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Abstract:

The equilibrium conditions for an economic system that produces output with several factors

of production and which is subject to technological constraints are derived. Optimization of

either output minus cost or integrated utility yields the conditions that output elasticities must

be equal to a modification of the usual factor cost shares, where shadow prices due to the

constraints add to factor prices. In a model, where capital, labor and energy (exergy) are the

factors of production, the technological constraints are identified as limits to capacity utilization

and automation. The shadow prices depend on the output elasticities. These elasticities are

determined for Germany, Japan and the USA by econometric estimations of energy-dependent

production functions that are derived from the twice differentiability requirement and the law

of diminishing returns.
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1. INTRODUCTION

Science and technology have contributed significantly to economic growth by providing
the means for the exploitation of natural resources. Problems emerge, because industrial
production is coupled to energy conversion and energy conversion to emissions. This
has stimulated research into the economics of resources and the resources of economics
[1]. The first and the second oil-price shock, and more recently climate change [2] and
peak oil [3], indicate new challenges to welfare optimization faced by industrial economies.
Constraints not taken into account before may become relevant. At the same time progress
in information technology and automation has been reducing constraints on the techno-
logically possible combinations of production factors, with significant consequences for
the evolution of production and employment.

This paper does not attempt to analyze the impact of the new constraints on future
growth. It is rather limited to a description of economic equilibrium under the hitherto
existing technological constraints. Since aspects of the old constraints are related to the
new ones, the analysis of the past may also benefit scenarios for the future.

The direct motivation of the paper is the observation that energy-dependent pro-
duction functions that reproduce past economic growth without the Solow residual have
output elasticities that deviate significantly from the factor cost shares [4] - [11]. Dis-
cussing this discrepancy previously, we have reasoned that technological constraints have
prevented the economies from operating in the absolute profit maximum, where the partial
derivatives of (output minus cost) vanish so that output elasticities and factor cost shares
are equal. We now incorporate this qualitative view mathematically into the neoclassical
vision, which involves economic agents optimizing subject to all relevant constraints.

The scope of the paper is the following. In Section 2 we briefly review some aspects
of neoclassical and endogeneous growth theory. Section 3 presents the equilibrium
conditions that result from profit maximization subject to technological constraints.
These conditions are also derived in Appendix A by optimizing the integral of utility
of consumption, starting from Ramsey’s capital model [12] as presented by Samuelson
and Solow [13] and modifying it by taking into account three factors of production,
finite time horizons, and technological constraints. The equilibrium conditions are
expressed as equalities between output elasticities and a modification of the usual factor
cost shares, where shadow prices due to the constraints add to factor prices. Section
4 computes the Lagrange multipliers that enter the shadow prices for the case of two
technological constraints. These are identified in Section 5 as constraints on capacity
utilization and automation with appropriate slack variables. In Section 6 and Appendix
B we calculate energy-dependent production functions and their output elasticities
from the general partial differential equations that result from the requirement that
second-order mixed derivatives be equal. Asymptotic boundary conditions that reflect
the law of diminishing returns lead to the Linex production function, which reproduces
past economic growth and the energy crises in Germany, Japan and the USA with small
residuals and Durbin-Watson coefficients between 1.5 and 2. Section 7 indicates, how the
shadow prices could be actually computed from the Linex function, its output elasticities
and time series on factor prices, capacity utilization and two constraint parameters.
Section 8 is Summary and Conclusions.
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2. PERSPECTIVES OF NEOCLASSICAL AND ENDOGENEOUS GROWTH
THEORY.

The oil price shocks 1973-1975 and 1979-1981 and the accompanying recessions known as
the first and the second energy crisis prompted numerous investigations concerning the
economic role of energy [14] - [20]. Jorgenson [19] summarizes his research: “My overall
conclusion is that there was a dramatic impact of energy prices on economic growth during
the energy crisis.” Denison [21] disagrees and reasons: “Energy gets about 5 percent of
the total input weight in the business sector . . . If . . . the weight of energy is 5 percent,
a 1-percent reduction in energy consumption with no change in labor and capital would
reduce output by 0.05 percent”; see also [22]. According to this argument, the decrease
of energy input E in the US economy by 5.2 percent between 1973 and 1975 should have
only caused a decrease of US output by 0.26 percent. The observed decrease of output,
however, was 1.0 percent (see also Fig. 4 of Section 6.2). In most of the industrially
advanced countries the share of energy cost in total factor cost is similar to that in the
USA and is therefore almost negligible compared with the cost shares of capital K and
labor L. From this perspective the recessions of the energy crises are hard to understand.2

Cost share weighting of production factors results from the technologically uncon-

strained equilibrium of neoclassical growth theory. In this equilibrium a factor’s output
elasticity and cost share in total factor cost are equal (see, e.g., eqs. (5) and (10) in
Section 3).

In addition to the difficulties with explaining the energy crises, factor weighting by
cost shares has another problem: the Solow residual, which accounts for that part of
output growth that cannot be explained by the weighted input growth rates; attributing
this difference formally to technological progress “has lead to a criticism of the neoclas-
sical model: it is a theory of growth that leaves the main factor in economic growth
unexplained” [23]. As a consequence considerable research efforts have been dedicated to
breaking down the observed economic growth into components associated with changes
in factor input and the interpretation of the Solow residual as a measure of technological
change. Barro [24] summarizes the basics of standard growth accounting.

Endogeneous growth theory proposes a variety of approaches to specify technological
progress and analyze its influence on growth. In addressing a few of them we concentrate
on assumptions regarding production factors, production functions, and output elasticities
in the growth models.

Barbier [25] combines Stiglitz’ [26] neoclassical production function, which includes
a natural resource, with Romer’s [27] model of endogeneous technological change and
investigates paths of optimal growth, using a production function of the Cobb-Douglas
type with constant returns to scale, multiplied by the stock of knowledge. Welsch and
Eisenack [28] start from Romer’s model, too, and extend it “to examine the impact of
secular changes in energy cost on technological progress and long run growth.” Their
production function is also Cobb-Douglas like with constant returns to scale and output
elasticities of K, L, and E that result from the equilibrium equations between factor prices

2In the US economy, Fig. 4 in Section 6.2, the changes from 1973 to 1974 and from 1974 to 1975 were
for capital +3.3% and +2.7%, for labor +0.6% and -2.8%, for energy -2.6% and -2.6%; if one multiplies
these changes with the factor cost shares and adds the contributions from the two time intervals, the
sum of the weighted changes of capital and labor cancel, and the two weighted energy changes add up to
-0.26%. The total change of output was -0.6% -0.4% = -1%.
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and marginal products. Differing from the approach of the present paper, all these models
consider technologically unconstrained growth-in-equilibrium. This is also the case for the
subsequently discussed growth models.

Bertola [29] studies distributional implications of growth-oriented policies, describing
aggregate output by the product of a term representing disembodied productivity with a
constant-returns-to-scale Cobb-Douglas production function of aggregate capital K and a
factor L that “might refer to land or (uneducated) labor”; the output elasticities are given
by the shares of K and L in aggregate income. The economy’s rate of balanced growth is
calculated for the case that the disembodied productivity term grows in such a way with
capital that output becomes a linear function of K. Similarly, Howitt [30] constructs a
multicountry endogeneous growth model starting from a set of Cobb-Douglas production
functions with constant returns to scale, each one multiplied by a productivity parameter
that grows as the result of innovations. In the model proposed below, which describes
growth subject to technological constraints, innovations may show both in increases of
productivity parameters (e.g. the energy efficiency of the capital stock) and in a relaxation
of technological constraints.

Barro [24], after exploiting the duality of factor quantities and prices in growth ac-
counting, considers firm-specific Cobb-Douglas production functions that depend on the
firm’s inputs of capital and labor (with constant returns to scale) and the economywide
capital stock K. The economywide output, aggregated across firms, results as a Cobb-
Douglas production function of the aggregated inputs capital K and labor L, with (the
possibility of) increasing returns to scale. “The interpretation of K . . . depends on the
underlying model. Griliches [31] identifies K with knowledge-creating activities, such
as R&D. Romer [32] stresses physical capital itself. Lucas [33] emphasizes human cap-
ital in the form of education.” While these models aim at endogenizing the origins of
productivity increases, employing various interpretations of capital in conjunction with
increasing returns, we will stay with the concept of physical capital and constant returns,
in combination with explicitly modeled technological constraints – which is new.

Labor is considered the only factor of production in studies that focus on endogeneous
growth driven by either “specialization as a crucial . . . aspect of human-capital accu-
mulation” [34] or research and development, measured by the number of scientists and
engineers engaged in R&D, expenditures by manufacturers for R&D, and patent grants
[35]; see also [36]. On the other hand, Moser and Nicholas [37] look into patents and their
citations for tracing the dynamics of technological progress and test whether electricity
matches the criteria of general purpose technologies (GPTs), credited with generating
the increasing returns that drive endogeneous growth. They find that inventions in other
industries, such as chemicals (which require large amounts of process heat), fulfill the
criteria for GPTs at least as well as those in electricity. Similarly, Jorgenson [18] notes
that “much research remains to be done before we obtain a complete understanding of
the role of energy utilization in productivity growth . . . The data support the hypothesis
that electrification and productivity growth are interrelated. Somewhat surprisingly, the
data also show that the utilization of nonelectric energy and productivity growth are even
more strongly related”.

Like these studies we focus our attention on innovations, growth, technology, and
energy. But unlike them, and any other work we are aware of, we proceed from economic
equilibrium under technological constraints that affect the combinations of capital, labor
and energy.

4



3. CONSTRAINED EQUILIBRIUM AND FACTOR SHADOW PRICES

We consider an economic systems with three factors of production X1, X2, X3, which can
vary independently within certain technological constraints. They form the input vector
~X. X1 is capital. The other two factors will be identified in Section 5 as (routine ) labor
and energy.3 Non-routine human contributions to economic progress (“creativity”) are
taken into account by time-changing technology parameters of the production function4

Y ( ~X) that will be used to describe output and growth in Section 6.
It is convenient to work with dimensionless, normalized variables. Normalized output

is y(~x) ≡ Y ( ~X)/Y0 and the normalized inputs are xi ≡ Xi/Xi0, i = 1, 2, 3, where Y0 and
the Xi0 are output and inputs in the base year t0.

5

We assume, and show in Section 5, that the technological constraints, which limit the
independent variations of the production factors at a given time t, can be written with
the help of slack variables in the form

fa(~x, t) = 0, a = α, β, γ, . . . (1)

The exogenously given prices per unit of factors X1, X2, X3 are p1, p2, p3. They form
the price vector ~p(t). Thus, total factor cost is

FC ≡ ~p(t) · ~X(t) = ~P (t) · ~x(t) =
3
∑

i=1

Pi(t)xi(t), ~P (t) ≡ (p1X10, p2X20, p3X30). (2)

We derive the criteria for economic equilibrium under technological constraints via
two different models of optimization by economic agents. The first, and somewhat more
straightforward model used in this section, assumes that the decisions of all economic
agents result in maximization of profit, which is the difference between the macroeconomic
output Y and the total factor cost FC . The second model assumes that society maximizes
the time integral of utility of consumption. It is outlined in Appendix A.

The necessary condition for a maximum of output minus cost subject to the constraint
of fixed cost FC and the technological constraints (1) is that the gradient in factor space

of Y0y(~x)+µ(FC − ~P ·~x)+
∑

a µafa(~x, t) vanishes. This yields the equilibrium conditions

Y0
∂y

∂xi
− µ

[

Pi −
∑

a

µa

µ

∂fa

∂xi

]

= 0, i = 1, 2, 3 , (3)

where µ and µa are Lagrange multipliers.
The equilibrium values of x1, x2 and x3 can be computed from these three equations,

if one knows the production function, factor prices and constraints.

3By “energy” we mean an input that is converted into physical work, or which is physical work itself.
In the engineering sciences exergy (with x) is the name for the maximum amount of physical work that
could be obtained in principle from an energy source. Primary energy in the form of coal, oil, gas, nuclear
fuels or solar radiation could be converted to nearly 100 percent into physical work under appropriate
conditions. It is an input ultimately supplied by nature.

4The concept of the macroeconomic production function has been subject to criticism, summarized
by Felipe and Fisher [38]. Lindenberger et al. [39] respond to this criticism elsewhere.

5If there were were more than three production factors, say n, one would have to replace
∑

3

i=1
by

∑n
i=1

in the following equations.
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Multiplication of eq. (3) with xi

y
brings the equilibrium conditions into the form

xi

y

∂y

∂xi
=

µ

Y0y
xi

[

Pi −
∑

a

µa

µ

∂fa

∂xi

]

, i = 1, 2, 3 , (4)

where
xi

y

∂y

∂xi
=

Xi

Y

∂Y

∂Xi
≡ ǫi (5)

also defines the output elasticity ǫi of the production factor xi (Xi). Output elasticities
will be calculated in Appendix B as approximate solutions of the set of partial differential
equations that results from the requirement of twice differentiability of macroeconomic
production functions.

We assume that the production function y(~x) is linearly homogeneous in (x1, x2, x3) .
Then we have constant returns to scale:6

3
∑

i=1

ǫi = 1 . (6)

Combining the last three equations one obtains

Y0y = Y0y
3
∑

i=1

ǫi = µ
3
∑

i=1

xi

[

Pi −
∑

a

µa

µ

∂fa

∂xi

]

= µ

[

FC −
3
∑

i=1

xi

∑

a

µa

µ

∂fa

∂xi

]

, (7)

where the total factor cost FC is given by eq. (2). Equation (7) can also be written in
the form

µ =
Y0y

FC −
∑3

i=1 xi
∑

a
µa

µ
∂fa

∂xi

. (8)

We insert µ from eq. (8) into eq. (4) and observe eq. (5). This yields the equilibrium
conditions in the form

ǫi =
xi

[

Pi −
∑

a
µa

µ
∂fa

∂xi

]

FC −
∑3

i=1 xi
∑

a
µa

µ
∂fa

∂xi

, i = 1, 2, 3 . (9)

Without technological constraints all µa are absent in eq. (9). Then one obtains the
non-constrained equilibrium conditions, which say that the output elasticities ǫi,nc, are
equal to the factor cost shares:

ǫi,nc =
xiPi

FC
=

Xi · pi

FC
. (10)

For the general case with technological constraints we rewrite eq. (9):

ǫi =
xi

[

Pi −
∑

a
µa

µ
∂fa

∂xi

]

∑3
i=1 xi

[

Pi −
∑

a
µa

µ
∂fa

∂xi

] =
xiXi0

[

pi −
1

Xi0

∑

a
µa

µ
∂fa

∂xi

]

∑3
i=1 xiXi0

[

pi −
1

Xi0

∑

a
µa

µ
∂fa

∂xi

] =
Xi [pi + si]

∑3
i=1 Xi [pi + si]

.

(11)

6At any fixed time t an increase of all inputs by the same factor λ must increase output by λ. Thus, the
production function must be linearly homogeneous in (x1, x2, x3), which means that y(λx1, λx2, λx3) =
λ · y(x1, x2, x3) for all λ > 0, all possible combinations (x1, x2, x3) and all times t. Differentiating this
equation with respect to λ according to the chain rule and then putting λ = 1 one obtains the Euler
relation (∂y/∂x1) · x1 + (∂y/∂x2) · x2 + (∂y/∂x3) · x3 = y. Dividing this by y yields (x1/y)(∂y/∂x1) +
(x2/y)(∂y/∂x2) + (x3/y)(∂y/∂x3) = 1.
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Here the shadow price of the production factor Xi = Xi0xi is defined as

si ≡ −
1

Xi0

∑

a

µa

µ

∂fa

∂xi
. (12)

It is due to the technological constraints fa(x1, x2, x3, t) = 0, a = α, β, γ . . ..
The last equality in eq. (11) can also be written as

ǫi =
Xi(pi + si)

(FC + FCS)
, FCS ≡

3
∑

i=1

Xisi , (13)

where FCS is the total shadow cost of the input factors.

4. LAGRANGE MULTIPLIERS FOR THE CASE OF TWO CONSTRAINTS

In Section 5 we consider two specific technological constraints for the three factor model.
Then the sum over subscripts a in the above equations contains only two terms, say α
and β. It is convenient to abbreviate

µA ≡
µα

µ
, µB ≡

µβ

µ
, (14)

and define the partial derivatives of the two constraint equations

fA(x1(t), x2(t), x3(t), t) = 0, fB(x1(t), x2(t), x3(t), t) = 0 (15)

as

fAi ≡
∂fA

∂xi

, fBi ≡
∂fB

∂xi

, i = 1, 2, 3 . (16)

With that the equilibrum conditions (9) become

ǫi =
xi [Pi − µAfAi − µBfBi]

FC −
∑3

i=1 xi [µAfAi + µBfBi]
, i = 1, 2, 3 . (17)

We resolve the two independent ratios

ǫ1

ǫ2

=
x1 [P1 − µAfA1 − µBfB1]

x2 [P2 − µAfA2 − µBfB2]
(18)

and
ǫ1

ǫ3
=

x1 [P1 − µAfA1 − µBfB1]

x3 [P3 − µAfA3 − µBfB3]
, (19)

with respect to µA and µB. After some algebraic manipulations, and with the definitions

R21 ≡
x2ǫ1

x1ǫ2
, R31 ≡

x3ǫ1

x1ǫ3
, (20)

we obtain

µA =
(P1 − P2R21)

fA1 − fA2R21

+
fB2R21 − fB1

fA1 − fA2R21

· µB , (21)

µB =
(P1 − P3R31)(fA1 − fA2R21) − (P1 − P2R21)(fA1 − fA3R31)

(fB2R21 − fB1)(fA1 − fA3R31) − (fB3R31 − fB1)(fA1 − fA2R21)
. (22)
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5. CAPACITY UTILIZATION AND AUTOMATION.

We note from eqs. (10) and (11) that the standard equation of output elasticities with cost
shares is valid only in the absence of constraints. The question arises: is that condition
reasonable, or are there actually constraints on factor space that arise, for example, from
technological relationships among the three factors of production? We postulate that such
constraints do exist. Our premise is that capital K(t), labor L(t) and energy E(t) are
the factors of production that create value added Y at time t. The capital stock consists
of all energy-conversion and information-processing devices together with all buildings
and installations necessary for their protection and operation. Capital in the absence
of energy (and supervision by humans) is functionally inert. Nothing happens. To be
productive it must be activated by useful energy (exergy). Their is a minimum amount of
exergy required in order that the machines of the capital stock can be productive.7 To be
economically productive it must also be allocated, organized and supervised by (human)
labor.

Materials are passive partners of the production process. They do not contribute ac-
tively to the creation of value added. Capital, labor and energy arrange material atoms
and molecules into the orderly patterns required for a useful product. Similarly, capital,
labor and energy move electrons in materials as required for information processing. Land
area matters mainly as site for production facilities of the industrial sector and for pho-
tosynthetic conversion of solar energy into the chemical energy of glucose in agriculture.
Since usable land can be increased only a little if at all in industrial countries, and since
land does not contribute actively to work performance and information processing, we
disregard it when discussing industrial production and growth of the past. However, the
limited emission-absorption capacity of the biosphere above the finite land area of earth
is a constraint that will be felt more and more in the future. Since it depends on risk
assessment by society and political weighting of the objectives “industrial growth” and
“ecological stability” in welfare optimization, it is hard to express it mathematically by a
constraint equation with slack variables. Instead, Kümmel [40] has proposed to model it
by pollution functions that reduce output elasticities.

Economic activities of humans can be subdivided into two components: (1) routine
labor, which (by definition) can be substituted by some combination of capital and energy
and (2) a residual that cannot be replaced at any particular moment in time. The latter
component could be given various names, but the one we prefer is creativity. Creativity,
in this sense, is the specific human contribution to production (and growth) that cannot
be provided by any machine, even a sophisticated computer capable of learning from
experience. It includes ideas, inventions, valuations, and (especially) interactive decisions
depending on human reactions and characteristics. It is important to recognize that the
non-routine component of human labor may decline over time, but it is never zero.

The ultimate lower limit of labor inputs is probably un-knowable, because it depends
to some degree on the limits of artificial intelligence. But we need not concern ourselves
with the ultimate limit. At any given time, with a given technology, there is a limit to the
extent that routine labor can increase output. In other words, we postulate a combination
of capital and exergy such that adding one more unskilled worker adds nothing to gross

7Steam turbines, gas turbines, Diesel engines and petrol engines are the principal convertors of fossil
and nuclear fuels into physical work. As a consequence of the Second Law of Thermodynamics their
conversion efficiency can never be better than the Carnot efficiency.
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economic output. (In some manufacturing sectors of industrialized countries this point
does not seem to be far away.)

There is another fairly obvious technological constraint on the combinations of factors
in factor space. In brief, machines are designed and built for specific exergy inputs. If the
exergy available is less than the design point, production will be less than optimal. An
example are power plants, whose conversion efficencies (generated electricity divided by
fuel input) are reduced when operating in part load. In some cases (e.g. for some electric
motors) there is a modest overload capability. Business buildings can be over-heated or
over-cooled, to be sure, but it does not contribute to productivity. But on average the
maximum exergy input is fixed by design. Both energy convertors and energy users have
built-in limits. In other words, the ratio of exergy to capital must stay above a definite
lower and below a definite upper limit.

Output Y and capital stock K, measured in deflated monetary units, are taken from
the national accounts, routine labor L, measured in man hours worked per year, is given
by the national labor statistics, and energy E, measured in petajoules (or tons of oil
equivalents, or quads) per year, is obtained from the national energy balances. The
prices pK , pL, pE per units of capital, routine labor and energy can be calculated from
data provided by economic research institutions and national statistics (see, e.g., [41]).
(Aggregation of output and capital in physical units, defined by work performance and
information processing, and the relation of these physical units to the monetary units has
been discussed by Kümmel [42] and in [6, 7, 39].)

With these identifications the general variables of the preceding sections become:

y(x1, x2, x3) = y(k, l, e)

x1 = k = k(t) ≡
K(t)

K0
, X10 = K0

x2 = l = l(t) ≡
L(t)

L0

, X20 = L0

x3 = e = e(t) ≡
E(t)

E0
, X30 = E0 . (23)

Here K0, L0 and E0 are the production factors in the base year t0.
The resume of the above considerations is that the use of capital, labor and energy

in industrial production is subject to technological constraints that are the consequence
of limits to capacity utilization and to the substitution of capital and energy for labor.
We use the term “automation” to mean “degree of substitution of capital plus energy
(exergy) for labor”. Entrepreneurial decisions, aiming at producing a certain quantity of
output y within existing technology, result in the absolute magnitude of the total capital
stock k, its degree of capacity utilization η and its degree of automation ρ.

The macroeconomic degree of capacity utilization η is defined as the appropriate aver-
age over the degrees of capacity utilization of the individual production units that make
up the total capital stock.

The degree of automation is defined by

ρ = η ·
k

km(y)
; (24)

ρ = 1, if at η = 1 the capital stock k is equal to the capital stock km(y) that would
be required for maximally automated production of output y; in this state the economic
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weight, i.e. the output elasticity, of routine labor would be vanishingly small [5] - [7].8

Obviously, ρ and η are functions of capital k, labor l, and energy e. They are definitely
constrained by ρ(k, l, e) ≤ 1 and η(k, l, e) ≤ 1 , i.e. the maximum degree of automation
(at a given time) cannot be exceeded, and a production system cannot operate above
design capacity. Here it is important that (productive) energy input into machines and
other capital equipment is always limited by their technical design.

However, there is a technical limit to automation that lies below 1. We call it ρT (t).
It depends on mass, volume and energy demand of machines, especially information pro-
cessors, in the capital stock. Imagine the vacuum-tube computers of the 1960s, when the
tiny transistor, invented in 1947 by Bardeen, Brattain and Shockley, had not yet diffused
into the capital stock. A vacuum-tube computer with the computing power of a 2008
notebook computer would have had a volume of many thousands of cubic meters. In
1960 a degree of automation, as it is standard 40 years later in the highly industrialized
countries9, would have resulted in factories many orders of magnitude bigger than today,
probably exceeding the available land area. The resources required to build such factories
would have driven the cost of pushing automation to present-days standards far above
the savings generated by the substitution of capital and energy for labor.

In the course of time, the technical limit to automation, ρT (t), moves towards the
theoretical limit, 1, as, e.g., the density of information processors on a microchip increases.
According to “Moore’s Law” this density has doubled every 18 months during the last
decades. It may continue like that for a while, thanks to nano-technological progress.
But there is a thermodynamic limit to transistor density, because the electricity required
for information processing eventually ends up in heat; if this heat can no longer escape
sufficiently rapidly out of the microchip, it will melt down the conducting elements of
the integrated circuits and destroy them. We do not know exactly, how far the technical
limit to automation can be pushed. For the purpose of the present paper, however, it is
sufficient to know that this limit exists. Since the technical properties of the capital stock
do not change with η, the corresponding constraint equation applies to the situation of
maximum capacity utilization. It reads, with η = 1 in eq. (24) and the slack variable kρ,

fA(k, l, e, t) ≡
k + kρ

km(y)
− ρT (t) = 0 ; (25)

kρ is the capital stock that has to be added to k so that the total capital stock k + kρ,
working at full capacity, exhausts the technologically possible automation potential ρT (t).

With the slack variables lη, eη the constraint equation for capacity utilization becomes

fB(k, l, e, t) ≡ η(k, l + lη(t), e + eη(t)) − 1 = 0 ; (26)

l+ lη and e+eη are the quantities of labor and energy required for full capacity utilization
of the capital stock k at time t. The technological state of the capital stock determines
the relation between eη(t) and lη(t).

We need an explicit functional form for the degree of capacity utilization η. Since
η does not change, if k, l and e all change by the same factor r, it is a homogeneous

8In prior publications the symbol kt was used instead of km, and we (R.K. and D.L.) called “total
automation” what we now call “maximum automation”.

9Lindenberger [9] has computed an increase of automation in German industry by 50% between 1960
and 1990.
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function of degree zero: η = η(l/k, e/k). A trial form can be derived from a Taylor
expansion of ln η[ln(l/k), ln(e/k)] around some point ‘0’≡ (ln(l/k)0, ln(e/k)0), up to first
order in ln(l/k) − ln(l/k)0 and ln(e/k) − ln(e/k)0. This yields

η = η0

(

l

k

)λ (
e

k

)ν

, (27)

where λ and ν are the derivatives of ln η with respect to ln l/k and ln e/k in the point ‘0’.
In analogy to Lindenberger [9] we propose to use eq. (27) as a phenomenological function
for the degree of capacity utilization.

Knowledge of the production function y(k, l, e) facilitates calculation of the capital
stock km(y) required for maximally automated production of a given quantity of output
y that is actually produced by k, l and e. This quantity, which enters the constraint
equation (25), will be calculated in Section 7. The technology parameters η0, λ and ν
can be determined from empirical data on capacity utilization.10 One can also compute
fAk, fAl, fAe and fBk, fBl, fBe from eq. (25) and the combination of eq. (26) with eq.
(27). The output elasticities in eqs. (21) and (22) for µA and µB and in the equilibrium
conditions (9) are also known, if one knows y(k, l, e). Thus, calculation of the production
function is all that is left to do, in order to solve the equilibrium problem under
technological constraints in principle.

6. MACROECONOMIC PRODUCTION FUNCTIONS

6.1 Energy-dependent Cobb-Douglas and Linex functions.

In this section and the following ones we change the notation for output and production
functions from Y (K, L, E) = Y0y(k, l, e) to Q(K, L, E) = Q0q(k, l, e).11

We calculate macroeconomic production functions Q(K, L, E) = Q0q(k, l, e) from the
capital-labor-energy-creativity (KLEC) model, outlined in Appendix B. This model is
based on the law of diminishing returns and the conditions for twice differentiability of
energy-dependent production functions that also satisfy the Euler relation, i.e. constant
returns to scale. It consists of the growth equation (74), the set of partial differential
equations (77) for the output elasticities of capital, α ≡ ǫ1, and labor, β ≡ ǫ2, and the
(asymptotic) boundary conditions (79) and (80) on α and β. According to the theory
of partial differential equations the most general solutions of (77) are any differentiable
functions of l/k and e/k; one could determine them uniquely – and thus compute the
exact production function for any given economic system – if one knew β at all points on a
certain boundary surface in k, l, e space and α on some boundary curve in that same space
[40]. Then one would also know the exact output elasticity of energy, γ = 1−α−β ≡ ǫ3.
However, such information is not, and never will be available. Therefore, one has to be
content with approximations.

If one disregards the asymptotic boundary conditions (79) and (80), one may consider
the trivial solutions of the differential equations (77). These are constant output elastici-

10Lindenberger [9] had actually performed the corresponding fitting procedure for a somewhat different
phenomenlogical model of η.

11The reason is consistency with the notation used by three of us (R.K., J.S., D.L.) in previous pub-
lications. This notation is the one used in Paul A. Samuelson’s “Volkswirtschaftslehre I, II (1975)”,
translated from the 1973 textbook “Economics” [43].
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ties of capital, α0, labor, β0, and energy, 1−α0−β0. They result in the energy-dependent
Cobb-Douglas function

qCDE(k, l, e) = q0k
α0lβ0e1−α0−β0. (28)

If there were no technological constraints on factor combinations so that eq. (10) holds,
and if one could approximate the factor cost shares by constants, then α0, β0, and 1 −
α0 − β0 would be the (approximately) constant factor cost shares. In the presence of
technological constraints, however, one cannot determine the output elasticities this way.
Another procedure is required.

There are also technological reasons for looking beyond the Cobb-Douglas function.
Most important is that the Cobb-Douglas function allows for practically all combina-
tions of production factors, and thus asymptotically complete substitutability. However,
machines don’t run without energy conversion, and there are thermodynamic limits to
energy conversion efficiency.12 Furthermore, several billion of hard working people would
be required in mayor industrial economies in order to deliver the amount of physical work
that is just numerically equivalent to the physical work delivered by primary energy con-
version in the capital stock.13 Therefore, in modern economies there are absolute limits
to the substitution of capital and labor for energy. The Cobb-Douglas function implies
otherwise. Limits to substitution can be taken into account via the simplest, non-trivial,
factor-dependent solutions of the partial differential equations (77) and their asymptotic
boundary conditions (79) and (80). These solutions are the output elasticities

α = a ·
l + e

k
, β = a ·

(

c
l

e
−

l

k

)

, γ = 1 − α − β . (29)

The output elasticity of capital, α, approaches zero, if the capital stock increases more
rapidly than labor and energy. This is the law of diminishing returns and describes the
approach to the Schumpeter stationary state, where capital has a zero net productivity; see
also p. 549 of [13]. The technology parameter a gives the weight, with which labor/capital
and energy/capital combinations contribute to the output elasticity of capital. In this
sense a can be interpreted as a measure of capital effectiveness. If innovations change this
weight in time, a becomes time-dependent a(t). It should increase, if work performance
and information processing increase at unchanged l/k and e/k.

The negative term −al/k in β results from eq. (78) as the mathematical consequence
of the functional form of α in eq. (29). Thus, the law of diminshing returns, which is
imprinted on α, leaves its mark on β, too. The first term in β, which must be positive
and which can be only a function of l/e, has been chosen as the simplest function that
yields decreasing β at increasing e. This describes the approach to the state of maximum
automation, where β = 0, so that a marginal increase of labor would no longer contribute
to the increase of output q. At a given output q the state of maximum automation
would require the capital stock k = km(q), introduced in Section 5, and an energy input
e = em ≡ ckm(q). The technology parameter c may be interpreted as indicating the

12The limits are drawn by the First and Second Law of Thermodynamics. These are the most funda-
mental laws of nature. The First Law implies that work performance requires energy conversion. The
Second Law states that entropy is produced by all processes that occur in finite times. Entropy produc-
tion due to energy conversion depreciates energy quality and results in emissions of heat and particle
currents.

13This can be seen by comparing the daily work calorie requirement of 2.9 kilowatthours for very heavy
work load with average primary energy input per day.
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energy demand of the fully employed, maximally automated capital stock. If innovations
reduce/enhance the energy demand of fully employed capital, c becomes time-dependent
c(t) and decreases/increases.

If one inserts the output elasticities (29) into the growth equation (74) and integrates
at fixed time t one obtains the (first) Linex production function14

qLt = q0e exp

[

a(2 −
l + e

k
) + ac(

l

e
− 1)

]

, (30)

which depends linearly on energy and exponentially on ratios of capital, labor and energy.
The multiplier q0 is a third integration constant, besides a and c.15

This function, proposed in [42], has been applied to the description of production in
mayor industrial countries [5, 6, 7, 9, 44, 45, 11]. It reproduces economic growth and the
first two energy crises satisfactorily. Recent results are shown in Section 6.2.

If the Linex function depends explicitly on time t via a time dependence of the tech-
nology parameters, one may also introduce an output elasticity of creativity, δ, by

δ ≡
t − t0

q

∂q

∂t
=

(t − t0)

qLt

[

∂qLt

∂a

da

dt
+

∂qLt

∂c

dc

dt
+

∂qLt

∂q0

dq0

dt

]

. (31)

The output elasticities represent the weights, with which marginal relative changes of
the production factors k, l, e and of time t contribute to the relative change of output q.16

In this sense they measure the productive powers of capital, labor, energy, and creativity.
We assume that the economic actors choose only such factor combinations for which

the marginal increase of an input will not cause a decrease of output. Thus, the output
elasticities must be non-negative:

α ≥ 0, β ≥ 0, γ = 1 − α − β ≥ 0 . (32)

Application of these conditions to the Linex output elasticities (29) yields the inequalities

α = a
l + e

k
≥ 0, β = al

(

c

e
−

1

k

)

≥ 0, γ = 1 − a
e

k
− ac

l

e
≥ 0 . (33)

These relations allow certain predictions. For instance, imagine an economic system
with decreasing energy inputs. The decrease may be due to resource, environmental or
political obstacles to fossil fuel consumption, and insufficient development of technologies
for the grand-scale exploitation of nuclear and solar potentials, including extraterrestrial
options like solar power satellites. As a consequence, not all countries can afford any
longer increasing or at least constant energy inputs. Let us assume that the engineers
of the system have been so creative that the energy demand of the capital stock,
c, has been driven down to its thermodynamic minimum. Then, within our model,

14Kümmel et al. [5] and Lindenberger [9] have related the Linex function to the energy-dependent
Translog function. They also calculated more complicated output elasticities that solve the differential
equations (77) and yield higher Linex functions. However, the simplest Linex function seems to be
sufficient for the description of past economic growth.

15It may change in time with changing monetary valuation of the basket of goods and services that
make up Q0.

16The growth equation (74) in Appendix B shows this directly.
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at fixed k the economic actors will adjust labor input l to values at or below the
critical limit lC(e) = e(1 − ae/k)/ac, above which γ would be negative.17 This crit-
ical limit defines the range, in which employment of routine labor may vary as e decreases.

6.2 Computing output elasticities for Germany, Japan and the USA

Appendix C describes various methods that thave been used in order to determine the
parameters a, c and q0. Already the simplest case of fitting the Linex function with three
constant parameters to the empirical time series of output reproduces the general trend
of economic growth, and one obtains output elasticities for capital, labor and energy that
are of the same order of magnitude as the ones in Table 2. However, the Durbin-Watson
coefficients dW of autocorrelation have been mostly below 1. The best dW value, indicating
the absence of autocorrelations, is 2. The closer one comes to dW = 2, the more confident
one may be that no important factor has been left out.

In order to see, whether a reduction of autocorrelation has a significant impact on
the output elasticities of capital, labor and energy, we allow for time dependencies of
the technology parameters and model them by logistic functions, which are typical for
growth in complex systems and innovation diffusion. Let p(t) represent either the capital-
effectiveness parameter a(t) or the energy-demand parameter c(t). Its logistic differential
equation

d

dt
(p(t) − p2) = p3 (p(t) − p2)

(

1 −
p(t) − p2

p1 − p2

)

(34)

has the solution

p(t) =
p1 − p2

1 + exp [−p3 (t − t0 − p4)]
+ p2, (35)

with the free (characteristic) coefficients p1, . . . , p4 ≥ 0. As an alternative to logistics we
have also looked into Taylor expansions of a(t) and c(t) in terms of t− t0 with a minimum
of free coefficients.

The free coefficients of the logistic functions, or of the Taylor expansions, are deter-
mined by minimizing the sum of squared errors (SSE) computed from the empiricial time
series of output, qempirical(ti), and the Linex function qLt(ti) with the empirical time series
of k, l and e as inputs:

T
∑

i=1

[qempirical(ti) − qLt(ti)]
2 , (36)

subject to the constraints (33) of non-negative output elasticities. These constraints turn
into the constraints on a(t) and c(t), or on k, l, e for given a and c:

0 ≤ a(t) ≤ amax(t) ≡
k(t)

l(t) + e(t)
,

e(t)

k(t)
≡ cmin(t) ≤ c(t), 0 ≤ a(t)

[

e

k
+ c(t)

l

e

]

≤ 1.

(37)
We use the Levenberg-Marquardt method of non-linear optimization [46] in combina-

tion with a new, self-consistent iteration procedure that helps avoid divergencies in the

17The maximum of lC(e) is at e = eC = k/2a. Since 1960 e has been below k/2a in Germany, Japan
and the USA, according to the empirical values of e, k in Figs. 1- 4 and the magnitudes of a given in
Fig. 1 and Table 1.
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fitting procedure or convergence in a side minimum. More details are given in Appendix
C.

German reunification on October 3, 1990, provides an interesting test of the KLEC
model. The sudden merger of the planned economy of the former German Democratic
Republic with the market economy of the Federal Republic of Germany (FRG) into what
continues to be the Federal Republic of Germany was a result of political, social and
economic decisions with far-reaching consequences. As it turns out, it is possible to
model this working of “creativity” phenomenologically by just five free coefficients that
enter the Taylor series expansion for a(t) and the combination of step functions18 for c(t)
in the model for Germany’s total economy, see Fig. 1. For the other considered systems
a and c are given by the logistics function (35), with pi ≡ ai for a(t) and pi ≡ ci for c(t),
i = 1, 2, 3, 4. The free coefficients {ai} and {ci} are given in Table 1.

Table 1 The free coefficients of a(t) and c(t) in the logistics for the Federal Repub-
lic of Germany’s industrial sector “Warenproduzierendes Gewerbe” (FRG I), the
Japanese sector “Industries” (Japan I), and the total economy of the USA (USA
TE).

System a1 a2 a3 a4 c1 c2 c3 c4

FRG I 0.33 0.67 0.19 32 1 1.46 19.1 31
Japan I 0.16 0.2 1.87 20.1 2.75 0.45 0.86 14.61
USA TE 0.21 0.49 0.97 22.64 2.63 0.81 0.81 17.24

The reproduction of economic growth in Germany, Japan and the USA since 1960 and
the time-averaged output elasticities of capital, labor, energy, and creativity are shown
in Figures 1 – 4 and Table 2.19 The asterisk at the value 0.12 of δ̄ for FRG I in Table
2 indicates that the very large derivative of the logistic function c(t) in 1991 has been
omitted when calculating the time average. This has been also done for FRG TE, because
the derivative of the step function c(t) does not exist in 1991. The uncertainty ranges in
the output elasticities result from the law of error propagation and the variances of the
free coefficients in eq. (35)– or the alternative Taylor series expansions – computed by the
statistics program SAS 8.1. Since δ, defined in eq. (31), depends on the temporal varia-
tions of all free coefficients, the law of error propagation yields the largest uncertainties
for δ̄.

The energy crises 1973-1975 and 1979-1981 are well reproduced and the residuals
are small in Figs. 1 – 4. The time-averaged output elasticities shown in Table 2 are for
labor much smaller and for energy much larger than the cost shares of these factors.
On an OECD average the factor cost shares have been roughly 0.25 for capital, 0.70 for
labor and 0.05 for energy during the considered time spans. Prior studies with one set
of constant technology parameters before 1978 and another one after 1978 had yielded
similar mean output elasticities [5, 6, 45]. The main effect of the more detailed modeling

18Step function results from the logistic (35) for p3 → ∞.
19These figures and the table refer to economic sectors whose output is essentially generated by work

performance and information processing. Consequently, the residential sectors have not been included
in the data on output and inputs. The system called “US Total Economy”consists of the sectors called
“Private Industries” and “Government” in the Statistical Abstracts of the United States. For more details
on data see [42] and the Internet Supplement to [7].
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Table 2 Time-averaged Linex output elasticities of capital (ᾱ), labor (β̄), energy
(γ̄), and creativity (δ̄), adjusted coefficient of determination R2 and Durbin-Watson
coefficient dW for the Federal Republic of Germany’s total economy (FRG TE) and
its industrial sector “Warenproduzierendes Gewerbe” (FRG I),the Japanese sector
“Industries” (Japan I), and the total economy of the USA (USA TE) during the
indicated time spans.

System FRG TE FRG I Japan I USA TE
1960-2000 1960-99 1965-92 1960-96

ᾱ 0.38±0.09 0.37± 0.09 0.18± 0.07 0.51± 0.15
β̄ 0.15±0.05 0.11±0.07 0.09±0.09 0.14±0.14
γ̄ 0.47±0.1 0.52±0.09 0.73±0.16 0.35±0.11
δ̄ 0.19±0.2 0.12∗ ± 0.13 0.14±0.19 0.10±0.17
R2 1 0.996 0.999 0.999
dW 1.64 1.9 1.71 1.46
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Figure 1: Left: Empirical growth (squares) and theoretical growth (circles) of the normalized
output q = Q/Q1960 of the total economy of the Federal Republic of Germany (FRG) between
1960 and 2000. Right: Empirical time series of the normalized factors capital k = K/K1960,
labor l = L/L1960, and energy e = E/E1960.

of the technology parameter’s time dependence is the reduction of autocorrelation: the
values of the Durbin-Watson coefficients dW are closer to the best value 2 than in the prior
studies. Furthermore, energy-dependent Cobb-Douglas functions with output elasticities
close to the time-averaged Linex elasticities, reproduce observed economic growth rather
satisfactorily, too, albeit with worse Durbin-Watson coefficients. In this sense the Cobb-
Douglas function can also be used for an approximate description of past economic growth.

Ayres and Warr [11], using exergy inputs multiplied by appropriate conversion efficien-
cies (and physical work by animals) as energy variable, have fitted the Linex function with
two constant technology parameters to the gross domestic product of the US economy
between 1900 and 1998. The results are shown in Fig. 5. Their exergy data [47] already
include most of the improvements in the efficiency of converting primary energy into
useful work,20 which have occurred in power plants, motors and other energy-consuming

20“Useful work”, defined as the product of energy (exergy) inputs multiplied by a conversion efficiency,
has been computed for some countries by Ayres et al. [47].
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Figure 2: Left: Empirical growth (squares) and theoretical growth (circles) of the normalized
output q = Q/Q1960 of the German industrial sector “Warenproduzierendes Gewerbe” (GWG)
between 1960 and 1999. Right: Empirical time series of the normalized factors capital k =
K/K1960, labor l = L/L1960, and energy e = E/E1960.
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Figure 3: Left: Empirical growth (squares) and theoretical growth (circles) of the normalized
output q = Q/Q1965 of the Japanese sector “Industries” between 1965 and 1992. This sector
produces about 90% of Japanese GDP. Right: Empirical time series of the normalized factors
capital k = K/K1965, labor l = L/L1965, and energy e = E/E1965.

devices during the 20th century. If, on the other hand, one uses primary energy input as
energy variable, as it is done in the Linex functions that yield Figs. 1 – 4, one needs the
time-dependent technology parameters, which model efficiency improvements in the use
of primary energy and information processing. Most recent studies of Ayres and Warr
[48] for the USA and Japan between 1900 and 2004, but excluding the years 1941-1948,
show very good agreement between empirical and theoretical growth. Time-dependent
Linex technology parameters have reduced residuals to much smaller values than in the
best fit of Fig. 5.
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Figure 4: Left: Empirical growth (squares) and theoretical growth (circles) of the normalized
output q = Q/Q1960 of the total US economy between 1960 and 1996. Right: Empirical time
series of the normalized factors capital k = K/K1960, labor l = L/L1960, and energy e = E/E1960.
Without recalibration of q0 from q02 to q01 in 1965 agreement between the theoretical and the
empirical growth curve would be somewhat worse during the first five years.

Figure 5: Left: Empirical growth (solid line) and theoretical growth (broken) lines of US GDP
between 1900 and 1998. Theoretical growth has been calculated using the Linex production
function with two constant technology parameters. The best fit, the dotted line, is obtained
with physical work derived from all exergy inputs as energy variable. The other theoretical
lines exclude some exergy sources, like, e.g. animal work. For more details see [11]. Right:
Time-dependent Linex output elasticities of capital, solid line, labor, dashed-dotted line, and
physical work, dotted line, for the US economy between 1900 and 1998. The time averaged
output elasticities are for capital ᾱ = 0.27, labor β̄ = 0.09, physical work γ̄ = 0.64.
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7. SHADOW PRICES OF CAPITAL, LABOR AND ENERGY.

The shadow prices of eq. (12) translate technological constraints into monetary terms.
They are for capital, labor and energy

sK = −
1

K0

[

µA
∂fA

∂k
+ µB

∂fB

∂k

]

, sL = −
1

L0

[

µA
∂fA

∂l
+ µB

∂fB

∂l

]

(38)

and

sE = −
1

E0

[

µA
∂fA

∂e
+ µB

∂fB

∂e

]

. (39)

The (ratios of) Lagrange multipliers µA and µB are given by eqs. (21) and (22), where
one has to identify x1 = k, x2 = l, x3 = e, ǫ1 = α, ǫ2 = β, ǫ3 = 1 − α − β, and
replace subscripts 1,2,3 by k, l, e. The output elasticities are those of eq. (29). (As a
rough approximation one may also use the average output elasticities of Table 2, which
correspond to energy-dependent Cobb-Douglas functions.) The functions fA and fB,
which model the technological constraints, are given by eqs. (25) - (27). The capital
stock for maximally automated production of output q, km(q) in eq. (25) (with y changed
to q), can be calculated from the Linex production function qLt[k, l, e; t] of eq. (30) by
demanding that

qLt[k, l, e; t] = qLt[km, lm, ckm; t], (40)

where c(t)km is the energy input in the state of maximum automation according to eq.
(80). The routine labor lm that remains in the state of maximum automation is certainly
much smaller than km. If one neglects lm/km ≪ 1, eq. (40) becomes

q0e exp

[

a(t)(2 −
l + e

k
) + a(t)c(t)(

l

e
− 1)

]

= q0c(t)km exp [a(t)(2 − c(t)) − a(t)c(t)] .

(41)
This yields the capital stock for the maximally automated production of an output q that
at time t is produced by the factors k(t), l(t) and e(t) as

km(q) =
e

c(t)
exp

[

a(t)c(t)(1 +
l

e
) − a(t)

l + e

k

]

. (42)

Thus, constraint equation (25), with the technical limit to automation ρT (t) and the slack
variable kρ, becomes

fA(k, l, e, t) ≡
(k + kρ)

km(q)
−ρT (t) = (k+kρ)

c

e
exp

[

−ac(1 +
l

e
) + a

l + e

k

]

−ρT (t) = 0 . (43)

The equation for the constraint on capacity utilization results from eqs. (26) and (27)
as

fB(k, l, e, t) ≡ η0

(

l + lη(t)

k

)λ (
e + eη(t)

k

)ν

− 1 = 0 . (44)

According to eqs. (43) and (44) we have the slack-variable relations

k + kρ = km(q)ρT (t) (45)
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and

e + eη =
k

η
1/ν
0

(

l+lη
k

)λ/ν
. (46)

The derivatives of fA and fB are obtained from eqs. (43)-(46) as

∂fA

∂k
=

1

km(q)
− a

l + e

k2
ρT (47)

∂fB

∂k
= −

λ + ν

k
(48)

∂fA

∂l
= −a

(

c

e
−

1

k

)

ρT (49)

∂fB

∂l
=

λ

l + lη
(50)

∂fA

∂e
=

(

a

k
+

acl

e2
−

1

e

)

ρT (51)

∂fB

∂e
=

ν

e + eη
=

ν

k
η

1/ν
0

(

l + lη
k

)λ/ν

. (52)

The technology parameters a and c are given for Germany, Japan and the USA in Fig.
1 or by eq. (35). In the latter case pi ≡ ai for a(t) and pi ≡ ci for c(t), i = 1, 2, 3, 4,
where the {ai} and {ci} are given in Table 1. In a rough approximation one may assume
proportionality between the slack variables in the constraint on capacity utilization:
eη(t) = d(t) · lη(t); d(t) is the second constraint parameter besides ρT (t) . We call it
the “labor-energy-coupling parameter at full capacity”. Ideally, one should be able to
determine it from measurements of the energy and labor increases required in order to go
from any degree of capacity utilization to 1. Then lη can be calculated from eq. (46). The
multiplier η0 and the exponents λ and ν may be obtained by fitting the phenomenological
η of eq. (27) to empirical time series of η, which are available from economic research
institutions.21 The technical limit ρT (t) to the degree of automation can be any number
between 0 and 1. General business inquiries may give clues to it. Alternatively, one has
to compute the time series of the shadow prices (38) and (39) for a number of scenarios
for ρT (t). Finally, one needs the deflated time series of factor prices pK , pL and pE. Then
the problem of economic equilibrium under technological constraints is solved.

8. SUMMARY AND CONCLUSIONS

Optimization of profit, or of integrated utility, yields new equilibrium conditions for eco-
nomic systems subject to technological constraints. In a model, where capital, labor and
energy (physical work) are the factors of production, the equilibrium values of the factors
are determined by the conditions that the output elasticity of each factor is equal to its
“shadowed” factor cost share. The shadowed cost share of a factor is the product of this
factor with a two-component price term, divided by the sum over all factors times their
respective price terms. Each price term consists of the factor (market) price plus a shadow
price, which is due to the technological constraints. The constraints affect the degree of

21Lindenberger [9] used data from the “Sachverständigenrat für die Gesamtwirtschaft” when computing
η0, λ and ν for a somewhat different phenomenological model of η.
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automation and the degree of capacity utilization. There are two constraint parameters:
the technical limit to the degree of automation and the labor-energy-coupling parameter
at full capacity. The latter enters a phenomenological function for capacity utilization.
Exponents of factor ratios in this function can be obtained by fitting to empirical time
series of capacity utilization.

The output elasticities have been determinded as functions of capital, labor and energy
by econometric estimations of the Linex production function for Germany, Japan and the
USA. Alternatively, as proposed by Lindenberger et al. [39], output elasticities of a
macroeconomic production function may be obtained from equating this function to the
sum of known microeconomic production functions. The latter depend on capital and
labor coupled to energy-dependent productivity factors.

Cointegration analysis by Stresing et al. [49] has confirmed the order of magnitude of
the Linex output elasticities in Table 2.

We emphasize that the suggested approach to modeling production takes into account
explicitly that capital is utilized through energy and labor inputs. The conceptual basis
is the notion that output is generated via work performance and information processing
through the interaction of the factors capital, labor, and energy. Consequently, the uti-
lization rate of capital is endogenous in the model (depending on the ratios of labor to
capital and energy to capital), and the relevant output quantity is actual output – not
potential output. This differs from alternative interpretations of production functions as
production possibility frontiers, which consider potential output (output at full capacity),
and thus employ – and have to construct for the purpose of numerical model application
– utilization-adjusted factor inputs. The latter, of course, requires additional assump-
tions that are not needed in the present model, since capacity utilization is endogenous.
Production functions that endogenize capacity utilization are the appropriate tool for
estimating the economic impact of actual factor inputs.

Another feature of the proposed model, which differs from the concept of production
possibility frontiers, is that it makes more explicit that component of technical progress
which we call automation, i.e. the substitution of capital and energy for (routine) labor.
At a given point in time at given state of technology, automation (depending on the
ratios of labor and energy to capital) is limited by the automation potential ρT (t). This
represents a technological constraint that may be released in the course of technological
progress.

If one wants to verify the evolution of past outputs and inputs according to the
constrained equilibrium conditions, one needs time series for factor prices and constraint
parameters. Business inquiries and technical analyses of the capital stock may provide the
data for the technological constraints. Alternatively, one migth assume that in the past
the economies have operated in constrained equilibria. Then one can use the empirical
time series of inputs and factor prices in the equilibrium conditions and construct time
series for the constraint parameters in the shadow prices. Extrapolation of these time
series into the future, and guesses about the evolution of the technology parameters
in the Linex output elasticities, will then allow predictions of economic growth within
scenarios including market prices of capital, labor and energy.

Acknowledgement: The authors are grateful to Gerald Silverberg for stimulating dis-
cussions.
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Appendix A: Intertemporal utility optimization subject to constraints

In their paper “A complete capital model involving heterogeneous capital goods”, Samuel-
son and Solow [13] review Ramsey’s problem [12] via their equation (1), on which they
comment: “In words, society maximizes the (undiscounted) integral of all future utilities
of consumption subject to the fact that the sum of current consumption and of current
capital formation is limited by what the current capital stock can produce.” Extending
Ramsey’s one-capital-good theory to their many-goods model they continue with max-
imizing undiscounted integrals of utility. One could argue that point. We don’t, but
rather, for the sake of simplicity, follow the optimization procedure of their Section I with
the following modifications. 1. There is not one varying factor of production but three of
different nature, which we label X1, X2, X3. 2. There are contraints on magnitudes and
combinations of these factors. 3. Utility optimization is done within finite time horizons,
like the ones between the years 1960 and 2000. Thus, on our second way of deriving
the equilibrium conditions (3) we assume that society has maximized the (undiscounted)
integral W of utility U of consumption C between the times t0 and t1,

22 where the sum
of consumption and capital formation at any time t between t0 and t1 is limited by what
the capital stock X1(t) in combination with other production factors X2(t) and X3(t) can
produce with due regard of the contraints on these factors. Thus, we have the optimiza-
tion problem:
Maximize

W [s] =
∫ t1

t0
U [C]dt, (53)

subject to constraints.
W [s] is a functional of the curve [s] along which the production factors evolve. This

curve depends on the variables that enter C. In general, utility may depend on many
variables. In the present case the utility function U [C] depends on output minus capital
formation.

Output (per unit time) is described by the macroeconomic production function Y ( ~X),

where ~X ≡ (X1, X2, X3). Part of Y goes into consumption C and the rest into new capital
formation Ẋ1 ≡

dX1

dt
plus replacement of depreciated capital. As usual we approximate the

annual replacement rate by δdX1, where δd is the depreciation rate.23 Then consumption
(per unit time) is

C = Y ( ~X) − Ẋ1 − δdX1 . (54)

For the optimization of W we need the vector of the prices pi per unit of factor Xi. This
is ~p ≡ (p1, p2, p3). Economic research institutions provide the price of capital utilization p1

as the sum of net interest, depreciation and state influences. Furtheron we use this price.
Since it already includes depreciation, we can omit explicit reference to the depreciation

22Modern notation for the integral to be maximized is W . Samuelson and Solow call it J . We define
output Y as compared to their notation f(S). Their term S seems to be what they call “abstract capital
substance”. The rate of change dS/dt must be interpreted as the sum of investment in new capital
formation plus replacement of depreciated capital.

23The year is the natural time unit, because the annual cycle of seasons is decisive for agriculture, and
important for construction. It also structures education, vacations (hence tourism and transportation)

and some other industrial activities in the moderate climate zones. Thus, for practical purposes Y ( ~X)
and Ẋ1 + δdX1 are annual output and annual capital formation, respectively.
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rate, i.e. the term δdX1 in eq. (54), hereafter.24

As in Section 3 we work with dimensionless, normalized variables:

y(~x) ≡
Y ( ~X)

Y0

, xi ≡
Xi

Xi0

, i = 1, 2, 3 , (55)

where Y0 is the output and the Xi0 are the inputs in the base year t0. With that eq. (54)
for consumption (without the term δdX1) becomes

C(~x, ẋ1) = Y0y(~x) − X10ẋ1 . (56)

The magnitude of the factors is constrained in the maximization of W by the require-
ment that total factor cost

~p(t) · ~X(t) = ~P (t) · ~x(t) =
3
∑

i=1

Pi(t)xi(t), ~P (t) ≡ (p1X10, p2X20, p3X30), (57)

has finite magnitudes FC(t).
Let there be other, technological constraints on the (normalized) facor inputs xi that

limit the technically accessible factor space. With the help of slack variables they can be
written in the form

fa(~x, t) = 0, a = α, β, γ, . . . (58)

Then, with the (generally time dependent) Lagrange multipliers µ, µa, the optimiza-
tion problem becomes:
Maximize

W [s] =
∫ t1

t0
dt

{

U [C(~x, ẋ1)] + µ(FC(t) − ~P · ~x) +
∑

a

µafa(~x, t)

}

. (59)

W [s] is a functional of the curve [s] = {t, ~x : ~x = ~x(t), t0 ≤ t ≤ t1}. Consider another

curve [s,~h] = {t, ~x : ~x = ~x(t) + ~h(t), t0 ≤ t ≤ t1} close to [s], which goes through the

same end points so that ~h(t1) = 0 and ~h(t0) = 0. Its functional is

W [s,~h] =
∫ t1

t0
dt

{

U [C(~x + ~h, ẋ1 + ḣ1)] + µ
(

FC(t) − ~P · (~x + ~h)
)

+
∑

a

µafa(~x + ~h, t)

}

.

(60)

Since ~h is small, the integrand can be approximated by its Taylor expansion up to first
order in ~h and ḣ1. The necessary condition for a maximum of W is that the variation of
W with respect to ~h vanishes:

δW ≡ W [s,~h] − W [s] =
∫ t1

t0
dt

{

δU − µ~P · ~h +
∑

a

µa

3
∑

i=1

∂fa

∂xi

hi

}

= 0 . (61)

With the chain rule one obtains

δU ≡ U [C(~x + ~h, ẋ1 + ḣ1)] − U [C(~x, ẋ1)] =
∂U

∂C
dC =

∂U

∂C

[

3
∑

i=1

∂C

∂xi
hi +

∂C

∂ẋ1
ḣ1

]

. (62)

24If we keept this term in the following optimization procedure, we would have a term proportional to
δdX1 added to p1 everywhere.
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Partial integration yields

∫ t1

t0
dt

dU

dC

∂C

∂ẋ1
ḣ1 =

[

dU

dC

∂C

∂ẋ1
h1(t)

]t1

t0

−
∫ t1

t0
dt

d

dt

(

dU

dC

∂C

∂ẋ1

)

h1(t)

= −
∫ t1

t0
dt

d

dt

(

dU

dC

∂C

∂ẋ1

)

h1(t), (63)

because h(t1) = 0 = h(t0). Combination of eqs. (61) - (63) results in

δW =
∫ t1

t0
dt

{

dU

dC

3
∑

i=1

∂C

∂xi

hi −
d

dt

(

dU

dC

∂C

∂ẋ1

)

h1(t) − µ
3
∑

i=1

Pihi +
∑

a

µa

3
∑

i=1

∂fa

∂xi

hi

}

= 0 . (64)

Since the small hi are arbitrary for t0 < t < t1, the integral can only vanish, if the
coefficients of the hi vanish in the integrand. This yields the following conditions for
δW = 0, i.e. for equilibrium of the economic system:

dU

dC

∂C

∂x1

−
d

dt

(

dU

dC

∂C

∂ẋ1

)

− µP1 +
∑

a

µa
∂fa

∂x1

= 0 (65)

dU

dC

∂C

∂x2
− µP2 +

∑

a

µa
∂fa

∂x2
= 0 (66)

dU

dC

∂C

∂x3
− µP3 +

∑

a

µa
∂fa

∂x3
= 0 . (67)

(Identifying U [C(~x, ẋ1)] with the Lagrangian L(~x, ẋ1), one notes the formal equivalence of
these equations with the constrained Lagrange equations of motion in classical mechanics.)

With C from eq. (56) the last three equations turn into

dU

dC
Y0

∂y

∂x1

− µP1 +
∑

a

µa
∂fa

∂x1

= −X10
d

dt

(

dU

dC

)

, (68)

dU

dC
Y0

∂y

∂x2
− µP2 +

∑

a

µa
∂fa

∂x2
= 0, (69)

dU

dC
Y0

∂y

∂x3
− µP3 +

∑

a

µa
∂fa

∂x3
= 0. (70)

Equations (68) – (70) are the the general equilibrium conditions for an economic system
subject to cost limits and technological constraints. (For µ = 0 = µa they correspond
to eq. (2) of Samuelson and Solow [13]. If y does not depend explicitly on time t,
they imply the conservation law U + dU

dC
ẋ1X10 = constant. The conserved Legendre

transform of utility, U + dU
dC

ẋ1X10, corresponds to the Hamiltonian in classical mechanics.)

In general one assumes decreasing marginal utility. A special case is U [C] = ln C. If in
this case one approximates ln C by its Taylor expansion up to first order in C − 1 for
sufficiently small C − 1,25 one has

U [C] ≈ C − 1, →
dU

dC
= 1, →

d

dt

(

dU

dC

)

= 0 . (71)

25A linear approximation of ln x is an acceptable approximation for x < 4.
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With that the equilibrium conditions (68) – (70) can be summarized by

Y0
∂y

∂xi

− µ

[

Pi −
∑

a

µa

µ

∂fa

∂xi

]

= 0, i = 1, 2, 3 . (72)

These conditions are the same ones as in eq. (3), derived from profit maximization.

Appendix B: KLEC model and Linex function

We change notation for the reasons explained at the beginning of Section 6: the symbols
Y, Y0 and y for output are replaced by Q, Q0 and q.

An infinitesimal change of (normalized) output, dq, is related to the infinitesimal
changes of (normalized) capital, dk, labor, dl, energy, de, and time, dt, by the total
differential of the production function q[k, l, e; t]:

dq =
∂q

∂k
· dk +

∂q

∂l
· dl +

∂q

∂e
· de +

∂q

∂t
· dt.

Dividing the total differential by q and using the abbreviations

α ≡
k

q

∂q

∂k
, β ≡

l

q

∂q

∂l
, γ ≡

e

q

∂q

∂e
, δ ≡

t − t0
q

∂q

∂t
, (73)

one obtains the growth equation

dq

q
= α ·

dk

k
+ β ·

dl

l
+ γ ·

de

e
+ δ ·

dt

t − t0
. (74)

The quantities defined by eq. (73) are the output elasticities of capital, α, labor, β, energy,
γ, and creativity, δ . They give the weights by which the marginal relative changes of the
production factors and of time contribute to the marginal relative change of output. In
this sense they measure the productive powers of capital, labor, energy, and creativity.

Since negative output elasticities do not make sense economically, the elasticities are
subject to the constraints

α ≥ 0, β ≥ 0, γ = 1 − α − β ≥ 0 . (75)

The usual assumption is made that the production function must be twice continuously
differentiable with respect to the production factors. Then the conditions

∂2q

∂k∂l
=

∂2q

∂l∂k
,

∂2q

∂k∂e
=

∂2q

∂e∂k
,

∂2q

∂l∂e
=

∂2q

∂e∂l
(76)

must be satisfied. Combination of these conditions with eq. (73) and the condition for
constant returns to scale, α+β+γ = 1, eq. (6), yields three coupled differential equations
for the output elasticities [40]:

k
∂α

∂k
+ l

∂α

∂l
+ e

∂α

∂e
= 0, k

∂β

∂k
+ l

∂β

∂l
+ e

∂β

∂e
= 0, l

∂α

∂l
= k

∂β

∂k
. (77)

One can easily verify that the most general solutions of these equations are

α = A

(

l

k
,
e

k

)

, β =
∫

l

k

∂A

∂l
dk + J

(

l

e

)

, (78)
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where A and J are any continously differentiable functions of their arguments l/k, e/k,
and l/e = (l/k)/(e/k). The output elasticities of any mathematically reasonable constant-
returns-to-scale production function must satisfy eqs. (77) and (78).

The number of solutions represented by the general form (78) is infinite. In order to
obtain the unique solution that holds for a given economic system at a given time one
needs the proper boundary conditions for the differential equations (77). The number
and nature of the data required for these boundary conditions is found with the help of
the “characteristic equations” and the “characteristic basis curves” related to (77). This
has been analyzed in detail in [40]. The result of this analysis is: in order to determine
the output elasticities uniquely one has to know i) β in all points on a certain boundary
surface in K, L, E space26 and ii) α on a boundary curve. Obviously, the required wealth
of empirical data is not – and never will be – available, because we cannot do experiments
with economic systems that put them successively in a huge number of points in K, L, E
space. Therefore, there is no other way than guess and test output elasticities that are of
the general form (78). Simplicity and plausibility are conventional-wisdom guidelines for
such guess work.

The simplest elasticities are the trivial, constant solutions of eqs. (77): α = α0, β = β0.
Inserting them into eq. (74), observing constant returns to scale, eq. (6), and integrating
the equation of growth one obtains the energy-dependent Cobb-Douglas function (28).

The law of diminishing returns, “this famous technological-economic relation” [43], led
Kümmel [42] to factor-dependent output elasticities. According to this law a small increase
of a huge capital stock, which is operated and activated by relatively small quantities
of labor and energy, will contribute practically nothing to output growth. Therefore,
the simplest, factor-dependent output elasticity of capital should satisfy the asymptotic
boundary condition

α → 0 for
l + e

k
→ 0 . (79)

Similarly, an additional unit of labor will practically contribute nothing to output growth,
when the economy approaches the state of maximum automation, where the output q
is produced by the fully employed, maximally automated capital stock km(q) and the
required energy em = ckm(q). Thus, the output elasticity of labor, β, should satisfy the
asymptotic boundary condition

β → 0 for k → km and e → em = ckm . (80)

The simplest output elasticities that satisfy these asymptotic boundary conditions and
the differential equations (77) are

α = a ·
l + e

k
and β = a ·

(

c
l

e
−

l

k

)

. (81)

We can understand a to incorporate a (possibly time-dependent) equivalence factor, which
relates capital’s monetary value to its technological value in terms of its capability of work
performance and information processing [7].

26This surface can be built up by all so-called work functions Lη(K, E), if one varies the degree of
capacity utilization η between 0 and 1 and “puts one Lη(K, E) besides the other”. Each Lη(K, E) is
determined by a differential equation for fixed η and an appropriate boundary curve.
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If one inserts these output elasticities into the growth equation (74) at fixed t, inte-
grates its left-hand side from q0 to q and the right-hand side along a convenient path in
k, l, e space, such as (k = 1, l = 1, e = 1) → (k, 1, 1) → (k, l, 1) → (k, l, e), (incorporating
in q0 a possibly time-dependent equivalence factor, which relates output’s monetary value
to its technological value) one obtains the (first) Linex production function

qLt[k, l, e; t] = q0e exp

[

a

(

2 −
l + e

k

)

+ ac

(

l

e
− 1

)]

, (82)

which depends linearly on energy and exponentially on the quotients of capital, labor,
and energy.

Appendix C: Determining the technology parameters: from point fitting to

non-linear optimization.

Since the boundary surface for β and the boundary curve for α that would result from
the method of the characteristics are unknown even in the vicinity of β → 0 and l/k → 0,
e/k → 0, the technology parameters a and c (and q0 as well) must be determined by
fitting the Linex function qLt, with k, l, e from empirical time series, to the empirical time
series qempirical of output, subject to the constraints of non-negative output elasticities,
eq. (75).

Given this situation, various methods of fitting have been used. The simplest one,
fitting qLt to qempirical in three subsequent years, was done for the West German total
economy and its industrial sector “Warenproduzierendes Gewerbe” from 1960 to 1978.
The economic recession of the first energy crisis and the subsequent recovery were repro-
duced and residuals were small. This method did not work for the sector “Industries” of
the USA, 1960-1978: because of the nearly parallel rise of k and l in the USA between
1960 and 1973, not observed in other countries like Germany and Japan, the fit equations
for a and c involved quotients of small differences of large numbers, resulting in a wide
spectrum for a and c within the error margins of k, l, e. This well known problem of
collinearity in the USA makes fitting for the USA always difficult and leads some people
to question fitting in principle. But, fortunately, collinearity is not such a problem in
general. The problem was dealt with (not very elegantly, indeed) by playing around with
the constant a and c until the residuals and the reproduction of the energy crisis were
comparable with the results for Germany [42]. Still, in all systems considered there were
systematic deviations of qLt from qempirical.

Subsequently, the technology parameters were determined by minimizing the Sum of
Squared Errors (SSE)

T
∑

i=1

[qempirical(ti) − qLt(ti)]
2 , (83)

subject to the constraints (75) of non-negative output elasticities. The a and c obtained
this way reduced the systematic deviations of the theoretical from the empirical growth
curves, first for West Germany, 1960-1981, and the USA, 1960-1978, and then for West
Germany, 1960-1989, and Japan, 1965-1992. Recalibrating the technology parameters in
1978, such as to increase the capital effectiveness parameter a and decrease the energy
demand parameter c in 1978, improved things further for West Germany, 1960-1989,
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Japan, 1965-1992, and the USA, 1960-1993 without changing the time-averaged Linex
output elasticities ᾱ, β̄ and γ̄ significantly: the elasticity β̄ of labor does not exceed the
order of 0.2, that of energy γ̄ is above 0.4, and only capital’s elasticity ᾱ, with magnitudes
between 0.34 and 0.45, is roughly in equilibrium with capital’s cost share [5, 6, 45].
From Linex-type service production functions Lindenberger [44] finds ᾱ = 0.54, β̄ = 0.29
and γ̄ = 0.17 for the German service sector “Marktbestimmte Dienstleistungen”, 1960-
1989. This shows that in services labor is (still) more important than energy. Energy-
dependent Cobb-Douglas functions with output elasticities close to the time-averaged
Linex elasticities reproduce observed economic growth not too badly, either.

The recalibrated a and c after 1978 are consistent with observed net efficiency
improvements and energy demand reductions of the capital stock in response to the first
and the second oil price shocks. The associated abrupt time change may be interpreted as
the result of a “creativity pulse” between 1977 and 1978. However, such a one-year pulse
is a crude approximation of the working of “creativity” at best. Therefore, modeling
the technology parameters by functions that change continously in time tries to improve
that, providing also the means of calculating creativity’s output elasticity δ. This allows
to see how much of the Solow residual is removed by energy and its non-cost-share
weighting, and how much remains unexplained by the factors capital, labor and energy.

We have modeled a(t) and c(t) by logistic functions of the form (35) and by Taylor
series expansions in terms of t−t0. In the case of reunited Germany, Fig. 1, a combination
of both with a total of only five free coefficients was used. In all cases the free coefficients
a1 . . . as and c1 . . . cr are determined by non-linear regression analysis observing the con-
straints (37). The Levenberg-Marquardt method [46] for the minimization of the sum
of squared errors, SSE, (36) and the “Statistical Analysis System” (SAS) are used. The
proper starting values for the numerical iterization (with up to 32 000 iteration steps) are
crucial for convergence in the true minimum. Two methods are employed for obtaining
them: a) The “brute force” method. Here a lattice is projected into the multidimensional
space spanned by the free coefficients, and the SSE is computed for each lattice point.
The “coordinates” of the lattice point with the smallest SSE are used as starting values.
This method is employed for the total economy of reunited Germany, and as a control of
the results for the other systems as well. b) A new iteration method developed by Julian
Henn and employed first in [7]. It is indicated in Fig. 6 and involves the definitions:
xi ≡ 2 − (li + ei)/ki, yi ≡ li/ei − 1, so that the Linex function (82) at time ti can be
written as

qLt = q0 · ei · exp[a(ti)(xi + c(ti)yi)] ≡ qi. (84)

In the iteration scheme of Fig. 6 cmin(t) and amax(t) are given by eq. (37). The search
for the proper starting values according to this scheme proceeds as follows:
i) Make an educated guess for q0 and a(t). One option is q0 = 1 and for a(t) the choice
of a step function that corresponds to a Linex fit with piecewise constant a and c and
recalibration, e.g. in 1978. ii) Compute c(ti) for each point in time ti from c(ti) =
ln(qi/q0ei)

a(ti)yi
− xi/yi; this is eq. (84), resolved with respect to c(t). Insert a(ti) and q0 from

step i) into it. iii) If many of the {c(ti)} are smaller than the {cmin(ti)} from eq. (37),
decrease q0 and repeat again step i). iv) If most of the {c(ti)} are larger than {cmin(ti)},
estimate the free coefficients c1 . . . cr of the logistic function or Taylor expansion for c(t),
f(c1 . . . cr), so that this f(c1 . . . cr) fits the {c(ti)} satisfactorily. v) Compute a(ti) for
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each point in time ti from a(ti) = ln(qi/q0ei)
xi+c(ti)yi

; this is eq. (84), resolved with respect to

a(t). Insert c(t) = f(c1 . . . cr) and q0 from step iv) into it. vi) If many of the {a(ti)}
are outside the range of a values allowed by the first of eqs. (37), decrease q0 and repeat
again step v). vii) If most of the {a(ti)} are within the allowed range, estimate the free
coefficients a1 . . . as of the logistic function or Taylor expansion for a(t), g(a1 . . . as), so
that this g(a1 . . . as) fits the {a(ti)} satisfactorily. viii) Repeat steps ii) to vii) until the
q0, a(t), and c(t) don’t change any more. The corresponding a1 . . . as, c1 . . . cr, and q0 are
the starting values for SSE minimization.
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Figure 6: Iteration scheme for the determination of the starting values of the free coefficients
in a(t) and c(t) that are to be used for SSE minimization.
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[39] D. Lindenberger, R.U. Ayres, R. Kümmel, Macro- and Microeconomic Production
Functions, Discussion Paper (2008).
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