~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Kohns, Stephan

Working Paper

Different skill levels and firing costs in a matching
model with uncertainty: An extension of Mortensen and
Pissarides (1994)

IZA Discussion Papers, No. 104

Provided in Cooperation with:
IZA - Institute of Labor Economics

Suggested Citation: Kohns, Stephan (2000) : Different skill levels and firing costs in a matching model
with uncertainty: An extension of Mortensen and Pissarides (1994), IZA Discussion Papers, No. 104,
Institute for the Study of Labor (IZA), Bonn

This Version is available at:
https://hdl.handle.net/10419/26749

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/26749
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

IZA DP No. 104

Different Skill Levels and Firing Costs

in a Matching Model with Uncertainty -
An Extension of Mortensen and Pissarides (1994)

Stephan Kohns

DISCUSSION PAPER SERIES

January 2000




Different Skill Levels and Firing Costs
In a Matching Model with Uncertainty —
An Extension of
Mortensen and Pissarides (1994)

Stephan Kohns

University of Bonn and IZA, Bonn

Discussion Paper No. 104
January 2000

1ZA

P.O. Box 7240
D-53072 Bonn
Germany

Tel.: +49-228-3894-0
Fax: +49-228-3894-210
Email: iza@iza.org

This Discussion Paper is issued within the framework of IZA’s research area Mobility and
Flexibility of Labor Markets. Any opinions expressed here are those of the author(s) and not
those of the institute. Research disseminated by IZA may include views on policy, but the
institute itself takes no institutional policy positions.

The Institute for the Study of Labor (1ZA) in Bonn is a local and virtual international research
center and a place of communication between science, politics and business. IZA is an
independent, nonprofit limited liability company (Gesellschaft mit beschrankter Haftung)
supported by the Deutsche Post AG. The center is associated with the University of Bonn
and offers a stimulating research environment through its research networks, research
support, and visitors and doctoral programs. IZA engages in (i) original and internationally
competitive research in all fields of labor economics, (ii) development of policy concepts, and
(iif) dissemination of research results and concepts to the interested public. The current
research program deals with (1) mobility and flexibility of labor markets, (2)
internationalization of labor markets and European integration, (3) the welfare state and
labor markets, (4) labor markets in transition, (5) the future of work, (6) project evaluation
and (7) general labor economics.

IZA Discussion Papers often represent preliminary work and are circulated to encourage
discussion. Citation of such a paper should account for its provisional character.



IZA Discussion Paper No. 104
January 2000

ABSTRACT

Different Skill Levels and Firing Costs
in a Matching Model with Uncertainty —
An Extension of Mortensen and Pissarides (1994)

A matching model in the line of Mortensen and Pissarides (1994) is augmented with a low-
skill labor market and firing costs. It is shown that even with flexible wages unemployment is
higher among the low-skilled and increases with skill-biased technological change. The two
main reasons are that their jobs have a shorter life expectancy than in the labor market for
the skilled, increasing the inflow into unemployment, and that the jobs are less profitable,
resulting in a smaller outflow from unemployment. Firing costs increase employment
security among existing jobs, but the unskilled are likely to profit less than the skilled, and
the availability of new jobs decreases in both sectors. Within the present framework the
effect of firing costs on unemployment is ambiguous, but unemployment spells are shown to
be longer with higher firing costs. The implications of explicitly introducing business cycles
into the model are considered, too.
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1 Introduction

For a given wage, labor demand and thereby also the dynamics of employment
and unemployment are to a large extent determined by three factors: adjustment
costs (mainly for hiring and firing), uncertainty about future profits due to shocks

to demand or productivity, and the skill level of the employed.

There is already a large literature that investigates the influence of one or the
other of these factors. Bentolila and Bertola (1990) use methods from control
theory to analyze the effects of linear adjustment costs in a model with homo-
geneous labor and demand shocks, and Ross (1998) extends their analysis by
introducing a second factor that can be adjusted costlessly. Both models are
partial-equilibrium models. It is not possible to derive a closed form solution
for labor demand, but at least the solution can be characterized qualitatively:
Contrary to convex costs, linear costs lead to lumpy adjustment of labor at the
level of the firm , which also seems to be more in line with empirical evidence
(see e.g. Huizinga and Schiantarelli (1992) and the overview given in Hamermesh
and Pfann (1996)).

Bentolila and Sain-Paul (1992) and Saint-Paul (1996b, chp. 3, 4) analyze the
interdependence of the demand for workers with permanent and fixed-term con-
tracts in a partial-equilibrium model with productivity shocks and adjustment
costs only for the permanently employed. In this framework, the workers on
fixed-term contracts bear the burden of adjustment in the case of negative pro-
ductivity shocks. Saint-Paul (1996b, chp. 7) derives similar results under slightly
more restrictive assumptions but with endogenous wages and labor supply. In
principle, it is possible to assign different skill levels to the two types of work-
ers, but using this as a framework to analyze the differences between skilled
and low-skilled labor leads to untenable results, since both types of labor are,
apart from the productivity differential, perfect substitutes. Saint-Paul (1996a),
(1996b, Kapitel 9) explicitly differentiates between skilled and unskilled labor in
a deterministic matching model, focusing in particular on the displacement of
low-skilled by skilled workers, the role of skill-biased technological change and
the effects of firing costs for the low-skilled.

This paper tries to incorporate all the three factors mentioned above in a single



model, using the seminal paper by Mortensen and Pissarides (1994) with homo-
geneous workers as a starting point. In their model, productivity is job specific
and subject to idiosyncratic as well as global changes, i.e. the productivity of an
individual or of all jobs changes stochastically. As soon as the productivity of
a given job falls below a certain, endogenously determined threshold, the job is
dissolved without costs. The present model extends this framework by introduc-
ing two skill-levels as well as relaxing the assumption of no firing costs.

Section 2 presents the basic setup of the model and the labor market for the two
skill-levels. Section 3 introduces firing costs in both markets. The implications
of explicitly modelling business cycles are investigated in section 4. Section 5
concludes. Calculations that require more room or that are particularly tedious

are relegated to the appendix.

2 Basic structure and steady-state analysis

2.1 Basic structure of the model

Consider an economy in continuous time. Firms can employ two types of workers
that differ with respect to their skill level (e.g. white- and blue-collar workers),
and it is assumed that a higher skill level translates into a higher level of pro-
ductivity. Variables that are particular to one of the groups will be denoted with
superscripts s and [ for skilled and low-skilled workers, respectively.

Vacancies posted by firms in order to employ workers have to be skill-specific, i.e.
it is not possible to put a blue-collar worker on a position designed for white-collar
workers and vice versa.! Unfilled vacancies cost ¢ per unit of time (all prices and
assets are measured in units of output). Only the unemployed search for jobs,
i.e. we neglect on the job search. Let v” and u”, v = s, [, denote the number of
vacancies and unemployed, respectively, on market segment v. The ratio v”/u”
will be denoted by the variable §” and measures the tightness of labor market
segment v, as perceived by a firm.

In both labor market segments, the unemployed and vacancies are matched ac-

! As long as workers cannot apply for several vacancies simultaneously, the only assumption
that is really needed is that low-skilled workers are unable to occupy a job designed for the
skilled, see page 14.



cording to the same matching function m(v”, u”) that is homogeneous of degree
one. Dividing m(-,-) by v” yields the rate ¢ (0") := w =m (1,5—:) =
m (1, (9”)71) at which vacancies are filled. It follows that ¢' (#”) < 0 and, denot-
ing the elasticity of ¢(6”) with —n, that 0 < n < 1. These two properties will
prove to be important for the following analysis. The first simply means that
with increasing tightness of the labor market, it becomes more and more difficult
to fill a given vacancy (even though the absolute number of filled vacancies may
be higher). The inelastic reaction of ¢(-) is simply a result of the constant returns

assumption. Note that 7 is generally not constant for different values of §¥.2

For the skilled, the productivity of a given job can be decomposed additively into
a global and an idiosyncratic, i.e. job-specific, component.> Global productivity
is denoted by p, whereas the job-specific component is the product of a constant
parameter ¢ and an idiosyncratic, zero-mean shock €. The standard deviation
of £ is normalized to one, so that o is the standard deviation of the job-specific
component. The distribution of € can be described by a differentiable distribution
function F(¢). The maximum value of the idiosyncratic shock is &,, so that
F(g,) = 1, and this is also the value ¢ takes for every newly created job (i.e.
for a vacancy that has just been filled). A possible interpretation would be that
new jobs are always equipped with the most productive technology. All the jobs
are subject to random changes in the job-specific component of productivity.
The occurrence of these productivity changes is described by a Poisson process
with parameter \. When an adjustment takes place, a new value of ¢ is drawn
according to the distribution function F'(¢).* When the idiosyncratic component
drops below a threshold &, the job is disbanded at not cost and the worker gets
unemployed. The superscript s indicates that the threshold may differ in the two

2A constant elasticity follows for example from a Cobb-Douglas specification of the matching
function m(-,-). This is not an unfamiliar choice, see e.g. the matching model by Pissarides
(1992) on the role of long-term unemployment and the loss of human capital. The Cobb-
Douglas specification is also supported by the empirical analysis of Burda and Wyplosz (1994)
(against the alternative of a CES-specification) , but the authors find only mixed evidence for
the hypothesis of constant returns (rejection for France and Spain, acceptance for Germany
and the UK).

3The two expressions “idiosyncratic” and “job-specific” will be used interchangeably.

4Within the present continuous-time setting, two particularly useful properties of Poisson
processes are that firstly, the probability of one happening of a certain event in a small time
interval dt equals Adt and secondly, the occurrence of events in non-overlapping time intervals
is independent, meaning that we don’t have to care about when or how often the idiosyncratic
component changed its value before.



labor market segments.

The above remarks imply that the overall productivity of a skilled worker equals
p—+oe. Low-skilled workers are assumed to be less productive on average. This is
modelled as a productivity differential p in the idiosyncratic component, leading
to a total productivity of p 4+ o(¢ — p). The probability structure of the idiosyn-
cratic shocks and of the Poisson process governing their occurrence is assumed

to be equal in both labor market segments.®

Additional costs like interest payments on rented capital are not explicitly mod-
elled, but as long as they are fixed for every job, they can be captured by the

parameter p.

Workers receive wages w”(e) which are flexible in the sense that their payment
depends on the current productivity of the job. If they are unemployed, they get

a given benefit b.°

Apart from common parameters like the global productivity component p or the
costs ¢ of posting a vacancy, the labor market segments are implicitly linked by
the no-arbitrage-condition that the expected values of vacancies for skilled and
low-skilled workers have to be equal, i.e. a firm is indifferent between creating
another job for a skilled or for a low-skilled worker. Otherwise, it would be

profitable to shift vacancies from one segment to the other.

The following subsection introduces the labor market segment of the skilled and
analyzes the dependence of the equilibrium outcomes on changes in the exogenous
parameters, following mainly the analysis of Mortensen and Pissarides (1994).

The low-skill tier of the labor market and its differences from the first tier are

5Tt would also be possible to model the lower productivity of the low-skilled as a discount on
the global productivity component p, so that their total productivity would equal p + o — p.
This would facilitate the analysis — the low-skill segment could be treated as a ‘normal’ seg-
ment with a lower global productivity —, but it would also blur the distinction between the
job-specific and the global component.
Using the same distribution (instead of a distribution shifted by p to the left) facilitates a
comparison of the results in the two labor market segments.
Note also that the extension to more than two skill levels by introducing productivity differen-
tials p1, p2,- .-, pi is straightforward.

6Skill-dependent unemployment benefits could be introduced as well but have been neglected
for simplicity. If they are modelled, one has to take care to ensure that the condition b* < b'+op
holds. Otherwise, low-skilled workers would be more valuable to the firm than the skilled, as
can be seen from the following equations.



discussed in subsection 2.3.

2.2 The labor market for the skilled

Let V* denote the value of a vacancy and J*(¢) the value of a filled job with
job-specific productivity ¢, in both cases as perceived by the firm. Assuming a

constant interest rate r, we have
rVe = g(0°)[J°(eu) = V] — ¢, (1)

which states that the return of a vacancy per unit of time equals the expected
gain, if the vacancy is filled, minus the cost of keeping the vacancy open. The
expected gain depends on the rate at which open vacancies are filled, the value of
the new job and the value of the vacancy, which is lost due to the filling of the job.
Since there is free entry on the market, V* will be equal to zero in equilibrium.

Solving for the value of a newly filled job yields

s c

J*(eu) = 5007 - (2)
Hence, the value of a new job equals the expected search costs till a vacant
position is filled, which implies that the value of a new job increases if the labor
market becomes tighter. Turning to the worker, denote the value of having a job
with an idiosyncratic productivity of ¢ with W#(£) and the value of unemployment

with U®. Hence, the total value of a match is
S¥(e) = J(e) + W?(e) = U* . (3)

Assume further that as the result of some bargaining process the match surplus
S%(e) is divided up between the firm and the worker at the rate 5 to 1 — 3,
0<p<1:

J*(e) (1—5)5%(e) (4)

We(e)—=U* = pS%e). (5)

A strong position of workers (or unions) in wage negotiations would correspond
to a high value of g. Evidently, the value of the match cannot become negative

(at least in this setting without firing costs). If it did, workers would quit into

unemployment, whereas firms would disband the job.
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In a similar manner as in (1), the three value functions J*(¢), W*(¢) and U® can

be implicitly defined by
rJi(e) = p+oe—w'(e)+ A1l —p) /{max[SS(x),O] — S%(e)}dF(x) , (6)

FVE) = wi(E) + AR / {max[S* (), 0] — S*(e)}dF (x) | (7)
FUT = bt (00 W) — U] (8)

The terms p + o — w®(e) and w®(¢) in equations (6) and (7) are the returns
per period for the firm and the worker, respectively. In addition, the integrals
capture the expected future change in the value of the job due to changes in the
job-specific productivity, taking into account that the total value of the job must
not fall below 0 if the job is to persist.

The second part of (8) is the expected return to searching for a job, since 0°¢(0°) =

m(v®,uf)
uS

Contrary to the function ¢(-) itself, #°¢(6*) increase with #°, since an increase in

= m (6°,1) is the rate at which workers leave unemployment for a new job.

labor market tightness makes it more likely to become employed. Note that for
the worker the initial value of being matched to a vacancy is W*(e, ) — U® by the
assumption that new jobs are equipped with the most productive technology.

Using V¢ = 0 and equations (2), (4) and (5) it may be shown that in equilibrium

the return to searching for a job equals 16——0698'

The equations above can be solved for the total value of a match: 7

Eu

(r+X)S%e) = p+oe—b+ )\/ S?(z)[1 — F(x)]dx — B0°¢ (6°) S*(£,)(9)

d BC
1-5

A job is destroyed if the total value becomes negative due to a shock to the

ox [ 5
= p‘|‘0'€—b—|—704_—)\/63 [I—F(Z')]dl‘— 0° . (10)

job-specific component of productivity. Considering the knife-edge case where
the total value of the match equals zero leads to an implicit definition of the

respective threshold &3,

e
p+asfi:b+1ﬁ_cﬁﬁs—ri)\/ [1— F(x)]dx . (11)

S
€d

"Adding (6) and (7), subtracting (8) and taking into account (3) leads to an equation of
the form rS*®(e) = .... Making use of (5) yields equation (9). From there, integration by parts
together with (2) and (4) finally leads to (10).



The left hand side is the threshold value of total productivity below which a job
is destroyed. The first two expressions on the right hand side, i.e. unemploy-
ment benefits and the return to searching for a job, are the opportunity costs
of employment. This is the minimum wage the firm has to pay in order to keep
the worker from quitting. The last expression measures the return to waiting for
possible improvements in job-specific productivity and may therefore be called
the option value of keeping the job. It enters the equation with a minus sign,
meaning that at the threshold productivity it is profitable for the firm to pay
a worker more than he produces.® The reason why it does not pay to destroy
the job as long as the losses are not too large is that the alternative option, i.e.
destroying the job and posting a vacancy, incurs costs as well since the vacancy

won’t be filled instantaneously.

In order to analyze the dependence of €5 on the exogenous parameters, (11) has to
be differentiated accordingly. Changes in the parameters are likely to affect labor
market tightness 6° as well, but this additional channel will be neglected for the
moment in order to isolate the effect on job destruction and since taking account
of the reaction in 6° requires an equation describing job creation. Therefore, the
following results are derived under the assumption df® = 0. Note that a decline
in € corresponds to an increase in job security, since it takes on average longer

before the job is destroyed.

e An increase in p — b lowers €3. A rise in global productivity p makes more
jobs with a lower job-specific productivity still profitable, whereas a reduc-
tion of b reduces wages, with the same effect on jobs with a low productiv-

ity.?

e An increase in J raises £ (see the appendix),'? since the profit share of the
firm has declined. Besides reducing the present value of future improve-

ments in productivity, this also requires higher wages, because the workers’

8This can also be seen by plugging £% into (6). Since J(¢5) = S%(e%) = 0 and
J max {S%(x),0} dF(z) > 0, it follows that p + oef < w® (¢5).

9A similar result can be found in Bentolila and Bertola (1990), where a band of inaction
in the adjustment of labor demand is derived that depends on the level of product demand.
Increases in demand also increase the width of the band.

19Contrary to most of the other effects, changes in 3 and ¢ are not explicitly considered in
Mortensen and Pissarides (1994) (they just look at the compound term 157 5). Therefore the
claimed dependencies are derived in the appendix.




expected return to searching has risen.

For similar reasons, an increase in ¢ raises 5. Equation (2) shows that for
a given value of #°, new jobs will be more profitable. Therefore, unprof-
itable jobs are more likely to be destroyed. Note that especially this result
depends very much on the ceteris paribus assumption df#* = 0, since higher
costs of maintaining a vacancy should have strong effects on the provision

of new jobs, too.

e A higher value of X increases the option value of not destroying a job, since
improvements in productivity become more likely, or, as Garibaldi (1997)

puts it, shocks are less persistent.!! Therefore €5 decreases.

e Increasing the discount rate r lowers the option value of keeping the job
since the present value of future profits sinks. Therefore, the threshold &

rises.

e Differentiating (11) with respect to o yields

gy r+ A o, Be
" 90 o+ AF(2) <p b 1_59)' (12)

This shows that the effect of a rise in the dispersion parameter o depends

on the relative size of the global productivity and the opportunity costs of

employment. The derivative is positive if p > b+ 16_—0695.12

As already stated before, the previous analysis has neglected the endogeneity of
the labor market tightness variable #°. From equations (2), (4) and (10) one

obtains the following equation

G P )

that gives an implicit description of the creation of new jobs. Equations (11) and
(13) jointly determine €% and #°. Note that in (11) the relation between the two

variables is positive, since an increase in labor market tightness #° raises wages

via the opportunity cost of employment, so that firms destroy jobs at higher

values of £ than before. Contrary to that, there is an inverse relationship in (13),

MTf the situation deteriorates even more, the job can still be destroyed. As long as the current
losses mentioned above are not too large, the returns to waiting should outweigh the costs.
12Tn that case, it follows from (11) that €5 < 0 = E(e).



meaning that a lower life-expectancy of existing jobs due to an increase in ¢}

leads to a reduction in the supply of vacancies (remember that ¢(67) < 0).

Equations (11) and (13) can be differentiated with respect to the exogenous
parameters already considered above. Determining the signs of the derivatives

yields the following results:

e An increase in p — b lowers € and raises 6°. The initial effect on €} works as
before. In addition, due to the higher productivity of new jobs firms try to
create more of them which makes the labor market tighter. This improves
the position of the workers and raises wages, which tends to counteract the
initial effect on €}, but the net effect on the threshold productivity level is

still negative.

e The reaction of €} to an increase in 3, labor’s share of the total match value,
is ambiguous, whereas #° declines unambiguously. This decline is also the
reason why the the sign of d¢%/0f can no longer be determined uniquely.
The lower labor market tightness reduces the value of unemployment (and
the opportunity cost of employment), thereby raising the value of the match
that can be split between the firm and the worker. If this effect is strong
enough, €5 may even decline. In the appendix it is shown that 0¢5/068 < 0
iff 5 < n (note that in general n depends again on 6*).

An increase in ¢ lowers ¢ as well as #°. In this case, the decline in the
opportunity cost of employment is strong enough to reverse the sign of

0e5/0c compared to the analysis for df* = 0.

e A higher value of A leads to a reduction in ¢ as well as 6°. A possible
explanation for the latter effect could be that new jobs lose their high
initial productivity more quickly, making it less attractive to create them

in the first place.

e As with an increase in (3, a higher discount rate r has an ambiguous effect

on ¢, but lowers ° unambiguously.

e Labor market tightness is an increasing function of o. The threshold &}
increases, too, if the condition p > b holds. Taking into account the change
in 0° reinforces the effect on €, since now a weaker condition is sufficient

to obtain a positive sign of def/do.

9



Nothing has been said up to now about unemployment or the absolute number
of vacancies. In order to determine the equilibrium values of v®* and u*, a third
condition is needed. The labor market will be in equilibrium if flows into un-
employment equal outflows. Normalizing the total number of skilled workers to
1 and noting that workers will be dismissed if their job is hit by a shock that
changes the idiosyncratic productivity to a value below €, the condition for a

flow-equilibrium may be written as
m(v®,u’®) = (1 —u’) A\F (g5) . (14)

Solving for the number of unemployed u* (which, due to our normalization, equals

the unemployment rate) yields

s AF(g3)
TN Fm e 1) (15)

Equation (15) defines a Beveridge-Curve (BV) with the usual negative slope. In
the u’~v’-space, the equilibrium value of labor market tightness derived from
equations (11) and (13) defines a straight line through the origin with a slope of
6° (SS). The intersection of the two curves determines the equilibrium values of

u® and v®, compare figure 1. Using the results on the effects of parameter changes

p? A

SS

BV

Figure 1: Beveridge- and SV-curve

on €; and 6° from above allows a graphical analysis of the effects on «® and v°.
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An increase in €% shifts the BV-curve out (see equation (14)). A higher value of
0% turns the SS-curve upwards.

An increase in p — b, raising 6° and lowering &3, turns the SS-curve up and
shifts the BV-curve in. Unemployment declines, but the effect on the number of
vacancies is unclear. Raising A turns the SS-curve down. As regards the BV-
curve, two effects have to be distinguished, since A enters (15) directly and also
via ). The direct effect shifts the BV-curve out, while the indirect effect works
in the opposite direction. Unemployment will rise (with ambiguous effects on
v®), if the first effect dominates. If the indirect effect is stronger, vacancies will
decline, but u* may rise or fall.'3

If vacancies become more expensive (i.e. c rises), the SS-curve turns down and
the BV-curve shifts in. This leads to a decline in v*, as one would expect, but
the effect on unemployment is again indeterminate (it will rise if the decrease
in labor market tightness is very strong relative to the change in £j). Finally,
suppose the condition p > b holds. In this case, a higher value of o turns the
SS-curve up and shifts the BV-curve out, so that the number of vacancies rises.

Again, the effect on unemployment is unclear.

2.3 The labor market for the low-skilled

Both labor market segments are structurally similar, so that I will resort to
results from the previous subsection where possible and rather elaborate on the

differences of the two segments.

Equations (1) — (5), (7) and (8) also hold for the low-skill segment analogously,
i.e. [-superscripts have to be substituted for s-superscripts. However, due to the

lower productivity, equation (6) needs to be (slightly) modified into

rJi(e) =p+ole —p) —w(e) + A1 - B) /{maX[Sl(x), 0] — S'(e)}dF () .
(16)

Following the same steps as before, one arrives at two equations that define the

3Mortensen and Pissarides (1994) note that the indirect effect of A\ works through the integral
term in equation (11). This term vanishes for ¢ — 0 and becomes independent of A for r — 0,
so that in both cases the indirect effect will vanish.

11



total value of a match and the threshold ) in the low-skill segment,

(r+M)S'e) = p+ole— )—zhL"TAA Eu[l—F( )]dx—B—BHl (17)
proleh—p) = b+ 15—659l_rTA /El:u[l—F(x)]dx. (18)

Defining a new variable p := p — op shows that the results of the analysis per-
formed in subsection 2.2, holding labor market tightness fixed, apply here as well.
Increases in p — b and \ lower £}, whereas increases in r, 8 and ¢ lead to a higher
threshold value. In addition, the jobs of the low-skilled will be destroyed more
quickly, €, > €%, since p < p. In the appendix it is shown that the threshold
reacts more than proportionally to a change in p, 9¢,,/0p > 1. Additional in-
sights can be gained by looking at the cross-derivatives of £/, with respect to p
and one of the other parameters. The effect of the productivity differential on
the threshold increases with global productivity, 9%¢,,/0pd(p — b) > 0. Put the
other way round, i.e. reading the partial derivative as 0 ( (%d ) /0p, the larger
the productivity differential, the less do the low-skilled proﬁt from increases in
global productivity.!* The sign of 8%c.,/0pd is positive as well, which may be
interpreted in a similar manner (A could e.g be interpreted as measuring the
degree or speed of technological change). The cross-derivatives with respect to
[ and r are negative, meaning that the detrimental effects of increases in those
parameters become less important with higher values of p.

As regards changes in o, the term —op has to be taken into account, but after
some manipulations one arrives at

86d T+ A Be
“Po o+ AFE) (p b1z 591> ) (19)

which is completely analogous to (12). Therefore, a larger spread in idiosyncratic

shocks raises the threshold if p > b+ ﬁ 5 ¢'. Finally, the cross derivative §%cl,/0pdc

is negative. A first tentative conclusion from this analysis would therefore be that

the low-skilled profit less from beneficial changes in the economy, but that the

effect of detrimental changes is smaller, too.

In order to take account of the endogeneity of §', an equation that describes the

creation of jobs is needed. Following the steps that led to (13), the parameter p

4 Remember that 9!,/d(p — b) < 0 and that a decline in the threshold means an increase in
job security.
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drops out and one arrives at (see the appendix)

c r+ A

¢(9l) - 1—8 o(e, — &)

(20)

As before, equations (18) and (20) jointly determine the equilibrium values of &
and 0'. The results of subsection 2.2 on the dependence of these two variables on
p—>b, 3, ¢, r and \ continue to hold. Since a decrease in p — b raises €, and lowers
¢', it follows immediately that the low-skilled have a higher threshold value and
a more unfavorable ratio of vacancies to the number of unemployed. In other
words, the life span of a low-skill job is shorter and the labor market segment for
the low skilled is less tight even with flexible wages.'

The derivative 0g';/dc is positive for p > b as in the previous subsection, but the
sign of 90! /0o becomes unclear. In the appendix it is shown that the derivative
will only be positive if the productivity differential is not too large. To be more
specific, a sufficient condition for this is F (6|6 > 651) > p, i.e. the average id-
iosyncratic productivity among the low-skilled should not be negative.

An increase in the productivity differential p, e.g. due to skill-biased technolog-
ical change, raises the threshold and reduces labor market tightness. The cross
derivative §%c.,/0pd(p — b) can now become negative, but it will remain positive
(as in the analysis for a fixed #') if ¢"(6') is large in absolute numbers, so that

¢(+) is strongly convex.!®

The flow equilibrium in the labor market segment for the low-skilled implies again
a Beveridge-curve which is described by
AF ()

Y NFED) o/ 1) (21)

Apart from the slightly stronger conditions required for the derivatives with re-
spect to o, the effects of changes in p — b, 5, ¢, A\, r and 3 on the curves are
qualitatively the same as in the previous subsection. Skill biased technological

change in the form of a rise in p turns the SS-curve down and shifts the BV-curve

15Note also from (12) and (19) (i.e. when holding #” fixed) that because of #! < #° the
condition for de!;/0a > 0 is automatically fulfilled if 9e%/0o > 0, meaning that when a higher
dispersion of job-specific shocks leads to a shorter lifespan of jobs for the skilled, then the
low-skilled will loose their jobs more quickly all the more so.

16In the special case of a Cobb-Douglas matching function the sign of the cross derivative
still remains uncertain.
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out, so that unemployment among the low-skilled rises. The effect on the number

of vacancies is ambiguous.

One of the basic assumptions in subsection 2.1 was that workers only apply for
jobs on their ‘own’ market. Suppose that this assumption is somewhat relaxed
so that as in Coe and Snower (1997) the skilled can also apply for low-skill jobs,
whereas the reverse is still not possible because the low-skilled cannot perform
the tasks pertaining to a job designed for the skilled. Assume further that due
to technological constraints the skilled workers employed for low-skill jobs have
the same productivity as the low-skilled, which implies that they will get the
wage of a low-skilled worker and have the same probability of finding such a job.
Simultaneous applications on both markets are forbidden. It was shown that the
labor market for the skilled is tighter, #* > #'. Therefore, the rate at which an
unemployed worker finds a new job is lower in the market segment for the low-
skilled. Because of ¢'(-) < 0, equations (2), (4), (5) and their analogues for the
low-skilled, the value of a match for the worker is lower in the low-skill segment.
This means that the return to searching for a job is higher in the market segment
for the skilled, and a skilled worker will not search for low-skill jobs even if he has
the possibility to do so. To put it differently, in this model the higher relative

scarcity of the skilled prevents them from competing with the low-skilled for jobs.

3 Introducing firing costs

Up to now, it was assumed that an unproductive job could be destroyed cost-
lessly. In practice, firing workers most likely involves explicit or implicit costs
like severance payments, attorney’s fees, mandatory notification periods during
which the worker has to be kept employed or dissatisfaction among the remaining
workforce. This section sketches the consequences of incorporating these costs in
the model. As before, the analysis starts with the labor segment for the skilled

and discusses particularities of the unskilled after that.

Assume that laying off a worker causes firing costs k£ per job. For simplicity,
firing costs are assumed to be independent of the skill level of the worker (as it

was also assumed with the unemployment benefit b). Let the value of k be such
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that S'(g,) > 0 (and therefore also S*(e,)), since otherwise no new jobs would
be created and all firms would leave the market. Firing costs are not paid to the
worker: they are either given to a third party or completely lost.!” The dismissal
is costless from the perspective of the worker, so that the firm cannot shift £ or

part of it to the worker.'®

Under these assumptions, a job will be destroyed if its value sinks below the firing

costs, i.e. if
Ji(e) < =k, (22)

since in the interval 0 > J*(¢) > —k the firm prefers keeping the job to paying
—k.

Equations (1) and (2) are unchanged. However, since k cannot be shifted to the
worker, the splitting rules (4) and (5) have to be modified. If the total value of
the match gets negative, it will be borne entirely by the firm. On the other hand,
the value of the match to the worker is bounded from below by zero. Hence, the

new splitting rules are

(1—7p)S%(e), ifS*()>0
Ji(e) = < S%(e) if —k < S%(e) <0
—k if S°(e) < —k
= max {min {(1 — 8)S%(), S*(e)}, -k} , (23)
and
W (e) = U® = max {$S°(¢),0}. (24)

These two equations show that S*(¢), the total value of the match, is still a simple
sum of its components J*(g) and W*(e) — U®. Therefore, (3) still holds, but the

underlying partitioning of the total value has changed.

170One could conceive schemes under which the firm has to pay fines to the state or employ-
ment programs from which those that are actually dismissed derive only negligible utility.

18 An alternative would be to define costs k relative to the total value of the match S*(¢)
(and not relative to the share of the firm, J®(¢), as it is done here). In such a framework, a
job would be dissolved if we had S*(¢) < —k < J*(¢) < —(1 — B)k. From this perspective, k
describes rather ‘quasi-firing-costs’, since only a fraction 1 — f is borne by the firm. This in
turn implies that for a certain interval of the idiosyncratic productivity, the value of the match
to the worker would be negative, i.e. W¥(e) — U < 0. For this to be an equilibrium, one would
have to assume some frictions that prevent the worker from quitting the job voluntarily.
Technically, this approach would be easier, since the splitting rules (4) and (5) would continue
to hold, which is not the case in the specification chosen in this section.
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In addition, firing costs have to be taken into account in the definitions of J*(¢)
and W*#(e) — U®. As regards the option value of not destroying a job, one now
has to differentiate whether it is still positive or already less than zero. Denote
by 8% := {e| S°(¢) > 0} the set of e-schocks for which the total value of the
match is non-negative (so that the ‘old’ splitting rules would still apply) and
let S := 8, = R\S, be the complement to this set. Using this notation and
splitting rule (23), the option value to the firm is

. / (1 - )S*(2) — (1 — B)S*(e)]dF (x) + A / fmax{S* (x), ~k} — (1 -
8)S*(e)|dF () if £ € S, and )

° )\/S [(1—B)S*(x) — S*(e)]dF(x) + )\/ max{S*(z), —k} — S*(¢e)]dF(x),
if é S_. )

Noting that k£ cannot be shifted to the worker, his share of the option value is

. [S 85°(z) — BS*(@)|dF(z) + A | —BS*(e)dF (), if ¢ € S, , and

S_
. )\/ BS*(z)dF(z), if e € S .
S+

The value of unemployment, U?, is independent of ¢, so that a fall differentiation

is unnecessary.

As before, one has to solve for S*(¢), from which an equation for €% can be derived.
Let 1;4y be the indicator function for event A, i.e. 1;4) = 1 if A happens and
114y = 0 otherwise. By means of this function, the two events ¢ € S and € € §*
can be expressed within one equation, so that S*(¢) = J*(¢) + W*(¢) — U® may

be written as
rS*(e) =p+oe—b— B0°¢(0°) S*(eu) + lcesy T + Lces_y T (25)

with

T = )\/S [S%(x) — S*(e)] dF(x)—i—)\/ max{S*(z), —k} — S°(¢)| dF'(z)

= —)\Ss(e)Jr)\/S S*(e)dF (x) + X . max {5°(z), =k} dF (v)

= 8+ [ S @ara) - W) (26)

S
€d
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and similarly

T: = )\/S [S?(x) — S%(e)] dF(x)—i—)\/ max{S°(x), —k} — S°(¢)] dF'(z)

= —AS%(e) + A / S*(2)dF (z) — MkF(€5) . (27)

Since the addends are the same in both cases, the fall differentiation can be

dropped, and (25) may be rewritten as
(r+A)S%() =p+oe—b—56°¢(0°) S°(cu)

A / S*(2)dF(z) — kF(£3)

d

(28)

Note that equation (9) is a special case of (28) for k& = 0.
Integration by parts (see the appendix for details) leads to a rather familiar

equation determining the value of a total match in the presence of firing costs,

e
(r+)\)55(6):p—|—06—b—15_0595+Ti)\/ 1 P()de— Mk . (29)

€

The only visible difference between (29) and (10) is the term — Ak, which captures
something like the expected firing cost (the more likely changes in the job-specific
productivity become, the earlier firing costs will have to be paid, thereby lowering
the value of the match). What does the endogenous threshold ¢, look like? Since

the value of the match equals the firing costs at the point where the firm is

indifferent between destroying and maintaining the job, S* (¢5) = —Fk, one obtains
from (29)
Be oA /E“
5= ¥ — 1—-F —rk .
p+oe;=b+ T 59 Y [ (z)]dx —rk (30)

€

The equation shows that firing costs tend to raise the option value of keeping
the job. This is because firms, trying to avoid having to pay k, will accept lower
levels of job-specific productivity in the hope that future shocks will make the job
profitable again. Consequently, the derivative of €% with respect to k£ (holding 6*
constant) is negative, and workers can on average keep their jobs longer. Insofar
firing costs are an effective instrument for increasing job security.

The sign of the derivative 0¢5/0r is now ambiguous: On the one hand, future

returns are discounted more heavily, which lowers the option value of keeping the
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job and thus raises €. On the other hand, more weight is put on firing costs &,
which lowers &3.

The condition for an increase in o, the variance of job-specific shocks, to raise €
Be
1-8
before. In addition, the cross-derivative of € with respect to o and k is positive.
Reading the cross-derivative as 0 (%) /0o, this means that the effect of £ on

job security is lower if the idiosyncratic productivity is more volatile (measured

now changes to p+rk > b+

0°, which for a given value of 6#° is weaker than

by its standard deviation o). The signs of the derivatives with respect to p — b,
c and A do not change, since the expression capturing the firing costs enters (30)

linearly, so that it drops out during the differentiation.

In order to analyze the effects of firing costs on & taking into account the si-
multaneous reaction of #°, a new equation that determines #° is needed. As in

subsection 2.2, one obtains from equations (1)—(3) and (23)

¢ (6°) = WCSS(%) : (31)

From equation (29) one gets

o(e—ef)

S°(e) = S (ea) = T (32)
o S'(e) = W—k. (33)

Writing (33) for ¢ = ¢, and plugging it into (31) finally yields the desired equation

that determines 6,

o c(r+A)
R C) s A VU (39

For a given value of €%, higher firing costs increase the right hand side,'® thereby

reducing #*. Differentiating (30) and (34) with respect to k shows that qualita-
tively the results previously derived for df® = 0 continue to hold: an increase in
k lowers e, which means that job security increases. As one would expect, the
derivative 00° /0k is negative, i.e. open jobs become relatively more scarce.

The change in equation (34) makes it more difficult to analyze the effects of
changes in the other parameters, but it is still relatively straightforward to show

. — . - . w _ 0.
that an increase in b raises 0° and lowers ¢}, as in the case where k =0

Values of k such that the right hand side becomes negative are assumed away.
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In figure 1 on page 10, an increase in firing costs shifts the SS-curve down
and the BV-curve in. The effect on unemployment is unclear, but vacancies

unambiguously decline.?’

The labor market segment for the low-skilled: With respect to the anal-
ysis for df' = 0 no modifications in addition to those made in this section and
subsection 2.3 are required. In particular, an increase in p still raises /. Fur-
thermore, it may be shown that the cross-derivative 0 (%) /0k is positive. This
means that the adverse effects of a higher productivity differential is a rising
function in k, or put differently (i.e. writing the cross derivative as 0 (aa—?) /0p),
firing costs protect the skilled more than the low-skilled.

Allowing €' to vary, it can be shown that as in the case k = 0, an increase in p
raises £, and lowers 6, so that the low-skilled will be dismissed earlier and labor
market tightness will decrease in their segment. In addition, under the assump-
tion of a Cobb-Douglas matching function, the cross-derivative 0 <%—?) /0p will
be positive as in the case of df' = 0, so that the low-skilled still profit less from
firing costs (see the appendix).

Since an increase in k reduces 0", v = s, [, the probability of finding a job which
was defined as 07¢ (6”) = m (v”/u’,1) = m(6”,1) will go down as well. If
there is a risk that workers lose some of their human capital or give up searching
actively for a job,?! they will effectively drop out of the labor market even though
they might still be counted as unemployed. If this effect were strong enough,
firing costs could unambiguously increase unemployment. A similar result would
hold if long-term unemployment among the skilled led to a deterioration of their
abilities so that they would become low-skilled. Since the unemployment rate
among the low-skilled is higher and since the total unemployment rate is an
employment-weighted average of u® and wu!, higher firing costs would lead to

more unemployment as well.

20The fact that firing costs do not necessarily increase unemployment is a feature of several
models, see e.g. Bentolila and Bertola (1990) or Saint-Paul (1996b, chp. 6).
21For a model in this vein see Pissarides (1992).
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4 Business Cycles

In the present framework, business cycles can be interpreted as fluctuations in the
aggregate productivity p. The effects of changes in p have already been addressed
in the previous sections, but all the analyses were exercises in comparative statics,
since they only compared steady states. Put differently, firms and workers did
not expect p to change, and this is precisely the reason why business cycles have
to be looked at separately.

In the presence of cycles, there is always a positive probability that the economic
environment will change. As with idiosyncratic shocks, firms should take this into
account when valuing existing and new jobs. Assume for simplicity that there
are two values of global productivity, p and p, with p > p. Hence, p characterizes
booms, and all variables pertaining to this state of the world will be marked with
a check “7” as well. The transition between booms and recessions is governed
by a Poisson process with parameter u. The rest of the section assumes the
existence of firing costs. The scenario without firing costs that has been analyzed
by Mortensen and Pissarides (1994) is a special case that can be obtained by
setting k = 0.

Incorporating these changes into the model requires the use of two versions of
its equations, some of which are however structurally identical in both regimes.
Equations (1)—(3), (23) and (24) for example look the same in booms and reces-
sions, except for the fact that in the first case 6°, V(-), S(-), J(-), W(-) and U
carry a “””. The equations for J*(-), W#(-) and U in section 3, however, which
define the value of a job as a function of current and future returns have to be
modified in order to capture the additional possibility of a change in value due
to a change in aggregate productivity.

In the case of .J*(¢) — the value of a job to a firm in times of a boom — the expected
value of this change amounts to p [J*(g) — J*(¢)] if the job is still alive after the
downturn and p[—k — J*(¢)] if the job is destroyed because of the recession. Con-
versely, for a firm that already operates in a recession, the expected change in
value is p1 [J*(g) — J*(¢)]. A fall differentiation is not needed since a job that was
not destroyed in the more hostile environment of a downturn will be profitable
to keep in a boom all the more. More formally, the steady-state analysis showed

that a rise in p leads to a decline in €}, so that € > ¢ implies ¢ > £. Similar

20



considerations can be made for the equations defining W*(¢), W*(g), U* and U®.

Applying the same transformations as in section 3 yields equations that define
S%(g) und S9(e):
Eu

(r+A+p)S%e) = p—l—as—b—i—)\/ S*(x)dF(x) — BO°¢ (0°) S®(e4)

S
€d

—AkF(5) + puS(e) , £>ey, (35)

(r+A+u)S%e) = ptoc—b+ A [ S'(x)dF(z)— B0°¢ (0°) S9(c,)
£
—AKF(g5) + pnS*(e) , £>ey, (36)
(r+X+u)S%e) = p+os—b+A S(z)dF (z) — B6°¢ (6°) S(e,)
€3
—\EF(&5) — pk €4 >€>E5. (37)
Booms and recessions have to be analyzed separately. Equation (37) may be

transformed into (for details see the derivation of (29))

8

. < A £d
(r+A+p)Sie)=p+oe—b— 16—0398+T+>\0+M/ 1 — F(z)]dx

=S
€d

Ag /E”u CF@)dr — (4 Nk, > e> 2. (38)

r+A S
As before, setting ¢ = £ and using S4 (£5) = —Fk gives us an implicit definition
of &3,
L Be Ao /53
+ o =b+ 0° — 1 — F(x)|dx
p d 1_5 7,,_|_)\+lu 53[ ()]

_ r{f}\ /Eu[l — F(x)]dx —rk . (39)

€

Compared to the steady-state analysis, the only thing that is structurally different
is the option value of keeping the job. If an idiosyncratic shock moves ¢ into the
interval [£; %), an additional risk arises since the job will have to be destroyed if
a recessions occurs. For this reason, the value of future changes in (job-specific)
productivity has to be discounted more heavily. Hence, taking into account the
possibility of a decline in aggregate productivity leads to a higher threshold than
in the steady-state analysis (for a given value of és), so that jobs will be destroyed

more quickly.
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For a firm that experiences a recession, the following two equations can be ob-

tained:
(r+)\+u)55(6):p+06—b—16_6595
Ao /Eu[l—F(x)]da:Jr S (it Ak (40)
T+ A . a
and
Be Ao /E“ o 3
s — b 0 — 1= F(o)|de —rk — —F7 (&5 — &) .
prosi=te g = 20 [ Rl e

(41)

In this case, the option value of keeping the job is larger than in the steady-state
analysis (again for a given value of #%). The last term captures the expected

return if the job is not destroyed and a boom occurs.

Since ¢ tends to be smaller and £ to be larger than in the steady-state analysis,
the number of jobs that is destroyed in a recession is smaller than in the case of

a permanent decline from p to p.??

An rise in p or p reduces both threshold values for a given level of labor market
tightness, see the appendix. It may be surprising that the threshold value of
the ‘other’ regime declines as well. But suppose for example that the aggregate
productivity in booms rises. For a firm that currently experiences a recession, it
is profitable to tolerate lower levels of the job-specific productivity (i.e. €5 goes
down), since this job will benefit from the higher value of p, too, as soon as it
gets out of the recession, compare the last expression in (41). A similar argument
can be found for the effect of a change in p on £}

It can also be shown that a rise in the firing costs k£ lowers both threshold values.

The labor market for the low-skilled can be described analogously. One arrives at
equations similar to (39) and (41) that define &, and ;. The two thresholds are

22This statement has to be taken cum grano salis, since one would have to differentiate the
difference €% — €% with respect to p in order to obtain a formal proof. Therefore, I will give
a less rigorous reasoning. On the one hand, equations (39) and (41) show that for p = 0, we
have the thresholds for the two steady states characterized by p and p. On the other hand,
the two equations show that a ceteris paribus increase in p raises £ and lowers €. Intuitively,
an increase in p makes the two regimes more alike, since e.g. being in a boom is less of an
advantage if it is very likely to drop into a recession again soon. This suggests that € — &5
should decline with rising values of p.
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negative functions of p, p and £ as well. Furthermore, it is shown in the appendix
that an increase in the productivity differential p raises both &, and £/, i.e. the

results of the steady-state analysis continue to hold.

Equation (34) characterized the tightness of the labor market for the skilled in
the steady-state. In the present framework of business cycles, the same steps that
led to (34) yield

c T+ A

A el ey ey S V1 (42)

for the case of a recession and

< c r+ A

¢ 95 - s __xs
) L=0 o(e, - &) —MUT«(TAJ:[JL) = (r+ Nk

(43)

during booms (for details see the appendix). A comparison of the denominators
reveals that the right hand side of (42) is larger than that of (43), so that 6° > 6*,
which means that in a boom more vacancies are available relative to the number
of unemployed workers. It is not possible to make a statement about the relation
of the absolute numbers ©* and v*, since the labor market might be so tight in a
boom that the condition 9* < v® holds. But the number of vacancies will increase
at least immediately after a recovery sets in. This is because the unemployment
rate reacts sluggishly during a recovery (due to the matching technology), whereas
labor market tightness 6% and 6 is a variable that is path-independent and that
will therefore jump directly to its higher new equilibrium level. This implies
0% > v® at least for some time after the beginning of the boom.

It seems plausible that the difference 65 — #* is a declining function of s, i.e. the
more likely it is that the business cycle will turn again the smaller is the incentive
to change ones employment policy. Looking at equations (42) and (43), it can be
seen that for given values of £ and €3, an increase in u lowers §* but leaves 6°
unaffected. Taking into account the simultaneous reaction of the two thresholds
should not lead to qualitative changes.?® The results in this paragraph also apply

to the low-skill segment.

23 An increase in p is likely to increase job security during a recessions, which means a lower
value of €. This in turn will raise #° according to (42), which tends to close the gap between
#° and #° even more.
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5 Conclusions

This paper tried to address the effects of differences in the skill level of the
employed, the implications of firing costs, and the interaction of these two factors
in a stochastic environment, taking into account changes both on the demand
and the supply side of the labor market. To this end, the matching model of
Mortensen and Pissarides (1994) has been supplemented accordingly. Apart from
the productivity differential, both labor market segments were assumed to be
identical in order to isolate the effects of this parameter.

Even with flexible wages, low-skill jobs were found to have on average a lower
life span. In addition, unemployment and the average unemployment duration
are higher among the low-skilled. Skill-biased technological change leads to a
shrinkage of this sector even with flexible wages. The effect of the productivity
differential on the threshold tends to be stronger if aggregate productivity is
higher. A larger spread of idiosyncratic shocks reduces the negative effects of the
differential.

Firing costs have a beneficial effect on job security (measured as the average life
span of a job) for both skill groups, but they reduce the creation of new jobs.
The effect of protecting jobs from being destroyed tends to be stronger among
the skilled. Average unemployment duration increases, but the effect of higher
firing costs on total employment is ambiguous, unless one assumes some form of
a loss of human capital due to long-term unemployment. Finally, the analysis
can be extended to include business cycles, even though some of the results from

the steady-state analysis disappear or become more difficult to prove.

A Appendix

A.1 Labor market for the skilled in the steady-state
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A.1.1 Changes in 8

d@® = 0: Differentiation of (11) with respect to 3 yields

&e‘d - & s oA B s 85181
35 = (1—5)29 +r+)\[1 F(e) )]35 (A.1)
Gsdr+)\F(6d) o1
85 BT cf a=ae (A.2)
5y
95 > 0

d@°® # 0: Differentiation of (11) with respect to 3 yields (compare (A.2))

86d r+ AF(e5) c pe 06°
= 6° —. A.
B A (1-p2 1-59p (4-3)
Differentiating (13) with respect to 3 leads to
0e§
11 sy 00° c(r+ A o(r +A) 54
P(0°) 57 = (2 ) — + - (A.4)
o8 (1=p)oleu—cy (1—Poleu— 6d)
Suppose that 89 > O Since ¢’(95) < 0 we must have %—? < 0. On the other
hand, (A 3) 1mpl1es —i > ( for 2 3,3 > 0, which is a contradiction. Hence we must
have 2 ﬂ < 0.
Solving (A.4) for 2 Bﬁ , taking into account —n = ¢’(95) )
w1 (4N (T+M&d
op ¢'(0°) | (1= p)Poleu—ea) (1= P)olen —e5)
s\ 0¢5
P o(0°)  o(0°) 54
—ng(0°) [1=F  (eu—c3)
e’
—ps 0° 54
_ _ _ A5
U RTER A2

After plugging (A.5) into (A.3) one arrives at

85d r+ AF(e5) ct* cf

98 r+x  (1-BF 1-8
o e [o(r+ AF(e5)) 6° }

8B¥ T+ A 77(5u—5§)4_

(A.6)

~~

>0

O .
Therefore we have a—ﬁd >0ifn > p.
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A.1.2 Changes in ¢

df® = 0: Differentiation of (11) w.r.t. ¢ yields

85d oA 5y B
= 1— F(e5 —0°
“oe ~ sl eI
Oy r + AF(e3) 54
Fal TATE) P g A.
7 oc r+ A 1—59 (A7)

Since the right hand side and the fraction on the left hand side are both positive,

oe?s
we must have 3_Cd > 0.

d@® # 0: The derivatives of (11) and (13) w.r.t. ¢ are

Osyr+AF(ey) B, pe 00°
e ria 1-3 tT1-jae

(A.8)

00 (r+)) (eu—si) + o5
oc o(l—=p) (e.—e5?%
Suppose that 2= > 0. Again, because of ¢'(f*) we then rnust have —4 < 0. On

the other hand the positive right hand side of (A.8) 1mphes 4 > 0 Wthh is a

contradiction. Hence we must have © < 0.

¢'(0°) (A.9)

To find out the sign of , we plug (A 9) into (A.8) and obtain

Osgr+ AF(eg) _ po° Be T4 (64— &) + 2
"o rah 1-B 1-Bei- @

05, {r +AF(ey) B (r + A) ] B
"o | A ¢'(0°)0% (e —5)2(1 = )2  1-8
N Be(r + A)
o(1 = B)*(eu —€3)9'(0°)
e [r +AF(eh)  Bo(6°) } B 5 [ N 95)]
dc | r+A PO Nr+N]  1-8 ¢'(6°)

_ _5 ( 1) (A.11)
- n

= 3Cd
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A.2 Labor market segment for the low-skilled

A.2.1 Derivation of (20)

Forming the difference of (17) for &, and &} yields

(r+A) [S'ea) = S" ()] = o (cu—2Y)
I _ o (eu—ca)
& S'(eu) = s (A.12)
In addition, because of (2) and (4) we have

1 1 c

Sl(e,) = ——=J'e,) = —— : A.13
€)= 1570 = =550 (A13)
Plugging (A.12) into (A.13) and solving for ¢ (#') leads to (20).
A.2.2 Changes in p
d@® = 0: The derivative of (18) w.r.t. pis
0!, oA g
——d _ — 1 — F(eh)y =4
7 <8p > T+)\[ (a)] op
I I
U%r—l—)\F(sd) _
dp r+A
0!, T+ A
- = ——F—>1. A.14
dp r+ AF(g}) (A.14)
From this, we obtain for the cross-derivative w.r.t. p and o
Pel, —(r+ NAF(eh) 2
= z (A.15)
0900 [T+ AP
It i . f (9sld 0. Simil h h 82551 d 82551
1s negative for ¢ > 0. Similar steps show that o) A4 555
The cross-derivative w.r.t. p and A is
el THAF(E) = (r 4 A) [F(eh) + AP (eh) 5
OpON [+ AF(})]?
L= FEY] = (r+ NAF () 2 (A.16)
B [r+ AF(e})]? ’ '
which is positive since F'(};) < 1 and %—iéf < 0. In the same way it can be shown

that the cross derivative w.r.t. p and r is negative.
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d@® # 0: Differentiation of (18) and (20) w.r.t. p yields

&Sd T+ A Be 06
_— —_— . Al
“Op T AF(E) [U+1—53P] (A.17)
and
06! e(r+ A %2
#(0) 2 = (A1)

O (1= Pofey —eh)?’

respectively. Suppose that 3—01 > 0 Because of d)’(Hl) < 0 we must have % < 0.
On the other hand (A.17) and >0 1mply > 0, which is a contradlctmn

36& > 0

Hence we can conclude that % < 0 and - using (A.18) once more — 3

gelten.
In order to compute cross-derivatives for a variable #', we need an explicit solution

for %—?. Plugging (A.18) into (A.17) and rearranging terms leads to

3505 . THA Bcz(r+)\)%—?
8,0 W o+ (1 o B)Za(gu _ gfi)gd)/(gl) (A19)

=

Ua_gfi - I6 [ c(r+ ) r _ o(r—+A)
op ¢'(0)[r + AF(ep)] L(1 = B)o(eu —£p) r+ AF ()

o (| Bp(6')? _ o+
op " 9O [r + AF(ED)] EDVIEN

0c!, r+ A
ZZd _ l
ap T+ )‘F(gfi) - 6%?93)

(A.20)

In the cross-derivative of sfi w.r.t. p and the other parameters ¢, 9, has to be
derived w.r.t. #'. Without making further assumptions, the sign of this derivative
is unclear, which translates into an ambiguous sign of the cross-derivatives. Note

also that contrary to the previous analysis, dg',/0p may now be smaller than 1
because of ¢'(6') < 0.
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A.2.3 Changes in o

d@' = 0: The derivative of (18) w.r.t. o is

9l \ £y
6@—p+0% = —T+)\/€é [1— F(z)|dx
+T”+AA[1 - F(gg)]g—ii (A.21)
088_?7" +T);LF)(\551) = - HL)\ 5;[1 — F(z)]dz
_ % |:p— b— lﬁ_cﬁel] . (A.22)
Hence we have %—? >0ifp>b+ lﬁfﬁ 6'.Qualitatively, this is the same condition

oe?
as for -2 > 0.
a

df@' # 0: Differentiating (18) and (13) w.r.t. o leads to
deyr + AF ()

— - - [ - Pl 2 (a)

do T+ A A 1—Bdo
and
¢/(91)a_gl _ C(T + )‘) _(6U - 651 — U%_id)
do — 1-8  o2(g, —£4)2
B!
o5t — (g, — €Y)
= ¢(0")——— 1 A.24
o) (A.24)
respectively. Making use of —n = qﬁ’(@l);(;)l) allows us to rewrite (A.24) as
00" n 0=
%a(su — sg)@ = (eu—¢Y) —0 6ad (A.25)
I ! ! !
9" _ g__gil@‘ (A.26)
do on (e, —ey) 0o
Plugging (A.23) into (A.25), one obtains
ols N r+ A Be ’
20 |7 S T EE) T 5] = (Eu—cd)
T+ A ! A v
—_— — 1—F(x)]d A.27
T RE) | p+r+)\/gzd[ (o)ldz . (A-27)
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The right hand side can be simplified as follows

00" B r+ A el A1 — F(£})] A Fu
PR B s NFED T T EAFEY) T T+ AF(E) /5; [ = Flw)dz]
B A A= FED] [ / 1 - F(z)
B YA C =S VIE N KA A e
_ !
= &, reA Al F(gd)]E(a‘ le>el). (A.28)

a r+)\F(6fi)p r 4+ AF(gh)
Since the term in brackets on the left hand side is positive, the right hand side
determines the sign of g—?j. It is positive, as long as p is not too large (note that
ew > E(e | e > £}) > 0, since E(e) = 0). A sufficient condition for a positive
derivative is e.g. FE(e | e > &) > p, for (A.28) may be rewritten as

op* A1 — F(eY)]

5 = et [E(s|e>eq) ] (A.29)

The sign of %—? can be determined by plugging (A.26) into (A.23). One obtains

delyr + AF ()

——Ch-p - [, - Pl

90 r+A r+AJa
ge [0 05
* 1_3 [UU 77(5u—5i1)
0cl, [(r + AF(E)) bl )
< 80[ RS +(1—ﬁ)n(5u—gg)]_
1 A Eu 1
AR TUH/EQ 1Pl s 50 25 (1)
_ Pe p(l_
= - [p b+1—B9 (77 1))] (A.30)

The term in brackets on the left hand side is positive, so that p > b is a sufficient

.. .. . del
condition for a positive sign of <.
g

A.3 Introducing firing costs

Derivation of equation (29): Differentiating (28) w.r.t. ¢ yields

o
r+A

S?(e) = (A.31)
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In (28) the term in brackets can be transformed as follows, using integration by

parts:
/ SH(@)dF(z) — kF(s) = [S° ) (s
= S%(eu) - 1—(— (€2)

IRIEY

= uSq'(x)dx—k— ? /uF(x)dx
d

r+ A Js

S
€d
g

_ /:u[l—F(x)]d:v—k.

r+ A Js

/g d F(z)dz — kF (<3

z)dr — kF ()

(A.32)

One obtains the last but one line by noting that S*(e) takes on the value —k for

e < g, in other words —£ is the constant of integration.

In addition, (2), (23) and S*(e,) > 0 imply

C

S = T e

Plugging (A.32) and (A.33) into (28) leads to (29).

Changes in k:

df® = 0:
de® # 0:
and

Differentiation of (30) w.r.t. k yields

S

86d 0 o\ 025

ok T Al PG
o deg T HA r <0

ok T T+ AF() ‘

The derivatives of (30) and (34) w.r.t. k are

Oy _ _rh (. pe opr
70k T r+AF(e)) 1-5ok )

895_ c(r+ ) U%—F(?”—F)\)

¢ (6°)
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(A.34)

(A.35)

(A.36)



Suppose that 2% > 0. Because of ¢/(-) < 0 we must have -4 < 0 for the right
hand side of (A 36) to be negatlve as well. If we have 1nstead ~ <0, it follows
from (A.35) that we must have W < 0 again. In order to detern’nne the sign of
9% " we plug (A.35) into (A.36) and obtain

00° | oo B(r + )2 _
ok [¢ (6% (1=B)2[r+ AF ()] [o(eu —€3) — (r + A)’ff]
c(r +A)?

(L= B)[o(eu —3) = (r + MK [_7" Ve M 1} . (A37)

The term in brackets on the left hand side of (A 37) is negative, whereas the right

hand side is positive, so that we must have < 0.

The cross-derivative 0 ( ) /0p: Solving equations (A.35) and (A.36) for
0gl,/0p yields (A.20), which may be differentiated w.r.t. k:

de 1)2
et (N AP T — g (45 fa0' ]
200k = L . (A.38)
P r+ AF(e}) — Bo@
Note that because %kld, %ﬁc < 0, the cross-derivative will be positive if
o(0")?
1(5Th)  20)00) — 666"
a0 & (61)?
2¢/(6")° — 6(6")9"(9")
= &0 A.39
(]5( ) ¢/(91)2 ( )
is negative. Assume a Cobb-Douglas matching function m(v',u!) = veul~2,

Then we have ¢(0') = 071, ¢'(0') = (o — 1)0%2 < 0 and ¢"(#") = (o — 1)(ax —
2)0%=3 > 0. Plugging this into the numerator yields —af?*~* < 0, so that (A.39)
is negative, as needed.

A.4 Business cycle fluctuations

A.4.1 Changes in aggregate productivity (p and p)

A change in p (or p) has effects on % as well as 5. Therefore, both (39) and (41)

have to be differentiated w.r.t. p (or p). Since the calculations for p and p are
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very similar, only the steps for p will be presented. Differentiation of (39) and
(41) w.r.t. p yields

053 Ao O3 O
= 1—-—2" - F( —[1— F(s8
o 2 {u-renSE - n-repgl)

Ao s\ 025
270 P

055 1+ p+ AF(£9) Apo o/
—= =-1 1— F(ef . (A.40
”op 4+ A +(T+)\)(7“+M+)\)[ (6d)]325 ( )

+

and

5y Ao 5y po e 025
- _ 1— F(es) =2 - 7
05 =~ - FE) [

Oy [r+ AF(g)) 1w } po 05
o = .
op r+ A r+A+pu r+ A+ p 0p

(A.41)

Since the expression in brackets on the left hand side of (A.41) is positive, the
two derivatives %—? and %—? have the same sign. Plugging (A.41) into (A.40) leads

to

U%r—i—/ﬁﬂL)\F(éfi) B

op r+pu+A
- Aol — F(eg)] 9q
(r+p+N[(r+AFE))(r+p+X)+ulr+A)] 0p
0% ] -
5 R ey ) g vy ey rig v R G
with
U = [+ p+ AFE)Hr + AF (DI + p+A) + p(r + N} — p?AlL = F(3)]
= [r+ AFEYHIr + AFED]|(r + X+ p) + pu(r + M)} (A.43)
+ulr + AF(ED](r + p+ A) + p(r + AF(g)) > 0, (A.44)
so that we have 22, %d < (),

op’ Op
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A.4.2 Changes in the productivity-differential p

An increase in p for d@' = d@' = 0: Differentiation w.r.t. p of the equations
for the low-skilled that correspond to (39) and (41) yields

oSt o 20 L ren G- - pepiGe)

dp 4+ A op op
Ao 102,
+ T+)\[ —F(é“d)]a—p
O 4+ p+ ANF (&) Ao 111084
— = 1-F — . (A45
Uap T+t A U+(r+)\)(r+u+)\)[ () dp ( )
and
Og!, Ao g e ogl, 0
——d _ 1 — F(eh)y=4 — — ZZd _ Z°d
Uap U+T—|—)\[ (Sd)]ap T+/L—|—)\|:ap ap]
0g!, T po O,
= - = —_— A.46
Uap(w+u+M&+A) U+r+u+Aap ( )
with
T=1[r+AF ()] (r+p+A)+pr+N). (A.47)

Suppose that 92,/0p < 0. Because of (A.45), dc!,/0p then has to be negative as
well. If, instead, 02%/0p is positive, equation (A.46) shows that 9gl,/dp must be
positive, too. The same is true if one takes the sign of ds}/0p as a starting point.

This leads to the conclusion that the two derivatives have the same sign.

In order to determine the sign of 9g!,/0p, we plug (A.46) into (A.45) and obtain

Ua_éil r+ p+ AF(E) . o[l — F(gh)] {1+ i 3551]

op rHp+N T r4+pu+Aop

Oy [rap AR MR- F(sm] . [1 L pAlL - F(szn]
Op T4+ A T(r+p+A) Y '
(A.48)

Similar steps as in the context of equation (A.44) show that the expression in
brackets on the left hand side is positive. Since the right hand side is postive as
well, we can conclude that 9g!,/0p, 9g,/0p > 0.
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A.4.3 Derivation of equations (42) and (43)

Equation (42): Subtracting (36) for ¢ = &3 from the same equation for ae > &
yields

(r+p+N[S%(e) + k] =0(e — &) + pu[S9(e) — SUe)] . (A.49)
Doing the same with equation (36) leads to

(r+p+ N)[S9e) — SUe%)] = o(e — &5) + p[S*(e) + k] . (A.50)

After plugging (A.50) into (A.49), one arrives at

(it NS () + K = oe = )+ {ole = <) + ulS7(0) + A}
. (r+p+A)?—p* T 20+ A
& [S%(e) + K] Y —U(e—ed)m
& S5(e) = % — k. (A.51)

Setting ¢ equal to ¢, and making use of (23)and (2) yields equation (42):

s B c _o(ey — el)
S T T R S
o 6(0%) = c(r+ ) 1 (1)

1—8 oe—e)—(r+Nk

Equation (43): Subtracting (37) for ¢ = £5 from (36) for a € > & yields

(r+p+X) [S9e) + k] = o(e —&5) + pu[S*(e) + k]

N I )
Sl(e) = — k. A.52
< 5) r+pu+X r+p+A r+A ( )

Again, setting ¢ equal to ¢, and making use of (23), (2) and (A.51) we arrive at
equation (43):

Si(e,) = c_ _ o(eu — £3) I H o(eu — €q) —k
1—=pB)pO) r+p+X r+p+X r+A
. c(r+A) 1
& ¢ (0°) = - _
_ o(eu—E&5)(r+A) o(eu—e%)
1-p N S — (r Ak
o ¢ (F) = A ! (43)
1— 5 _ o xs\ _ o(e5—¢3) - Ak )
0'(6u gd) 2 TN (T+ )
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