
Grösche, Peter

Working Paper

Measuring Residential Energy Efficiency Improvements
with DEA

Ruhr Economic Papers, No. 60

Provided in Cooperation with:
RWI – Leibniz-Institut für Wirtschaftsforschung, Essen

Suggested Citation: Grösche, Peter (2008) : Measuring Residential Energy Efficiency Improvements
with DEA, Ruhr Economic Papers, No. 60, ISBN 978-3-86788-063-3, Rheinisch-Westfälisches Institut
für Wirtschaftsforschung (RWI), Essen

This Version is available at:
https://hdl.handle.net/10419/26825

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/26825
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Peter Grösche

#60

Ru
hr

Ec
on

om
ic

Pa
pe

rs

RWI
ESSEN



Ruhr Economic Papers
Published by
Ruhr-Universität Bochum (RUB), Department of Economics
Universitätsstraße 150, 44801 Bochum, Germany
Technische Universität Dortmund, Department of Economic and Social Sciences
Vogelpothsweg 87, 44227 Dortmund, Germany
Universität Duisburg-Essen, Department of Economics
Universitätsstraße 12, 45117 Essen, Germany
Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI Essen)
Hohenzollernstrasse 1/3, 45128 Essen, Germany

Editors:
Prof. Dr. Thomas K. Bauer
RUB, Department of Economics
Empirical Economics
Phone: +49 (0) 234/3 22 83 41, e-mail: thomas.bauer@rub.de
Prof. Dr. Wolfgang Leininger
Technische Universität Dortmund, Department of Economic and Social Sciences
Economics – Microeconomics
Phone: +49 (0) 231 /7 55-32 97, email: W.Leininger@wiso.uni-dortmund.de
Prof. Dr. Volker Clausen
University of Duisburg-Essen, Department of Economics
International Economics
Phone: +49 (0) 201/1 83-36 55, e-mail: vclausen@vwl.uni-due.de
Prof. Dr. Christoph M. Schmidt
RWI Essen
Phone: +49 (0) 201/81 49-227, e-mail: schmidt@rwi-essen.de

Editorial Office:
Joachim Schmidt
RWI Essen, Phone: +49 (0) 201/81 49-292, e-mail: schmidtj@rwi-essen.de

Ruhr Economic Papers #60
Responsible Editor: Christoph M. Schmidt
All rights reserved. Bochum, Dortmund, Duisburg, Essen, Germany, 2008
ISSN 1864-4872 (online) – ISBN 978-3-86788-063-3

The working papers published in the Series constitute work in progress circulated to
stimulate discussion and critical comments. Views expressed represent exclusively
the authors’ own opinions and do not necessarily reflect those of the editors.



Ruhr Economic Papers
#60

Peter Grösche

RWI
ESSEN



Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in
der Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

ISSN 1864-4872 (online)
ISBN 978-3-86788-063-3



Peter Grösche*

Measuring Residential Energy Efficiency Improvements
with DEA

Abstract
This paper measures energy efficiency improvements of US single-family
homes between 1997 and 2001 using a two-stage procedure. In the first stage,
an indicator of energy efficiency is derived by means of Data Envelopment
Analysis (DEA), and the analogy between the DEA estimator and traditional
measures of energy efficiency is demonstrated. The second stage employs a
bootstrapped truncated regression technique to decompose the variation in
the obtained efficiency estimates into a climatic component and factors attrib-
uted to efficiency improvements. Results indicate a small but significant im-
provement of energy efficiency over the studied time interval, mainly ac-
counted for by fuel oil and natural gas users.
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1 Introduction

Two issues characterize the current debate on energy markets and policy. On the

one hand, the large amount of climate gas emissions by both the world’s rich and

emerging economies threatens serious consequences for the climate (Stern 2007).

On the other hand, today’s industrialized world depends largely on a limited set

of countries for their supply with fossil fuels (Frondel and Schmidt 2008). One

possible avenue to reduce both the greenhouse effect and import dependencies

on fossil fuels are improvements in the efficiency of the utilization of energy.

It is quite reasonable to expect that the residential sector, in particular, can

contribute substantially to such efficiency improvements. Not only do residents

account for a large share of final energy consumption, but their homes are often

equipped with out-of-date and energy-inefficient appliances. The improvement of

residential energy efficiency is therefore one major goal of energy policy makers.

A necessary, albeit not completely resolved first step to develop and to mon-

itor a successful policy strategy is the provision of adequate indicators of energy

efficiency. Using improper data or even lacking the relevant data may lead to

misinformed and poor policy decisions (IEA 2007:136). A number of approaches

and concepts to measure energy efficiency have been suggested in the literature;

see Ang (2006) for a recent review. The spectrum of candidate indicators ranges

from the simple ratio of energy usage per capita to sophisticated composite index

approaches. All of these suggestions have their strengths and weaknesses: While

the first attempt provides only a rough approximation of efficiency trends, the

latter approach measures efficiency on a very disaggregated level. However, such

sophisticated indices raise the cost of extensive data requirements, as they require

separate figures of energy intensities for each energy end-use. Especially in the

residential sector, this prerequisite is rarely fulfilled. Usually, households know

their total energy consumption at best, but cannot assess how much energy they

have consumed for particular activities, such as preparing hot water.
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To circumvent this difficulty, the analyst could either rely on engineering esti-

mates, with the primary disadvantage that these estimates are based upon theo-

retical considerations rather than observed consumer behavior. Alternatively, the

analyst can use exact but expensive metering, with the undesirable feature that

due to the great cost the metered data would typically comprise only a limited

number of observations. Other approaches combine survey data with regression

techniques to extract the required efficiency indicators, but consider only one fuel

at a time (Parti and Parti 1980, EIA 1999). Focusing merely on a specific fuel

can hardly give a comprehensive picture about residential energy efficiency im-

provements, since a number of households use several fuels, e.g. natural gas for

space heating and electricity for their appliances. The analytical discussion thus

would still benefit from the development of a meaningful efficiency index that en-

compasses all household fuels and energy end-uses while avoiding extensive data

requirements.

To offer a practical solution to this problem, this paper measures residential

energy efficiency improvements for US single-family homes between 1997 and 2001

in two stages. In the first stage we derive an indicator of individual households’

energy efficiency by means of Data Envelopment Analysis (DEA), an approach

that is firmly anchored in production theory (see e.g. Seiford and Thrall 1990).

The second stage decomposes the variation in the obtained efficiency estimates

into climatic influences and factors that can be attributed to efficiency improve-

ments.

One of the key advantages of the approach are its light data requirements. In

contrast to the usual applied approaches to measure residential energy efficiency,

DEA does not require separate energy intensity figures for each end-use. The

efficiency indicator can even be calculated from survey data. To illustrate, we

use household survey data, publicly available from the US Department of Energy.

Applications of DEA in the context of energy efficiency are sparse. Ferrier and

Hirschberg (1992) employ DEA to estimate energy efficiency of US commercial
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buildings, Phylipsen et al. (1997, 1998) apply a comparable benchmarking pro-

cedure for the European cement industry, but neither of theses studies considers

efficiency improvements. Just recently, Mukherjee (2008) uses DEA to estimate

energy efficiency time trends in the US manufacturing sector. We are not aware of

any study which estimates residential energy efficiency improvements with DEA.

The outline of the paper is as follows. In Section 2, we discuss the method-

ological aspects. Section 3 provides an overview of our data set. In Section 4, we

discuss our results, while section 5 concludes.

2 Methodology

2.1 Measuring Energy Efficiency

Residential energy consumption derives from the demand for energy services,

such as the demand for thermal comfort. Households ‘produce’ those services

with their energy commodities (e.g. heating equipment) by using a set of fuel

inputs. The standard approach to measure residential energy efficiency draws on

the framework of Becker’s (1965) home-production function. Along these lines,

Wirl (1997) defines residential energy efficiency as the ratio between the amount

of a particular produced service s and the amount of energy e consumed for the

production:

(1) ϕ :=
s

e
.

To condense the individual-level information, ϕ is usually computed for an av-

erage household, and an improvement of energy efficiency would result in an

increase of the (average) ϕ.

Frequently, the literature uses the inverse measure 1/ϕ (often called energy

intensity) to express efficiency tendencies for the particular service. For instance,

Haas (1997), Schipper et al. (1985), and Schipper et al. (2001) all combine
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1/ϕ with non-efficiency related indices to explain changes in residential energy

consumption for that service. The major drawback with such a procedure are

its extensive data requirements, because separate figures of energy intensities for

each produced service are required. This means that the researcher needs detailed

information on how much energy is consumed for a wide range of home activities,

e.g. for cooking meals. Such data are rarely available in the residential sector. A

more desirable approach to measure efficiency improvements would encompass a

sound theoretical justification with less onerous data requirements.

2.2 Energy Efficiency and DEA

Put simply, DEA can be considered as a generalization of the energy efficiency

definition (1). Figure 1(a) illustrates the similarities between DEA and ϕ. Com-

puted for the average household, ϕ is the slope of the ray through the origin and

the average household. In contrast, DEA computes a best-practice frontier, which

is in the one-input one-output case the steepest ray through the origin that has

support from at least one data point. The production plans of all households are

bounded by the best-practice frontier, and are benchmarked against this frontier.

To formalize, let sssl = (s1l, . . . , sJl)
′ be a vector of j = 1, . . . , J produced

services sjl from household l (l = 1, . . . , L), and let el be l’s total energy input.1

Each household uses a positive amount of energy to produce at least one service.

The following optimization problem suggested by Charness et al. (1978) resembles

definition (1) of energy efficiency:

1For reasons that become clear later, we restrict our analysis to the case of only one input
(energy) and multiple outputs (services), although DEA can easily deal with multiple inputs
and outputs. See e.g. Seiford and Thrall (1990).
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Figure 1: Benchmarking against the best-practice frontier
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max
uuuo vo

ηo =
uuu′

ossso

voeo

=

∑J
j=1 ujosjo

voeo

subject to(2a)

∑
j ujosjl

voel

≤ 1 l = 1, . . . , L,(2b)

with weights, uuuo = (u1o, . . . , uJo)
′, ujo ≥ 0, and vo ≥ 0, assigned to the outputs

and the input, respectively. Problem (2) must be solved for every household,

while o denotes the household currently under consideration. It is a ratio of

weighted service output to weighted fuel input, subject to the condition that the

similar ratio for each of the L households is less than or equal to unity. Due to its

weighting scheme, problem (2) can handle several services simultaneously, and a

decomposition of total energy demand to derive service-specific energy intensi-

ties is not necessary. An important implicit assumption is that the underlying

technology exhibits constant returns to scale.

Let (η∗
o ,uuu

∗
o, v

∗
o) describe the optimal solution of problem (2) for household o.

The product η∗
oeo is a measure of how much energy consumption is justified for

the service production of household o such that o will become efficient. Thus,
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η∗
o = 1 indicates a position on the (technically) efficient frontier, as depicted for

the best-practice household in Figure 1(b). If 0 < η∗
o < 1, household o can re-

duce its energy consumption by (1− η∗
o) percent, or by (1− η∗

o)eo units, without

being forced to diminish the service level. The same amount of services may be

maintained by improved efficiency. In Figure 1(b) the corresponding conservation

potential is illustrated for the average household as the distance to the frontier.

By setting ũjo = ujo/vo > 0, ũ̃ũuo = (ũ1o, . . . , ũJo)
′, and ho = ηoeo > 0, we ob-

tain a linear optimization problem in which the assigned weights have a sound

interpretation (Dyson and Thanassoulis 1988):

max
ũ̃ũuo

ho = ũ̃ũu′
ossso =

∑
j

ũjosjo subject to(3a)

∑
j

ũjosjl ≤ el l = 1, . . . , L.(3b)

Similar to problem (2), the optimal value h∗
o = η∗

oeo is a measure of how much

energy consumption is justified for the service production of household o. The

weights ũjo can be interpreted as the amount of energy consumed by household

o in the production of one unit of sj, as it can be seen in (3b). For example, if

service 1 stands for space heating (measured in square-meters, m2) and energy

consumption e is expressed in kilowatthours (kWh), then ũ1o is measured in

kWh/m2. Loosely speaking, the vector ũ̃ũuo can be thought of as the vector of

energy intensities from household o.

2.3 Decomposing Efficiency Variation

The individual efficiency indicator η∗
l = h∗

l /el is derived subject to the house-

hold’s realizations (el, sssl), while assuming that the underlying production possi-

bility set is alike for every household. However, the variation in the vector of

efficiency estimates ηηη∗ = (η∗
1, . . . , η

∗
l , . . . , η

∗
L)′ might be at least in part due to
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favorable or unfavorable operating conditions of the individual household. For

example, living in a climatic moderate zone lowers the demand for space heating

and air-conditioning, and an affected household will typically exhibit a compa-

rably low energy consumption, implying a rather high efficiency. Likewise, by

comparing households across several years, those households having access to

latest technology operate under a more favorable environment, since the latest

technology usually requires less energy per unit service output. Improvements in

ηηη∗ due to climatic reasons cannot be treated as energy efficiency improvements

whereas the replacement of out-of-date equipment or enhanced dwelling insula-

tions affects efficiency positively. To summarize, the efficiency estimates in ηηη∗

might differ systematically, because the individual operating environment con-

strains the household’s choice of fuel inputs and service outputs, and hence its

production possibility set.

Regression analysis enables us to decompose the efficiency variation in ηηη∗,

while a set of explanatory variables zzzl controls for the individual operating en-

vironment including climate. However, such a procedure is (in finite samples)

associated with inference problems, basically caused by a complex correlation

structure inherent in ηηη∗ (Simar and Wilson 2007). While (el, sssl, zzzl) are assumed

to be realizations of L independent sample observations, DEA estimates the tech-

nical efficient frontier by enveloping the data points (el, sssl) of the best-practice

households. The efficiency indicators ηηη∗ are thus subject to the condition that

these best-practice households belong to the sample, and therefore exhibits a com-

plex and unknown correlation pattern, with Cov(η∗
o , η

∗
l ) �= 0 for some households o

and l. In a regression equation this dependency in turn implies correlation among

the regressions residuals. Fitting a regression model and ignoring this inherent

dependency in the residuals gives incorrect standard errors for the coefficient es-

timates, and the usual test statistics are not applicable. As a consequence, we

cannot infer with confidence as to whether zzzl affects η∗
l .

To overcome this inference problem, we extent our regression analysis using
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a two-stage bootstrap procedure proposed by Simar and Wilson (2007). This

procedure simulates the data-generating process yielding (el, sssl, zzzl), and encom-

passes the operating environment using truncated maximum likelihood regres-

sion. While η∗
l is bounded from both sides (0 < η∗

l ≤ 1), the bootstrap procedure

is designed for a left-truncated efficiency indicator. We thus use the reciprocal

1/η∗
l ≥ 1 as dependent variable in a truncated regression with a truncation point

at 1 to explain efficiency variation due to the individual operation environment:

(4) 1/η∗
l = zzz′lβββ + εl.

In its standard form, the truncated regression ignores the (unknown) correlation

pattern among the residuals εεε. We therefore augment our analysis for the pro-

posed bootstrap procedure using 2000 replications. See the appendix for more

details.

3 The Data

We use data from the US Residential Energy Consumption Survey, conducted

regularly by the US Energy Information Administration (EIA).2 For the present

purpose, we use the surveys of 1997 and 2001 to check whether energy efficiency

improvements have occurred between the years. Each survey contains household

micro data of energy consumption, dwelling characteristics and the number of

electric appliances. We restrict our attention to households living in single-family

homes.

We had to drop a couple of observations from both years because of missing

or implausible data. Especially households using coal, wood, district heating,

or renewable energies must be removed because of missing consumption figures.

The remaining sample comprises 4,212 households in total, from which 2,367

come from the 1997 survey, and 1,845 households from the 2001 survey.

2The data are available online at http://www.eia.doe.gov/emeu/recs/contents.html.
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Table 1: Data summary

1997 2001

Mean Median Mean Median

Total energy kWh 35,434 32,953 32,464 30,439

Living space m2 165 151 218 193

Persons number 2.63 2 2.68 2

Electric appliances number 3.76 3 4.67 4

Fridges, freezers number 1.58 1 1.64 2

Heating Degree Days number 4,815 5,139 4,358 4,591

Cooling Degree Days number 899 673 1,066 905

2,367 sampled observations are from 1997, and 1,845 observations from 2001.

In a first step, model (3) is solved for every observation. The households’

total energy consumption serves as the only input, measured in kWh. Turning

to the outputs (the ‘produced’ energy services), we approximate the demand

for space heating and cooling, and lightning with the size of living space. The

number of household members serves as a proxy for the amount of hot water

preparation and cooked meals. To account for energy consumption due to the

use of electric appliances, we incorporate the joint number of TV-sets, videos,

DVDs, and computers. The overall number of refrigerators and freezers in the

household are likewise included in our estimation. The upper panel of table 1

summarizes the employed input and output data for the DEA analysis.

We benchmark all households against an intertemporal best-practice frontier

(Tulkens and Vanden Eeckhaut 1995) by pooling both periods to obtain an ef-

ficiency indicator η∗
l = h∗

l /el for every observation. If efficiency improvements

have occurred between 1997 and 2001, a general tendency of larger η∗
l for the

later period should be embodied in the empirical distribution.

The local climate conditions are among the first candidates to be included in

the set of covariates zzz for the second stage regression. We choose the amount
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of measured Heating Degree Days (HDD) and – in case the household has air-

conditioning – the Cooling Degree Days (CDD) as proxies for climate conditions.

HDD are calculated as the difference between 65◦ F indoor temperature and the

daily average outdoor temperature below 65◦ F, summed over all days of a year.

CDD are calculated in a like manner. A large value of HDD indicates a rather

large demand for space heating, while a large value for CDD does the same for

cooling purposes. To allow for nonlinear effects, we likewise include the respective

squared terms HDD2 and CDD2. Summary statistics for the climate variables

for both sample years are given in the lower panel of table 1.

The building characteristics may define a favorable or unfavorable operating

environment. Because of differences in the heat transmitting surface, we control

for whether the respective home has a detached or an attached structure. Dummy

variables indicate the construction decade of the home. Starting with homes built

before 1940, we expect that newer homes exhibit a higher insulation standard,

and choose buildings constructed in 1990 or later as the reference case. Further,

different main heating fuels may cause efficiency differences. For instance, fuel

oil and natural gas are fuels that are converted into useable energy within the

home, and the household must bear the conversion leakage involved with the

transformation process. For electricity on the other hand, these leakages arise

already at the power plants such that the amount of delivered energy is much

smaller. We hence choose households heating with electricity as the reference.

Finally, we interact the variables that capture building characteristics and

main heating fuel with a time dummy for 2001 to assess whether efficiency im-

provements took place. Because efficiency decreases with the dependent variable

1/η∗
l , the overall impact of the estimated coefficients for the interaction terms

have to be negative if any efficiency improvement has occurred between 1997 and

2001.
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Figure 2: First-stage efficiency estimates ηηη∗
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4 Results

The empirical densities of the two distributions for ηηη∗, obtained by the first-stage

computations, are illustrated in Figure 2, one for each year. Because 0 < η∗
l ≤ 1,

any efficiency shortfall can be interpreted as conservation potential (1 − η∗
l ),

measured in percent of actual energy consumption.

The bulk of observations lie within a range of 0.1 < η∗
l < 0.8, with a tail to

the right. There are 121 households with η∗
l ≥ 0.8, of which 16 households serve

as best-practice benchmark with η∗
l = 1. The average η∗ of 1997 amounts to

0.34, whereas the average η∗ of 2001 is 0.42. A classical t-test and a nonpara-

metric Kolmogorov-Smirnov test both confirm that the two distributions differ

significantly in their means and in their cumulative distribution, respectively.3

The regression analysis of the second stage fits equation (4), and thereby

3The test statistics for the t-test amounts to |t| = 14.7, with p = 0, and the Kolmogorov-
Smirnov test computes a maximal difference between the two cumulative distributions of D =
0.23, p = 0.

14



decomposes the efficiency variation into components attributed to climatic differ-

ences and improvements of energy efficiency. Table 2 reports the estimated pa-

rameters and their standard errors for the plain truncated regression, and shows

further the mean parameter estimates of the bootstrapped truncated regression

procedure along with the 99% and 95% percentile confidence intervals. Both

approaches tell a consistent story, as all parameters share the same sign, are of

comparable magnitude, and no deviance is apparent between the models with

respect to statistical inference.

The coefficients for HDD and CDD suggest that a very cold or, in case the

home has air-conditioning, a very warm location yield weaker efficiency, since

such an environment usually causes a comparably higher energy consumption.

Interestingly enough, the significant parameter for HDD2 denotes a concave re-

lationship between heating demand and the dependent variable 1/η∗
l , which in

turn implies a parabolic, u-shaped effect with respect to efficiency. A closer in-

spection of the bootstrap estimates reveals that 1/η∗
l increases for HDD < 7, 464

and decreases beyond that level. This non-linear relationship indicates that in-

vesting in a home insulation while having only a low heating demand is in most

instances not a profitable option. Below a certain level of HDD people therefore

rather spent their money for energy consumption instead for a retrofit if HDD

increases, and efficiency thus falls within a specific range of HDD. However, be-

yond the level of 7,464 HDD an investment in dwelling insulation might appear

economical, and the estimated effect reverses.4

Apart from climatic influences, the building’s structure, its age and the re-

spective main heating fuel affects the household’s energy efficiency. Surprisingly,

homes with an attached structure exhibit an inferior efficiency, although we ex-

pected that they benefit from the heat transmission from their neighbors. The

4Note that levels of 7,000 HDD and more are usually observed in states like Montana,
Wyoming, North- and South Dakota, and Minnesota. See, e.g., the climate zones map at
http://www.eia.doe.gov/emeu/recs/climate zone.html.
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Table 2: Regression results

Truncated Bootstrapped truncated regression
regression lower bound upper bound
β̂ s.e. 1% 5% β̂ 5% 1%

Constant -2.937 0.297 -3.733 -3.503 -2.923 -2.351 -2.205

HDD 1.046 0.080 0.844 0.894 1.045 1.202 1.248
HDD2 -0.070 0.008 -0.091 -0.086 -0.070 -0.056 -0.052
CDD 0.217 0.090 -0.011 0.045 0.220 0.393 0.444

CDD2 0.053 0.029 -0.022 -0.006 0.052 0.107 0.125

Main Effects
Attached structure 0.233 0.106 -0.046 0.016 0.231 0.439 0.496

Construction decade
before 1940 1.230 0.178 0.758 0.887 1.228 1.584 1.695

1940-1949 1.204 0.192 0.718 0.834 1.202 1.585 1.712
1950-1959 -0.288 0.134 -0.645 -0.559 -0.291 -0.045 0.040
1960-1969 0.495 0.168 0.079 0.163 0.494 0.823 0.925
1970-1979 0.113 0.142 -0.255 -0.156 0.110 0.375 0.464
1980-1989 0.099 0.200 -0.413 -0.285 0.096 0.495 0.592

Main heating fuel is
Fuel oil 2.298 0.178 1.830 1.940 2.292 2.633 2.755

Natural gas 2.333 0.151 1.920 2.027 2.327 2.631 2.725
LPG 1.190 0.222 0.654 0.759 1.187 1.604 1.716

Kerosene 1.640 0.501 0.095 0.548 1.589 2.526 2.795

Interaction with dummy for 2001
Attached structure -0.386 0.176 -0.828 -0.720 -0.382 -0.042 0.057

Construction decade
before 1940 0.032 0.217 -0.538 -0.384 0.040 0.462 0.569

1940-1949 -0.212 0.258 -0.884 -0.719 -0.208 0.271 0.416
1950-1959 -0.051 0.235 -0.641 -0.506 -0.042 0.399 0.550
1960-1969 0.106 0.232 -0.507 -0.344 0.115 0.559 0.693
1970-1979 -0.421 0.247 -1.061 -0.917 -0.416 0.062 0.173
1980-1989 -0.060 0.260 -0.729 -0.554 -0.053 0.432 0.597

Main heating fuel is
Fuel oil -1.221 0.254 -1.897 -1.738 -1.226 -0.750 -0.620

Natural gas -1.009 0.192 -1.485 -1.386 -1.014 -0.634 -0.490
LPG -0.558 0.323 -1.381 -1.213 -0.577 0.026 0.221

Kerosene -1.112 0.830 -3.771 -2.979 -1.154 0.399 0.726

Bold parameters indicate significance at the 1% level, italic figures do so for the 5% level. LPG
= Liquified petroleum gas. HDD and CDD are measured in 1000 heating and cooling degree
days, respectively.
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order of magnitude of the coefficients for the construction decade suggests a

pretty clear relation between the building’s age and its efficiency. While homes

constructed before 1940 exhibit the worst performance, this effect mitigates with

declining age, and even vanishes for homes built in 1970 or thereafter. The one

exemption from this general trend are homes built between 1950 and 1959, show-

ing even a better performance as the reference case of just recently constructed

homes. An explanation for this finding is not immediately forthcoming, other

than to speculate that homes of this category have just been recently retrofitted.

Any main heating fuel other than electricity yields an efficiency shortfall.

The largest efficiency deduction are exhibited by homes heated either with fuel

oil or natural gas. However, this result is unsurprising because households that

do not heat with electricity must bear the conversion leakage involved with the

transformation process of e.g. oil into heat. The efficiency shortfall of homes

heated either with liquified petroleum gas (LPG) or kerosene is less pronounced.

These fuels are typically used in homes heated with an oven instead of having a

central heating. To the extent that ovens typically heat a small portion of the

living space, such homes have a lower energy consumption.

Turning to efficiency improvements between 1997 and 2001, we note that

climatic differences can explain a considerable share of the observed change in

1/η∗
l . The mean value of 1/η∗ in 1997 is 3.6 while the mean value in 2001 is 0.8

units less. As the summary statistics in table 1 show, 2001 had on average 457

HDD less but 167 CDD more than 1997. Keeping in mind that the coefficients

in table 2 refer to thousands of HDD and CDD, respectively, we can explain

some 57% of the decrease of the average 1/η∗ by climatic differences.

Efficiency improvements are captured by the the interaction effects in the

lower panel of table 2. Users of fuel oil and natural gas sampled in 2001 in-

creased their energy efficiency, as did owners of attached homes. All respective

coefficients appear significantly negative. Beyond that, neither the coefficients for

other fuels nor for the construction decades appear statistically significant. To
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conclude, these results suggest that indeed an improvement in energy efficiency

had occurred, but basically triggered only by a few factors.

5 Summary

This paper measures energy efficiency improvements of US single-family homes

between 1997 and 2001 by using a two-stage procedure. The first stage derives

a comprehensive energy efficiency indicator by means of DEA, while making use

of an intertemporal version of Dyson and Thanassoulis’ (1988) model formula-

tion. In the second stage, we decompose the variation in the obtained efficiency

indicator estimates into a climatic component, and factors attributed to energy

efficiency improvements. Using truncated regression in its standard form as well

as in a bootstrap context (Simar and Wilson 2007), we pay attention to the infer-

ence problem that arises from the inherent correlation among the DEA estimates

in finite samples. Our results are mixed: a substantial part of the variation in

efficiency scores is due to climatic influences, but households have nevertheless

improved their energy efficiency. In particular, households heating mainly with

fuel oil or natural gas show significant improvements.

A key advantage of the applied procedure is its ease in measuring residential

energy efficiency improvements. The light data requirements obviate the burden-

some demands that accompany traditional measurement approaches. Moreover,

while the usual definition of residential energy efficiency draws on the framework

of Becker’s (1965) home production framework, the derived indicator not only

resembles this definition methodologically, but has in addition a strong theo-

retical background in production theory (Seiford and Thrall 1990). This might

suggest the procedure for other applications in energy economics, far beyond the

measurement of energy efficiency improvements.
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Appendix: The Bootstrap Procedure

The inherent but unknown correlation among the individual elements of ηηη∗ makes

regressing the inverse efficiency estimate 1/η∗
l on a set of covariates a critical

issue. Obviously, it is possible to induce dependency among observations within a

regression context by specifying an error component ς that exhibits a distribution

with zero mean and some other distribution parameters:

(5) 1/η∗
l = zzz′lβββ + ς + εl,

where εl is a standard iid regression residual free from correlation. Because of the

unobservability of ς, we can only perceive εl = ς + εl, implying the well-known

inference problems because of the invalid estimated standard errors. However, we

can simulate the relationship 1/η∗
l = zzz′lβββ + εl by means of the bootstrap, which is

the heart of the bootstrap procedure proposed by Simar and Wilson (2007). In

particular, we follow their suggested ‘Algorithm #1’:

{1} Solve the optimization problem (3) for each of the L sample households,

and obtain for every household an efficiency estimate η∗
l = h∗

l /el.

{2} Obtain parameter estimates (β̂̂β̂β, σ̂ε) by estimating equation (5) with trun-

cated maximum likelihood regression and truncation point at 1, thereby

using the subset of households F for which η∗
l > 1.

{3} Looping over the next three steps B times yields a set of bootstrap estimates

A =
{(

β̂̂β̂βbs, σ̂̂σ̂σbs
ε

)
b

}B

b=1
:

{3.1} For each household l in F draw at random εl from the truncated

normal distribution N(0, σ̂ε) with left truncation at (1 − zzz′lβ̂̂β̂β), using

the estimates from step {2}.

{3.2} Compute for each household in F : (1/η∗
l )

bs = zzz′lβ̂̂β̂β + εl.
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Figure 3: Distributions of parameter bootstrap estimates
0

2
4

6
D

en
si

ty

.6 .8 1 1.2 1.4

(a) HDD

0
2

4
D

en
si

ty

−.2 0 .2 .4 .6

(b) CDD

{3.3} Regress (1/η∗
l )

bs on zzzl using truncated regression and truncation point

at 1 to obtain bootstrap estimates
(
β̂̂β̂βbs, σ̂̂σ̂σbs

ε

)
b
.

{4} Construct bootstrap percentile confidence intervals from A.

Percentile intervals to the confidence level α are simply ordered lists of the pa-

rameters of interest, excluding the upper and the lower tail (Efron and Tibshirani

1993:170-171). Suppose we have B bootstrap estimates
{

β̂bs
1

}B

b=1
. The endpoints

for a (1−α) percentile confidence interval for β1 are the α/2∗B upper and lower

ordered values in this list.

Figure 3 shows the distributions for two estimated coefficients obtained by

B = 2000 bootstrap loops. The vertical dashed lines illustrate the respective

upper and lower endpoints for a 99% percentile confidence interval, the dotted

lines illustrate the 95% percentile confidence interval. The coefficient for heating

degree days (HDD) is significant on both confidence levels. By contrast, the

coefficient for cooling degree days (CDD) is only significant on the 5% confidence

level since its 99% percentile interval incloses zero.
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