−i, the obvious solution to this problem is to pick some other

agent, agent j in the statement of Proposition 1, to insure agent i against the variability in si.

6This is seen by using the law of iterated expectations in the definition of actuarial fairness.
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To make this idea formal, we consider the following decomposition of x(s).

x(s) = E[x(s̃)]︸ ︷︷ ︸
Unconditional expected value

+

E[x(si, s̃−i) | si] − E[x(s̃)]︸ ︷︷ ︸
Deviation of conditional expected value from unconditional expected value

+

x(s) − E[x(si, s̃−i) | si]︸ ︷︷ ︸
Deviation of realization from conditional expected value

The idea of the insurance contract constructed below is that one agent, whom we label agent 1,

pays for the first and third term in the above decomposition. The second term is paid by someone

else, whom we label as agent 2. These two agents are compensated by appropriate up-front lump

sum payments, and all other agents pay nothing. Formally, let 〈p∗, m∗〉 be given by,

p∗1 = E[x(s̃)]

m∗
1(s) = E[x(s̃)] + x(s) − E[x(s1, s̃−1)|s1]

p∗2 = 0

m∗
2(s) = E[x(s1, s̃−1)|s1] − E[x(s̃)]

p∗k = m∗
k(s) = 0

for every k ≥ 3 and every s ∈ S.

It is obvious by construction that 〈p∗, m∗〉 provides full insurance, is actuarially fair, and that

non-manipulability is trivially satisfied for each agent k ≥ 3. Moreover, agent 2’s payment is

independent of his report, so non-manipulability needs only to be checked for is agent 1. If agent

1 observes signal realization s1 but reports ŝ1, her expected payment is:

E[x(s̃)] + E[x(ŝ1, s̃−1)|s1] − E[x(ŝ1, s̃−1)|ŝ1] = E[x(s̃)],

where the equality follows from the independence assumption (IND). Since the expected payment,

E[x(s̃)], is independent of the report ŝ1, there is no incentive for 1 to manipulate the contract.

It remains to check interim individual rationality. This holds trivially for agents k ≥ 3, and the

above calculation demonstrates that it is satisfied for agent 1. Agent 2’s interim expected payment

is:

E [E[x(s̃1, s̃−1)|s̃1]|s2]] − E[x̃(s)].
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By (IND), the first and the second term are identical. The interim expected payment for agent 2

is thus zero, implying that the individual rationality condition is satisfied. The claim in the second

sentence of Proposition 2 follows by relabeling of the agents.

Q.E.D.

The proof of Proposition 1 uses an insurance contract where one actor, agent 1, acts as a

“primary insurer”, and a second actor, agent 2, insures the primary insurer against the variation

that can be predicted by agent 1. One can construct alternative contracts in which the role of

the primary insurer is divided arbitrarily between the N agents, and in which the role to provide

secondary insurance for i is divided arbitrarily among the remaining N − 1 agents. Formally, let

α ∈ RN be a vector which may be thought of as “primary insurance weights” in that we require

that
∑

i αi = 1, but where a particular αi need not be nonnegative. In the same way, for each

i ∈ {1, 2, ..., N}, let βi ∈ RN−1 be a vector of “secondary insurance weights”, that is the shares

in the insurance against the variation that can be predicted by i. Again,
∑

j 6=i βij = 1, but a

particular βij need not be nonnegative. Now, for each i ∈ I and every s ∈ S let:

p∗i = αiE[x(s̃)]

m∗
i (s) = αi (E[x(s̃)] + x(s) − E[x(si, s̃−i) | si])

+
∑

j 6=i

βjiαj (E[x(sj , s̃−j) | sj ] − E[x(s̃)]) .

We leave it to the reader to verify that an insurance scheme of this form provides full insurance,

and is actuarially fair, non-manipulable, and interim individually rational. However, it obviously

does not have the properties referred to in the second sentence of Proposition 1.

3 Ex Ante and Ex Post Budget Balance

Assume again that there are N agents i ∈ I = {1, 2, ..., N}. They have to choose one decision

a from a set A of possible collective decisions. Each agent i privately receives a signal s̃i with

realizations in Si. We now interpret s̃i as agent i’s type. Preferences are defined over A and a

numéraire good called “money”. Let ti ∈ R be the transfer of money from agent i. Each agent i

has a quasi-linear von Neumann Morgenstern utility given by

ui(a, s) − ti
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where ui : A× S → R. As in the previous section, each agent observes si, but remains uninformed

about s−i. Finally, there is a resource constraint: implementing decision a ∈ A costs r(a, s) ∈ R

units of the numéraire good.

Note the generality of our model. Each agent i’s signal potentially affects agent i’s and other

agents’ preferences as well as the resource requirements.

Definition 3 A mechanism is a pair 〈f, t〉, where

• f : S → A is the allocation rule. For every s ∈ S the decision f(s) is implemented when s is

announced.

• t : S → RN is the payment rule. We define t(s) = (t1(s), t2(s), ..., tN (s)), and for every i ∈ I

and s ∈ S the value ti(s) is the transfer from agent i when s is announced.

By the revelation principle it is without loss of generality that we restrict attention to direct

mechanisms in which agents announce their types. For simplicity of notation, we only consider pure

direct revelation mechanisms, that is, mechanisms that pick some alternative in A with probability

1, conditional on the agents’ announcements, but our argument is easily extendable to the case of

random decisions.

Definition 4 A mechanism 〈f, t〉 is

• ex post budget balanced if, for each s ∈ S we have:

N∑

i=1

ti(s) = r(f(s), s);

• ex ante budget balanced if

E

[
N∑

i=1

ti(s)

]
= E[r(f(s), s)];

It now follows almost immediately from Proposition 1 that the set of allocation rules that can

be implemented under ex post budget balance and under ex ante budget balance are related in the

way described in Proposition 2 below.

Proposition 2 Suppose (IND) holds and N ≥ 2. For every ex ante budget balanced mechanism

〈f, t〉, and for any two agents i, j ∈ I with i 6= j, there is an ex post budget balanced mechanism

〈f̂ , t̂〉 such that:
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• The allocation rule is unchanged:

f̂(s) = f(s) for every s ∈ S;

• The interim expected payments by agents i and j are unchanged:

E[t̂k(sk, s̃−k) | sk] = E[tk(sk, s̃−k) | sk] for every k ∈ {i, j} and every sk ∈ Sk;

• The change in agent j’s payment does not depend on agent j’s signal:

t̂j(sj , s−j) − tj(sj , s−j) = t̂j(s
′
j , s−j) − tj(s

′
j , s−j) for any sj , s

′
j ∈ Sj;

• The payment rule for agents other than i and j is unchanged:

t̂k(s) = t(s) for every k ∈ I with k 6= i, j and for every s ∈ S.

Proof: Consider a mechanism 〈f, t〉 that is ex ante budget balanced. For every state s ∈ S define

x(s) = r(f(s), s) −
N∑

i=1

ti(s).

That is, x(s) is the ex post deficit under the proposed mechanism. We know from Proposition

1 that there exist insurance contracts that provide full insurance for the deficit x, and have the

properties listed in Proposition 1. Let 〈p, m〉 be one such contract. Non-manipulability implies

that for every i ∈ I there exists some real number ki such that pi − E[mi(si, s̃−i) | si] = ki for

every si ∈ Si. To satisfy interim individual rationality, ki must be weakly positive, and if any ki

were strictly larger than 0 a violation of actuarial fairness would be implied. We conclude that

pi − E−i[mi(s) | si] = 0 for every i ∈ {1, 2, ..., N} and every si ∈ Si.

Now consider the transfer scheme t̂ where

t̂i(s) = ti(s) − pi + mi(s)

for every i ∈ I and s ∈ S. Interim expected payments are unchanged for every i ∈ Si by the

earlier calculation. As the scheme provides full insurance, the mechanism with allocation rule f

and transfer rule t̂ is ex post budget balanced. The last two bullet points in Proposition 2 follow

from the fact that 〈p, m〉 has the properties listed in the second sentence of Proposition 1.

Q.E.D.

Proposition 2 does not require either incentive compatibility or individual rationality. However,

if truth telling is a Bayesian equilibrium in the original mechanism (with interim participation
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constraints imposed), the same holds true in the ex post budget balanced mechanism. Moreover,

if for any of the agents other than agent i, truth telling was a dominant strategy in the original

mechanism, the same will be true in the ex post budget balanced mechanism. Finally, if the original

mechanism satisfied an interim individual rationality constraint for any agent, then the same will

be true in the ex post budget balanced mechanism.

4 An Extension

We now relax the independence condition (IND). Unfortunately, the conclusion that we then obtain

is slightly weaker than the conclusion of Proposition 1, as one of the agents’ interim individual

rationality constraint may be violated for some realizations of this agent’s signal. The weaker

condition that we are considering is called “Condition S” in Crémer and Riordan (1985).7 We call

it (CIND).

(CIND) There are two agents i, j ∈ I, where i 6= j, such that conditional on every realization of

the other agents’ signals, the signals s̃i and s̃j of agents i and j are independent.

Condition (CIND) implies that N ≥ 2, so Proposition 3, unlike Proposition 1, does not explicitly

mention this condition.

Proposition 3 Let i and j be two agents for whom condition (CIND) holds. Then there are

insurance contracts that provide full insurance, are actuarially fair, are non-manipulable, and that

satisfy the interim individually rationality condition except possibly for agent j. Moreover, agent j’s

payment does not depend on his type, and all agents other than agents i and j make zero payments

in all states.

Proof: Without loss of generality, assume that agents 1, 2 are two agents for whom (CIND) is

7We comment below on the relation between our results in this section and Crémer and Riordan’s main result.
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satisfied. We write s−12 for realizations of the random variable s̃−12 ≡ (s̃k)
N
k=3 and observe that.

x(s) = E[x(s̃)]︸ ︷︷ ︸
Unconditional expected value

+

E[x(s1, s̃2, s−12)|s1, s−12] − E[x(s̃)]︸ ︷︷ ︸
Deviation of conditional expected value from unconditional expected value

+

x(s) − E[x(s1, s̃2, s−12)|s1, s−12]︸ ︷︷ ︸
Deviation of realization from conditional expected value

As in the proof of Proposition 1, the idea of the insurance contract 〈p∗, m∗〉 that we construct is

that the first and the third component in the above decomposition will be agent i’s payment. The

second component will be agent j’s payment. Agent 1 is compensated by an up-front payment.

Agent 2’s expected payment will be shown to be zero, and therefore he needs no up-front payment.

All other agents’ payments equal zero in all states, and they receive no up-front payment. That is,

p∗1 = E[x(s̃)]

m∗
1(s) = E[x(s̃)] + x(s) − E[x(s1, s̃2, s−12)|s1, s−12]

p∗2 = 0

m∗
2(s) = E[x(s1, s̃2, s−12) | s1, s−12] − E[x(s̃)]

p∗k = m∗
k(s) = 0

for all k ≥ 3 and all s ∈ S.

This contract obviously provides full insurance and is actuarially fair. Non-manipulability is

trivially satisfied for each agent K ≥ 3, and since the payment is independent of his report, non-

manipulability is also satisfied for agent 2. It remains to check it for agent 1. Suppose agent 1 has

observed signal realization s1, and reports signal realization ŝ1. Then his expected payment is:

E[x(s̃)] + E[x(ŝ1, s̃2, s̃−12)|s1] − E[E[x(ŝ1, s̃2, s̃−12)|ŝ1, s̃−12] | s1].

By the law of iterated expectations, the second term can be re-written as

E[x(ŝ1, s̃2, s̃−12)|s1] = E[E[x(ŝ1, s̃2, s̃−12)|s1, s̃−12]|s1]

= E[E[x(ŝ1, s̃2, s̃−12)|ŝ1, s̃−12]|s1],

where the second inequality follows from the conditional independence assumption (CIND). Thus,

the second and third term in 1’s expected payment cancel each other out, implying that the expected

payment is E[x(s̃)] for any report ŝ1 ∈ S1. Hence, non-manipulability is satisfied for agent 1 as well.
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Individual rationality obviously holds for agents other than agents 1 and 2. It also holds for

agent 1, by the above calculation. Finally, the insurance contract obviously has the properties

referred to in the second sentence of Proposition 3.

Q.E.D.

In the same way in which Proposition 2 followed from Proposition 1, we can now deduce from

Proposition 3:

Proposition 4 Let i and j be two agents for whom condition (CIND) holds. For every ex ante

budget balanced mechanism 〈f, t〉 there is an ex post budget balanced mechanism 〈f̂ , t̂〉 such that:

• The allocation rule is unchanged:

f̂(s) = f(s) for every s ∈ S;

• The interim expected payment by agent i is unchanged:

E[t̂i(si, s̃−i) | si] = E[ti(si, s̃−i) | si] for every si ∈ Si;

• The change in agent j’s payment does not depend on agent j’s signal:

t̂j(sj , s−j) − tj(sj , s−j) = t̂j(s
′
j , s−j) − tj(s

′
j , s−j) for any sj , s

′
j ∈ Sj;

• The payment rule for agents other than i and j is unchanged:

t̂k(s) = t(s) for every k ∈ I with k /∈ {i, j} and for every s ∈ S.

Like Proposition 2, also Proposition 4 is true regardless of whether incentive compatibility or

individual rationality are satisfied or not. However, if truth telling is a Bayesian equilibrium in

the original mechanism, then the same will be true in the ex post budget balanced mechanism.

Moreover, if for any of the agents other than agent i, truth telling was a dominant strategy in the

original mechanism, the same will be true in the ex post budget balanced mechanism. Finally, if

the original mechanism satisfied an interim individual rationality constraint for any agent, then the

same will be true in the ex post budget balanced mechanism, except possibly for agent j.

An implication of Proposition 4 is as follows. Consider the case that there are private values,

i.e. every agent’s utility depends only on his own type, but not on the other agents’ types. Suppose

also that the resource costs are a linear function of agents types: r(a, s) = r̄+
∑N

i=1 ri(a, si). Let f∗

be an allocation rule that maximizes social surplus, i.e. the sum of utilities minus resource costs,
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in every state. A Vickrey-Clarke-Groves payment rule will ensure that truthful reporting of type

is a dominant strategy. By adding appropriate constants, we can ensure that the mechanism is ex

ante budget balanced. By Proposition 4 we can then construct another payment scheme that is

ex post budget balanced, that makes for N − 1 agents truth telling a dominant strategy, and that

has the property that for the remaining agent truth telling is expected utility maximizing provided

that all other agents tell the truth. This is Theorem 2 in Crémer and Riordan (1985). Proposition

4 above strengthens Crémer and Riordan’s result because it applies not only to surplus maximizing

allocation rules but to other allocation rules as well.

5 Discussion

The paper that is closest to ours is d’Aspremont, Crémer and Gérard-Varet (2004). They prove

that, in the absence of interim participation constraints, efficient decision rules can always be imple-

mented if, for every real-valued function r (s) , there exists a transfer rule t such that
∑

i ti (s) = r (s)

for every s and

E [ti (s−i, si) |si] ≥ E
[
ti

(
s−i, s

′
i

)
|si

]

for every agent i and every pair si, s
′
i ∈ Si. In our language this condition is simply saying that

for every uncertain expenditure that the mechanism designer might have there exists an incentive

compatible full insurance agreement between the agents and the mechanism designer. While the

condition it is not expressed in terms of primitives, there are several known sufficient conditions,

one being stochastic independence (see d’Aspremont, Crémer and Gérard-Varet, 2004).

For the case when types are correlated, Fudenberg, Levine and Maskin (1995) and Kosenok

and Severinov (2002) have shown that large sets of allocation rules can be implemented by interim

individually rational and ex post budget balanced mechanisms under very general conditions. These

results rely, though, on the logic of the full surplus extraction results in Crémer and McLean

(1985, 1988) and McAffee and Reny (1992). As has been pointed out by Neeman (2004), such

results hinge crucially on preferences being uniquely determined by beliefs, an assumption which

is possible to relax while still allowing for correlations. Qualitatively, breaking the one-to-one

correspondence between beliefs and preferences results in a model more similar to the (non-generic)

case with stochastic independence in the sense that informational asymmetries become relevant.

14



Our approach to ex ante versus ex post budget balance may therefore be useful in this case.
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