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Abstract

We use parametric power ARCH models of the conditional variance of infla-
tion to model the relationship between inflation and its uncertainty using
monthly data for Germany, the Netherlands and Sweden over a period rang-
ing from 1962 to 2004. For all three countries inflation significantly raises infla-
tion uncertainty as predicted by Friedman. Increased uncertainty affects infla-
tion in all countries but not in the same manner. For Sweden we find a negative
impact in accordance with the Holland hypothesis, whereas for Germany and
the Netherlands we find the opposite in support of the Cukierman-Meltzer hy-
pothesis. In a sensitivity analysis we show that an arbitrary choice of the
heteroskedasticity parameter influences this relationship significantly.
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1 Introduction

The issue of the welfare costs of inflation has been one of the most researched topics in
macroeconomics both on the theoretical and empirical fronts. Friedman (1977) argues
that a rise in inflation leads to more nominal uncertainty. The opposite type of causation
has also been analyzed in the theoretical literature. Cukierman and Meltzer (1986) argue
that central banks tend to create inflation surprises in the presence of more nominal
uncertainty. Clarida et al. (1999) emphasize the fact that since the late 1980s a stream of
empirical work has presented evidence that monetary policy may have important effects
on real activity. Consequently, there has been a great resurgence of interest in the issue of
how to conduct monetary policy. If an increase in the rate of inflation causes an increase
in its uncertainty, one can conclude that greater uncertainty-which many have found to
be negatively correlated to economic activity-is part of the costs of inflation. Thus, if we
attempt to provide a satisfactory answer to the questions ‘What actions should the central
bankers take?’, and ‘What is the optimal strategy for monetary authorities to follow?’, we
must first develop some clear view about the temporal ordering of inflation and nominal
uncertainty.

Those GARCH time series studies that examine the inflation-uncertainty link use
various sample periods, frequency data sets and empirical methodologies. For example,
Baillie et al. (1996) employ an ARFIMA-GARCH-in-mean model, Grier and Perry (1998)
and Fountas and Karanasos (2007) estimate univariate component GARCH specifications,
Conrad and Karanasos (2005a, b) utilize the ARFIMA-FIGARCH model, and Fountas et
al. (2006) use a bivariate constant correlation GARCH formulation. Despite using differ-
ent GARCH specifications all these studies focus exclusively on the standard Bollerslev
type of model.

There seems to be no obvious reason why one should assume that the conditional
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variance is a linear function of lagged squared errors. The common use of a squared term
in this role is most likely to be a reflection of the normality assumption traditionally
invoked working with inflation data. However, if we accept that inflation data are very
likely to have a non-normal error distribution, then the superiority of a squared term is lost
and other power transformations may be more appropriate. Indeed, for non-normal data,
by squaring the inflation rates one effectively imposes a structure on the data which may
potentially furnish sub-optimal modelling and forecasting performance relative to other
power terms. If m; represents inflation in period ¢, this paper considers the temporal
properties of the functions of |m,|* for positive values of d. We find, as an empirical
fact, that the autocorrelation function of |m;|? is a concave function of d and reaches its
maximum when d is smaller than one. This result appears to argue against Bollerslev’s
type of model.

In this paper, the above issues are analyzed empirically for Germany, the Netherlands
and Sweden with the use of a parametric power ARCH model (PARCH). The PARCH
model may also be viewed as a standard GARCH model for observations that have been
changed by a sign-preserving power transformation implied by a (modified) PARCH pa-
rameterization. The PARCH model increases the flexibility of the conditional variance
specification by allowing the data to determine the power of inflation for which the pre-
dictable structure in the volatility pattern is the strongest. This feature in the volatility
processes of inflation has major implications for the inflation-uncertainty hypothesis. To
test for the relationship between the two variables we use the simultaneous-estimation ap-
proach. Under this approach, we estimate a PARCH-in-mean model with the conditional
variance equation incorporating lags of the inflation series (the ‘level effect), thus allowing
simultaneous estimation and testing of the bidirectional causality between the inflation
series and the associated uncertainty. Moreover, He and Terésvirta (1999) emphasize that
if the standard Bollerslev type of model is augmented by the ‘heteroscedasticity’ para-

meter (the ‘power’ term), the estimates of the ARCH and GARCH coefficients almost



certainly change. More importantly, we find that the inflation-uncertainty relationship is
sensitive to changes in the values of the ‘heteroscedasticity’ parameter. Put differently,
the estimated values of the ‘in-mean’ and the ‘level” effects are fragile to changes in the
‘power’ term.

The article is organized as follows: In section 2 we consider the hypotheses about the
causality between inflation and its uncertainty in more detail. In Section 3, we describe
the time series model for inflation and explain its merits. We report the empirical results
in Section 4 and in Section 5 we evaluate the robustness of our findings. Section 6 discusses
our results and proposes extensions of the time series model for inflation. Section 7 outlines

our conclusions.

2 The link between inflation and its uncertainty

2.1 Theory

The effect of inflation on its uncertainty is theoretically ambiguous. In line with the
Friedman (1977) hypothesis, which stresses the harmful effects of nominal uncertainty
on employment and production, several researchers contend that a high rate of inflation
produces greater uncertainty about the future direction of government policy and, there-
fore, about the future rates of inflation. Ball (1992) formalizes this idea in the context
of a repeated game between the monetary authority and the public. This extension of
a Barro-Gordon model introduces exogenous shocks and two Central Bank (CB) policy-
makers, one Conservative and one Liberal, who have different preferences over how to
react in times of high inflation. During these times the public is confused because they
do not know which policy maker is in charge, which in turn increases their uncertainty
about future inflation. In accordance with the Friedman hypothesis we test for a positive
effect.

In contrast, Ungar and Zilberfarb (1993) propose a mechanism that may weaken, offset,



or even reverse the direction of the traditional view concerning the inflation-uncertainty
relationship. They argue that, as inflation rises, economic agents invest more resources
in forecasting it, thus reducing nominal uncertainty. However, this effect might only be
present in periods of extreme inflation, which means that it comes into action only if the
inflation rate surpasses a crucial threshold.

On the other hand, Cukierman and Meltzer (1986) predict that an increase in uncer-
tainty will raise inflation due to the behaviour of the CB in an uncertain environment.
Their model is embedded in a Barro-Gordon setting in which the CB is not tied to a
commitment rule on money supply growth. Therefore, the CB can pursue both objectives
of ‘keeping inflation low’ and ‘stimulating the economy by surprise inflation’. Since the
objective function of the CB and the money supply process are modelled as random vari-
ables, the public has difficulties inferring what caused higher inflation. It could be either
that the CB finds it more important to stimulate the economy or that a random money
supply shock occurred. Due to this information asymmetry the CB has an incentive to
create inflation surprises in the presence of higher nominal uncertainty. In accordance
with the Cukierman and Meltzer hypothesis, we test for a positive effect.

Finally, Holland (1995) predicts the opposite effect of uncertainty on inflation. He
assumes the CB to be motivated by a desire for stability. If the CB analysts observe
increasing nominal uncertainty due to an increasing inflation rate, the CB will restrict
the money supply. This measure is justified by reducing the potential of severe negative

welfare effects. In accordance with the Holland hypothesis, we test for a negative effect.

2.2 Empirical evidence

The relationship between the two variables has been analyzed extensively in the empirical
literature. Recent time series studies have focused particularly on the GARCH conditional
variance of inflation as a statistical measure of nominal uncertainty (see, for example,

Grier and Perry, 2000). To test for the relationship between uncertainty and indicators



of macroeconomic performance such as inflation one can use either the two-step or the
simultaneous-estimation approach.

Under the former approach, estimates of the conditional variance are obtained from
the estimation of a standard GARCH model and then these estimates are used in running
Granger-causality tests to examine the causality between the two variables. Under the
latter approach the model is estimated with the conditional variance (lagged inflation)
included as a right-hand side regressor in the mean (variance) equation.

Applying the two-step methodology, Grier and Perry (1998) in the G7 countries, and
Fountas et al. (2004) and Conrad and Karanasos (2005b) in several European countries,
find that inflation significantly raises its uncertainty. They also find evidence in favour
of the Cukierman-Meltzer hypothesis for some countries and in favour of the Holland
hypothesis for other countries. Their results regarding the impact of uncertainty on
inflation were generally consistent with the rankings of CB independence (CBI).

Some studies use GARCH models that include a function of the lagged inflation rate
in the conditional variance equation. In particular, Brunner and Hess (1993) allow for
asymmetric effects of inflation shocks on nominal uncertainty and find a weak link be-
tween the two variables in the US. Two studies use GARCH type models with a joint
feedback between the conditional mean and variance of inflation. Baillie et al. (1996), for
three high inflation countries and the UK, and Karanasos et al. (2004) for the US, find
strong evidence in favour of a positive bidirectional relationship in accordance with the
predictions of economic theory.

There is very little research based on GARCH measures of uncertainty that investi-
gates the case of Europe as one economic region, which would be needed for successful
implementation mechanisms of a common European monetary policy. Fountas et al.
(2004) and Conrad and Karanasos (2005b) fill in some of the gaps which arise from the
lack of interest in the European case and from the methodological shortcomings of the

previous studies.



3 PARCH model

Since its introduction by Ding et al. (1993), the PARCH model has been frequently ap-
plied. For example, Hentschel (1995) defined a parametric family of asymmetric GARCH
formulations that nests the EGARCH and PARCH models. He and Terésvirta (1999)
considered a family of first-order asymmetric GARCH processes which includes the asym-
metric PARCH (A-PARCH) as a special case. Brooks et al. (2000) analyzed the applica-
bility of the PARCH models to national stock market returns for ten countries.! Laurent
(2004) derives analytical expressions for the score of the A-PARCH model. The use of the
PARCH model is now widespread in the literature (see, for example, Mittnik and Paolella,
2000, Giot and Laurent, 2003, Karanasos and Schurer, 2005, Karanasos and Kim, 2006,
and Conrad et al., 2006, 2007).

Let 7; follow an autoregressive (AR) process augmented by a ‘risk premium’ defined
in terms of volatility

(D(L)’ﬂ't = ¢0 + ]fg(ht) + Et, (1)

with

ol

& = ehf,

where by assumption the finite order polynomial ®(L) = i ¢, L has zeros outside the unit
circle and the symbol ‘=’ is used to indicate equality byZ :dleﬁnition. In addition, {e;} are
independent and identically distributed (i.i.d) random variables with E(e,) = E(e? —1) =
0. The conditional variance of inflation {m;}, h; is positive with probability one and is a
measurable function of the sigma-algebra ¥, ;, which is generated by {m;_1,m;—2,...}.
Furthermore, we need to choose the form in which the time-varying variance enters the

specification of the mean to determine the ‘risk premium’. This is a matter of empirical

evidence. In the empirical results that follow we employ three specifications for the

Tt is also worth noting that Fornari and Mele (1997) showed the usefulness of the PARCH scheme in
approximating models developed in continuous time as systems of stochastic differential equations. This
feature of GARCH schemes has usually been overshadowed by their well-known role as simple econometric
tools providing reliable estimates of unobserved conditional variances (Fornari and Mele, 2001).
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functional form of the ‘risk premium’. That is, we use g(h:) = hi, g(ht) = Vi, or
g(hy) =In(hy).
Moreover, h; is specified as an A-PARCH(1,1) process with lagged inflation included

in the variance equation
s s s
hi =w4ah?  fle1) + Bhiy +ymi, (2)

with

f(et—l) = Het—l‘ - <6t71}67

where & with d > 0 is the ‘heteroscedasticity’ parameter, « and (3 are the ARCH and
GARCH coefficients respectively, ¢ with || < 1 is the ‘leverage’ term and , is the ‘level’
term for the [th lag of inflation. The model imposes a Box-Cox power transformation of
the conditional standard deviation process and the asymmetric absolute residuals. The

expected value of f(e;_1) is given by

E[f(er1)] = L=+ 1402600 (38) i e,y W N(O,1),
€t-1)] = M[(l _ §)5 + (1 + g)éL if ey (i’-j) tr(07 1)

)

where N and t, denote the Normal and student-t distributions respectively, r are the
degrees of freedom of the student-t distribution and I'(-) is the Gamma function. The dth
moment of the conditional variance is a function of the above expression (see Karanasos
and Kim, 2006).

Within the A-PARCH model, by specifying permissible values for 4, a, /3, ¢ and v, in
(2), it is possible to nest a number of the more standard ARCH and GARCH specifications
(see Ding et al., 1993, Hentschel, 1995, and Brooks et al., 2000). For example, in (2) let
0 =2and ¢ = v, = 0 to get the GARCH model. In order to distinguish the general
model in (1)-(2) from a version in which k = v, = ¢ = § = 0, we will hereafter refer to

the former as A-PGARCH-in-mean-level (A-PGARCH-ML) and the latter as PARCH.
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4 Empirical analysis

4.1 Power-transformed inflation

We use monthly data on the Consumer Price Index (CPI) as proxies for the price level.?
The data range from 1962:01 to 2004:01 and cover three European countries, namely,
Germany, the Netherlands, and Sweden. We have chosen these three particular countries
given their different histories in monetary policy pursued by their respective Central
Banks and inflation histories. This choice allows us to test the various hypotheses of
the behaviour of the Central Banks in response to increasing inflation and/or inflation
uncertainty.

Inflation is measured by the monthly difference of the In CPIi.e. [r; = 100-In(CPI;/CPI;_;)],
which leaves 505 usable observations. The inflation rates of the three countries are plotted
in Figure 1 below. These display the differences in monetary policy. German pursued for
most of the time period a committed money growth target that explicitly took the Bun-
desbank’s inflation goal into consideration and therefore yields a relatively stable inflation
rate. Sweden’s rather volatile inflation rate is a result of it’s Central Bank commitment
to fix exchange rate, at least until the beginning of the 1990s. The Netherlands is an
interesting case to investigate, because it’s inflation rate remained relatively stable over
the decades despite a similar inability as Sweden to execute monetary policy due its fixed
exchange rate regime.

The results of the Phillips-Perron unit root tests (not reported) imply that we can treat
the three rates as stationary processes. The summary statistics (not reported) indicate
that the distribution of the three series is skewed to the right and has fat tails. The large

values of the Jarque-Bera statistic imply a deviation from normality.

2Since most of the studies use CPI based inflation measures (i.e., Conrad and Karanasos, 2005a,b) we
construct our measures from the CPI. Alternatively, one can use either the Producer Price Index (PPI)
or the GNP deflator. Brunner and Hess (1993) use all three measures but they discuss only the results
using CPI inflation. Grier and Perry (2000) and Fountas and Karanasos (2007) use both (CPI and PPI)
indices and find that the results are virtually identical.

11



Figure 1. Evolution of inflation over time.
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Next, we examine the sample autocorrelations of the power transformed absolute in-
flation || for various positive d. Figure 2 shows the autocorrelogram of |m;|? from lag 1
to 100 for d = 0.5, 0.75, 1, 1.5, 2, 2.5. The horizontal lines show the +1.96/v/T confidence
interval (CI) for the estimated sample autocorrelations if the process 7, is i.i.d. In our
case T = 505, so CI= +1.96//T = +0.0872.

The sample autocorrelations for \/W are greater than the sample autocorrelations
of |m|¢ for d = 0.75, 1, 1.5, 2, 2.5 at every lag up to at least 100 lags for the Netherlands
and Sweden, and up to at least 50 lags for Germany. In other words, the most interesting
finding from the autocorrelogram is that |7,|¢ has the strongest and slowest decaying au-
tocorrelation when d = 0.5. Furthermore, the power transformations of absolute inflation
when d is less than or equal to one have significant positive autocorrelations at least up

to lag 100, 95 and 35 for the Netherlands, Sweden and Germany respectively.
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Figure 2. Autocorrelations of |m|%.
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Figure 3 shows the autocorrelogram for power transformations of absolute residuals
le¢]? from AR models that incorporate seasonal dummy variables (see next Section). We
plot the sample autocorrelations from lag 1 to 24 for d = 0.5, 1, 1.5, 2. In general, the
most interesting finding from the autocorrelogram is that, at most lags, |¢;|? has the lowest

autocorrelation when d = 2.
Figure 3. Autocorrelations of |e|¢.

Autocorrelation of Ie® from high to low Autocarrelation of Ie from high to low Autocorrelation of Is from high to low
Germany — AR and Seasonal Adjustment The Netherlands — AR and Seasonal Adjustment Sweden — AR and Seasonal Adjustment

—0.02 002 0.06 0.10 0.14 o.18

—a.10

Lag length Lag length Lag length

To illustrate this more clearly, we calculate the sample autocorrelations of the ab-
solute value of inflation p_(d) as a function of d for lags 7 = 1,12,60,96 and taking
d = 0.125,0.25,...,1.75,1.875,2,...,4.5. Figure 4 gives the plots of calculated p,(d).
For example, for lag 12, there is a unique point d* equal to 0.50, 0.625 and 0.75 for Swe-
den, the Netherlands and Germany respectively, such that p,,(d) reaches its maximum at

this point: pyo(d*) > pio(d) for d # d*.
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Figure 4. Autocorrelations of |m|¢ at lags 1, 12, 60 and 96.
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Since for the choice of the econometric model it is important whether the strength of

5 the plots of calculated p.(d) for |e|?

for values of d smaller than one.

autocorrelation persists in the residuals of the model, we analogously present in Figure
For example, py,(d) reaches its maximum at
0.5, 0.625 and 0.75 for the Netherlands, Sweden and Germany respectively. These figures

confirm the claim that in our data the autocorrelation structure of inflation is the strongest

Figure 5. Autocorrelations of |e;|¢ at lags 1, 12, 24 and 36.
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4.2 Estimated models of inflation

We proceed with the estimation of the AR-PGARCH(1,1) model in equations (1) and
(2) in order to take into account the serial correlation observed in the levels and power
transformations of our time series data. Table 1 reports the estimated parameters of
interest for the period 1962-2004. These were obtained by quasi-maximum likelihood
estimation (QMLE) as implemented in EVIEWS. The best fitting specification is chosen
according to the Likelihood Ratio (LR) results and the minimum value of the Information
Criteria (IC) (not reported). Once heteroscedasticity in the conditional mean has been
accounted for, an AR(12) specification appears to capture the serial correlation in all
three inflation series.?

The existence of outliers causes the distribution of inflation to exhibit excess kurtosis.
To accommodate the presence of such leptokurtosis, one should estimate the PGARCH
models using non-normal distributions. As reported by Palm (1996), the use of a student-
t distribution is widespread in the literature. In accordance with this, we estimate all the
models using two alternative distributions: the normal and the student-t. Moreover,
we allow for the possibility of seasonality in the inflation data. The mean equation is
modified to include seasonal dummy variables on the intercept. In other words, the
dummy variables (not reported) are included to seasonally adjust the inflation series. We
find that four of these dummies are jointly statistically significant for Germany and the
Netherlands and five for Sweden.

For all countries we find the leverage term ¢ to be insignificant and therefore we
re-estimate the model excluding this parameter. The estimated [ parameter is highly
significant in all cases while « is significant for all countries but the Netherlands and
Sweden (when the innovations e; are student-t distributed). These are the only two (out
of the nine) cases were the estimated power term is statistically significant (see Table 1).

In order to distinguish the general PGARCH model from a version in which § is fixed to

3Due to space limitations, we have not reported the estimated equations for the conditional means.
They are available upon request from the authors.

16



a specific value we will hereafter refer to the latter as (P)GARCH.

For the Netherlands, when the innovations are t-distributed, the IC chooses a PGARCH
model with estimated power term parameter of 6 = 3.36. The corresponding values for
the normal distribution are markedly lower: § = 1.10 for the model without and § = 0.80
with seasonal dummies. For Germany the Akaike IC (AIC) choose (P)GARCH models
with ‘power’ coefficients § below 1. For Sweden, when the errors ¢; are t-distributed, the
estimated value of § = 1.71 is markedly higher than the power terms with innovations
that are drawn from the normal distribution: § = 0.40 for the model without and § = 0.80

for the model with seasonal dummies.

Table 1. (P)GARCH Models.

Normal Normal Student-t
(Seasonal Dummies)

Germ Neth Swed Germ Neth Swed Germ Neth Swed

o 012 018 0.13 0.14 0.17 0.11 0.08  0.01 0.06
(0.04)  (0.03)  (0.04)  (0.04)  (0.11)  (0.04)  (0.04)  (0.01) (0.05)

p 073 081 078 068 085 086 0.06 0.90 0.93
(0.10)  (0.03)  (0.08)  (0.10)  (0.07)  (0.05)  (0.02)  (0.03) (0.03)

6 08 110 040 050 080 0.80 0.50 3.36 1.71
© - = =~ = = - (0.54) (1.06)

r — — - — - - 5.24  3.43 2.66
(1.39)  (0.55) (0.39)

For each of the three European countries, Table 1 reports estimates of the
parameters (of interest) for the (P)GARCH model. Germ, Neth and Swed
denote Germany, the Netherlands and Sweden respectively. The numbers
in parentheses are robust standard errors. r are the degrees of freedom of
the student-t distribution.

Next, we report the estimation results of an AR-(P)GARCH-M model of inflation,
with g(h;) = hy, for the three European countries. Table 2 reports only the estimated
parameters of interest. In all countries the estimates for the ‘in-mean’ parameter (k) are
statistically significant (see the ‘Mean’ columns of Table 2). The effects are significant
at the 10% (Germany), 4% (the Netherlands) and 1% (Sweden) levels. In Germany and
the Netherlands there is evidence in favour of the Cukierman-Meltzer hypothesis since
the value of the ‘in-mean’ coefficient is positive: 0.87 and 0.27, respectively. Evidence in
favour of the Holland hypothesis applies in Sweden. Hence, overall, the evidence on the
effect of nominal uncertainty on inflation is mixed. In all three countries the values of the

‘power’ coefficients are below 1.
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Table 2. (P)GARCH-ML Models (Normal Distribution).

Mean: g(h,) = h, Level Mean-Level: g(h,) = h,
Germ Neth Swed Germ Neth Swed Germ Neth Swed
k087 027 —0.43 — — — 1.35 0.27 —0.47
(0.53)  (0.13)  (0.16) (0.57) (0.12) (0.20)

Vi — — — 0.06 0.08 —0.07 0.11  0.07 0.08 —0.07 0.16
(0.03)  (0.02) (0.02)  (0.04)  (0.02)  (0.03) (0.02) (0.05)

{11} 3y {7 4} {11} 3y {7 {11}

6 050 070  0.40 1.38 0.80 1.37  0.80 0.80 0.45
- - - (0.71) - (0.54) - - (0.17)

For each of the three European countries, Table 2 reports estimates of the parameters of interest

are robust standard errors. The numbers in {-} indicate the lags of the ‘level’ terms.

Table 3 reports, for Germany, estimates of the k parameters of the (P)GARCH-M
model with g (h¢) = h; and errors that are conditionally normal, for various positive d.
The estimated values of the ‘in mean’ effect are sensitive to changes in the ‘power’ term.
Note that the statistical significance of the ‘risk premium’ decreases monotonically as the
value of § increases (see p-values in square brackets in Table 3). There is no convergence

as soon as d is equal to or higher than 1.70.

Table 3. (P)GARCH-M Models for Germany (Normal Distribution).

0 0.50 0.70  0.80 1.00 1.20 1.30 1.50 1.70 1.80 2.00

k 0.87 NC* 097 0.96 0.88 0.84 0.77 NC NC NC
[0.103] [0.110]  [0.115]  [0.143]  [0.159]  [0.194]

AIC 0.172 - 0.173 0.174 0.176 0.177 0.179 - - -

LL -33.43 - -33.61 -34.00 -34.46 -34.71 -35.22 - - -

Table 3 reports estimates of the ‘in mean’ parameters of the (P)GARCH-M model with g (h;) = hy,
for various positive d. * No convergence. The numbers in brackets are p values. The bold
numbers indicate the minimum value of the AIC. LL denotes the maximum log-likelihood value.

In what follows we report the estimation results of an AR-PGARCH-L model of in-
flation in the three countries with lagged inflation included in the conditional variance
as the ‘level’ effect. In the expressions for the conditional variances reported in Table 2,
various lags of inflation (from 1 to 12) were considered with the best model chosen on the
basis of the minimum value of the AIC. Statistically significant effects are present (see
the ‘Level’ columns of Table 2). For all countries there is strong evidence that inflation
affects its uncertainty positively as predicted by Friedman (1977) and Ball (1992). The
estimated (absolute) ‘level’ coefficient is in the range 0.06 < |y, < 0.11. The L mod-
els for Germany and Sweden generated very similar ‘heteroscedasticity’ parameters: 1.38

and 1.37 respectively. The chosen value of ¢ for the Netherlands (0.80) is lower than the
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corresponding values for Germany and Sweden.

Finally, Table 2 also reports the estimation results of an AR-(P)GARCH-ML model.
That is, we estimate a system of equations that allows only the current value of the
conditional variance to affect average inflation and that also allows up to the twelfth lag
of the latter to influence the former. All ‘level’ and ‘in-mean’ estimated coefficients are
highly significant. As with the L model, we again find support for Friedman’s hypothesis
in all three countries (see the ‘Mean-Level’ columns of Table 2). The (absolute) ‘level’
parameter is in the range 0.07 < |v;| < 0.16. Moreover, we find mixed evidence regarding
the direction of the impact of a change in nominal uncertainty on inflation. That is,
we find evidence in favour of the Cukierman-Meltzer hypothesis for Germany and the
Netherlands and in favour of Holland’s hypothesis for Sweden. Germany is the country
with the highest ‘risk premium’ parameter (1.35). As with the M models in all three
countries the values of the ‘power’ coefficients are below 1. When we include ‘level’ effects
the impact of uncertainty on inflation is stronger. On the other hand, the impact of

inflation on its uncertainty is robust to the inclusion or exclusion of ‘in-mean’ effects.

5 Robustness

The obtained results in favor of the Cukierman-Meltzer hypothesis for Germany are sur-
prising given that its Central Bank, the Deutsche Bundesbank, followed a strong and
reliable commitment to a money growth target, that incorporated a precise inflation goal,
over the sample period. For this reason we test, whether they are a statistical construct.
First, to check the sensitivity of our results to the form in which the time varying variance
enters the specification of the mean, we also use either the conditional standard deviation
or the logarithm of the conditional variance as regressor in the mean. The picture is
similar to that with the conditional variance (see Table 4), except for that the effect of

inflation uncertainty on inflation is now much smaller. That is, we find evidence support-
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ing the Cukierman-Meltzer theory in Germany and the Netherlands and evidence for the
Holland hypothesis in Sweden. The influence of nominal uncertainty on inflation becomes

stronger when we account for ‘level’ effects.

Table 4. (P)GARCH-ML Models
(Normal Distribution).

Mean Mean-Level
Germ Neth Swed Germ Neth Swed
g(ht) = Vhi
k053 042 -0.32 0.64 0.39 —0.44
(0.28)  (0.15)  (0.13)  (0.30)  (0.12) (0.09)
6 055 0.70 0.40 0.80  0.80 0.40
g(ht) =In(hy)
k 0.04 008 —0.11 0.06 0.06 —0.14
(0.02) (0.03) (0.06) (0.03) (0.02) (0.06)
0 0.52 1.00 0.70 0.80  0.80 0.44

(0.15)
For each of the three European countries, Table 4 reports
estimates of the parameters of interest for the various
(P)GARCH-ML models when the distribution of the
errors is normal. The numbers in parentheses are
robust standard errors.

Next, to check the sensitivity of our results to the distribution of the innovations
we are also using the student-t distribution. In general, the results are very similar to
those obtained when the innovations are drawn from the normal distribution (see Table
5). That is, in all three countries inflation has a positive impact on its uncertainty.
Regarding the reverse causal effect our evidence is country specific. In particular, it is
positive for Germany and the Netherlands (but insignificant) and negative for Sweden.
When we account for ‘level’ effects the evidence for the Cukierman-Meltzer hypothesis in
Germany, and for Holland’s hypothesis in Sweden becomes stronger. When we exclude

the ‘level’ effects the negative impact of uncertainty on inflation in Sweden disappears.
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Table 5. (P)GARCH-ML Models (t-distributed errors).

Mean: g(h,) = h, Level Mean-Level: g(h,) = h,
Germ Neth Swed Germ Neth Swed Germ Neth Swed
k089 003 -0.24 — — — 1.07 0.14 —0.57
(0.57)  (0.09) (0.18) (0.65) (0.13) (0.30)
Vi — — 0.09 —0.07 0.08 0.21 0.12 0.07 —0.08 0.09 0.15
(0.02)  (0.02) (0.02) (0.08) (0.07)  (0.02)  (0.02) (0.02) (0.03)
{12} {21 {8} [ERN G {10} {2y {3} {11}
6 050 3.20 1.69 1.20 1.60 1.45 1.20 1.50 0.50
- - (0.85) - - (0.79) = = i
r 546 320 243 5.79 3.78 2.68 5.78 3.76 2.91
(1.48)  (0.01)  (0.33)  (1.55) (0.60) (0.45) (1.63) (0.59) (0.45)

For each of the three European countries, Table 5 reports estimates of the parameters of interest
for the various (P)GARCH-ML models. In all cases g(h,) = h,. The numbers in parentheses are
robust standard errors. The numbers in {-} indicate the lags of the ‘level’ terms.

Furthermore, to check the sensitivity of our results to the possible presence of season-
ality in the inflation data we are also using the normal distribution including seasonal
dummy variables on the intercept of the mean equation. In general, the results are very
similar to those obtained without the use of dummy variables (see Table 6). That is, the
strong evidence in support of the Friedman hypothesis in all countries is invariant to the
inclusion or exclusion of the ‘in-mean’ effect. Moreover, the evidence for the Cukierman-
Meltzer (Holland) hypothesis in Germany (Sweden) becomes weaker in the absence of

‘level’ effects. In the Netherlands inflation is independent of changes in its uncertainty.

Table 6. (P)GARCH-ML Models
(Normal distribution, Seasonal Dummies).

Mean: g(h,) = h, Level Mean-Level: g(h,) = h,
Germ Neth Swed Germ Neth Swed Germ Neth Swed
k113 003 -0.38 — — — 1.33 0.11 —0.27
(0.56)  (0.13)  (0.21) (0.58) (0.12) (0.07)
Vi — — . 0.05 —0.04 0.18 0.06 0.07 —0.05 0.11
(0.01)  (0.01) (0.01)  (0.05)  (0.03)  (0.02) (0.02) (0.02)
{11} 3y {7 4} {10} 3y {7 {11}
6 070 1.00 0.40 2.40 1.50 1.36  1.49 0.80 0.40
- - - - — (0.26)  (0.57) - -

For each of the three European countries, Table 6 reports estimates of the parameters of interest
for the various (P)GARCH-ML models. In all cases g(h,) = h,. The numbers in parentheses are
are robust standard errors. The numbers in {-} indicate the lags of the ‘level’ terms.

Finally, Table 7 reports, again for Germany for the same reasons as before, estimates
of the k parameters of the (P)GARCH-M model with g (h;) = h, for various positive 4.
Similar to our sensitivity analysis with seasonally unadjusted data, the estimated values
of the ‘in mean’ effect are sensitive to changes in the ‘power’ term. Note that when the
student-t distribution is used the k parameter is significant only when § = 0.5. It is

important to mention that when the errors are conditionally normal and we incorporate
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seasonal dummies in the model the AIC is minimized when § = 0.7. In addition, the
significance of the ‘risk premium’ decreases monotonically as soon as § exceeds 0.80. The
most interesting finding is that the autocorrelation function of || (for lag 12) reaches
its maximum, approximately, at this point. Even though the IC and the LL favor the
model setting § = 0.7, the institutional setting of Germany’s CB would a priori justify a

hypothesis in which the ‘in-mean’ effect is statistically not different from zero (e.g. § = 2).

Table 7. (P)GARCH-M Models for Germany.

0 0.50 0.70 0.80 1.00 1.20 1.30 1.50 1.70 1.80 2.00

Student-t distribution
k 0.89 NC* 0.77 0.71 0.63 0.61 0.58 NC NC NC

[0.12] [0.19] [0.23] [0.28] [0.30] [0.33]
AIC 0.125 - 0.126 0.127 0.128 0.129 0.130 - - -
LL -21.04 - -21.08 -21.28 -21.55 -21.71 -22.04 - - -

Normal distribution (Seasonal Dummies)
k NC 1.13 1.22 1.01 0.97 0.94 0.87 0.81 0.79 0.74

[0.04] [0.03] [0.07] 0.09] [0.10] [0.13] [0.16] [0.17] [0.19]
AIC - 0.101 0.102 0.104 0.107 0.108 0.110 0.113 0.114 0.116
LL - -11.99  -12.29 -12.74 -13.34 -13.64 -14.23 -14.83 -15.13 -15.72

Table 7 reports estimates of the ‘in mean’ parameters of the (P)GARCH-M model with g (h;) = hy,
for various positive d. * No convergence. The numbers in brackets are p values. The bold
numbers indicate the minimum value of the AIC. LL denotes the maximum log-likelihood value.

6 Discussion

6.1 Comparison with other work

The results presented above carry noteworthy implications for macroeconomic modelling
and policymaking. Our very strong evidence on the Friedman hypothesis is in broad
agreement with the findings of the overwhelming majority of empirical studies. The
country-specific evidence on the Cukierman-Meltzer hypothesis is anticipated given that
national central banks adjust their rate of money growth differently to nominal uncertainty
depending on their relative preference towards inflation stabilisation. Previous literature
reports mixed results that are sensitive to factors such as the measure of uncertainty
and the countries examined. In general, when we use the value of the ‘power’ term that
is preferred by the IC, we find that the evidence in support of the Cukierman-Meltzer

hypothesis for Germany is robust to i) the functional form in which the time varying
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variance enters the specification of the mean, ii) the distribution of the innovations and
iii) the possible presence of seasonality in the inflation data. We show, however, that
the significance of the ‘in-mean’ effect is sensitive to the choice of the ‘heteroscedasticity’
parameter.

The GARCH time series studies that examine the inflation-uncertainty link use various
sample periods, frequency data sets and empirical methodologies. Some GARCH studies
of this issue utilize the simultaneous-estimation approach. For example, Baillie et al.
(1996) and Fountas et al. (2004) find that in Germany inflation is independent of changes
in its uncertainty whereas in Conrad and Karanasos (2005b) the estimation routine does
not converge. When we estimate Bollerslev’s model (that is, the GARCH specification
with § = 2) our results square with the findings of these studies. In particular, when the
innovations are drawn either from the normal or the student-t distribution the estimation
routine does not converge whereas when we incorporate seasonal dummy variables in the
model the ‘in-mean’ coefficient is insignificant. Germany’s Deutsche Bundesbank followed
(for the sample period used in our study) a tight money growth target that incorporated
an inflation stabilisation goal. This policy contradicts the theoretical Central Banker
proposed by the Cukierman-Meltzer hypothesis who exploits uncertainty about inflation
to conduct money supply shocks.

Contradictory empirical results, for Germany, are reported by various researchers.
Given the theoretical ambiguity, it is not surprising that the statistical evidence is also
ambiguous. Grier and Perry (1998), Fountas et al. (2004), Conrad and Karanasos (2005b),
Fountas et al. (2006), and Fountas and Karanasos (2007) use the Granger causality
approach and reach a striking variety of conclusions about the responsiveness of inflation
to changes in its uncertainty. For example, Grier and Perry (1998) find that it has a
negative impact whereas Fountas and Karanasos (2007) find evidence for a positive effect.
In sharp contrast, Fountas et al. (2006) find that inflation is independent of changes in

its uncertainty.
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6.2 Central Bank Independence

One obvious reason for these differences among countries is that they follow different
monetary policies and dispose of different Central Banking institutions. Grier and Perry
(1998) look at ratings of CBI to explain differences in the impact of uncertainty on inflation
across countries. They note that countries disposing of a low rating of CBI usually are the
ones associated with an opportunistic CB response towards growing uncertainty. Conrad
and Karanasos (2005b) use the CBI measure designed by Alesina and Summers (1993) to
test this claim. The measure rates a CB on a scale from 1 (minimum independence) to
4 (maximum independence). Germany, with a score of 4, is rated as highly independent,
whereas the Netherlands is rated as relatively independent with a score of 2.5 and Sweden
rated at a medium score of 2. For Sweden our evidence for the Holland hypothesis is in line
with their results. Conrad and Karanasos (2005b) obtain mixed evidence for Germany.
When considering eight lags for uncertainty, they find a positive impact. However, when
considering longer lags (e.g. 12 as the optimal lag length) they find a negative effect.
They interpret this as support for Holland’s stabilization hypothesis by arguing that
monetary policy takes time to materialize. Moreover, in the case of the Netherlands,
they find strong evidence for the Cukierman-Meltzer hypothesis at lag 4 in the two-step
approach but they estimate an insignificant ‘in-mean’ coefficient. They point out that
such a result is plausible, since any relationship where uncertainty influences inflation
takes time to materialize and cannot be fairly tested in a model that restricts the effect

to being contemporaneous.

6.3 Possible extensions

The main goal of this article is to investigate the inflation-uncertainty link and to estimate
the optimal ‘power’ parameter driving the degree of heteroscedasticity, for three European
countries. However, one might also ask why it is necessary to allow for ‘power’ effects in

the conditional variance of inflation. To answer this we must enquire into the possible
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theoretical sources of heteroscedasticity in the inflation shocks. It will be very useful
to provide a theoretical rationale for the dynamics of inflation. Here the choice of the
PGARCH model is justified solely on empirical grounds.

Possible extensions of this article could go in different directions. Karanasos and
Zeng (2007) find that the significance and even the sign of the ‘in-mean’ effect vary
with the choice of the lag. Their analysis suggests that the behaviour of macroeconomic
performance depends upon its uncertainty, but also that the nature of its dependence
varies with time. One could provide an enrichment of the PGARCH model by allowing
lagged values of the conditional variance to affect the inflation. Recently Baillie et al.
(2002) have focused their attention on the topic of long-memory and persistence in terms
of the first two conditional moments of the inflation process. In the context of our analysis,
incorporating long-memory either in the AR or in the PGARCH specification or in both
could be at work. We look forward to sorting this out in future work.

Finally, Karanasos and Schurer (2005) highlight the importance of using the PGARCH
specification in order to model the power transformation of the conditional variance of
growth. Using a bivariate AR-PGARCH-ML model, one can test for the empirical rele-
vance of several theories that have been advanced on the relationship between the infla-
tion, output growth and their respective uncertainties. This is undoubtedly a challenging
yet worthwhile task. Conrad and Karanasos (2005b) analyze the inflation dynamics of
several countries belonging to the European Monetary Union and of the UK. We have
not be able, in so a short space, to deal with all the European countries. We investigate
the inflation-uncertainty link in Germany and the Netherlands, which are two countries
with highly and relatively independent central banks respectively. We also examine the
aforementioned relationship in Sweden, which is an average country regarding CBI rat-
ings. To highlight the importance of using the PGARCH specification in order to model
the inflation dynamics of the other European countries we should have to go into greater

detail than space in this paper permits.
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7 Conclusions

We have used monthly data on inflation in three European countries to examine the
possible relationship between inflation and its uncertainty, and hence test a number of
economic hypotheses. From this empirical investigation we derive two important results:

First, the overall evidence for the economic hypotheses we tested is mixed. We find
evidence for the Cukierman-Meltzer hypothesis, which Grier and Perry (1998) label as the
‘opportunistic Fed’, only in two out of three countries, namely Germany and the Nether-
lands. Increases in nominal uncertainty raise the optimal average inflation by increasing
the incentive for the policy-maker to create inflation surprises. In sharp contrast, evidence
for the Holland hypothesis applies in Sweden. This result suggests that the ‘stabilizing
Fed’ notion is plausible. Increased inflation raises uncertainty, which creates real welfare
losses and then leads to monetary tightening to lower inflation and thus also uncertainty.
Even though mixed across the countries, these effects are robust to changes in the er-
ror distribution and in the complexity of the model. For the reverse relationship, the
Friedman hypothesis has explanatory power for all three countries.

Second, in this study we draw attention to the peculiarity that even in countries with
highly or relatively independent central banks, such as Germany and the Netherlands,
the ‘in-mean’ effect can be positive when the optimal ‘heteroscedasticity’ parameter is
used. We, we have shown this exemplary with the case of Germany. The statistical
significance of the ‘in-mean’ effect is highly dependent on the choice of the value of the
‘heteroscedasticity’ parameter. For both error distributions the effect becomes insignifi-
cant if the ‘power term’ surpasses a specific value. This suggests that if we had assumed
a priori a linear relationship between inflation and its uncertainty, the so-called Bollerslev
specification, we would not have detected any significant link between the two variables.
Most interestingly, this value coincides with the one chosen by the IC and the one for
which the sample autocorrelation of the power-transformed inflation series is maximal.

Whether this coincidence is systematic will be the focus of further research.
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Thus, our results highlight the importance of using the PGARCH specification to
model the power transformation of the conditional variance of inflation. It increases the
flexibility of the conditional variance specification by allowing the data to determine the
power of inflation, for which the predictable structure in the volatility pattern is the

strongest.
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