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I. Introduction

This paper considers the estimation of panel data models with higher-order spatially
autocorrelated error components and spatially autocorrelated dependent variables. Spatial
interactions in data may originate from various sources such as strategic interaction between
jurisdictions (to attract firms or other mobile agents) and firms (in their price, quantity, or
quality setting) or general equilibrium effects which disseminate with spatial decay due to
their transmission through trade flows, migration, or input-output relationships.1 Data sets
used in empirical studies often share three features: first, they are available in the form of
panel data, with a large cross-sectional and a small time series dimension; second, spatial
interactions of various kinds co-exist — such as geography-related, trade-related, migration-
related interactions — or the decay function of a single spatial interaction is unknown; third, it
is unclear whether spatial interactions are local — and affect only immediate neighbors — or
global — and affect second third and other neighbors with repercussions. The estimator
proposed here addresses the mentioned three features in a unified framework. It allows for
panel data with a fixed but arbitrary number of channels or decay segments of spatial
interaction in both the error components and the dependent variable, referred to as
SARAR(R,S).

In developing the estimator, we build on the SARAR(1,1) generalized moments (GM)
framework in Kelejian and Prucha (1999) for a single cross-section and the SARAR(0,1)
model in Kapoor, Kelejian, and Prucha (2007) for panel data error components models.
Obvious advantages of the GM framework is that it does not rely on distributional
assumptions and that it can be applied to large data-sets without imposing any restrictions on
the matrices of spatial interdependence. We derive GM estimators for the spatial regressive
parameters of the disturbance process based on alternative weighting schemes for the
moments. We then define a feasible generalized two-stages least squares (FGTSLS) estimator
for the model’s regression parameters. We determine asymptotic properties of the estimators
for the case where the time dimension of the panel and the number of spatial interactions is
fixed while the number of cross-sectional units approaches infinity. In particular, we prove
that the proposed GM and FGTSLS procedures obtain consistent estimators of the model
parameters and we derive their joint asymptotic distribution.

* See Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993) for classic references
about spatial econometric models in general. Recent theoretical contributions of spatial panel
data models include Baltagi, Song, and Koh (2003), Baltagi and Li (2004), Baltagi, Song,
Jung, and Koh (2007), Kapoor, Kelejian, and Prucha (2007), Korniotis (2008), Baltagi, Egger,
and Pfaffermayr (2008), and Lee and Yu (2008). Recent applications of spatial panel data
models include Druska and Horrace (2004), Arbia, Basile, and Piras (2005), Egger,
Pfaffermayr, and Winner (2005), Baltagi, Egger, and Pfaffermayr (2007), and Badinger and
Egger (2008a).



The remainder of the paper is organized as follows. Section Il introduces the basic model
specification and some notation. Section Il proposes GM estimators of the parameters of
spatial dependence in the error components based on alternative weighting schemes of the
moments. Section 1V derives a two-stages least-squares routine to estimate the regression
parameters of the model and derives the asymptotic variance-covariance matrix of all model
parameters. The latter enables Wald tests on the structure and decay of spatial interactions in
the SARAR(R,S) model. Section V presents the results of a Monte Carlo simulation exercise.
Section VI summarizes our main findings and concludes. The appendix sketches the proofs of
consistency and the asymptotic distribution of the model parameters, whereas the full details
of the proofs are relegated to a technical appendix.

I1. Basic Model Specification and Notation

The basic set-up of the error components model with spatially correlated error terms
represents a generalization of Kapoor, Kelejian, and Prucha (2007), who consider a panel data
error components model with nonstochastic explanatory variables and first-order spatial
autoregressive disturbances, i.e., a SAR(1) model. The present paper delivers the following
contributions. First, we allow for an R-th order spatial autoregressive process in the dependent
variable and an S-th order spatial process in the disturbances cum error components, i.e., we
consider a SARAR(R,S) panel data error components model. As we show below, this also
covers the case of endogenous explanatory variables other than spatial lags of the dependent
variable.” Second, we prove consistency of proposed generalized moments (GM) estimators of
the model parameters and derive their joint asymptotic distribution. In particular, we also
relax the normality assumption used, for instance, in Kapoor, Kelejian, and Prucha (2007) to
obtain a simplified version of the optimal weighting matrix for the moment conditions. Third,
we provide some Monte Carlo evidence with a special emphasis on the spatial model
parameter point estimates and the rejection probabilities of Wald tests of the SARAR(R,S)
model against interesting alternatives such as the SARAR(1,1), SARAR(0,S), SARAR(R,0),
and the non-spatial model.

The basic model comprises i =1,..., N cross-sectional units and 7=1,...,7 time periods. For
time period ¢, the model reads

YN(t) :XN(Z)BN +zj’r,N“]r,NyN(t)+uN(t) ' (1a)

or

* See Lee and Liu (2008) and Badinger and Egger (2008b) for cross-sectional spatial models
with a SARAR(R,S) process.



Yn(O) =Zy () +uy(0), (1b)

where y, (#) isan N x1 vector with cross-sectional observations of the dependent variable in
year ¢, X, (¢) isan N x K matrix of observations on K non-stochastic explanatory variables,
i.e., Xy () =[x, y(),..xx y(£)] with each N x1 vector x, , () denoting the observations on
the &-th explanatory variable. The structure of spatial dependence in y, (¢) is determined by

the time-invariant N x N matrices W are assumed to

v F=1..,R, whose elements w,

ij,r,N
be known and will often (but need not) be specified as a decreasing function of geographical
distance between the cross-sectional units i and j. The expression y, . (1) =W, ,y,(?) is

referred to as the r-th spatial lag of y, . The specification of a higher-order process allows the

strength of spatial interdependence in the dependent variable (reflected in the spatial
autoregressive parameters A_,, r=1...,R) to vary across a fixed number of R subsets of

relations between cross-sectional units.

In equation (1b), the N x (K +R) design matrix is given by Z, (¢) =[X, (¢),Y, ()], with
YN(t):[yl,N(t)""’yR,N(t):L and 9, =(B},Ay)", where the K x1 parameter vector of the
exogenous variables is given by B, =(f, y....fcy) and the Rx1 vector of spatial

autoregressive parameters of y . is defined as &, = (4, y,.... 44 ) -

The N x1 vector of error terms wu, (¢) =[u, ,(1),...,u, ()] is assumed to follow a spatial

autoregressive process given by

wy ()= oy M,y s () +60 (1) (10)

m=1

e () =pn,+v,y(@), (1d)

where p,  and M, , denote the time-invariant, unknown parameters and the known N x N

matrix of spatial interdependence, respectively. The structure of spatial correlation in the
disturbances is determined by the S different, time-invariant N x N matrices M, .. As in

equation (la), the specification of a higher-order process allows the strength of spatial
interdependence in the disturbances (reflected in the parameters p, ., m=1..,5) to vary

across a fixed number of S subsets of relations between cross-sectional units. The expression
u,  (6)=M, yu,(z) is referred to as the m-th spatial lag of u,. The §x1 vector of the

spatial autoregressive parameters of u () is defined as p, = (o, y,..r 25 )"



Finally, the N x1 vector of error terms €, (¢) consists of two components, p, and v, (¢). As
indicated by the notation, p, is time-invariant while v, (¢) is not. The typical elements of

ey(r) and v, (¢r) are the scalars ¢, , and v, ,, respectively, and the N x1 vector of unit-

specific error components is given by p = (s yreer ity y)' -

Stacking observations for all time periods such that ¢ is the slow index and i is the fast index
with all vectors and matrices, the model reads

Yy =XyBy +?N)“N tuy, (2a)
or
Yy =2Zyd, +uy, (2b)

with the NT x K regressor matrix X, =[X}@),... X, (7)], and Y, = (YiyrYry), Where
Y,n =Ly, v @y, v (T)] is the NT x1 vector of observations on the r-th spatial lag of the

dependent variable y, ,. The NT x1 vector of disturbances u, =[u’,(),...,u’,(7)] for the

spatial autoregressive process of order S is given by
S
uy = zpm,N(IT ®M,, y)u, +&y, (2¢)
m=1

where 1. is an identity matrix of dimension 7'xT . The NT x1 vector g, =[g,(2),....&\ (T)]

IS specified as
ey =(e; @ )ny +vy, (32)

where e, is a unit vector of dimension 7'x1 and I, is an identity matrix of dimension

N x N . In light of (2c), the error term can also be written as

s s
Ey =Uy — me,N(IT ®Mm,N)uN =1, ®(I, - me,NMm,N)uN . (3b)
m=1

m=1

It follows that

wy =[O0, — oo M, ) ey (4a)

m=1



and
Ynv= [IT ® (IN - iﬂr,NWr,N)il]XN (t)BN + [IT ® (IN - i/’i’r,NWr,N)il]uN ) (4b)

The following assumptions are maintained throughout this paper.

Assumption 1.
Let 7 be a fixed positive integer. (@) For all 1<¢<7 and 1<i<N,N>1, the error

components v, , are identically and (mutually) independently distributed with E(v, ,) =0,

E(:,)=0c’, where 0<o’<b <o, and E " <o for some n>0. (b) For all

v

Vie N

1<i<N,N =1, the unit-specific error components 4, , are identically and (mutually)

independently distributed with E(u,,)=0, E(u’y)=oc., where 0<o} <b, <o, and

‘4+7

E‘M—,N " <o for some 77>0. (c) The processes {v. v} and {x, ,} are independent of each

other. Assumption 1 as maintained here is slightly stronger than that in Kapoor, Kelejian, and
Prucha (2007), since it requires not only the fourth but also the (4+7)-th moments of the
error components to be finite for some » > 0. This is required for the central limit theorem of

Kelejian and Prucha (2008) to apply, which will be used to derive the asymptotic distribution
of the parameter estimates in Section I11.

Assumption 1 implies that

E(g, &, y)=0.+0> fori=jand t=5s, (52)
E(g, y6,y) =0 fori=jand t=s, (5b)
E(g, v&, ) =0, otherwise. (5¢)

As a consequence, the variance-covariance matrix of the stacked error term g, reads
Q :E(SNS;\/):O-;%(JT ®IN)+O-VZINT’ (62)

where J, =e,e; isa TxT matrix with unitary elements and I,, is an identity matrix of

dimension NT x NT. Equation (6a) can also be written as

Q = O-VZQO,N + ‘712Q1,1v , (6b)



where of =0 +To.. The two matrices Q, , and Q, ,, which are central to the estimation

of error component models and the moment conditions of the GM estimator, are defined as

Quy =1, —‘%) ®1,, @)
Ql,N =J?T®IN- (8)

Notice that Q, , and Q,, are both of order NT x NT, symmetric, idempotent, orthogonal to

each other, and sumup to I,,.”

Assumption 2.
(a) All diagonal elements of the matrices W, ,, r=1,..,R,and M ,, s =1...,§, are zero.

(b) The admissible parameter space is restricted as follows:

”

R
Ay e (-ay,al),with 0<al,ay <a’" <a*<w,r=1, ..., R, and ZV’:‘,N‘<AZ <o,
r=1

The first part of Assumption (2b) requires the parameters 4, ,, »=1..,R to be finite. We

take a* such that a* = r_qaﬁ(aﬂ*’) holds; the expression a* will be used to denote an R x1

vector with elements a”. In the second part of Assumption (2b), the scalar 4, generally
depends on the properties of the weights matrices W, . For example, with row-normalized

R
matrices W, ,,, r=1,..,R, assuming that 4, =1 ensures that (I, —Z/I,,’NW,]N) Is invertible,
r=1

as required in Assumption (2c). If the matrices W, , are not row-normalized, Assumption

1985, p. 301). Analogous assumptions are made for the parameters of the spatial
autoregressive error process:

S
pg]Ne(—g‘];‘,c_l/\‘,”“),With O<aly,al <a’ <a’<w,s=1,..., S, and Z
m=1

pm,N‘ < Ap <.

We take a” such that a” = rgaxs(a”) holds; the expression a” will be used to denote an

Sx1 vector with elements a”. As above, with row-normalized matrices M, ,, s =1,...,§, the

* Observe that pre-multiplying an NT x 1 vector with Q, , transforms its elements into

deviations from cross-section specific sample means taken over time, and that pre-multiplying
a vector by Q,, transforms its elements into cross-section specific sample means. See

Remark A.2 in Appendix A for further properties of Q, , and Q, .



S
second part of this assumption ensures invertibility of (I, —meYNMmYN) if 4,=1.1f the

m=1

matrices M, are not row-normalized, Assumption (2c) is implied by 4, :(maxSHMSYN‘D
for some matrix norm |- .

R S
(c) The matrices (IN—Z/L,NW,'N) and (IN—me]NMm,N) are nonsingular for
r=1

m=1
A e(-ay,al) and p, e(—ay,al), respectively. This ensures that u, and y, are

uniquely identified through equations (4a) and (4b).

Assumption 3.
The row and column sums of the matrices W,,, r=1..,R, M_,, s=1..8,

R S
Iy =D 4 W, )" and (I, -> p, M, )" are bounded uniformly in absolute value.
m=1

r=1

(See Remark A.1 in Appendix A for a definition of row and column sum boundedness.)

In light of Assumptions 1-3 and Remark A.1 in the Appendix, it follows that £(u,)=0 and

the variance-covariance matrix of u,, is given by

S S
Qu,N = E(uNu;\/) :[IT ®(IN _me,NMr7z,N)7l]Q£,N[IT ®(IN _me,NM:11,N)71]’ (ga)
m=1 =1
and
2 2 S 1 > 1
E[llN (t)u’zv(t)] = (O-# +o, )(IN - me,NMm,N)_ (IN - me,NM’m,N)_ : (gb)
m=1 m=1

Note that all variables and parameters except for the variances of the error components are
allowed to depend on sample size N. Such a specification is consistent, for example, with
models where the weights matrix is row-normalized and the number of neighbours of a given
cross-sectional unit depends on sample size (see Kapoor, Kelejian, and Prucha, 2007, p. 102)
or where the strength of interdependence (in terms of the spatial autoregressive parameters)
changes with the number of neighbours. Note that X, is allowed to depend on sample size
and may thus also contain spatial lags of exogenous variables. As a result, the model

specification in equations (la)-(1c) is fairly general, allowing for higher-order spatial
dependence in the dependent variable, the explanatory variables, and the disturbances.



I11. GM Estimation of a SAR(S) Model

In the following, we consider GM estimators for the spatial autoregressive parameters of the
disturbance process in equation (1c) and derive the asymptotic joint distribution of all model
parameters.

1. Moment Conditions
With an S-th order process (SAR(S), with §>1), the GM estimators of the parameters

PrysPsyy O, and of can be obtained by recognizing that — under Assumptions 1 and 2 —

the moment conditions used by Kapoor, Kelejian, and Prucha (2007) hold for each matrix
M, ., s=1..,5. Inparticular, define foreach M ,, s=1,...,§

S
Es,N = (IT ®MS,N)8N = (IT ® MS,N)[“N - zpm,N(IT ® Mm,N)uN] ' (10)

m=1

A word on notation is in order here. In equation (10), subscript s has been introduced together
with m to indicate that, with higher-order spatial processes, M, , and M, , meet in g .

While we will use index s to refer to the matrix M, , by which g, is pre-multiplied in

equation (10), index m is required for the summation over the terms p, \M, .

The moment conditions are then given by

1 , 1 ,

Ma E[N(T 1) SNQO,NSN] = E[N(T 1) VNQO,NVN] = sz’ (11)
1 _ —_ 1 ] r 2 1 !

M E[N(T—l) ss,NQO,Nss,N] = E[N(T—l) VNQO,N(IT ®MS,NMS,N)Q0,NVN] =0, Ntr(MS,NMS,N) )
1 -, 1 , '

Mz, E[_N(T 1) ES,NQO,NSN] = E[_N(T ) VNQo,N(IT ® Ms,N)QO,NVN] =0,

1 ! 1 ' ' 1 '
My E(NSNQLNSN) = E[ﬁuN (ehe, ®L,)p, ]+ E(FVNQLNVN) o2,
l o ra 1 ! ! 12 1 ' ’
Ms,s E(NES,NQLNSS,N) = E[ﬁ wy(ere, @M M, I, ]+ E[ﬁ ViQuy (L @M M, ,)Q, vV, ]
2 1 '
=0 Wtr(Ms,NMs,N) '

1 — 1 [ ! ! 1 ! !
Mas E(NSS,NQLNSN) = E[WHN(eTeT ® Ms,N)”N] + E[NVNQLN(IT ® MS,N)Ql,NVN] =0,

where of =o’ +To.. The moment conditions associated with matrices M, s=1...,S,

through (10), are indexed with subscripts 1 to 4. The remaining two moment conditions,



which do not depend on s, are denoted as M, and M. For an S-th order process as given by
equation (2c), we thus have (4S + 2) moment conditions.”

Substituting equations (3b), (10), and (1c) into the 45 +2 moment conditions (11) yields a
(4S +2) equation system in (o, ..., 5 v, 0,07 ), Which can be written as

'YN_FNbN :01 (12)

where b, isa [2S + S(S -1)/2+ 2] x1 vector, given by

by =(Pryss Psy plz,N""ipg,N’pl,NpZ,N""' PLnPsnier PsanPsno or,07),

i.e., b, contains S linear terms p, ., m=1..,S, S quadratic terms p?,, m=1..,S,
S(S—1)/2cross products p, vy, m=1..,5-11/=m+1..,S, as well as o> and o;. For
later reference, we define the (S+2)x1 vector of all parameters as

0, = (prN,sz,O_lz)y = (pl,N!""pS,N’ O-vz!alz)’ .

Yy is a (45+2)x1 vector with elements [y, ,], i=1..,(45+2), and Iy, is a
(4S+2)x[25+S(S-1)/2+2] matrix with elements [y, ,], i=1..,(45+2),
J=1...,[28+8(S-1)/2+2]. The elements y, , and y, ., will be defined below. The row-

index of the elements y, and I',, will be chosen such that the equation system (12) has the

following order. The first four rows correspond to the moment restrictions Mj; t0 My,
associated with matrix M, , through (10); rows five to eight correspond to Mi, to My

associated with matrix M, , , and so forth; rows (S —4) to 45 correspond to the My sto My s
associated with the matrix Mg , . Finally, rows (45+1) and (4S+2) correspond to the

moment conditions M, and My, respectively, which do not depend on s.

* Notice that further moment conditions are available through pre- and post-multiplying Q, ,
and Q,, with € , and g ,, r#s, respectively, in moment conditions M; and Ms. The

associated efficiency gain will depend on the properties of the weights matrices. If the two
involved weights matrices are orthogonal, the corresponding moment condition is trivially
satisfied and does not add any information. For the sake of brevity, we use the moment
conditions given in (11), and leave an assessment of the potential efficiency gains from
exploiting further moment conditions for future research.

10



The sample analogue to equation system (12) is given by
Ty Ty, =8,0,), (13)

where the elements of y, and fN are equal to those of y, and I', with the expectations

operator suppressed and the disturbances u,, replaced by (consistent) estimates u, .

GM estimates of the parameters p, , ..., ps v, o7 and o7 are then obtained as the solution to

arg mmZ 2[(?N _rNbN),(DN (?N - rNbN)] = [lgzv (ON)’G)N'QN (BN)]v (14)

P1:1P2+1 P50, 01
i.e., the parameter estimates can be obtained from a (weighted) non-linear least squares
regression of v, on the columns of fN; 9,(0,) can then be viewed as a vector of regression
residuals. The optimal choice of the (4S+2)x(4S+2) weighting matrix @, and its

estimation will be discussed below.

In the following, we define the elements of y, and I',, grouped by the corresponding

moment conditions. Thereby, we use the following notation:

u,=08M  u,,6 s=1..S5,and (15a)
u,, =M )T M, Ju,=1&M M, Ju,, s=1.,5, m=1.,5. (15b)

At this point, we need to introduce an index /=1,...,S for proper definition of the elements of

yyand T, .

Moment condition My delivers s=1,...,S rows of equation system (12), appearing in rows

4(s —1) +1 with the following elements of y, and ', :

1
Vas-1+n = m

2
Va(s-+1mN = m

1
Vas-1)+1,54mN = _m

E(ﬁ;,NQo,NﬁS,N) ) (168.)
E(W,Qo\U,,,), m=1..S,

E(ﬁs’m,NQO,Nﬁsm,N) y M :1""’S '

2
Y a(s-)+LS (n+D)-m(m-1)/ 2+1-m,N = _m

E(, v Qoyu, ), m=1...,5-1,1=m+1..,.S,

sm

11



1 ,
Va(s—1)+1,28+5(5-1) 1 2+LN — W”(Ms,NMs,N) '

Va(s-1)+1,28+5(S-1)/242,N — 0.

Moment condition M, consists of s =1,...,S rows of equation system (12), appearing in rows

4(s —1) + 2 with the following elements of y, and I',, :

1 —,
Vags-nron = mE(us,NQO,NuN) , (16b)
1

Va-n+2mN = m

1
Vas-1)+2.5+mN = N(T 1

(usmNQONu +u9NQ0NumN) m= l S

(_sm NQO Num N) m =1a---1S1

I =
}/4(s—l)+2,S(m+l)7m(m—l)/2+l—m,N = N(T 1) ( vl NQO Num N + uvm NQO Nul,N) y M :1""7S _1’

I=m+1,...,S,
Va(s-1)+2,25+5(S-1) /241N = 0,

Va(s-1)+2,25+S(S-1)/242,N — 0.

Moment condition M3, corresponds to s =1,...,.S rows of equation system (12), appearing in

rows 4(s —1) + 3 with the following elements of y, and I',; :

Vas-n+3N = 5 N E(“s ~ QU N (16¢)
2
?/4(s—1)+3,m,N N (us NQlN sm, N) y M= 1""’ S 1
7/4(x—l)+3,S+m,N = __E(uvm NQl Nuvm N) m = 1""’ S !
2

=’ fp—
Y 4(s-1)+3,8 (m+1)~m(m-1) 1 2+1-m, N = _NE(usm,NQl,Nusl,N)' m=1.,5-1,1=m+1..,S,
Va(s—1)+3,25+S5(S-1) 1 2+L,N — 0,

!
Va(s-1)+3,25+S(S-1)1242,N — ﬁtr(Ms,NMs,N) .

Moment condition My represents s =1,...,.S rows of equation system (12) appearing in rows

4(s —1) + 4 with the following elements of y, and I',, :

12



1
Vas-1+aN = _E(us,NQl,NuN) ' (16d)

}/4(s—l)+4,m,N = E(uvm NQl NuN + uv NQlN m, N) m :1""7S !

1 -, _
7/4(S—1)+4,S+m,N = _WE(usm,NQl,Num,N) y M =1""'S ’

1 QT + Ty QuT )y m =1y S=1, L= m+1, S,

Va(s-1)+4,S(m+1)=m(m-1) I 241-m,N —

Va(s—1)+4,25+S(S-1) /241N = 0,

Va(s-1)+4,25+S(S-1)/12+2,N — 0.

Moment condition M, reflects one equation of the system in (12), appearing in row (4S +1)
with the following elements of y, and I',; :

1 ,
Vassin = mE(uNQO,NuN) ) (16e)
7/4S+l,m,N = N(T l) (um NQONuN)’ m:]'""’S’
1 _, _
Vas+l,semN = _mE(um,NQO,Num,N) ,m=1..,5,
2

V4s+1,S(m+L)-m(m-1)1 2+1-m,N — _mE(ﬁr’n,NQO,Nﬁl,N)’ m=1..,85-1,I=m+1,..,§,

=1,

Va541,25+8(S-1) /241N

Vas+1,25+5(5-1)/242,N = 0.

Moment condition My, is associated with one equation of the system in (12), appearing in row
(4S + 2) with the following elements of y, and I, :

1 )
Vasson = NE(“NQLN“N) ’ (16f)
2 .,
Vasto,mn :ﬁE(“m,NQl,NuN) ,m=1..,5,
Vas+2,54mN = __E(um vQiau, v, m=1..8§,

Va542,S(maL)=m(m-1)/ 2+1-m,N — __E(“m VA ), m=1..,8-1,I=m+1,..,S,

Vas+2,25+8(S-1)/24LN = 0,

=1.

Va542,25+5(5-1)/1242,N

13



This completes the specification of the elements of the matrices vy, and I',,. The similarity of

the structure between the expressions resulting from the moment conditions M,, M1 5, and My
on the one hand and My, M3, and My on the other hand is apparent. First, they differ by the
normalization factor and the corresponding matrix of quadratic forms, Q,, and Q,,,

respectively. Second, the rows in (12) associated with M,, Mj, and My, s =1,...,S, do not
depend on & whereas the rows associated with My, M3, and My, s =1,...,S, do not depend
on o’ . This fact will be used to define an initial GM estimator, which is based on a subset of

moment conditions (M,, My, and M,,) only, in order to obtain an estimate of the optimal
weighting matrix @, .

For future reference, we define the (25 +1)x1 vector y9, as the sub-vector containing rows
s and (s+1), s=1..,S and row (4S+1)of y,, corresponding to My,, My, and M,.
Moreover, we define the (25 +1)x[2S+S(S-1)/2+1] matrix TS as the sub-matrix

containing rows s and (s+1), s=1,...,S, and row (4S+1) of I',, corresponding to My,
M, ., and M.

Analogously, we define the (2S+1)x1 vector y%, as the sub-vector containing rows 2s,
(2s+1), s=1,...,S,and row (4S +2) of y,, corresponding to Mz, My, and My. Finally, we
define the (25 +1) x[2S +S(S —1)/2+1] matrix I}, as the sub-matrix containing rows 2s,
(2s+1), s=1..,5,and (45 +2) of I, corresponding to M3, Ma, and My,

2. Definition of GM Estimators
We next define three alternative GM estimators for the spatial autoregressive parameters of
the disturbance process given by (1c) and the variances of the error components.5

2.1. Initial GM Estimation
The initial GM estimator is a special case of (14), using the identity matrix as weighting
matrix @, and a subset of moment conditions (M,, M1,; and M) only. It is thus based on the

the vector y5 and the matrix T'S,. Define @} as the corresponding parameter vector that

excludes o7, i.e., 8° = (p)y,07) = (Py x5, 0-), and accordingly

b?v = (pl,N""'pS,N’ plz,N""’p;,N'pl,NpZ,N""'pl,NpS,N”"’pS—l,NIOS,N’sz)’ '

The initial GM estimator is then obtained as the solution to

° See Kapoor, Kelejian, and Prucha (2007) for analogous conditions under SARAR(0,1)
estimation, assuming only nonstochastic regressors in equation (1a).
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(P Ps. O y) = argmin{y (03,) 9 (0), —a” <p<a”,o. , €[0,5,T}, (17a)
with 82(8°) = 9% (p.a?) = (75 - T56").

Using these initial estimates of (o, ,,... o5 y) and o, the parameter o7 can be estimated

from moment condition My:

l - S - - S -
~2 -~ = ' -~ =
Oy = W(HN - me,Num,N) Qv (uy - zpm,Num,N) (17b)
m=1 m=1
~ ~ ~ ~ ~ ~ ~2
= Vasi2 = Vas+21PLN T T Vass2,5Ps, N~ Vast2,511 PN
—~ AZ e —_ —_ —~ —_ —_
“Vas+2,25Ps,n T Vase2,25P1nPan T Vas2,25+5(5-1)12Ps-1,NPs N

2.2. Weighted GM Estimation

While the initial GM estimator as defined in (17) is consistent (as will be shown below), it is
inefficient. First, it ignores the information contained in moment conditions (M, Ms,; and
M4,S).6 Second, it is well known from the literature on generalized method of moments
estimation, that it is optimal to use as weighting matrix the inverse of the (properly
normalized) variance-covariance matrix of the moments, evaluated at true parameter values.

Denote the optimal weighting matrix, which will be derived in Subsection 3.2, by ¥, . In

general, the optimal weighting matrix is unknown and has to be estimated, e.g., using the
results from the initial GM estimation. In Subsection 3.3 we derive a consistent estimator of

v, referred to as ‘i’,‘j. The optimally weighted GM estimator is based on all (4S+2)

moment conditions and uses @N = ‘i";vl as the weighting matrix for the moment conditions. It

is defined as:

(B Ps s Oy G2y) = argmin{, (8) ©,.9,(0), —a” <p<a”,a’ c[0,,],0; €[0,cl},
with ¢ > b, +7b,, and 9,(8) = 9, (p,o’,0%) = (¥, —T,b). (18)

As already mentioned, the optimal weighting matrix is derived without distributional
assumptions. As a consequence it involves third and fourth moments of the error components

° This does not mean that any GM estimator using all moment conditions is necessarily
superior. In fact, Kapoor, Kelejian, and Prucha (2007) show in a Monte Carlo study on their
SAR(1) model that the initial GM estimator performs much better (in terms of bias and
RMSE) than the unweighted GM estimator using all moment conditions. Their results suggest
that a proper weighting of the moment conditions, in particular the weighting of moment
conditions M,, Mj, and M, relative to moment conditions My, M3, and M, is of crucial
importance.

15



v,y and g, . Kapoor, Kelejian, and Prucha (2008) use the assumption that ¢, , is normally

distributed to obtain a simplified weighting matrix as an approximation of the true optimal
weighting matrix. For comparison, we also consider this simplified optimal weighting matrix,

which is shown to be a special case of ¥, in the Appendix and referred to as (W¥5,)*. The
simplified weighted GM estimator is defined as the weighted GM estimator given in (18),
using @, = (¥;)™.

3. Asymptotic Properties of the GM Estimator for 0,

3.1 Consistency
In order to prove consistency, the following additional assumptions are required:

Assumption 4.
Assume that u, —u, =D,A, ,ie, u,, —u,, =d, A, for i=1,.,NT, where D, isan

NT x P matrix, the 1x P vector d, , denotes the i-th row of D, and A, isa Px1 vector.

. 245
Let d, , be the j-th element of d, , . For some ¢ >0, we assume that E‘dg;,w(f)‘ <c¢, <o,

where ¢, does not depend on N, and that N*'?|A [ =0, ().

Assumption 4 will be fulfilled in many settings, e.g., if model (1a) contains endogenous
variables (such as spatial lags of y, ) and is estimated using two-stages least squares. In that

case, A, denotes the difference between the parameter estimates and the true parameter
values and d, , is the (negative of the) i-th row of the design matrix Z, (compare Lemma 1

in Subsection 2 of Section 1V). Under certain conditions, Assumption 4 will also be satisfied
if model (1a) involves a non-linear specification (see Kelejian and Prucha, 2008, p. 12).

246

is 0,Q) .

NT
Finally, observe that Assumption 4 implies that (NT)™)"|d, ,
i=1

Assumption 5.

(@) The smallest eigenvalues of l“(,’v'l“‘}V and I T, are bounded away from zero, i.e.,

dain (M T3)2 2. >0 for i = 1, 2. (b) @, O, =0,(1), where @, are (48 +2)x (45 +2)
nonstochastic, symmetric, positive definite matrices. (c) The largest eigenvalues of ®, are

bounded uniformly from above, and the smallest eigenvalues of ®, are bounded uniformly

away from zero.

" Note that we use single indexation i =1,..., NT to refer to the elements of the vectors that are
stacked over time periods. (See the remark on notation in Appendix A.)
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Assumption 5 implies that the smallest eigenvalues of I',I', and I'\,®,I', are bounded
uniformly away from zero, ensuring that the true parameter vector 0, is identifiable unique.
Moreover, by the equivalence of matrix norms, it follows from Assumption 5 that ®, and

0, are O(1).

Assumptions 1-5 ensure consistency of the GM estimators for 0, = (p),0’,07). We

summarize these results in the following theorems, which are proved in Appendix B.

Theorem 1a. Consistency of Initial GM Estimator 52]
Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter

space, the initial GM estimators 0% = (5, ..., ps,G~,) defined by (17a), and &7, defined

by (17b) are consistent for p, ..., 05 v, -, and o7, i.e.,

Py —Px 20, s=1..8, 62, -0>50 ,and 67y, —of >0 as N > .

Theorem 1b. Consistency of Weighted GM Estimator 6N
Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter

space, the weighted GM estimators 8,/(@,) =[5,y (0, ), fs v (©,),52,(0,),52,(0 )]

defined by (18) are consistent for p, ,,..., ps v, 07, and o7, i.e.,

(@)= p.y D0, s=1..,5, 62,(0,)-c250 ,and 52, (®,)-0? 20 as N >,

This result holds for an arbitrary weighting matrix (that satisfies Assumption 5). Hence, it
applies to both the optimally weighted GM estimator defined by (18) with @)N = (‘?N)*land

the simplified optimally weighted GM estimator 6; with @)N = (‘i’jv)‘l.

3.2 Asymptotic Distribution of GM Estimator for 0,
In the following we consider the asymptotic distribution of the optimally weighted GM
estimator 5N. To establish asymptotic normality of 5N =(6N,5EN,51fN), we need some

additional assumptions.

Assumption 6.
Let D, be defined as in Assumption 4, such that u, —u, =D,A, . For any real NxN

matrix A, , whose row and column sums are bounded uniformly in absolute value, it holds

that N"'D, A u, - N"E(DyAu,)=0,(1).

17



A sufficient condition for Assumption 6 is, e.g., that the columns of D, are of the form
n, + 11 ,¢,, where the elements of &, are bounded uniformly in absolute value and the row
and column sums of II, are bounded uniformly in absolute value (see Kelejian and Prucha,

2008, Lemma C.2). This will be the case in many applications, e.g., for the model in equation
(1a), if D, equals (the negative of) matrix Z, (compare Lemma 1 in Section 1V).

Assumption 7.
Let A, be defined as in Assumption 4. Then,

(NTY2A, =(NT) 2 T38, + 0, @), with T, = (T, T,.,)', & = (v} 3 i
(NT)lleN = (NT)_llva,,NVN + (NT)_UZT;,,N”N + Op(l)’

where T, is an (NT + N)x P-dimensional real nonstochastic matrix whose elements are
bounded uniformly in absolute value; T,, is of dimension (N7xP) and T,, is of

dimension (N x P). As remarked above, A, typically denotes the difference between the

parameter estimates and the true parameter values. Assumption 7 will be satisfied by many
estimators. In Section 1V, we verify that it holds if the model in equation (1a) is estimated by
two-stages least squares (TSLS) or feasible generalized two-stages least squares (FGTSLS).

The limiting distribution of the GM estimator of 0, will be seen to depend on (the inverse of)
the matrix J',® ,J, and the variance-covariance matrix of a vector of quadratic forms in v,
and p,, denoted as q,. We consider each of these expressions in the following. The
(4S +2)x (S +2) matrix J, of derivatives of the (4S5 +2) x1 vector of moment conditions in
(11) is given by

3,00 = L0280 i i) WD (192)
i = a(yf‘-vNa—pF"-vaN) L i=1..,(45+2), s=1..5,
Jion = a(Yf-'Na_ar"-~NbN) Li=1..,(45+2),
- oY, —F,;,NBN)’ i=1..(45+2),
' oo,

where v, , and I', , denote the i-th row of vy, and I', respectively.

18



Oy

Using e 0 and ignoring the negative sign, we have

0
3,() =25 Tyby =T, 3B, (19b)

where I',, is defined above and of dimension (4S +2) x[2S+S(S-1)/2+2] and B, is a
[2S+S(S-1)/2+2]x (S +2) matrix of the form

%N = (%1'%,2,N’%,3,N’%:1,N)’ ) (20&)

with 9B, = (I;,04,,), %Z,N:[diagf:1(2ps,1v)'05x2)]a and B, = (B Bisy) IS an
S(§-1)/2xS§ matrix, consisting of (S§-1) vertically arranged blocks B, .,

m=1,...,(S-1), which have the following structure:
%3,/71,N = (Q:m,N ’ am,N ' QEm,N ’O(S—m)XZ) ’ (20b)

where € . is a (S—m)x(m—1) matrix of Zeros,’ 0,y isa (S—m)x1 vector, defined as

0, v =(Puiyrpsy), and € =p I . Finally, B, isa 2x(S+2) matrix, defined

as

0,.,,10
%‘LN :|: 1xS j|

(20c)
01><S+1 ’l

For later reference, note that 2, has full column rank (S+2); as a consequence, the

(S +2)x(S+2) matrix 28,2, is positive definite (see, e.g., Greene, 2003, p. 835).

We next consider the vector q, and its limiting distribution. First, define q,(0,,A,) as the
(45 +2)x1 vector of sample moments as given by (11) with the expectation operator
suppressed, evaluated at the true parameter values, and ignoring the deterministic constants:

8 . .
l.e., there isno block &€, , in B, .
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-, -
u,C,, yuy
-, -

u,C,, yu,

-, -

u, G,y uy

-, -
u,C,, yuy

qy (BN’AN) =N ﬁ;vcl,s,zvﬁzv ) (21)
u,C, uy
“;vcs,s,zvuzv

, -
u,C, uy

~ ~
uN(ja,NuN

~ ~
L uNCb,NuN A

where
Cyv= (T ) ——[I, ®(, me,NM:n,N)pO,N(IT ®M;,NMS,N)QO,N[IT (I, - me,NMm,N)]’
Conv= 2(T D &, zpm nvL, N)po ML ® (M +M N)]Qo M @I me,NMn,N)] )

s s
Con= [, ®d, - me,NM:n,N)pl,N(IT ®M;,NMS,N)Q1,N[IT (, - me,NMm,N)] '

m=1 m=1

1 S , , S
C4,S,N ZE[IT ®(IN _zpm,NMm,N)pl,N[IT ® (MSN +M N)]QlN[I ®(I me,NMm,N)]’

m=1

S S
Ca,N [I ®(I me,NM;n,N)DO,N[IT ®(IN _me,NMm,N)] !
(T l) m=1 m=1
S S
C, =1, - me,NM:n,N)pl,N[IT ® @, - me,NMm,N)]' (22)
m=1 m=1

By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the
symmetric N7 x NT matrices C, ,, p=1..4, s=1..,5, C,,, and C,, are bounded

uniformly in absolute value. Also, note that C, ,, C,, ., C,, differ from C ,, C, ,,

C, v only by the normalization and the use of Q, ,, versus Q, .

In light of (21) and Lemma B.1 (see Appendix B), the elements of N"%q,(p,.A,) can be

expressed as
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B —1/2 ' 1/2
N7, Cpy yuy +ap JN7°A
“1/2 1/2
N7, C,, yuy + a2,1,NN Ay
-1/2_ .1 ’ 1/2
N7 Gy uy tag, WN7°A,

A2y 12
NGy + W NTEA

N"%q,(0,,A,)=| NV, C,; u, +ai JNYPA, |+0,(0), (23)
N vCasaty + az s, NNl/ZA
N2 Cy o uy oy JNYPA
N vCasaly + a4 s, NNl/ZA
N5\ C, uy +al (NYPA,
N‘”Z Coyty +a, (N?A,

where @, , =2N"E(D\C, u,), p=1..4,5=1...S, @a,, =2N"E(D\,C, u,), and

p.s,\N

0,y =2N"E(D,C, yu,). By Lemma B.1 the elements of the Px1 vectors a

ps,N

r=1..4,s=1.,8,a,, and a, , are bounded uniformly in absolute value.
Using (22), (3c), Assumption 7, and Q, &, = Q, yv, We obtain:

1
(T-1)
VNQO VI ® (MA N +M3 N)]QO Nyt a2 sNON
NQl,N (I, ®M's M N)Ql vyt a’3 s NON

NY%q,(0,,A,) =N"? 1, , *0,(1), (25)
e SEQUL B ML) ey a8 |

VNQo v ® M s,N)QO,NVN + a:'L,s,NgN

1
2AT-1)

L
(T-D
S'NQLNSN + a;,N&N

! !
VyQonVy +a, &y

for s=1..,§. The (NT+N)x1 vector &, =(vi,ny), a, =T T, ., p=1..4,

=1..,8,a,,=T"Tya,,,and a, , =T 'T,a, ,, which can also be written as

(apsN’ ps,N )’_ [(TvNapsN) ( Na‘psN)] 1"'1S’ p:11"'14’ and
(aaN’ aN)l_ [(TvNaaN) ( Na'aN)]

(abN ’aZN) =T [(T N, ) (T Nub,N)’]'-
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Observe that the elements of a, ., p=1..4,s=1.,S, a,,, and a,, are bounded

uniformly in absolute value by Assumption 7 and Lemma B.1. Utilizing
(26)
€,Qy (I ®M M| )Q, &y =V Qy v (I, @M M )Q, \ vy + THyM{ )M yp,,

1, 1 T,
ESNQLN[IT ®(M;-,N +1V[;,N)pl,N£N =§V!NQ1,N[IT ®(Ms,N +M;,N)p1,NVN +E"N(Ms,1v +1V[;,N)”N!

’ - '
eyQuney = VyQuyVy +Tyny,

we have
(27)
_ L , _
P VNQO,N(IT ®1\/[;,NMS,N)Q0,NVN +a &y
(T-1)
1 , '
m VNQO,N[IT ®(MS,N +1\/[;,N)DO,NVN +a, &y
N ©.A)=N v V;\/Ql,N(IT ®M;,NM5,N)Q1,NVN +17 u;vl\/[;,NMs,NuN +ag,s,N§N n
qy0y,Ay)=N""1 | T, , , +o0
e E VNQl,N[IT ®(Ms,N +1\/I;,N)p1,NVN +E u’N(Ms,N +Ms,N)llN +a, 8y g
1 ,
ﬂ VaQonVy +a, 8y
L VyQuu vy +Tiypy +a; & i
=N"q,+0,1)=q, +0,0).
Next, consider the (4S + 2) x1vector
dp
qy =N"2qy =N qg, |. (28)
‘7;,N
_qb'N .
Each element q; ,, s=1...,, isa 4x1 vector, given by
q:,s,N
q =[], (29)
q3,s,N
9us,N
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where ¢, p=1..4, s=1...S, ¢, ., and g, , can be written as linear quadratic forms in

the (NT + N)x1 vector §, = (v),,n,, ), i.e., we have

Do =EnA, oy +2, &y, p=1..4, s=1..5, (30)
q;,N = g’NAa,NéN + a;,NéN , and

qZ,N = glNAb,Nz;N + a;,N%N .
We consider each of these terms in the following.
q]js,N = é;VAl,s,NgN + a;.,s,NgN’ Where (31)

v 1 :
_ |:Al,s,N 0NT><N:| —QO,N (IT ® Ms,NMs,N)Qo,N 0NT><N and
1,s,N !

= = (T-1)
0N><NT Afs,N

0N><NT 0N><N

i _faV ! !
a vy =(a;, v,af,y),

and the 0 terms denote zero-matrices, whose dimensions are indicated by the subscript.

q;,s,N = g;\’AZ,s,NaN + aIZ,S'NgN y Where
v 1 ,
A, = |:A2,S,N ONTXN:| _ —Z(T n Qo ®M, y +M, )IQoy 0yren and  (322)
5,N _ ’

u
0v.nr Ay 0 0
NxNT NxN

' —faV ! !
a2,s,N - (aZ,S,N 'aZ,S,N '

Json =CNA;, &y +a5, &y, Where

A31S’N — A;,S,N OJ\Z"XN — |:Q1,N(IT ® M;,NMS,N)QI,N OINTXN , and (32b)
0N><NT A3,S,N 0N><NT TMS,NMS,N

a;‘},s,N = (a;,s,,N ’agl,S,,N ) '

q:,s,N = g;VA4,s,NgN + a’4,S,N§N’ Where

1 ,

A 0 _Ql,N[IT ® (Ms,N + M.s-,N)]Ql,N 0NT><N

A4‘S1N =|: 4,5, N 1\‘/}T><Nj| — 2 T , a.nd (32C)
Ovonr  Adsn | I E(Ms,zv + M )

' vt u!
a4,s,N - (a4,s,N 'a4,s,N .

23



q;,N = ‘:’NAa,NéN + a;,NéN , Where

1
A’ 0 [
AHN:{ N NTXN} -1 Y| ang (32¢)
' 0 A*
NxNT @ 0N><NT 0N><N

v!

a’a,N = (aa,N vale,;v ) -

qZ,N = g,NAb,NéN +a; &, , Where
A 0 0

A = b,N Ni"lxN - { Quv NT><N:|, and (320
Oyvnr  Apy | Jp .

! u'
Ay = (ab,N 1Ay N

Note that the row and column sums of the symmetric (N7 + N)x(NT + N) matrices
Ay Ay iy, =15, A, , and A, , are bounded uniformly in absolute value by
Assumption 3 and Remark A.1. Moreover, the elements of the &, =(v/,p)) are
independently distributed by Assumption 1. Hence, the variance-covariance matrix of &, is

o’l 0,
QéNz[ v NT NTxN (33)

) .
0y nr a,uIN

In order to calculate the variance-covariance matrix of q,, denoted as ¥, , we invoke
Lemma A.1 in Kelejian and Prucha (2008). It is given by ¥, = N'E(q,q} ), which is a

symmetric (4S5 + 2) x (4S5 + 2) matrix, and takes the following form:

Y,=(€ ), rs=1.5+1ie, (34a)
el,l,N ) e1,S,N e1,S+1,N

v,o=| ' . (34b)
N eS,l,N eS,S,N eS,S+l,N
6S+1,1,N €S+1,S,N €S+1,S+1,N

Observe that the matrix ¥, contains three parts.

i) The upper left block is of dimension 4S x 4S , consisting of S? blocks of dimension 4 x 4,
which are defined as
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€ L =N'EW 4 )=, rs=1..,S, p.g=L..4. (34c)
The elements &7, p,g=1,...,4, r,s=1..,S are defined as

¢y =N"Cov(g,, v d,.n) (34d)
=20,N"'Tr(A}, A, ) +20,N"Tr(A"

Afin)
p.r N p.r,\N q,s,N

v +0' JNa? ! a”

271
+O—vN aprN qu p.r.N ©q,s,N

4 -1 4
+( @ 36 )N ZaprnNaqan ( " 36 )N za.l””Naq“’N
i=1

NT
(3) -1 v v (3) o U
+ O-v N Z(ap,r,i,Naq,s,ii,N + ap il Naq S, N) + G N Z(ap ri Naq s,ii,N + ap,r,ii,Naq,s,i,N '

i=1 i=1
where a’ . and a; ., denote the i-th main diagonal element of the matrices A°® , and
A’ v, respectively, and a; .., and a) ., denote the i-th element of the vectors a’ , and

at . respectively. The terms o\, ¢{¥ and o!¥, o” denote the third and fourth moment

of v, v and g, , , respectively.

i) The last two rows and columns are matrices of dimension (2x4S) and (4Sx2),
respectively, each of which is made up by S blocks of dimension (2x4) (4x2), defined as

Eoaon=(E, )= N‘lCov(q;N,q;SyN), p=ab,qg=1..4,and s=1,...,S, (34e)

and € ;. =(&,,), s=1..,5. The elements &f7 . are defined as in (34d), using the

corresponding indexation.

iii) Finally, the lower right block of dimension 2 x 2, is defined as
Eigan = (€§'+‘11,s+1,N) = N_lcov(q;,N’q;,N) , rq=a,b,
where the elements €7 are defined as in (34d), using the corresponding indexation.

For definiteness, we add that the position of each block €&, is such that its upper left
element appears in row (4r-23) and column (4s—3) of the (4S+2)x(4S+2) matrix ¥, .

The position of each block &, , s=1..,§, is such that its first element appears in row
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(4S +1) and column (4s-3) of ¥, . Finally, the upper left element of the block (&, ., v)

appears in row (45 +1) and column (4S5 +1) of ¥, .

The expression given by (34d) holds generally. Part of the elements of ¥, can be stated in
simpler terms, considering the matrices and vectors in (32), which appear in the quadratic
forms. In particular, the submatrices A% ., p=12,and A7, are zero such that the second

term in the first line of (34d), and the second term in the third line, drop out for p =12 or
g=12 and where A, is involved. If both sub-matrices associated with s, , are zero
(p=qg=12, or where A_, appears twice), the second term in the fourth line drops out as
well. Further, the matrices A , have zero main diagonal elements for p =2,4 such that the
terms involving the fourth moments are zero for p=2,4 or ¢=2,4;for p=2,4 and ¢=2,4
or g =4, the expressions involving the third moments of v, , and 4, , are zero as well.
Moreover, due to the orthogonality of Q, , and Q, ,, the terms in the first line drop out when
Q, v and Q,, meet in the trace expression. Finally, if v, and p, are normally distributed,
the terms involving the third and fourth moments of v, and p, drop out for all elements of
¥, ; we denote the variance-covariance matrix under the assumption that v, and p, are
normally distributed as ¥, . If v,, and p, are not normally distributed, ¥ can be regarded

as an approximation of the true matrix ¥, .

To derive the asymptotic distribution of q, and 6N we invoke the central limit theorem for

vectors of linear quadratic forms given by Kelejian and Prucha (2008, Theorem A.1) and
Corollary F4 in Potscher and Prucha (1997). We summarize the results regarding the

asymptotic distribution of 5N in the following Theorem, which is proved in Appendix B.

Theorem 2. (Asymptotic Normality of 0 v)
Let ﬁN be the GM estimator defined by (18). Suppose Assumptions 1-7 hold and,

furthermore, that A (¥,)>cy, >0. Then, provided the optimization space contains the

min

parameter space, we have

N2(0, -0,) = (J,0,J,)7 3,0 Y%, +o (), with

il“NbN =I',’B,, and

!

Jy=

Ey = Tz_vl/ZqN i)N(O’I4S+2) ,
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where ¥ = E(q,q)) and ¥, = (¥}?)(¥}?) .
Furthermore N*/2(0, —0,) = 0,(1) and

Q; (0,)=,0,J,)"7,0,¥,0,J,,0,J,)",
where QEN is positive definite.

Theorem 2 implies that the difference between the cumulative distribution function of
Nl’z(éN —0,) and that of N(0,€; ) converges pointwise to zero, which justifies the use of

the latter as an approximation of the former.’

Note that €; (P =J,¥,J,) " and that Q; (G)N)—Qav(‘l’]‘vl) is positive semidefinite.
Thus, using a consistent estimator of W' (which will be derived below) as weighting matrix

©®, leads to the efficient GM estimator. We add that ¥, is not exactly equal to the variance-

covariance matrix of the moments, since the GM estimates are based on estimated rather than
the true disturbances and since there is an endogenous right-hand side variable in equation

(1).

Remark 1. Under normality, Theorem 2 holds, with ¥, replaced by ¥, . If &, is not
normal the use of ¥, delivers an approximation to the true variance-covariance matrix of

0,.

3.3 Estimation of the Variance-Covariance Matrix of 0 N

In the following, we develop a consistent estimator for the variance-covariance matrix of 0, .

Define
J,=T,3B,. (35)

We next specify estimators for a =Ty, v, p=1..4, s=1..5, a,, =Ta,,, and

PN

a, , =Tya, . The matrix T, will often be of the form

T, =F,P, with F, =(F F, ), (36a)

? Compare Corollary F4 in Pétscher and Prucha (1997).
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which can also be written as

T, = (T;,N’T;’J,N)l with T, , =F, ,P,, T, , =F,,P,,

y

and

s
Fv,N = [IT ® (IN - zpm,NM;n,N)_l]HN ' (36b)
m=1

S
Fy,N = (e’T ®IN)[IT ® (IN - me,NM:n,N)il]HN !
m=1
or, alternatively,

S
Fv,N = Q;lN [IT ® (IN - zpm,NMm,N)]HN ! (36C)

m=1

s
Fy,N = [6{2 (e; L), ® (I, - me,NMm,N)]HN )
m=1

where F, , is a real nonstochastic N7 x P. matrix, F, , is a real nonstochastic N x P. matrix,
H, is a real nonstochastic NT x P. matrix of instruments, and P, is a real nonstochastic

P. x P matrix, with P as in Assumption 7.

To be more specific, when equation (1a) is estimated using twp-stages least squares (TSLYS),

Ay :(gN —90,) and the matrix P, will be of the structure as defined above and can be

estimated consistently by some estimator 13N (see Section 1V).

The estimators for T,, are defined as

TV,N = Fv,NPN’ wN = F,u,NPN’ (372)

i J -~ ! +
F yv= [, ®d, - me,NMm,N) H,, or (37b)
m=1

s
F,u,N =(e; L), (I, - ZEm,NM;n,N)+]HN’

m=1

or

28



S
F,=Q\[Lo1,->5 .M, )H,,

N = [51_,N (e’T ® IN)][IT ® (IN - ZEm,NMm,N)]HN :

The estimators of a, , =T p=1..4,ab, s=1..,8,

p,s,N?

a, , =T,a, , arethen given by

= TNup,s,N

p.s,\N

with a, :2N’1(D’NEPYS'NEN), and the matrices (~?N'N, p=Ll..4, s=

Eb,N are given by (22) with p,, replaced by p,, .

(37¢)

and

(38)

S, C, v, and

The elements of the estimated (4S + 2) x (4S5 + 2) matrix v v are defined in (34d), with o,

and o, replaced by &,, and &,,. The third and fourth moments of 4 , and v, .,

denoted as o”,01” and o\”,0”, can be estimated consistently as follows (see Appendix

B):
~(3) 1 N T
Tk = 2D i
lltl
o =— & vE:
N s, N“it 1
NI(T-)ZFEE "
t#£s
~(3) _ =B _ =0
O,n =0, n — O, N
as well as

3 AL L1 & N T
_NT(T—1);;%gis”vgf”N(W;,_lgi”N NT(T 1)21:;
3 Y S I IHE

NT 5= NT(T-D)F 55

N T 1

i=1 t=1

R?MH

T _ 1 -, N T T
;giv NgtN(NTZ Stt,N NT(T 1)222 s,
t#£s 3

(39a)

(39b)

(39¢)

(40a)

(40D)

(40c)
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S ~
where g, =1, ® (I, — Zﬁm,NMm,N)ﬁN . Based on ¥, , we can now define the estimator for
=1

Q; (®N) = (J;VQNJN)+J;V®N‘I’N®NJN (J;VG)NJN)+' (41)
The following theorem establishes the consistency of ‘f’N and ﬁa :

Theorem 3. Variance-Covariance Matrix Estimation
Suppose all of the assumptions of Theorem 2, apart from Assumption 5, hold and that
additionally all of the fourth moments of the elements of D,, are bounded uniformly. Suppose

furthermore (a) that the elements of the nonstochastic matrices H, are bounded uniformly in

S
absolute value, (b) sup, >’

s=1

pS'N‘ <1 and that the row and column sums of M, are bounded
uniformly in absolute value by one and some finite constant respectively, and
(c) P,-P,=o0,() with P,=0@). Then, ¥,~¥,=0,1) and ¥ -¥i=0,().

Furthermore, if Assumption 5 holds, then also fzéw — Qéw =0,(1).

Remark 1.
Theorem 3 also holds, if §N is replaced by some other estimator (NT)1’2(§N -0,)=0,Q1).

S
Notice that condition (b) can be dropped in case that F, , = Q" [, ® (I, — me'NMm'N)]HN
m=1

S ~
and F,,=[o;%(e; ®L [, ®(I, —me'NMm,N)]HN. The consistency result for ¥
m=1

verifies that this estimator for ¥’ can indeed be used in the formulation of an efficient GM

estimator.

3. Joint Distribution of the GM Estimator for 0, and Estimators of Other Model
Parameters

Note that both N*2(0, —0,) and (NT)"?A,, and thus also N“2A, are asymptotically

linear in &, . Hence, the joint distribution of the vector [N*2A’,, N*2(0, —0,)7] can be

derived invoking the central limit theorem for vectors of quadratic forms by Kelejian and
Prucha (2008).

. Compare Gilbert (2002) for the estimation of third and fourth moments in error component
models without spatial lags and without spatial autoregressive disturbances.
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Consider the (2 +4S + 2) x1 vector of linear and linear quadratic formsin &, :

WN :|:(NT)1/2F1’VF3Nj|. (42)
2 P

Its variance-covariance matrix is of dimension (P. +4S + 2) x (P. +4S + 2) and given by:

(NT)'FE, & F, (NT)‘“ZF]'VF,Nq’N} {‘I’M ‘PAe,N} (433)

Var(wy,)=%,, = { B ! .
v v (NT)™*?q,&\Fy 9y VYoo ¥y

where the (4S +2) x (4S +2) matrix ¥, is defined above, ¥, , is of dimension P.x P. and

defined as
‘PAA,N = E[(NT)&FJ,\/&N&.»,NFN] = (NT)il(O-szv' NF + O-;th/'t N /,z,N) ) (43b)

and the P.x (4S +2) matrix ¥, , is given by

¥,y = EL(NT) " F & ,qy] (43c)
=(NT) "N (0, +ova) )+ F, (00, +orall ).
B (0 AT +oia, ) +F, (o A +oal ),
N(a(3) . to abN)+F;,N(O'(3) . +ocay ),

where x , and k,, are N7 x1and N x1 vectors, whose i-th element corresponds to the

r.a.N p q.N

and A*

s on o respectively.

i-th main diagonal element of A®

As we demonstrate in Appendix B, the matrix ¥, can be estimated consistently by

w1

¥Y,, ¥
N = L fA'N f”} , where (44)
‘PAE‘,N ‘PN

. (NT)‘l[O'ZF F +o-2F#NF vl

U

- —1/2 A7-1/2 3 ~2~y 3 ~2~
Woon= =(NT)™" "N~ [F N(J( : A;M +Jv31,1,N)+ N(G( ) Alyy +Uyaif11,w)a---'

= =@3) ~2~y iy ~(3) ~u
K (o, K. +o,a,,)+F, (o, Ko +07 LA N),

G

N(a(3) . +0o abN)+F' v(0, K “ +5';5:N)].
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Regarding the joint limiting distribution of N*2(, —0,) and (NT)"?A,,, we now have the

following result.

Theorem 4. Joint Distribution of 0 v and Other Model Parameters

Suppose all assumptions used in Theorem 3 hold and A

‘min

(¥,y)=cy >0.Then,

Nl/ZA T—l/ZP! 0 .
s N _ N , . ‘I’i/fv oy +0,(), with
N (HN _eN) 0 (JNG)NJN) JN@N
&, v =Y, INYEF, q,] 5NOI,. , ),
_T—l/ZP! 0 T—l/2P 0
Q= v ' o ¥,y N ' , |.and
0 (JNG)NJN) JN®N 0 ®NJN(JN®NJN)
- _T—l/Zi;! T-12p
QOvN: " T A ~0 + 3 o \PovN|: R ~?~ F o\t |
L 0 (JNG)NJN) JNG)N 0 ®NJN(JN®NJN)
Moreover,

¥, -¥,,=0,0,Q,-2,=0@0,ad ¥, =00, 2, =0Q).

Theorem 4 implies that the difference between the joint cumulative distribution function of
[NY2A!,, N*?(0, —0,)7 and that of N(0,©, ) converges pointwise to zero, which justifies
the use of the latter distribution as an approximation of the former. The theorem also states

that éo,N is a consistent estimator of © . The proof of Theorem 4 is given in Appendix B.

Remark 2.
As in Kelejian and Prucha (2008, p. 17), Theorem 4 can also be used to obtain the joint

distribution  of (6N -0,) and  some  other  estimator A,  where

Hk ek Kok

(NT)2A% = (NT)'*T e, +0,(), Ty =FyP;, Ty =F,P,, assuming that analogous
assumptions are maintained for this estimator. In particular, the results remain valid, but with

F,, P, replaced by Fy , P, and F,, P, replaced by F; , Py, in the definitions of ¥,, , ,

lI’AH,N’ ‘PAA,N ' and ‘PAE‘,N )
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IV. Two-Stages Least Squares (TSLS) Estimator for 6,
1. Instruments
It is evident from model (1), that E(Y,u’,)#0. In line with Kelejian and Prucha (2008), we

consider a TSLS procedure to obtain consistent estimates of the parameters 8, . The

following assumptions are maintained.

Assumption 8.
The regressor matrix X, has full column rank (for N large enough). Furthermore, the

elements of X, are bounded uniformly in absolute value.

Assumption 9.
The instrument matrix H, has full column rank P.>K+R (for N large enough).

Furthermore, the elements of H,, are bounded uniformly in absolute value.

Assumption 10.
Q. =lim,__[(NT)™H',H,] is finite and nonsingular.

Q,, =plim,_, [(NT)"H)Z,] is finite and non-singular.

Regarding the choice of instruments, note that

E(Z Wr,NyN) = Zwr,NE(yN) = ZWr,NE{[IT (I, - Zﬂ’r‘,NWr',N)_l]XNBN}

r=1 r=1
R o0 R
= Zwr,N{IT ®[IN + Z(Z j“r’,var’,N)I]}XNBN ' (45)
r=1 =1 =l
R
provided that |»' 4, W, [ <1 for some matrix norm |- | (compare Horn and Johnson, 1985,
r'=1

p. 301). The instrument matrices H,, are used to instrument Z, = (X,,Y,) in terms of their

predicted values from a least squares regression on H,, ie, Z,=P, Z,, where

Py, =H,(H,H,)"H) . In light of (45) it is reasonable to select H, to include X, and a

subset of the linearly independent columns of terms of the sum

0 R
[, QW) Ky, (46)

=1 =l
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where Q is some predefined constant.” Note that such a choice of H, implies that the
second part of Assumption 9 will be fulfilled (by Assumptions 3 and 8) and that X, is

instrumented by itself.

2. Definition of TSLS Estimator and Asymptotic Results
Estimation of the model in equation (1) proceeds in three steps. In the first step, model (1a) is
estimated by TSLS using instruments H, . In the second step, the spatial autoregressive

parameters p, ..., o v, and the variances of the error components o and o7 are estimated

using the GM estimators defined in Section I11 in (17) and (18), based on consistent estimates
of u, from the first step. In the third step, the model is re-estimated by feasible generalized

two-stages least squares (FGTSLS), which is equivalent to performing a TSLS estimation on
a transformed version of equation (1). The advantage of this approach as compared to the use
of heteroskedasticity-and-autocorrelation-consistent estimates is that joint hypotheses about
6, and 0, may be formulated and tested.

The TSLS estimator of model (1a) is defined as

8, =(Z,Z,)*Zy, , where (47)
Z,= P, Z, =(X,.,Y,),and
Y,.

N = PHN

In the second step, the parameters p, ,, s=1...,S, o7, and o/, are estimated using the GM

estimator defined by (18), based on the first step residuals u, =y, —ZNEN. As above these

estimators are denoted as p, ,, s=1...,.5, 6, and o, .

The following lemma shows that the various assumptions maintained in Section Il are

automatically satisfied by the TSLS estimator 5N and the corresponding residuals u,, .

12
Lemma 1.

" Kelejian, Prucha, and Yuzefovich (2004) consider the results using alternative sets of
instruments in the estimation of a cross-section SARAR(1,1) model. Their Monte Carlo
simulation results suggest that choosing Q =2 will be sufficient in many applications.

. Compare Kelejian and Prucha (2008) for analogous results in case of a cross-section
SARAR(1,1) model and Badinger and Egger (2008b) in case of a cross-section SARAR(R,S)
model.
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Suppose that Assumptions 1-3 and 8-10 hold, and that sup|B,|<b<x. Let D, =-Z, ,

then, the fourth moments of the elements of D, are bounded uniformly in absolute value,
Assumption 6 holds, and
(8) (NT)"*(3, —8,) = (NT)* T}, +0,() = (NT)™'>T, v, + (NT) Y*T, ., +0,(1), where

&y =(Vimy ), T, =(T . T, ),
TV,N = Fv,NPN’ T,LI,N = Fy,NPN'
P, = Q;JlHQHz(Q’HZQ;IlHQHZ)_l )

S
Fv,N = [IT ® (IN - zpr71,NM:n,N)7l]HN ! and
m=1

S
Fp,N = (e;" ® IN)[IT ® (IN - zpr71,NM:n,N)7l]HN '
m=1

(b) (NT) T &, =0,(1);
(c) P,=0,(1) and P, —P, =0, (1) for

P = [(NT) ' HYH, T [(NT) ], Z, KI(NT)Z, H J[(NT) HiH T L(NT) T Z, 1

The condition sup |B| <& <o is trivially satisfied if B, =B . Note that (a) and (b) together

imply that &, isa N2-consistent estimator of 3, .

Regarding Assumption 4, we now have wu, -u,=D,A,, where D,=-Z, and
Ay :EN -9, . Lemma 1 shows that under Assumptions 1-3 and 8-10 the TSLS residuals
automatically satisfy the conditions postulated in Assumptions 4, 6, and 7 with respectto D, ,

A, ,and T, . Hence, Theorems 1 and 2 apply to the GM estimator 5N, which is based on the

TSLS residuals. The lemma also establishes that the elements of D, are bounded uniformly

in absolute value, gives explicit expressions for P, and 1~>N, and verifies that the conditions
concerning these matrices made in Theorems 3 and 4 are fulfilled. Hence, Theorems 3 and 4
cover the GM estimator ﬁN and the TSLS estimator gN. In particular, Theorem 4 gives the

joint limiting distribution of NY?(0, —0,) and NY?(3,-&,), where D, =-Z,, the

~ ~ S
matrices P,,P,, F,,, F, , are as in Lemma 1, FV'N:[IT®(IN—ZE,”YNM;”'N)*]HN and

m=1

Fy,N = (e,T ®IN)[IT ® (IN - me,NMin,N) ]HN '
m=1

We now turn to the third step of the estimation. Consider the transformed model (1b), with

35



y: = Z:SN + u:, (48)

where

s
Yy = Q;,lx/z[lr (I, - zpm,NMm,N)]yN
m=1
o 1/2 >
Z,=Q_, [, ®(I, - me,NMm,N)]ZN’
m=1

s
uy = Q;,lz\/fz[lr ® (I, - me,NMm,N)]uN = Q;,lllvng ’
m=1

s
H, = Q;lz\llz[lr (I, - me,NMm,N)]HN = Q;,11/\'2HN '

m=1
. S
H, =[I,®(, - me,NMm,N)]HN '
m=1

xke o Fk

2] =P, 2 = () 2

The generalized two-stages least squares (GTSLS) estimator, denoted as 5 v IS then obtained

as a two-stages least squares estimator applied to the transformed model (56), using the

S
transformed instruments Hy =(I1->_p, M, ,)H, ,ie.,

m=1

2wkl wk e

8N = (ZN ZN)_lZN Yn- (49)
The feasible generalized two-stages least squares (FGTSLS) estimator, denoted as 5N, IS

defined analogously, after replacing p, by p, (2, , by és,N)’ ie.,

A~ A
wxl 2 kx Fokl ~—kk

8y =(ZyZ))'ZyYy (50)
where
Z, =P..Z,, with P, =H(H,H;) H);

e -~ S -~
H, = Q;llxllz[lr ® (IN - me,NMm,N)]HN’
m=1

~

Fk

- S
ZN = Q:LAI/Z[IT ® (IN _me,NMm,N)]ZN '
m=1
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S
?N = Q;l]\/lz[IT ® (IN - zpm,NMm,N)]YN '
m=1

Kelejian and Prucha (2008) and Arraiz, Drukker, Kelejian and Prucha (2007) use the
untransformed instrument matrix H, in the FGTSLS estimation of cross-section

SARAR(1,1) models. While this choice does not affect consistency, it has implications for the
efficiency of the estimates. In light of (45), the ideal instruments matrix for Y, in the

transformed model is given by H, .

The following lemma shows that the various assumptions maintained in Section Ill are

A

automatically satisfied by the (feasible) generalized TSLS estimator gN and the

corresponding residuals. The proof is given in Appendix B.

Lemma 2.”
Suppose the Assumptions of Lemma 1 hold”, and let 5N be defined as in equation (50),

where 6, is any NY2-consistent estimator of 8, (such as the GM estimator 8, based on the

TSLS residuals). Then

@) (NT)?Ay =(NT)*TE, +0,0) = (ND) V2T, vy + (NT) 2T, /'y +0, (1), where
&y =(Vily) Ty = (T, 0T, ),

T, =F, Py, T, =F P,

Py = Q Qe (Qlgoezn Qg Q)

*:

s
F y= (O'V_ZQO,N + O-]._ZQl,N)HN = Q;,lzv[lr @@, - zpm,NMm,N)]HN )
m=1

*k

s
F;:,N = [0-1_2 (e; ® IN)]H:V = [O-l_z(e;" I )M, &I, - me,NMm,N)]HN .
m=1

Fxl

(b) (NT)™*TyEy =0,

. Compare Kelejian and Prucha (2008) for analogous results in case of a cross-section
SARAR(1,1) model and Badinger and Egger (2008b) in case of a cross-section SARAR(R,S)
model.

S
“In light of the properties maintained with respect to the matrices (I, —me]NMm’N) and

m=1

Q, ,, this implies that Assumptions 9 and 10 will also be satisfied for the transformed

instruments H', .

37



(¢) Py =0,(1) and Py —P; =0, (1) for

Py =[(NT) H H T [(NT)  HY Zy T {I(NT) 2 B TINT) B H T (NT)  H Z1
In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) generalized TSLS

estimator &, and the GM estimator @, follows from Theorem 4 and the discussion

thereafter, with A} =8, -8,. The asymptotic variance-covariance matrix and its

corresponding estimator are provided in Theorem 4 with the modifications as described in
Remark 2 thereafter.

Note that in light of Lemma 2 the residuals @ =y, - Z,d, =u, + D, A" can be used to
estimate 0, by the GM estimator defined by (18), where the discussion surrounding Lemma
2 would also apply here. Taking this argument one step further, 8, and &, can also be

estimated by an iterative procedure.

As a final point, note that the above theory carries over to cases where the regressor matrix
X, includes endogenous variables, provided that suitable instruments are available. To be

more specific, let X, =(X,.,E,) and D, =-Z, =—(X,,E,,Y,), where X, satisfies
Assumptions 8-10 with X, replaced by X, (including in the formulation of the instruments),
and where E, is a matrix of endogenous variables. Then, given the fourth moments of D,
are bounded uniformly, and Assumption 6 holds, parts (a), (b), and (c) of Lemma 1 and 2 still

hold, but with Z,, = (X,,P, E, P, Y,), Zy =P .Z,, and Z, =P, .Z) respectively.

V. Monte Carlo Evidence
In this section, we consider a Monte Carlos experiment for a SARAR(3,3) specification and
restricted versions thereof. We assume that W, =M, and that the matrix X, includes two

. 15
explanatory variables. Hence we have

3
Y =X + X,/ +Z/1r(lr @W,)y+u, (51a)
r=1
3
u=ZpS(IT ®W)u+eg. (51b)
s=1

* For simplicity of notation, the subscript N is suppressed in the following.
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We consider two sample sizes: N =100 and N =500. The explanatory variables x, and x,
are generated as random draws from a standard normal distribution, scaled with a factor of
five, and treated as fixed in repeated samples. Their parameters £, and f, are assumed to be

unity in all Monte Carlo experiments considered.

For our basic setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a
binary ‘up to 9 ahead and up to 9 behind’ contiguity specification. This means that the

elements of the time-invariant, raw weights matrix W° are defined such that the i-th cross-
section element is related to the 9 elements after it and the 9 elements before it.

The unnormalized N x N matrix W° is then split up into three N x N matrices W, Wy,
and W, , where W+ W, + W, =W?°, The matrices W, W,, and W, are specified such
that they contain the elements of W, for a different band of neighbours each. Otherwise, they
have zero elements. We choose a design, where W, corresponds to an ‘up to 3 ahead and up
to 3 behind’ specification, W, corresponds to a ‘4 to 6 ahead and 4 to 6 behind’ specification,
and W, corresponds to a ‘7 to 9 ahead and 7 to 9 behind’ specification. W, Wy, and W;
have typical elements wfy., ng and ng respectively, where subscripts i and ; indicate
that the corresponding element captures the possible contiguity of unit i with ;. wf,.j, wgij,
and wj, are either unity or zero. By design, at most one of the three elements, wy,, wy,, or
w;{@.,., can be unity. The final weights matrices W, , W, , and W, are obtained by separately
row-normalizing W;', W, , and W, that is, by dividing their typical elements w;;, wj ,, and

wg,‘.]. through the corresponding row sum, respectively.

With three row-normalized matrices W, , W, , and W, , the parameter space for » and p
must satisfy 0<|4|+|4,|+|4|<1 and 0<|p|+|p,|+|ps|<1. We consider 3 parameter

constellations. In constellation (1) there is third order spatial dependence in both the
dependent variable and the disturbances, which is non-increasing in the order of
neighbourhood, i.e., 4,24, >4, and p, > p, > p,. In parameter constellation (2), there is

first order spatial dependence in both y and u. Finally, parameter constellation (3) considers
zero dependence parameters for all spatial lags in y and u, i.e., a non-spatial model.

< Table 1 here >

Regarding the choice of instruments, we include linearly independent terms of up to the
second order in equation (30b). In particular, the matrix of untransformed instruments H
contains 18 columns and is given by
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H = (X, WX, W,X, W.X, W)X, WX, W2X, W, X, W,.X) (52)
where W, = WW,.

We assume further that the error components v, and x, are drawn from a standard normal
distribution with zero mean and unit variance, i.e., v, =¢,
and ¢,; arei.i.d. N(0,1).

« and p, =&, where each £,

For each Monte Carlo experiment, we consider 1000 draws. To ensure comparability, the
same draws of £ ., and &,

v, it

are used for each parameter constellation. Results for the

1,it

estimates of p, ,,p,y, and p;, are obtained by the GM estimator defined in equation (18),

using the optimal weighting matrix under normality as given in equation (i’jv)‘l. The
estimates reported for the regression parameters are FGTSLS estimates as defined in (50)

using the transformed set of instruments H™ .

For each single coefficient, we report the average bias and root mean squared error for each
parameter constellation and the rejection rates for the test that the coefficient is equal to the
true parameter value. Under parameter constellation (2) we also test the SARAR(3,3) against
the SARAR(1,1) model, using H;*": 4, = A, = p, = p, = 0. For the non-spatial model under

parameter constellation (3), we report results for the tests of the joint hypothesis
Hy? i =2=k=p=p,=py=0.

Using Theorem 4, the approximation of the small sample distribution of q is given by
q~N(q,Q), where q=(4,4 4 8,5 puppe,) and Q=Var(q), which can be

estimated using }5=N‘1£~20. Tests referring to a single parameter are carried out using a

standard t-test, e.g., HZ : p, = p, is tested using t:u, where o is the corresponding

05

main diagonal element of .

Tests regarding joint hypotheses are carried out using Wald tests. Generally, we test
H,: Rq-t=0 against H,: 93q—t = 0. Define the discrepancy vector: m= 29Rq—t. The

null hypothesis can the be tested using m'(MQM) m ~ 2, where & is the number of
restrictions, i.e., the number of rows of R (e.g., Greene, 2003, pp. 95, 487). In the present
context, we have

0L 00O 0

for H" A, =A=p,=p,=0, R =
o= =p,=p, {0000012

}and &=4;
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I, 00 0

forH&"’%Z/iz:%:pl:pz:ps:&9%{0 00 I
3

}and & =6.

Table 2 reports the results of the Monte Carlo analysis for the two sample sizes considered.”
In terms of bias and RMSE, the estimator performs well, even in the small sample with
N =100. On average over all parameter constellation the bias and RMSE amount to 0.0007
and 0.0229 for the estimates of A = (4,,...,4;)" and to 0.0054 and 0.1096 for the estimates of

p=(p, 03) . With an average rejection rate of 0.0082, the performance of the single

hypotheses tests referring to A and p is satisfactory. The actual size of the joint hypotheses

tests, however, differs significantly from the nominal size with an average rejection rate of
0.1395.

< Table 2 >

However, performance improves quickly with growing sample size. For N =500, the bias
virtually disappears and the average RMSE of the estimates of A =(4,,...,4;)" shrinks to

0.0010, that of the estimates of p = (p,,..., p;)" shrinks to 0.0440. Also, the size of the tests

improves and approaches the nominal size of 5 percent. Regarding the GM estimates of p,

the average size of the tests involving only one parameter amounts to 0.0089, that for the
FGTSLS estimates of A to 0.053. The average size of the joint hypothesis amounts to 0.084
for the joint tests.

Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably
well in terms of bias and RMSE, even in very small samples. Regarding the estimates of the
variance-covariance matrix of the parameter estimates and implied tests of single and joint
hypotheses, some care is warranted in the interpretation of the results in small samples,
though the difference to the true size of the tests is moderate at least for the single hypothesis
tests. This suggest that in small samples it might be worth exploiting additional moment
conditions as outlined in footnote 3. As the sample size increases, the rejection rates of the
single and joint tests converge reasonably quickly to the true size such that they may be
recommended for specification tests about the lag- and error-structure and the order of spatial
dependence in medium to large samples.

** Results for the variances of the error components are very similar to those of the GM
estimates of the spatial regressive parameters of the disturbance process. The detailed results
are thus omitted for the sake of brevity. The only notable difference is that the rejection rates

for the estimates of &7 are worse with an average value of 0.175 for N =100 and 0.138 for
N =500.
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VI. Conclusions and Suggestions for Future Research

This paper derives GM and FGTSLS estimators for the parameters of a SARAR(R,S) model
allowing the applied econometrician to study the strength and pattern of spatial
interdependence more flexibly than existing SARAR(1,1) models. We also provide a detailed
study of the asymptotic properties of the proposed two-step GM-FGLS estimators of the
model parameters and derive their joint asymptotic distribution. This enables tests of the fairly
general SARAR(R,S) model against restricted alternatives such as SARAR(0,S) and
SARAR(R,0) or SARAR(1,1) with panel data.

One suggestion for future research is to extend the analysis of tests towards a study of
conditional and unconditional tests on the relevance of error components and spatial
interaction. In particular, a comprehensive Monte Carlo study of GM estimators using
alternative weighting schemes of the moments and alternative distributional assumptions
should be instructive for related applied research.
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APPENDIX

In the following, we sketch the proofs of Theorems 1-4. They build on analogous proofs by
Kelejian and Prucha (2008) for a cross-sectional SARAR(1,1) and Badinger and Egger
(2008b) for a cross-section SARAR(R,S) model, as well as analogous proofs for a panel
SARAR(0,1) model with nonstochastic regressors by Kapoor, Kelejian, and Prucha (2007).
The full details of the proofs are given in a technical appendix to this paper.

APPENDIX A

Notation

We adopt the standard convention to refer to matrices and vectors with acronyms in boldface.
Let A, denote some matrix. Its elements are referred to as «, ,; a, , and a, , denote the i-

th row and the i-th column of A, respectively. If A, is a square matrix, A, denotes its
inverse; if A, issingular, A} denotes its generalized inverse. If A, is a square, symmetric
and positive definite matrix, A'/*denotes the unique positive definite square root of A, and
A'? denotes (A)"%. The (submultiplicative) matrix norm || is defined as
|A y||=[Tr(A'yA )12, Finally, unless stated otherwise, for expressions involving sums over

elements of vectors or matrices that are stacked over all time periods, we adopt the convention
to use single indexation 7, running from i =1,..., NT , to denote elements of the stacked vectors

. 17
or matrices.

Remark A.1
i) Definition of row and column sum boundedness (compare Kapoor, Kelejian, and Prucha,
2007, p. 99): Let B,,N >1, be some sequence of N7 x NT matrices with 7" some fixed

positive integer. We will then say that the row and column sums of the (sequence of) matrices
B, are bounded uniformly in absolute value, if there exists a constant ¢ < oo, which does not

depend on N, such that

NT NT
max ‘b.. ‘Sc and max ‘b,. ‘sc for all N > 1.
1SiSNT],Z_; y.N 1SjSNT; ij,N N

The following results will be repeatedly used in the subsequent proofs.

" Take the vector u, =[uy@),..,u,(T)], for example. Using indexation i=1,...,NT, the
elements u, ,,i=1...,N referto =1, elements u, ,,i=N +1,....2N referto =2, etc., and
elements u, ,,i=(T-1)N +1,..,NT refer to +=T7. The major advantage of this notation is

that it avoids the use of double indexation for the cross-section and time dimension.
Moreover, it allows us the invoke several results referring to the case of a single cross-section,
which still apply to the case of T' stacked cross-sections.
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i) Let R, be a (sequence of) Nx N matrices whose row and column sums are bounded

uniformly in absolute value, and let S be some 7'x T matrix (with 7 >1 fixed). Then the row
and column sums of the matrix S® R, are bounded uniformly in absolute value (compare

Kapoor, Kelejian, and Prucha, 2007, p. 118).

i) If A, and B, are (sequences of) N7 x NT matrices (with 7 >1 fixed), whose row and

column sums are bounded uniformly in absolute value, then so are the row and column sums
of A,B, and A, +B,. If Z, is a (sequence of) N7 x P matrices whose elements are

bounded uniformly in absolute value, then so are the elements of A,Z, and
(NT)*Z/,A ,Z, . Of course, this also covers the case (NT)"Z\Z, for A, =1,, (compare
Kapoor, Kelejian, and Prucha, 2007, p. 119).

iv) Suppose that the row and columns sums of the NT xNT matrices A, =(q;,) are

NT
bounded uniformly in absolute value by some finite constant ¢, ; then Z‘aw‘q <c? forg>1
i=1

(see Kelejian and Prucha, 2008, Remark C.1).

v) Let &, and m, be NT x1 random vectors (with 7 >1 fixed), where, for each N, the
elements are independently distributed with zero mean and finite variances. Then the elements
of (NT)™?Z,&, are O,(1) and (NT)'&,A,m, is O,(1) (compare Kelejian and Prucha,
2004, Remark A.1)."

vi) Let £, bea NT x1 random vector (with 7' >1 fixed), where, for each N, the elements are
distributed with zero mean and finite fourth moments. Let &, be some nonstochastic NT x1
vector, whose elements are bounded uniformly in absolute value and let IT, be a N7 x NT
nonstochastic matrix whose row and column sums are bounded uniformly in absolute value.
Define the column vector d, ==, +II1,§, . It follows that the elements of d, have finite
fourth moments. (Compare Kelejian and Prucha, 2008, Lemma C.2, for the case 7'=1 and
independent elements of ¢, .)"

. Kelejian and Prucha (2004) consider the case 7 =1 and where the elements of &, and n,
are identically distributed. Obviously, the results also holds for (fixed) 77>1 and under
heteroskedasticity, as long as the variances of the elements of &, and m, are bounded

uniformly in absolute value.

® The extension to (fixed) 7'>1 is obvious. Independence of the elements of {, is not

required for the result to hold. The fourth moments of the elements of d, ==, +II1,§, are

NT NT
givenby E(z,, + D 7, &) <2°E[x)y + Q7w n¢ 00" ]
= =)
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Remark A2.
The matrices Q, , and Q, , have the following properties (see Kapoor, Kelejian, and Prucha,

2007, p. 101):

r(Qoy) =N(T=1), r(Quy) =N, Qo (e @) =0, Q (e, ®Iy) = (e, ®I,),
Qoney =QonVyr Quuty =(e; Ly +Q vy, (I ®Dy)Qq y =Qp y(I; ® D),
(I; ®Dy)Q, v =Q, (I, ®Dy), #r[(I; ®D)Qq ] = (T -Dtr(Dy),

o{(I; ®D)Q, y1=1r(Dy),

where D, is an arbitrary N x N matrix. Obviously, the row and column sums of Q, , and

Q. , are bounded uniformly in absolute value.

APPENDIX B
The following lemma will be repeatedly used in the subsequent proofs.
Lemma B.1”

Let A, be some nonstochastic N7 x NT matrix (with 7 fixed), whose row and column sums
are bounded uniformly in absolute value. Let u,, be defined by (2c) and u, be a predictor for

u,, . Suppose that Assumptions 1 to 4 hold. Then

@) N"1E|u'NANuN| =0(1), Var(NyAu,)=0(1),
and N7'(ujA,u,)-NTEu,Au,)=o0,().

(b) NEd'; A u,|=0(1), j=1..,P, where d ,, is the j-th column of the N7 x P matrix
D,,and N"'D\A,u, - N"E(D\yA,u,)=0,(1).

(c) If furthermore Assumption 6 holds, then

N3 Ay, = NP Auy, + ay NY2A +o, (1) with @, = N7E[D) (A, + A} )u,].

In light of (b), we have a, = O(1) and N'D', (A, + AU, —a,= 0,(1).

The proof of Lemma B.1 is given in the technical appendix.

NT NT NT NT
<2'[r}y + zzZZ‘771;;,1\/H”ik,zv“771'1,1\/“”im,N‘E‘é,j,Nugk,N“gz,NHé,m,zv‘] <K <o, by Holders
171 1

j=1 k=1 I=

inequality as long as the fourth moments of the elements of {,, are bounded uniformly.

» Compare Lemma C.1 in Kelejian and Prucha (2008) for the case of a cross-sectional
SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-
sectional SARAR(R,S) model.
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Proof of Theorem 1a. Consistency of Initial GM Estimator (Ai(l’v

The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic
counterpart are given by

R} (,0°) = (7} —T3b%)' (7 ~T363) and (B.1a)

R} (0°) = (v} —T30°) (v}, ~TB°). (B.1b)
Since v% —T%b% =0, we have R{(8%)=0, i.e, RJ(8°)=0 at the true parameter vector
0% =(p,,..., pg,07)' . Hence,

R (0")-R5(69) = (6° -63)T} T3, (6} - 67). (B.2)
In light of Rao (1973, p. 62) and Assumption 5, it follows that:

Ry(8°) ~ Ry(8") 2 Ay, (I T) (6 - B3,)'(8° ~ b7,) and

RY(0°) - Ry(0°) > A.(6° — b1 )'(6" ~b3).
By the properties of the norm ||A| =[#(AA)]"?, we have HQO —GOHZ < (6°-6%)'(6° -6%) such

that R(0°) — R2(0°) > /LH(_)O —BOHZ. Hence, for every & >0

lim inf  [RO(8°)-R(6°)]> inf LHQO—GOHZ=A<~92>O, (B.3)

N—>oo{90:H90790H2£} {9°:H9°—9°st}
which proves that the true parameter 0° is identifiable unique.

Next, let F% = (7%,-T%) and @ = (y%,-I'%). The objective function and its nonstochastic
counterpart can then be written as

R} (8°) = (Lb")FY F (16" and
RJ(0°) = (16" @} @S, (Lb") .

Hence for p [-a”,a”]” and o [0,5] it holds that

7@~ Ri@)] = H(l’ b”)(Fy Fy - @7 ®)(16")

Moreover, since the norm | -|| is submultiplicative, i.e., |AB| <|A]|B|, we have

* This should be read as P, e[-a”,a”] forall s=1,..,S.
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[R5 @)~ R (0°)] < IO B — 00 0,

25+5(5-1)

<|FYF - 0% @°, )

[1+S(a”)” + a”)* +b%].

It is readily observed from (16), that the elements of the matrices y5, and I'%, are all of the
form u)yA,u, , where A, are nonstochastic N7 x NT matrices (with T fixed), whose row
and column sums are bounded uniformly in absolute value. In light of Lemma B.1, the

elements of @9, are O(1) and it follows that HF,%—(I)‘,)VH$O and [FF - @5 @20 as

N — . As a consequence, we have (for finite S)

sup  |RY(6°)- R2(@°)| <|[FY FY ) @3] SO 0y 4521250 as N > oo

pel-a” a”] 07 [0.5]

[1+S(a”)* +

(B.4)
Together with identifiable uniqueness, the consistency of 6,% = (ﬁlyN,...,ﬁs,NﬁiN) now
follows directly from Lemma 3.1 in Potscher and Prucha (1997).
Having proved that the estimators p, ..., ps v, 0\, are consistent for p, ..., ps v, o, We now
show that o, can be estimated consistently from the last line (4S+2) of equation system
(12), using
Oy = 774S+2,N - 774S+2,1,N,51,N T 774S+2,S,N53,N - 774s+2,s+1,N,512,N

~Vas+2,28,NPs, N T Vas+2,254,NPLNP2N T T Vas+2,25+5(5-1)12,NPs-1,NPs,N (B.5)

Since y, —T',b% =0, we have

~ 2~ - - - -
0, =07 = (743+2,N - 7/4S+2,N) - (7/4S+2,1,N - 74S+2,1,N)p1,N e (7/4S+2,5,N - 745+2,S,N)PS,N

- (7/45+2,s+1,1v - 74S+2,S+1,N),01,N e (745+2,2S,N - 7/4S+2,25,N)ps,1v

- (7’4s+2,25+1,1v - 745+2,2S+1,N),01,Np2,1v e (745+2,2S+S(S—1)/2,N - ?’AS+2,2S+S(S—1)/2,N)PS-1,NPS,N

- - (B.6)
~Vasc2 LN (pl N pl,N) e 74S+2,S,N(p5,1v - ps,zv)

~Vas+2,541LN (pl N plz,zv)--- ~Vas<2,28 N (/552N - pé,zv)

) - -
~Va8+2,28+1,N (pl,sz,N - pl,sz,N)--- = V48+2,28+5(S-1)12,N (pS—l,NpS,N - pS—l,NpS,N)'

Since HFfj—(I)?VH”—)O as N — o and the elements of ®, are O(1) it follows from the

consistency of p, ..., s v that 7, —o7 20 as N — oo .
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Proof of Theorem 1b. Consistency of the Weighted GM Estimator
The objective function of the weighted GM estimator and its nonstochastic counterpart are
given by
RN (Q) = (?N - FNQ)’@N(?N - FNE) and (B-7a)
EN (Q) = (YN - FNE)’GN(YN - FNE) (B-7b)

First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that
the smallest eigenvalue of I',®,I',, is bounded away from zero, i.e.,

Amin MO, T ) = 4, for some 4, > 0. (B.8)

Let A=(aq,)=T%T% and B=(b,) =I5 T.. Note that T and T’ are of dimension
(2S +1) x[2S + S(S -1)/2+1] (i.e., they have half the rows and one column less than than
I, ). A and B are of order [25+S(S-1)/2+1]x[25+S(S-1)/2+1] (i.e., they have one

row and column less than T, T,).

Next define I',, = (I'% ,['%)’, which differs from T, only by the ordering of the rows. T,

corresponds to ', with a zero column appended as last column, i.e., T'% = (I'%,0), such that

a A 25+5(5-1)12+41 0
o, -0 /-0 0
r?v'r?v _| Iy 0f_ 0 (B.93)
0 0 Aos1s(s-1)/2+11 Ay545(S-1)12+1,25+S(S-1)/ 2+1
0 0 0 0

(F9'TS is of the same dimension as I, I[,, ie, [2S+S(S-1)/2+2]x
[25+S(S-1)/2+2].)

I, is a modified version of I, with a zero column included as second last column, such
that

bl,l 0 b1,25+S(S—l)/2+l
e : 0 :
T = B.9b
N N O 0 0 O ( )
b2S+S(Sfl)/2+l,l 0 b2S+S(S71)/2+1,25+S(Sfl)/2+l

(I, T%is of the same dimension as I, I,, ie, [25+S(S-1)/2+2]x
[2S+S5(S-1)/2+2].)

Since T', = (lv“?v' ,T%)" differs from T, only by the ordering of the rows, it follows that
- ) = - —a ! fO —0 = =1 1=
r,r,=r,r, {r‘jv r }{FN}:F; o+ T, ie., (B.10)
N
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aiy A125+5(5-1)/2+1

!
FN FN =
Aogis(S-1)/2+11 Aot 5(S-1)/2+1,28+S(S—1)/2+1

0 0 0

o O o o

b1,1 bl,ZS+S(S—l)/2+1
0 0 0

+
o O O o

bzs+s(s-1)/2+1,1 b2S+S(S—l)/2+1,25+S(S—l)/2+1

We can thus write
XT, T,x=xT%Tx+xT T x=x,A,x, +X,B,X,. (B.11)

The vector x is of dimension [25 +S(S—-1)/2+2]x1 (corresponding to the number of
columns of I',), wheras x, and x, are of dimension [2S + S(S-1)/2+1], i.e. both have
one row less: x, excludes the last element of x, i.e., X, ¢ 1y/2.2, X5 €Xcludes the second-

last element of x, i.€., Xy, g5 1)/2:1-

Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows

! !
X, AuX, +x;B,x, >4

‘min

(Ay)Xx, +4

‘min

(By)x,x, > 4 (X ,x, +X,x,) > Axx  (B.12)
forany x = (x,,x,,..., X,q,,) . Hence, we have shown that  x'T",I",x > Ax'x, or, equivalently,

L,FNX > 1 for x#0. (B.13)
XX

Next, note that in light of Rao (1973, p. 62),

o (TLT) = |nfi>&>0 (B.14)
XX

Using Mittelhammer (1996, p. 254) we have

xT" FNX

(Cy®,I,) =inf _ﬂm,n(”‘l)lnf

mln

xT",0,I',x
X'X
Anin (O3 ) i (T T y) 2 4, > 0, (B.15)

with 4, = 4.4, since = 4,

(®,)> 1. >0 by assumption (see Theorem 2).

This ensures that the true parameter vector 0, = (o, ... ps.v,0-,07)" is identifiable unique.
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Next note that in light of the assumptions in Theorem 2, @, is O(1) by the equivalence of
matrix norms. Analogous to the prove of Theorem 1, observe that R, (8) =0, i.e., R, (8) =0

at the true parameter vector 0, = (o, ..., ps v, 07 01) . It follows that

EN(Q)_EN(GN)=(§_bN)'FN’®NFN(§_bN) : (816)
Moreover, let F, = (7,,-I',)and @, = (y,,—T,), then,

Ry(8) = (Lb)F,0,F,(1b) and (B.17a)
Ry(0) = (1,6)®\0,® (1Lb)". (B.17b)

The remainder of the proof is now analogous to that of Theorem 1a.

Proof of Theorem 2. Asymptotic Normality of 0 N

To derive the asymptotic distribution of the vector q, , defined in (30) we invoke the central

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (2008,
Theorem A.1), which is an extension of the central limit theorem for a single linear quadratic
form by Kelejian and Prucha (2001, Theorem 1). The vector of quadratic forms in the present

context, to which the Theorem is applied is q, . The variance-covariance matrix of q, was
derived above and is denoted as W, . Accordingly, the variance-covariance matrix of

q, = N'?q, isgivenby ¥, = N¥,, and (¥},) "% = N"2p 2,

Note that in light of Assumptions 1, 2 and 7 (and Lemma B.1), the stacked innovations &, ,
the matrices A, v,...A, v, s=1..,5, A ,,and A, ,, and the vectors a, ., ..., a,  ,
s=1..S, a,,,and a, , satisfy the assumptions of central limit theorem by Kelejian and

Prucha (2008, Theorem A.1). In the application of Theorem A.1, note that the sample size is
given by NT + N = N(T +1) rather than N . As Kelejian and Prucha (2001, p. 227, fn. 13)

point out, Theorem A.1 *“also holds if the sample size is taken to be %, rather than » (with
k,Too as N —o0).” In the present case we have K, =(7+1)N, with 7>1 and fixed,
which ensures that K, Too as N — . Consequently, Theorem A.1 still applies to each

guadratic form in q, . Moreover, as can be observed from the proof of Theorem A.1 in

Kelejian and Prucha (2008), the extension of the Theorem from a scalar to a vector of vector
of quadratic forms holds up under by this alternative definition of the sample size.

It follows that

(W) =N, = W, (0, 1,,) (B.18)
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since N*A

Al

(¥)) =N "2 (VW) = 4

i i nin (P ) >0 by assumption as required in Theorem
Since the row and column sums of the matrices A,  ....A, v, s=1..,.5, A ,,and A, ,,
and the vectors a,  , ..., a,, ,, s=1..,5, a, ,,and a, ,, and the variances o, and o ,
are bounded uniformly in absolute value, it follows in light of (38) that the elements of ¥,

and also those of ¥ are bounded uniformly in absolute value.

~

We next turn to the derivation of the limiting distribution of the GM estimator 0, . In

Theorem 1 we showed that the GM estimator EN defined by (18) is consistent. It follows that

— apart from a set of the sample space whose probability tends to zero — the estimator satisfies
the following first order condition:”

o = s = 0q,(0,,A,) ~  ~
gqN(eN’AN) 0,q,(0,,A,)= %GNqN (0,,A,)=0, (B.19)

which is a (S +2)x1 vector, the rows corresponding the partial derivatives of the criterion
function with respectto p, , s=1..,5, o7, and oy .
Substituting the mean value theorem expression

an(ﬁN’A

qN(aN’AN) = qN(eN’AN) + N) (61\/ _GN) ) (B-ZO)

where 0, is some between value, into the first-order condition yields

0y (05 Ay) G 0y OnAx) oy _g y o _C0xOuA) G iz 9 A Y. (B.20)

o0 Yoo o0 o0
an (O'AN) T : :
Observe that ———"==T",8B,, and consider the two (S +2) x (S +2) matrices
o0’
= 0q,(0,,A,) ~ 0qy(0,,A,) o = o= e
RGeS GR B B, @2
E, =9,,0,I[%,, (B.23)

where %N and 93, correspond to 2B, as defined above with 5N and @, substituted for
0, . Notice that =, is positive definite, since I',, and @, are positive definite by assumption

and the [25 + S(S -1 /2 +2]x (S +2) matrix 2B, has full column rank.

” The leading two and the negative sign are ignored without further consequences for the proof.
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In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that 1~“N -I', 50 and
that the elements of I', and 1~“N are O(1) and O,(1), respectively. By Assumption 5,
éN—G)N:op(l), 0,=0@1) and (:)N:Op(l). Since p, and p, (and thus also %N and
B, ) are consistent and bounded uniformly in probability, if follows that EN —Ey=0,(1),
EN =0,(), and E, =0(1). Moreover, E, is positive definite and thus invertible, and its

inverse Z isalso O(1) .

Denote éjv as the generalized inverse of EN. It then follows as a special case of Lemma F1 in
Pétscher and Prucha (1997) that EN is non-singular with probability approaching 1 as

N —w, that %, is O, (1), and that Z}, ~E =0, (1).

Pre-multiplying (B.21) with Ejv we obtain, after rearranging terms,

= == ~ =, 0q,(0,,A,)
Nl/Z(BN _HN) = (Is+2 TENEN Nl/z(eN _GN)_N:L/Z':‘N %GN(]N(GN’AN) -(B-24)

In light of the discussion above, the first term on the right-hand side is zero on w-sets of
probability approaching 1 (compare Potscher and Prucha, 1997, pp. 228). This yields

Y =, 0q,(0,,A,) ~
NY?(0, -0,)=-E} %@NM’Z% 0,,A,)+0,@). (B.25)

Next observe that

=, —an(gg'AN) ®, -E,%8,I'0, =0,0), (B.26)

H _ p— a 6 1A ' '
since E), —E =0, (1) and W—‘BNFN =0,(1).
As we showed in section 111, the elements of N''°q,(0,,A,) can be expressed as
N"2q,(0,,A,) =N"q, +0,1) =q, +0,(1). (B.27)

where q, is defined in (27), and that

— (), = =N = W P, (0, ) - (B.28)
It now follows from (B.25), (B.26), and (B.27) that

NY2(8, -0,) =E,3,0, ¥\ (-¥,%q,) +0,(1). (B.29)
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Since all nonstochastic terms on the right hand side from (B.29) are O(1) it follows that
NY2(8, -9, is O,(L). To derive the asymptotic distribution of N*?(6, -8,), we invoke

Corollary F4 in Potscher and Prucha (1997). In the present context, we have

v =¥y a5~ N0, Ly,,)
NY2(0, —0,) =A,L, + 0,(1) , with
A, =2,7,0,¥.°.

Furthermore, Nl’z(ﬁN -0,)=0,(1) and its variance-covariance matrix is
Qéw (®N) = (J’NG)NJN)_lJIN@N‘PNQNJN(J’NG)NJN)_I1
where Q; is positive definite.

As a final point it has to be shown that liminf
F4 in Potscher and Prucha (1997). Observe that

(A, 20°,) >0 as required in Corollary

N—o mln

(2,2A)) = 2n (BT,0, ¥, 0, E} (B.30)
(lPN)ﬂ' (9 G) )ﬂ“mm (_;vl:;vl)ﬂ“mm (r;er)ﬂmm (%;\/%N) > 0 '

m|n

m|n min

since the matrices involved are all positive definite.

Consistency Proof for Estimates of Third and Fourth Moments of the Error Components
Consistent estimates for the second moments of v, , and g, , are delivered by the GM

estimators defined in (17) and (18), respectively (See Theorems la and 1b). In the technical
appendix, it is shown that the estimators for the third and fourth moments of v, , and 4, ,,

defined in (39) and (40) are also consistent.

I11. Proof of Theorem 3 (Variance-Covariance Estimation)
Lemma B.2

Suppose Assumptions 1-4 hold. Furthermore, assume that sup,, ‘pmN‘ <1, and that the row
m=1

and column sums of M, ,, m=1,...,§ are bounded uniformly in absolute value by 1 and
some finite constant respectively. Let &7, &7, and p, ,, s=1...,S, be estimators, satisfying
Gl-or=0,(1), 6 -0t =0,1), p,y—p,y=0,1), s=1..,S. Letthe NTxNT or NxN

matrix F,, be of the form (compare Lemmata 1 and 2):
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s
(@ F,= [, ®(I, _zpm,NM:n,N)_l]HN ;
m=1

s
= (e, ®L)[I, ®(I, - me,NM:n,N)_l]HN '

m=1

(b) F:N = (U\/_ZQO,N +o, Q1 N)H Q v ® @ zpm,NMm,N)]HN’

= [O-l_z(e’r ®IN)]H =[oy (eT L), ®(I, me,NMm,N)mN’

where H,, is a N x P. matrix whose elements are bounded uniformly in absolute value by

some constant ¢ <co. The corresponding estimates F, ., F,,, F.,, and F, are defined

analogously, replacing 7,62, @, , and p, ,, m=1..,§, with 52,52, Q,,, and 5, ,,
m=1,...,8, respectively.

(i) Then, N7'F,F, —-N'F,F, =0 (1) and N'F,F, = O(L).

(i) Let a, be some NT x1 or Nx1 vector, whose elements are bounded uniformly in
absolute value. Then N™Fja, - N"'Fja, =0, (1) and N'F/ ja, = O(l).

The proof of Lemma B.2 is given in the technical appendix.

Proof of Theorem 3
As part of proving Theorem 3 it has to be shown that ‘i’N —~¥, =o0,(1). Observe that in light

of (15), each element of ‘i"N and the corresponding element of ¥, can be written as

EPA _ mPa L g Pa | g g
QEr,s,N - er,s,N + Qir,s,N + er s,N QE,, s,N ’
Kkk dhkk

Pd kP9 P P4 P
6r,s,N - er,s,N + er,s,N 6r s,N er s,N '

for p,g=1,...4,(a,b), r, s=1,..,5+1%, where

eij =2N"'c,  Tr(A’ bon)F2NT 10/, NIr(AY LAY ),

prN

~V ~

Pq _ ! u
QEI’,S,N O-v NN ap r,N q s,N + O-y NN ap,r,N aq,s,N

EPa™ _ 50 ®
er,s,N - VNN Z(apllNaqszzN-l_aprnN qSlN)+O-/INN Z(aprtNaqan+apruNaqs1N)
i=1

(6:(42/ 30-4 )N Zap r,ii Naq s,ii, N +(~(4) 35:,N)NilzE;l,r,ii,Na:s,li,N '
i=1

Fekkdk

P.9q,
ervN

and

® See equations (34) in the main text for the structure of the matrix ¥, and the proper

indexation of its elements.
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¢4 = 2N ol Tr(A” von)T2NT 10'4Tr(Ap AL ),

prN

p’q'** _ 2 ! 2 u u
Q':’r,s,N_O-vN aplN qu+O-N aprNaqu’

g _ () a7l v v (3) H u
er,s,N - O-v N Z(ap,r,i,Naq,s,ii,N + ap 7l Naq S0, N) + O- N Z(ap s Naq s,ii,N + ap,r,i[,Naq,s,i,N !

pq***‘*
ervN

4 4
( @ 30 )N zapruNaq s,ii, N +(O-( ) BU;I)N zapru Naq s,ii,N *

Invoking Lemma B.2, it is shown in the technical appendix that €77, — &7y =0,(1),

Fk Fokk Fkkk Fkkk

@,’,’gj’N @ij =0,Q), @N €2 =o,@1),and @”N €2 =o0,() forall elements

of ¥,, p.g=1..4,(a,b), r,s=1..,5+1. It follows that ‘I’N -¥v, =0p(1).

Notice further that @)N—GN =0,(1), ©,=0() and (:)N =0,(1) by Assumption 5. Let

~ o~ o~

=, =J.0J,=%,T,0,I' %, (a in Theorem 2) and E, =J,0J, =B, T,0,I,B,.”
In Theorem 2, we showed that 3 =0,0), J,=0@), and 3 -Jy=0,(1) and that
=0,(1), Ey =0,(1) and = —El=o0 ,(@) . It now follows that Q~ -Q; =o0,().

II1. Proof of Theorem 4 (Joint Distribution of p, and Other Model Parameters)
The subsequent proof will focus on the case F, , and F, , ; this also convers the case for F,

and F, . The first line in Theorem 4 holds in Iight of Assumption 7 (for N"?A ), bearing in

mind that T, , = F, , P, , and Theorem 2 (for N*?(8,,—8,)).

We next prove that & , =¥, 2(N "€ F,,qy) >N . ) by verifying that the

P +45+2
assumptions of the central limit theorem A.1 by Kelejian and Prucha (2008) are fulfilled. Note

that A

min(‘Po,N)Zc;o >0 by assumption. In Theorem 2, we verified that the stacked
innovations &, , the matrices A, ,,..A, ,, s=1..,§, A, ,,and A, ,, and the vectors
a, vy, - Ay, s=1..,5, a,,,and a, , satisfy the assumptions of central limit theorem

by Kelejian and Prucha (2008, Theorem A.1).

Next, consider the two blocks of F, =(F, ,,F, )", which are given by

“Thereisa slight discrepancy to the definition of EN in Theorem 2: Here %N is used rather

than 23,, which does not affect the proof, however, noting that both p, and p, are

consistent.
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s
F yv= [, ®(I, _zpm,NM:n,N)_l]HN , and
)
2 S 1
F,v= [0, " (€} ®I,)]1Q, \[I, &, - me,NM’m,N)_ H,.
m=1

S
Since the row and columns sums of [o,*(e; ®1,)], ,,, and [I, &I, -> p, M, )]
=1

are uniformly bounded in absolute value and since the elements of the matrix H, are
uniformly bounded in absolute value, it follows that the elements of F,, are also uniformly

bounded in absolute value. Hence, the linear form F.§, =F, ,v, +F, ,n, also fulfils the

assumptions of Theorem A.1. As a consequence, &, i’N(O’Immz) .

In the proofs of Theorems 2 and 3, we showed that ‘i’N—‘I’N =0,(1), ¥,=0(), and
‘f’N =0,(1) . By analogous arguments, this also holds for the submatrices ¥,, , and ¥, .

Hence, ¥, , - ¥, =o0,(1), ¥,,=0Q and ¥,, -"¥, , =o,(1), and thus ¥, = O, (1).

By assumption P, -P, =0 (1), P,=0(l), and P, =0,(1) as well as ©, -0, =0, (1),
0, =0() and @N =0,(1). In the proof of Theorem 2 we showed that 3N -Jy=0,0),
J,=0(),and J, =0,(1), and that (J1,©,J,)" —(3,0,J ) =0,(1), (310,J,)" =0Q),
and (J,0,J,)" =0,(1). It now follows that @, ~€, , =0, (1) and &, , =O(1) and thus
Q,,=0).

APPENDIX C.
Proof of Lemma 1.

In light of equations (4a) and (4b), Assumptions 3 and 8, as well as sup,[B,|<b <o, it

follows that all columns of Z, =(X,,Y,) are of the form &, ==, +I,¢,, where the
elements of the vector m, and the row and column sums of the matrix II, are bounded

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix D, =-Z,

are bounded uniformly by some finite constant and that Assumption 6 holds.

Next, note that
(NT)"2(3, —8,) = P, (NT) 2. \v, + P, (NT) F, .,

where IN’N is defined in the Lemma, and
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s
F y= [, ®d, - zpm,NM:n,N)_l]HN and

m=1

s
F,v= [Ul_z(e'r ®I1,)Q, [, &1, - me,NM:n,N)_l]HN :

m=1

In light of Assumption 10, f’N -P, =0, and P, =0(1), with P, as defined in the Lemma.
By Assumptions 2, 3 and 9, the elements of F, , and F, , are bounded uniformly in absolute
value. By Assumption 2, E(v,)=0, E(un,)=0, and the diagonal variance-covariance
matrices of v, and p, have uniformly bounded elements. Thus, E[(NT)‘l’ZFv"NvN]zo and
the elements of the variance-covariance matrix of N"'*F’ v, i.e., (NT)"c’F.,F,,, are

v

bounded uniformly in absolute value (see Remark A.1 in Appendix A). Moreover,
E[(NT)Y*F; yn,1=0, and the elements of the variance-covariance matrix of N*F, ., ,

ie, (NT)'o.F,,F,,, are bounded uniformly in absolute value. It follows from

Mo N
Chebychev’s inequality that (NT)™Y?F.,v,=0,1), (NT)"’F,,ny=0,@1), and
consequently (NT)2(3, —8,) = P, (NT) Y2F \v, +P, (NT)Y?F; yny +0,(2) and

P, (NT)™"*F, yv, + P, (NT)*F, \n, =0,(1). This completes the proof, recalling that

Ty =(T 5, T, ») = (PyF . PyF, ).

Proof of Lemma 2.

The structure of the proof of Lemma 2 is similar to that of Lemma 1, applied to the
transformed model and accounting for the use of generated instruments. It is given in full
detail in the technical appendix.
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Table 1. Parameter Constellations in Monte Carlo Experiments

Parameter
constellation A & % Py Ps Ps
(1) 0.5 0.3 0.1 04 0.25 0.1
(2) 0.5 0 0 0.4 0 0
(3) 0 0 0 0 0 0

Note: g, = 4, =1 under all parameter constellations.
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Table 2. Monte Carlo Results

N =100 N =500
Parameter
constellation” (1) ) A3) (1) (2) ®)
A 0.5 0.4 0 0.5 0.4 0
Bias 0.0004 0.0014 0.0013 0.0005 0.0000 0.0003
RMSE 0.0203 0.0230 0.0244 0.0088 0.0100 0.0099
Rej. Rate 0.0540 0.0590 0.0490 0.0590 0.0710 0.0380
Ao 0.3 0 0 0.3 0 0
Bias 0.0008 0.0001 0.0001 -0.0002 0.0000 -0.0001
RMSE 0.0213 0.0226 0.0251 0.0094 0.0097 0.0104
Rej. Rate 0.0490 0.0520 0.0620 0.0620 0.0410 0.0480
A3 0.1 0 0 0.1 0 0
Bias -0.0003 -0.0005 0.0010 0.0001 -0.0002 0.0000
RMSE 0.0213 0.0232 0.0250 0.0093 0.0102 0.0101
Rej. Rate 0.0520 0.0490 0.0690 0.0630 0.0530 0.0490
i 1 1 1 1 1 1
Bias 0.0001 -0.0004 -0.0003 0.0001 0.0000 0.0000
RMSE 0.0134 0.0132 0.0138 0.0061 0.0060 0.0061
Rej. Rate 0.0560 0.0500 0.0560 0.0550 0.0600 0.0480
y2) 1 1 1 1 1 1
Bias -0.0007 -0.0002 -0.0001 0.0001 -0.0001 0.0002
RMSE 0.0130 0.0142 0.0133 0.0060 0.0058 0.0059
Rej. Rate 0.0460 0.0740 0.0550 0.0500 0.0520 0.0510
o) 0.4 0.3 0 0.4 0.3 0
Bias -0.0050 -0.0064 -0.0073 0.0013 0.0025 0.0027
RMSE 0.0946 0.1037 0.1261 0.0385 0.0426 0.0496
Rej. Rate 0.1070 0.1200 0.1330 0.0890 0.0910 0.0940
o)) 0.25 0 0 0.25 0 0
Bias -0.0091 -0.0036 -0.0047 -0.0007 0.0002 0.0008
RMSE 0.1077 0.1107 0.1214 0.0444 0.0433 0.0477
Rej. Rate 0.1180 0.1090 0.1140 0.0870 0.0810 0.0790
s 0.1 0 0 0.1 0 0
Bias -0.0079 -0.0020 -0.0028 -0.0027 0.0002 -0.0003
RMSE 0.1005 0.1044 0.1169 0.0404 0.0423 0.0475
Rej. Rate 0.0900 0.0980 0.0920 0.0790 0.0780 0.0860
Joint Tests ?
Rej. Rate - 0.1280 0.1510 - 0.0790 0.0880

Note: ¥ Each column corresponds to one parameter constellation (see Table 1). ? Rejections rates for the
following hypotheses: (2): H"": 4, =A,=p,=p,=0;Q): H* : A=A, =A=p,=p,=p,=0.



TECHNICAL APPENDIX

The proofs for the panel data error component SARAR(R,S) framework are given in full
length to the benefit of the reader. They build on analogous proofs by Kelejian and Prucha
(2008) for a cross-sectional SARAR(1,1) and Badinger and Egger (2008b) for a cross-section
SARAR(R,S) model, as well as analogous proofs for a panel SARAR(0,1) model with
nonstochastic regressors by Kapoor, Kelejian, and Prucha (2007).

APPENDIX A

Notation

We adopt the standard convention to refer to matrices and vectors with acronyms in boldface.
Let A, denote some matrix. Its elements are referred to as «, ,; a, , and a, , denote the i-
th row and the i-th column of A, respectively. If A, is a square matrix, A, denotes its
inverse; if A, issingular, A} denotes its generalized inverse. If A, is a square, symmetric
and positive definite matrix, A%/*denotes the unique positive definite square root of A, and
A'? denotes (A)"%. The (submultiplicative) matrix norm || is defined as

|A || =[Tr(A'yA)T'2. Finally, unless stated otherwise, for expressions involving sums over

elements of vectors or matrices that are stacked over all time periods, we adopt the convention
to use single indexation 7, running from i =1,..., NT , to denote elements of the stacked vectors

. 1
or matrices.

Remark A.1

i) Definition of row and column sum boundedness (compare Kapoor, Kelejian, and Prucha,

2007, p. 99): Let B,,N >1, be some sequence of N7 x NT matrices with 7" some fixed

positive integer. We will then say that the row and column sums of the (sequence of) matrices

B, are bounded uniformly in absolute value, if there exists a constant ¢ < oo, which does not

depend on N, such that

NT NT

max Y'lb, \|<c and max >'|p, \|<c forall N> 1.
j=1 i=1

1<i<NT 4= 1<j<NT

The following results will be repeatedly used in the subsequent proofs.

" Take the vector u, =[u,(2),..,u’y(T)], for example. Using indexation i=1,...,NT, the

i=1.. N referto t=1, elements u.,,i=N+1....2N referto t=2, etc., and

elements u, N

i,N?
elements u, ,,i=(T-1)N +1,..,NT refer to +=T7. The major advantage of this notation is

that it avoids the use of double indexation for the cross-section and time dimension.
Moreover, it allows us the invoke several results referring to the case of a single cross-section,
which still apply to the case of T' stacked cross-sections.



i) Let R, be a (sequence of) Nx N matrices whose row and column sums are bounded

uniformly in absolute value, and let S be some 7'x T matrix (with 7 >1 fixed). Then the row
and column sums of the matrix S® R, are bounded uniformly in absolute value (compare

Kapoor, Kelejian, and Prucha, 2007, p. 118).

iii) If A, and B, are (sequences of) N7 x NT matrices (with 7 >1 fixed), whose row and

column sums are bounded uniformly in absolute value, then so are the row and column sums
of A,B, and A, +B,. If Z, is a (sequence of) N7 x P matrices whose elements are

bounded uniformly in absolute value, then so are the elements of A,Z, and
(NT)*Z,A ,Z, . Of course, this also covers the case (NT)"Z\Z, for A, =1,, (compare
Kapoor, Kelejian, and Prucha, 2007, p. 119).

iv) Suppose that the row and columns sums of the NT xNT matrices A, =(q;,) are

NT
bounded uniformly in absolute value by some finite constant c, ; then Z‘%,N‘q <c? for g>1
i=1

(see Kelejian and Prucha, 2008, Remark C.1).

v) Let &, and m, be NT x1 random vectors (with 7 >1 fixed), where, for each N, the
elements are independently distributed with zero mean and finite variances. Then the elements
of (NT)™?Z\&, are O,(1) and (NT)'&,A,m, is O,(1) (compare Kelejian and Prucha,
2004, Remark A.1).”

vi) Let £, bea NT x1 random vector (with 7' >1 fixed), where, for each N, the elements are
distributed with zero mean and finite fourth moments. Let &, be some nonstochastic NT x1
vector, whose elements are bounded uniformly in absolute value and let IT, be a N7 x NT
nonstochastic matrix whose row and column sums are bounded uniformly in absolute value.
Define the column vector d, ==, +II1,§, . It follows that the elements of d, have finite
fourth moments. (Compare Kelejian and Prucha, 2008, Lemma C.2, for the case 7'=1 and
independent elements of ¢, .)°

’ Kelejian and Prucha (2004) consider the case 7 =1 and where the elements of &, and n,

are identically distributed. Obviously, the results also holds for (fixed) 77>1 and under
heteroskedasticity, as long as the variances of the elements of &, and m, are bounded

uniformly in absolute value.
® The extension to (fixed) T =1 is obvious. Independence of the elements of £, is not

required for the result to hold. The fourth moments of the elements of d, ==, +II1,,§, are

NT NT
givenby E(z, + D 7, & n) <2E[x)y + Q7w n¢ )]
= =)



Remark A2.
The matrices Q, , and Q, , have the following properties (see Kapoor, Kelejian, and Prucha,
2007, p. 101):

r(Qoy) =N(T-1), r(Quy) =N, Qp (e, ®Iy) =0, Q (e, ®Iy) = (e, ®I,),
Qo ey = QonVyr Quuy = (e, @1 )y +Qy vy, (I ®D)Q, y =Q, (I ®Dy),
(I; ®D,)Q, y =Q, y(I; ®Dy), #[(1; ®D)Q, 1= (T =Dtr(Dy),

o{(I; ®D)Q, y]=1r(Dy),

where D, is an arbitrary N x N matrix. Obviously, the row and column sums of Q, , and

Q, , are bounded uniformly in absolute value.

APPENDIX B
The following lemma will be repeatedly used in the subsequent proofs.

Lemma B.1'
Let A, be some nonstochastic N7 x NT matrix (with T fixed), whose row and column sums

are bounded uniformly in absolute value. Let u,, be defined by (2c) and u,, be a predictor for

u,, . Suppose that Assumptions 1 to 4 hold. Then

(@) N EuyAu,|=0Q), Var(N'uyAyu,) =o(l),
and N7'(uyA,u,)-NTEu,Au,)=o0,(1).

(b) N’lE‘dijNANuN‘:O(l), Jj=1...,P,where d , isthej-th column of the NT x P matrix

D, ,and N"D\Au, -N"EDyAu,)=0,Q1).

(c) If furthermore Assumption 6 holds, then

NV A U, = NP Ay +ayNY2A +o, (1) with @, = NTE[D) (A, +A))u,].

NT NT NT NT

<[zl + 22D Yl sz B sGinGin G anll S K <00 by Holders
1

j=1 k=1 I=1 m=
inequality as long as the fourth moments of the elements of {,, are bounded uniformly.

* Compare Lemma C.1 in Kelejian and Prucha (2008) for the case of a cross-sectional
SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-
sectional SARAR(R,S) model.



In light of (b), we have a, = O(l) and N7'D', (A, + AU, —a,= 0,(1).

Proof of part (a)
Let

9, = N",A,u, and 9, = N, A, (B.1)

then given (4a), we have 9, = N'¢/ B, &, , with the symmetric N7 x NT matrix B, defined

as

B, = @ 2)[IT ® (IN - zpm,NM,m,N)_l](AN + A’N)[IT ® (IN - me,NMm,N)_l] (B.2)

m=1

By Assumptions 1-3 and Remark A.1l in Appendix A, the row and column sums of the
matrices B, and €_, are bounded uniformly in absolute value. It follows that the row and

column sums of the matrices B, Q_,B,€Q_, are bounded uniformly in absolute value.

In the following let K <o be a common bound for the row and column sums of the absolute
value of the elements of B, ,Q, ,, and B,Q_,B,Q . and of the absolute value of their

respective elements. Then

NT NT

N_lz zbij,Ngi,Ngj,N

=1 j=1

lNT NT
<N ZZ‘I)W‘E‘EWHSW‘

=1 j=1

E|9,|=E (B.3)

NT NT

< N‘lzZ\bM

=1 j=1

Gg,io-g,_/

<TK?3,

where we used Holder’s inequality in the last step. This proves that E|8N| is O(1).
Now consider Var($,), invoking Lemma A.1 in KP (2008):

Var(9,) = Cov(N'¢\B,g,,N ‘¢, B,&,) (B.4a)

NT
= 2N72TF(BNQ&*,NBNQ£,N) + Nﬁzzbi?,*[ﬂ;(;gv -3],

i=1

= 2N72Tr(BNQ£,NBNQs,N) + NﬁZT’”{diagizl NT (bnz‘*,N)diagizl NT [E(nfzv) -3} (B.4b)

..........



where b,. , is the i-th diagonal element of B}, = (b,.,)=S\B)S, and ", is the fourth
moment of the i-th element of the N7 x1 vector n, =Sye,, i.e., 4", =E(ny). In light of
Assumption 1 and the properties and Q,, and Q,,, the row and column sums (and the
elements) of S, =0,Q,, +0,Q,, are bounded uniformly in absolute value by some finite

constant, say K. W.0.1.0.g. we can choose the bound X used above such that K~ < K .

Moreover, the row and column sums (and the elements) of S, =0,'Q, , +0;'Q,, are also

bounded uniformly in absolute value by some constant X~ . W.0.1.0.g. we can choose K such
that K~ <K .

In light of Remark A.1 and Assumption 1 it follows that the elements of n, =S™¢, have

finite fourth moments. Denote their bound by X~ . W.0.l.0.g. we assume that K~ <K .

Hence, we have

.....

=2N'TK + N'TK® = N"'(2TK + TK®) = o(1) .

The claim in part (a) of Lemma B.1 that N~'(u\ A u,)-N"E(u,A,u,)=0,(1) now
follows from Chebychev’s inequality (see, for example, White, 2001, p. 35).

We now prove the second part of (a), i.e., N7 (u\A,u,)-N"E(uA,u,)=0,(). Since
9y —E(9,)=0,(1), it suffices to show that 9, — &, =o,(l). By Assumption 4, we have

u,—u,=DA,, where D, =(d],,..d}, ). Substituting u,=u,+D,A, into the

expression for §N in (B.1), we obtain

9, -9, =Ny +A,D)A, (u, +D,A,)— N u\ A, u, (B.5)
=N"'(u,Au, +A" D' Au, +u\A DA, +A D A DA, —u,A u,)
=N*'(A, D A, u, +u,A,D A, +A\ D\ A,D,A,)

=N (A,D\ A, u, +A, D\ A\u, +A,D,A,D,A,)

= N7A\D) (A, +A})u, +A DA, DA, ]

=P+ ¥y,



where

By = NTALD, (A, + A )u = N HALD, (A, + AT, (1, - ipm,NM,,,,N)llaN}, (8.5)
=N*'(A,D,C,g,), with
C, = (A, + AL, O, - i_lpm,NMm,NV] (€ €)'
wy=N"'AD\ADA,. (B.7)

By Assumption 3 and Remark A.1, the row and column sums of C,, are bounded uniformly

in absolute value. We next prove that ¢, =o,(1) and v, =0,(1) .

Proof that ¢, =0,(1):

|¢N|: N

A, D C e, | (B.8)

=N*

NT

’ ’
ZANdi.,Nci.,NaN
i-1

NT
<N*?

i=1

Ay

'

d; | fe..ve|
NT NT

_ 1| A7 i

=N7aNX2 Hdi.,NH 2 CinE
i=1 j=1
NT NT

-1 ' i

< NN [ 2ozl
i=1 j=1
NT NT

_ 1A

= VA | 2wl ]
i=1 Jj=1

NT NT

pIT)I

J=1 i=1

!
di.,N

=N*

Ay

i
di.,N

HCUVN‘

Up/r g

‘Pj (; ‘CU'N“YJ

_ “1a7-1/2 1/ p 1/2 [ —1NT —1NT

= NN NN (NYZAL )| N Z;“SW‘ N le
<

i
di.,N

1 NT NT
<N 3 3
j=1 i=1

d

V¢ Nr lq
q
r] [Z \ci,,N\J
1 p-1/2(asii2 1 1 » Yp /o nr . Uq
=N (N ”AN”)EN Z;‘EJYN‘J[N le Hd:NH j [le ‘cij,N‘ j
Jj= i= i=

NT o

Note that (Z ‘CU'NU < K <o by Assumption. In the following we denote by K the uniform
i=1

bound for the row and column sums of the absolute value of the elements of A, and C, .
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From Remark C.1 in KP (2008) (see Remark A.1 in Appendix A) it follows that

1/q

(f ‘CU,NVJ < K? and thus (f ‘CU,NVJ <K . Factoring K out of the sum yields
i=1 i=1

1/p
\pj

This holds for p=2+¢6 for some 6>0 as in Assumption 4 and 1/p+1/g=1. By

o | v S [ rom
N| = N JN iN
j=L i=1

Assumption 4, (N“2JA,[)=0,().  Assumption 4 also  implies that

(ap>

1/p
‘pj =0,(1) for p=2+35 and some 5>0.

'
di.,N

NT
Moreover, Ele, ,|< K <o, which implies that [N*Z\gjw\j =0,(1). Since N7V'2 50 as

J=1

N — oo it follows that |¢,|= o0, (1).

Next consider

NT NT

Z z A;vd;.,N ag‘/,Ndj.,NAN

=1 j=1

wy|= NA DA DA, =N (B.9)

2NT NT
-1 '
<NV [ ]
i=1 j=1
NT ) 1/p NT ] 1/q
| 2l | | 2l
j=1 j=1

o ) _lNT ' _1NT , l/p
< NYPR|A,| (N zl\\di_,N\\](N Zlde.,NH]
i= J=

. , N
<N

!
di.,N

NT 2lr
e e (v S | o0
j=1

From the last inequality we can also see that N'?y, = 0,(1) . Summing up, we have proved

that &, -9, =4, +v, =0,Q).

Proof of part (b)




Denote by &, the s-th element of N D, A u, . By Assumptions 3 and 4 and Remark A.1

in Appendix A there exists a constant K <o such that E(qu) <K and E‘dlj,N‘p <K with
p=2+¢0 for some 6>0. W.o.l.o.g. we assume that the row and column sums of the

matrices A, are bounded uniformly by K <o . Notice first that

(e ) (62, )
<ot (Bl )

< KY2KYP = kY27 with p as before.

Elu, i Jd o

It follows that

. NT NT
B3 |= N3 Ny | Bl | 0 (B.10)
i=1 j=1
T 1241 p A7-1 She T U241 p AT AT 31241/
<K'"*'N ;;\aw\ <K"MPNINTK =TK**™? < oo,

which shows that indeed E‘N d L Au N‘ =0(1) . Of course, the argument also shows that
a, =N"E[D\ (A, +A))u,]=0Q).

It is readily verified that Var(9') = o(1), such that we have 9, — E(J) = o, (1) . Next observe
that

N'D\ A,u, =N"D,Au, +4,, (B.11)
where ¢, =N"'D,A,D,A,. By arguments analogous to the proof that
¢y = N [AD (A, +A))uy]=0,(), it follows that ¢, =o,(1). Hence I -9 = 0,(),

and thus 9" — E(9') = 0,(1), which also shows that N™'D, (A, + A}y )u,—a,=o0,(1).

Proof of part (c)
In light of the proof of part (a)

N A0, = N 2ul A u, +[Nul (A, +A))DINY?A, + NY2y (B.12)



where NY%y, =0 (1) as shown above, and in light of (b) and since N?A, =0, (1) by

Assumption 4, we have

N AU, = NP A uy + N2 A + o, (1) (B.13)

Proof of Theorem 1a. Consistency of Initial GM Estimator é?\,
The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic
counterpart are given by

R} (@,0°) = (7% - T36%)(¥5 ~ b5, and (B.14a)
R(0°) = (v} - T%6°)(v5 - T3b"). (B.14b)

Since v} -T%6% =0, we have RJ(8%)=0, i.e.,, R;(8°)=0 at the true parameter vector

0% = (o, p5,07) . Hence,
R(,(87) - R, (0°) = (8" -b3)T3 I3, (6} - 67). (B.15)
In light of Rao (1973, p. 62) and Assumption 5, it follows that:

RY(0°) - RY(0°)> A, (% T9)(6° —6%)'(6° ~6%) and
Ry(0°) - Ry(0°) > A.(6" —1%)'(6° - b3).

By the properties of the norm ||A| =[#(AA)]"*, we have HQO —GOHZ < (6°-06%)'(6° -6%) such

D000 D00 0 0 2
that R, (0)— R, (0°) > /LHQ -0 “ . Hence, for every £ >0

lim inf  [R°(8°)-R°(6°)]> inf LHQO—OOHZ=L52>O, (B.16)

N%w{e":ch’feOHzS} {9":“90790“25}
which proves that the true parameter 0° is identifiable unique.

Next, let FO = (3%,-T%) and ®°, =(y%,-I'%). The objective function and its nonstochastic
counterpart can then be written as



R (8°) = (L6")FY F (16" and

R3(0°) = (1,6”) @} @S, (Lb") .

Hence for p e[-a”,a”] *and gf €[0,5] it holds that

LACREHD! =H(1,@°’)(F§’Ffé - @

Moreover, since the norm | -|| is submultiplicative, i.e., |AB| <|A]|B|, we have

HR?V ©°)-Ry (QO)H <[FYF° - % @°,

25 +S(S -1) (

<|FYF? - @° @, )

[1+S(a”)? + a”)* +b7].

It is readily observed from (16), that the elements of the matrices y5 and I'%, are all of the
form w),A,u,, where A, are nonstochastic N7 x NT matrices (with 7 fixed), whose row
and column sums are bounded uniformly in absolute value. In light of Lemma B.1, the

elements of @9, are O(1) and it follows that [F} —®% |20 and |FYF} —®} @} 0 as

N — 0. As a consequence, we have (for finite S)

sup | R3(0°)~RY(@°)| <[ K}~ )] SO @y 45150 a5 N 0

pe[-a” a” .02 <[0,5]

[1+S(a”)* +

(B.17)
Together with identifiable uniqueness, the consistency of 61%=(/31’N,...,5S1N,531N) now

follows directly from Lemma 3.1 in P6tscher and Prucha (1997).

Having proved that the estimators p, ..., pg v, 0+, are consistent for p, ..., ps v, -, We now

show that o/ can be estimated consistently from the last line (4S +2) of equation system
(12), using

2 - - - - -
O1n =Vassan ~ Vase2unPiy ~ " Vasc2,s,vPs,n ~ Vas+2,s+u,8PLN

- ~ - - ~ - - -
—Vas+2,28,NPs,N T Vas+2,28NPLNP2N T T Vas+2,25+5(5-1)12,NPs-1,NPs.N - (B.18)

* This should be read as P, e[-a”,a”] forall s=1,...,S.
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Since v, —T,b% =0, we have

~ 2~ - - - -
0, —0; = (7/4s+2,1v - 74S+2,N) - (745+2,1,N - 7/4S+2,1,N)p1,1v e (74s+2,S,N - 74S+2,S,N)pS,N
Gusvasan ~Fassrsan) B o Gassaasn ~ Fasraas )L

Vasso,san ~ Vase2,5+4,8) Py — T \Vass2,25,8 ~ Vas+2,25,8)Ps,n
- (74S+2,2S+1,N - 74s+2,2s+1,1v)p1,1vp2,1v T (}/4S+2,2S+S(S—l)/2,N - )/4S+2,2S+S(S—l)/Z,N)pS—l,NpS,N

N N (B.19)
—Vass21,N (pl,N - pl,N) —e 745+2,S,N(P5,N - ps,zv)

—Vas+2,541N (,512,1\/ - plz,N)"' —Vas+2,28 N (,5521\/ - pg,zv)

~ - -
~ V45422841 N (pl,sz,N - pl,sz,N)--- = V48+2,28+5(S-1)/2,N (ps—l,Nps,N - pS—l,NpS,N)'

Since HFfj—(I)?VH”—w as N — o and the elements of ®, are O(1) it follows from the

consistency of p, ..., 05 v that 7, —o7 20 as N — oo .

Proof of Theorem 1b. Consistency of the Weighted GM Estimator
The objective function of the weighted GM estimator and its nonstochastic counterpart are
given by

R,(0)= (¥, -Tb)®, (¥, -T,b) and (B.20a)
EN ©)=(yy-Tyb)O,(y,-T,b) (B.20D)

First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that
the smallest eigenvalue of I',®,I',, is bounded away from zero, i.e.,

Ain (T0OI) = 4, for some 4, > 0. (B.21)

Let A=(q,)=05T% and B=(b,)= I T . Note that T and T% are of dimension
(28 +1) x[2S + S(S -1)/2+1] (i.e., they have half the rows and one column less than than
I, ). A and B are of order [25 +S(S -1)/2+1]x[2S + S(S —1)/2+1] (i.e., they have one row
and column less than I’y T, ).

Next define T',, = (I'%, ,I'%,)’", which differs from T, only by the ordering of the rows. T,

corresponds to I'S, with a zero column appended as last column, i.e., fﬁ, =(I'%,,0), such that

11



a1 A 25+5(5-1)12+41 0

-, -0 '30 0
e =Ty 01 (B.22a)

0 0 Aos1s(s-1)/2+11 Ar545(S-1)12+1,25+S(S-1)/ 2+1 0

0 0 0 0

(F9'TS is of the same dimension as I, I[,, ie, [2S+S(S-1)/2+2]x
[25+S(S-1)/2+2].)

I, is a modified version of I, with a zero column included as second last column, such
that

b1,1 0 b1,25+5(s—1)/2+1
e . 0 .
LT = . 0 0 . (B.22b)
b25+S(s—1)/2+1,1 0 bZS+S(S—1)/2+1,ZS+S(S—1)/2+l

(I, T%is of the same dimension as T I,, ie, [25+S(S-1)/2+2]x
[2S+5(S-1)/2+2].)

Since T', = ('S ,T% )’ differs from T, only by the ordering of the rows, it follows that

=0
' - ' -0’ FN F0/F70 Pl /Pl
r,r, —FNFNz[FN | R }{il}:FNFNJrFNFN, e, (B.23)
N
aiy A125+5(5-1)/2+1 0
, 0
FN FN =
Arsis(s-1)/2+11 A5 5(S-1)/2+1,25+S(S-1)/2+1 0
0 0 0 0
bl,l 0 bl,ZS+S(S—1)/2+1
. 0 .
+
0 00 0
b2S+S(S—l)/2+l,l 0 bZS+S(S—l)/2+1,2S+S(S—l)/2+l

We can thus write

XT, Tyx=xTTx+xT, T, x=x,A,x,+x,B,x,. (B.24)
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The vector x is of dimension [2S+S(S—-1)/2+2]x1 (corresponding to the number of
columns of I',), wheras x, and x, are of dimension [2S + S(S—-1)/2+1], i.e. both have
one row less: x, excludes the last element of x, i.e., X,¢, s5.1/2.2, Xz €Xcludes the second-

last element of x, i.e., Xyq, g5 1)/2.1-

Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows

X, A X, +X,B,x, >4 (B )X, x, >4 (xX',x, +x,x,)>1xx (B.25)

‘min (AN)X'AXA + ﬂ“

min
forany x = (x;,x,,..., X,5.,) -
Hence, we have shown that xT",I",x > 2 x'x, or, equivalently,

2 mld
xI',I',x

xX'x

>1 forx=0. (B.26)

Next, note that in light of Rao (1973, p. 62),

A mld
xT',I'\x
!

4. (D, =inf > 1. >0. (B.27)

Using Mittelhammer (1996, p. 254) we have

A mld
xI',I',x

ﬂmin (r;VG)NrN) =inf -
x XX

xT,0,I',x iy
— NN N >4 (E)Inf
X(X mm( N ) ¥

= )’min (G)N)ﬂ’min

(I'\,T,) >4, >0, (B.28)

with 4, = 4.4 since = 4,

(©,) > A. >0 by assumption (see Theorem 2).
This ensures that the true parameter vector 0, = (o, y.... Py, 0-,07)" is identifiable unique.

Next note that in light of the assumptions in Theorem 2, @, is O(1) by the equivalence of
matrix norms.

Analogous to the prove of Theorem 1, observe that R, (0)=0, i.e., R,(0)=0 at the true

parameter vector 0, = (p, ..., P50, 01) . It follows that
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EN (Q) - EN (ON) = (b - bN),FN’G)NFN(b - bN) . (B-29)
Moreover, let F, = (?N,—l:N)and @, =(y,,-T,), then,

R,(0) = (Lb)F,0,F, (L) and (B.30a)
R,(8)=(1b)®\0,®, (1b)" (B.30b)

The remainder of the proof is now analogous to that of Theorem 1a.

Proof of Theorem 2. Asymptotic Normality of 0 N

To derive the asymptotic distribution of the vector q, , defined in (30) we invoke the central

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (2008,
Theorem A.1), which is an extension of the central limit theorem for a single linear quadratic
form by Kelejian and Prucha (2001, Theorem 1). The vector of quadratic forms in the present

context, to which the Theorem is applied is q . The variance-covariance matrix of q, was
derived above and is denoted as W, . Accordingly, the variance-covariance matrix of

q, = N*?q, isgivenby ¥, = N¥, and (¥})"? = N V2¥ M2,

Note that in light of Assumptions 1, 2 and 7 (and Lemma B.1), the stacked innovations &, ,
the matrices A, v,...A, v, s=1...8, A ,,and A, , and the vectors a, ., ..., a, ,
s=1..S, a,,,and a, , satisfy the assumptions of central limit theorem by Kelejian and

Prucha (2008, Theorem A.1). In the application of Theorem A.1, note that the sample size is
given by NT + N = N(T +1) rather than N . As Kelejian and Prucha (2001, p. 227, fn. 13)

point out, Theorem A.1 *“also holds if the sample size is taken to be %, rather than » (with
k,Too as N —o0).” In the present case we have K, =(T+1)N, with 7>1 and fixed,
which ensures that K, Too as N — oo. Consequently, Theorem A.1 still applies to each

quadratic form in q, . Moreover, as can be observed from the proof of Theorem A.1 in

Kelejian and Prucha (2008), the extension of the Theorem from a scalar to a vector of vector
of quadratic forms holds up under by this alternative definition of the sample size.

It follows that
—(¥,) ay =-N"""W g, =¥ %q, 5(0,1,4,,) (B.31)

14



since N*A

Al

(¥)) =N "2 (VW) = 4

‘min

- i (¥,)>0 by assumption as required in Theorem

Since the row and column sums of the matrices A, ,....A, v, s=1..,.5, A ,,and A, ,,
and the vectors a,  , ..., a,, ,, s=1..,5, a, ,,and a, ,, and the variances o, and o ,
are bounded uniformly in absolute value, it follows in light of (38) that the elements of ¥,

and also those of ¥/* are bounded uniformly in absolute value.

We next turn to the derivation of the limiting distribution of the GM estimator EN. In

Theorem 1 we showed that the GM estimator ﬁN defined by (18) is consistent. It follows that

— apart from a set of the sample space whose probability tends to zero — the estimator satisfies
the following first order condition:’

0q,(0,,A,) (:’)

0,0, (0,.4,) =0, (8.32)

0 ~ = ~
EqN(eN’AN) 0,q,(0,,A,)=

which is a (S +2)x1 vector, the rows corresponding the partial derivatives of the criterion

function with respectto p, , s=1..,5, 7, and o .
Substituting the mean value theorem expression

oq y (GN’A

qN(aN’AN) = qN(eN’AN) + 20’ N) (azv _BN) ) (B-33)

where 0, is some between value, into the first-order condition yields

an(gg;AN) (:)N an(gg,AN) N1/2(6N -0,)= _W(:)NNUZ(JN(GNAN) . (B.34)

Observe that %ay(0.4,) = fN%N and consider the two (S +2) x (S +2) matrices
o0’

o oqy (gg,AN) 6, 8qN(§g',AN) _% 16,3, (B.35)

o
=

® The leading two and the negative sign are ignored without further consequences for the
proof.
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=, =8,T,0,T,%,, (B.36)

where %N and 93, correspond to 2B, as defined above with ﬁN and @, substituted for
0, . Notice that =, is positive definite, since I',, and @, are positive definite by assumption

and the [25 + S(S —-1)/2+ 2] x (S + 2) matrix 2B, has full column rank.

In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that 1~“N -I', 50 and

that the elements of I', and fN are O(1) and O,(1), respectively. By Assumption 5,

A

y—0y=0,1), ©,=0Q) and éN:Op(l). Since p, and p, (and thus also %N and

2

) are consistent and bounded uniformly in probability, if follows that EN -E,=0,0),

LI

y=0,0), and E, =0O(1). Moreover, E, is positive definite and thus invertible, and its

inverse E,; is also O(1).

Denote Ejv as the generalized inverse of EN. It then follows as a special case of Lemma F1 in
Potscher and Prucha (1997) that EN is non-singular with probability approaching 1 as

N —w, that 2}, is O, (1), and that =}, —~E;' =0, (1).

Pre-multiplying (B.34) with ijv we obtain, after rearranging terms,

Y e P =, 0q,(0,,A,) ~
Nl/Z(ON _BN) = (IS+2 _:‘N':‘N)NUZ(ON _GN) _NUZ':‘N %G)NqN(eN’AN) -(B-37)

In light of the discussion above, the first term on the right-hand side is zero on w-sets of
probability approaching 1 (compare Potscher and Prucha, 1997, pp. 228). This yields

P =, 0q,(0,,Ay) ~
NY?(0, -0,)=-E; MGNN“Z% 0,.A,)+0,(1). (B.38)

00

Next observe that

0, -Z8,I'0, =0,(), (B.39)

since £, ~E;' =0, (1) and W—%brﬁv =0,(1).
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As we showed in section 111, the elements of N''°q,(0,,A,) can be expressed as
Nl/qu(eN’AN) = N_llijv +o, Q) =q,+ 9, @). (B.40)

where q, is defined in (27), and that

— () ?qy =N, = W%, (0,1, ,) (B.41)
It now follows from (B.38), (B.39), and (B.40) that
NY?(0, -0,) =E73,0, ¥}’ (-¥,"’q,) +0,(1). (B.42)

Since all nonstochastic terms on the right hand side from (B.42) are O(1) it follows that
NY2(8, -9, is O,(L). To derive the asymptotic distribution of N*?(6, -8,), we invoke

Corollary F4 in Potscher and Prucha (1997). In the present context, we have

Cy = _‘Pz_vllzqiv i”; ~N(0,1,4,,),
NY2(8, —0,)=21,5, +0,() , with
A, =E,7,0,¥°.

Furthermore, N“z(ﬁN -0,)=0,(1) and its variance-covariance matrix is
961\, (®N) = (J;VG)NJN)&J;V@N‘PN@NJN (JINGNJN)A’
where Q; is positive definite.

As a final point it has to be shown that liminf, A (,2(,) >0 as required in Corollary
F4 in Potscher and Prucha (1997). Observe that

ﬂmin (QlNQl;\/) = lmin (E;Vl'];v@N‘PN@;VJNE;Vl (843)
2 ﬁ“min (TN)J“ (®N®;\/)2’min (E‘;\;I.E';\})Z’mln (F;VFN)ﬂmin (%;V%N) > 0 )

min

since the matrices involved are all positive definite.
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Consistency Proof for Estimates of Third and Fourth Moments of the Error Components
Consistent estimates for the second moments of v, , and g, , are delivered by the GM

estimators defined in (17) and (18), respectively (See Theorems 1a and 1b). In the following
we prove that the estimators for the third and fourth moments of v, , and g, ., defined in

(39) and (40) are also consistent. The proof draws on Gilbert (2002), who considers the
estimation of third and fourth moments in error component models without spatial lags and
without spatial regressive disturbances. For reasons that will become clear below, we depart
from the convention adopted so far to use indexation i =1,..., NT for the stacked series. In the

subsequent proof we use the double indexation it , with i =1,...,.N, t =1,...,T .

Preliminary Remarks
Note first that

€, = &, +m,, where (B.44)

S S
My = [Z(pm,zv _5m,N)IT ® Mm,N][IT ® (IN - zpm,NMm,N)_l]sN
m=1

m=1

+[I, ® (I, - me,NMm,N)]DNAN + [z (IOm,N - /5m,N)(IT ® Mm,N)]DNAN .

m=1 m=1

This can also be written as

ny =Rygay, (B.45)
where

Ry = (Rl,N’RZ,N’R3,N) with

S
Rl,N = IT ® (IN _me,NMm,N)DN’

m=1

R2,N :{(IT ®M1,N)[IT ®(IN _zpm,NMm,N)_l]sN""'(IT ®MS,N)[IT ®(IN _zpm,NMm,N)_l]sN}l

m=1 m=1

R,y =[I, ®M,,)D,,...(I, ®M; ,)D,],
AN
gv= (Py—py)
Py —Py)®A,

18



!

In light of Assumption 3 and since the elements of D, =(d; ,,....d, )" have bounded fourth
moments (by Assumption in Theorem 3), each column of the matrix R, is of the form
n, +I1,&,, where the elements of the N7 x1 vector =, are bounded uniformly in absolute

value by some finite constant, the row and column sums of the N7 x NT matrix II, are

bounded uniformly in absolute value by some finite constant, and the fourth moments of the
elements of &, are also bounded by some finite constant. It follows that the fourth moments

of the elements of R, are also bounded by some finite constant by Lemma C.2 in Kelejian
and Prucha (2008).7

As a consequence, H"NH <|R,||gx]. or for the i-th element of the NT x1 vector 1,

‘ni,N‘S||gN||Hri.,NH:aN i (B.46)
where r, , denotes the i-th row of R, a, =|g,[. and 8., =Hri_'NH with E‘ﬁwr <K, <.
Without loss of generality we can select K, such that E(B/,)<K, for y<4. By

Assumption 1 there is also some K, such that E‘gw‘y <K, <o for y <4. In the following

&

we use K to denote the larger bound, i.e., K =max(K,,K,) . Also note that N*"’a;,, =0, (1).

Estimation of Third Moments

N T
We first consider o = E(& ) and its estimate ¢, = izzgf]v :
i1 -1
Using (B.44) we have
~3) 1 N T 3
O, N = sz(git,N + 77it,N) (B.47)
il 1=l
1 S, s 2 2 3
= WZZ (€n +3€0 Ny T3 vy T n)
i1 =1
1 8E 380G, 3 LL , 138G,
=— & +— &oun, v +—— & F— 4
NT ;; it,N NT ;; ll‘,anl‘,N NT ;;nnw it,N NT ;;nﬁ,]\[

SO Nt Oyt Py TPy

By the weak law of large numbers for i.i.d. random variables, ¢, converges to o as

N —> o,

" See also Remark A.1 in Appendix A.
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Next consider

l N T
Pon = N7 2o 2 (B.48)
3 N T )
SWQN;;‘C'}:,N it N
N T . 1/2 N T ) 1/2
<—0{N(Z Eun } [ZZ‘&:N‘}
=1 t=1 =1 =1
1/2 1/2 I 4 " I~ 2 e
=3(N"?a, )N~ ((NT)‘ D e j ((NT)‘ B ] =0,(1),
i=1 t=1 i=1 t=1
N T . 1/2
[(NT)‘lZZe,-,,N j =0,
i=1 t=1
N T ) 1/2
((NT)‘lzZ‘ﬂi,,N‘ ] =0,(1), N"?a, =0, (1), and N* =o(1).
i=1 t=1
Observe further that
1 N T
ZZ\Sn,st,fN (B.49)
=1 t=1

3 N T
;;‘ N 1N 1tN NTaNZl‘ﬂzN it,N
N T 5 N T Y2
=3(N“2aN)2N1((NT)1ZZ(9,,,N j ((NT)lZZ\ﬂ,,N\] =0,(1),
i=1 t=1 i=1 t=1

since Elg,

1/2
2} =0,(), E|p,,| <K< and thus

N T
* <K <o and thus ((NT)_lzz

i=l t=1

i N

((NT)-lﬁ:ZT:\@,N\“j =0,(1), N"?a,,=0,(1),and N =o(1).

i=1 t=1

Finally,
1 N T
Doy = W;; 77n N (B.50)
1 N T
=22l 18]
=1 =1
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<L(N1/za Y NN N_lii‘ﬁ ‘3
T NT N o

i=l t=1

— (NIIZQN)CSN—S/Z((NT)—lfl‘ﬂiYNrj _ Op(l) 1

NT

since  E(,,[)<K<oo and thus [(NT)IZ‘ﬂLNF] -0,(), N"?a,=0,(1), and
i-1

N*%=0(1). As a consequence, we have ¢ —o¥ =0,(1), o =0(1) by Assumption 1,

and ¢, =0,(1).

Next consider the third moments of the unit-specific error component aff’ and its estimate

5!(,3), which can be expressed (compare Gilbert, 2002, p. 48ff.) as

o =E(e, Ng,f ) forany giveniand s #¢, (B.50a)
@) N T T
O_y,N NT(T 1);522 is, N ltN ( )

t#£s

Notice that by Assumption 1, o is invariant to the choice of i, s and ¢. Using (B.44), we

have
~) 1 N T T ,
O v =m222(%w + 1 x ) Ew + M n) (B.51)
—4) =1 s=1¢=1
t#s
1 N T T
= NT(T 1) Zzz(gls Ngzt N + Znit,Ngzs N + 77zt Ngls N + 7715 Ngzt N + 27715 ant N + 77zs ant N)
- i=1 s=11¢t=1
= ¢1,N + ¢2,N + ¢3,N + ¢4,N + ¢5,N + ¢6,N
Observe that

i=l s t#s i=1 s:l

N T T N T T
= zzzgi&N‘(";N = ZZZ(,‘%,N + Vis,N)(ILlit,N + Vit,N)Z (B.52)

N T T

3 2 2 2 2
ZZZ(M,N + 2/ui,NVit,N T U nVin TVisnHin t Zlui,Nvit,Nvis,N + vit,NVis,N)
i=1 s=11¢=1
t#s

= ¢11,N + ¢12,N + ¢13,N + ¢14,N + ¢15,N + ¢16,N :
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By the weak law of large numbers ¢, ,, converges in probability to aff). Notice further that,
by the properties of v, , and n, , (see Assumption 1), @, ,é .6 v 65 v, and g, areall

0,(1). As a consequence, ¢, converges in probability to aff)

Next observe that

1 N T T
bon = méé%zmw%w (B.53)
2 N T T
NI D) ™ 2 22 P
t#£s
1/2 1/2
N T T N T T
2N NP INT(T-D1' D> Dlewn] | [INT@T-DI' XD > Biv| =0,0,
=l s=1 t=1 i=l s=1 t=1
1 N T T 5
¢3,N m;;;nnwgmw (B-54)
1/2 1/2
N T T N T T
SN N INT(T-D17 22 D len] | |INTT-DI' X2 Bin | =0,0,
i=l s=1 t=1 i=l s=1 t:1
t#£s t#
l N T T 5
¢4,N —ZZZUL;,N%,N (B-55)

NT(T 1) i=1l s=

1

[:
t#s

< NlIZaNNlIZ[[NT(T _l)]flz:zz P 4) ([NT(T _1)]lZZZﬂij =0, (1) )

sy = NT(T 1)2;22 M n iy (B.56)
NT(T W )N ZZZﬂ
1/2 1/2
<2(N"2a, )’ N [NT(T—l)]‘lzZZﬁ; N [NT(T—l)]‘lzZZﬂ;N =0,(1),
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Ps v = NT(T 1 zzzﬂu,z\/nnw (B.57)

i=1l s=1
1/2 1/2
1/2 3 3/2 1N b 2 1N b 4
S2AN"a NP\ INT(T-DI' 222 Bon | | INTT-DI" 2.0 > fiw | =0,0,
i=l s=1 t=1 i=l s=1 t=1
t#£s t#£s

because N'?a, is O,(1) and the terms in brackets expressions are all O,(1), since

4
Biv
7 -0l =0,1), o =0@1) by Assumption 1, and that &\, = O, (1) . Obviously, we then

V%

Ele. [ <K< and E <K<ow for y<4 and all N. It follows that

gis N

also have that (6, —a)) -0 =60, -0 =0,(1).

V

Estimation of Fourth Moments
Consider the fourth moment of x, , and its estimate, which can be expressed as (compare

Gilbert, 2002, p. 48ff.):

G =E(e,¢

s lt

T
=) _
O-y,N - NT(T 1) ;le it, N (858b)

) -3E(¢,&,)E(e?) - E(e,¢,)] forany giveniand s #¢, (B.58a)

s lt s lt

NT(T 1)222 is.N UN(NTZZ N NT(T 1)222 is Ng‘it,N)

i=ls i=1 t=1 i=l s=1

:51,1\7 ZN(O-eN z,N)-

Observe that

i=1 s=1

N T T
51,N NT(T 1) zzz(gis,zv + 77is,N)(5n,N + 77[:,N)3 (B-59)

N T T
3 2 2 3

NT 71 zzz( ExnEnn T3 nEuniun T3 nEis nEin t Eis NN

( ) i=1 s=

te
3 2 2 3
s nvEan T 38it,N77iz,N77is,N + 377it,N77is,Ngit,N + 77it,N77is,N)

= éll,N +512,N +513,N +5l4,N +515,N +516,N +§l7,N +518,N'

The first term &, , can also be written as
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3
511,N =& nEir, N (ﬂ[s‘ N TV, N)(/Ju N TV N = (B.60)
= (luis,N + vis,N)(:uit,N + 3/uit,Nvit,N + Szuit,Nvit,N + vit,N)
=( 5 43 2 +3 2+ 3
= \His nHig v T OMig NHig NVie v T M NEi vVie v T Hig NVie v
3 2 2 3
tV vy Tt 3luit,Nvis,Nvit,N + 31uit,NVis,Nvit,N + vis,Nvit,N)

o4 3 > 2 3 3 2 2 3
= (lui,N + 3lui,Nvit,N + 3/ui,NVit,N T Mg NVieon T Vig My T 3luit,NVis,NVit,N + 3luit,NVis,NVit,N + Vis,NVit,N) .

By the properties of v, , and g, , (see Assumption 1), ¢6,,, converges in probability to

(4) 2 2
o, +30'#0'

Moreover, it follows from the properties of v, and p, (see Assumption 1), that the terms
Olan 1013 n1O1a 1015 31 O Oy w1 O @€ 0, (1) It follows that o, , converges in probability

(4) 2 2
to 0,” +30,0, .

Next consider

N T T
Oy = NT(T 1 zzz(‘gi‘s,N + nit,N)(git,N + 77it,N) (B.61)
i=1l s=1 t#s
N T T
NT(T 1 ;;g}(é‘i&/\] + Ui‘s,N)(git,N + 77it,N)

N T T
NT(T 1 ;;;(gis,Ngit,N + 1 nEan F Ex nMan T i v in) s

which  converges to af, by the weak law of large numbers, since

E[TZ - (Tl 1)25”N] o> for s=¢ by the properties of v, , and s, , and the sum
s=1 t#s

over the remainder terms appearing in &, , are o,(1) by arguments analogous to those for

#,y and ¢ , (see B.53 and B.56). Finally, by arguments similar to the proof for the

N T
consistency of the estimate of the third moment, it follows that o7, :ﬁzzaf,v

i=1 t=1
converges in probability to o7. As a consequence, ooy -\’ =0,(1), &’ =0(@1) by

Assumption 1, and that &, =0, (1).

We next consider the fourth moment of v, , and its estimate, which can be written as
(compare Gilbert, 2002, p. 48ff.):
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=E(e))-E(s,6]) - 3E( e.&,)E(e}) - E(eg,ée,)] forany giveniand s #¢, (B.62a)

1 L&~
~(4) _ 4
NTNTEETT NT(T 1)21_:21:21: FunCuy (B.62b)
t#£s
bl L, N T T
NT(T 1)222 o tN(NTlthlgu’N NT(T 1)1212281 th)

t£s t#s

=Min _§l,N - 52,1\/ (fizzv - 52,N) .

We have already shown that &, converges in probability to o!” +3c2c7 and that

36, v (62 — 5, v) converges in probability to 3O'ﬂO'V . Next, expanding y, , , we obtain

ZZ(% W) (B.63)

tltl

NT

1
NT

i=

1 N T
zz(gltN +2€1[ N’]th +771tN)(81tN +2€1[ antN +771tN)
=1 t=1
N T
zz(gth +2€1[ antN +€zt antN)
=1 t=

i=1 t=1
T
Zgzz Vv T 4‘9n N77n N T2, N771z )

ZZ glt N771tN +281t antN +77th)

i=

1 N
NT,Z;‘M(
N T
TNt 1,1(
T

1 N
NTZZ(SHN +481t NnttN +681t NnttN +4gl[ N7711N +771t N)
i=l t=1

1
Observing that —ZZeM converges in probability to ¢!” +o” + 60207 and that the
i=1 s=1

remainder terms of y,, are all o,(1), it follows that &% —o¥ =0,(1), ¢! =0(1) by

Assumption 1, and that &%) =0, (1).

II1. Proof of Theorem 3 (Variance-Covariance Estimation)
Lemma B.2

S
Suppose Assumptions 1-4 hold. Furthermore, assume that sup,, >"|p,, v| <1, and that the row
m=1

and column sums of M, ,, m=1,...,§ are bounded uniformly in absolute value by 1 and

some finite constant respectively. Let &7, 67, and p, ,, s=1..,S, be estimators, satisfying
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6.-ol=0,1), 6 -0f =0,), py—p,x=0,1), s=1..,5. Letthe NTxNT or NxN

matrix F, be of the form (compare Lemmata 1 and 2):

s
(a) F = [, ®d, _zpm,NM:n,N)_l]I-IN '
)
> 1
Fy,N =(e; L), (I, _me,NM;n,N)_ H,,
m=1
= 2 2 * 1 >
(b) F = (o, Q. +01 Ql,N)HN = Q;N[IT ® (I, - zpm,NMm,N)]HN )
m=1

S
F:N = [0-1_2 (e’T ® IN)]HjV = [O-l_z(e’T ® IN)][IT ® (IN - me,NMm,N)]HN )
m=1

where H,, is a N x P. matrix whose elements are bounded uniformly in absolute value by

~

some constant ¢ <oo. The corresponding estimates F, ,, F,,, F,y, and F,, are defined

~

analogously, replacing o’,07, @, ,, and p, ., m=1..,S, with 62,67, ,,, and p, ,,
m=1,...,§, respectively.

(i) Then, N'F,F, —-N'F,F, =o (1) and N'F,F, = O(L).

(i) Let a, be some NT x1 or Nx1 vector, whose elements are bounded uniformly in

absolute value. Then N"*F.a, - N'Fa, = 0,(1) and N7'F, ya, = 0(1).

Proof of part (i) of Lemma B.2

S
Under the maintained assumptions there exists a p. with sup_|p, v|< p. <1. It follows
m=1

immediately by the properties of the matrices M, , that the row and column sums of
oM, ., m=1..,S are bounded uniformly in absolute value by 1 and some finite constant

respectively. For later reference, note that the elements of the vector pfM%h_ , are also

.S,

bounded uniformly in absolute value by ¢ for some finite integer k.
Next define F, =G,K, with K, =[I, ®(I, —i/?m,NM'm,N)_l]HN- Denote the (r,s)-th
m=1
element of the difference N"'F,F, — N"'F,F, as v, , which is given by
vy =Ny 100, ), 75 =1 R, (B.64a)
or

Vy = N_l(l;.,r,zvé;vézvl;.s,zv - k.lr,NG;VGNk.s,N) ' (B.64b)
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Define further E, = G,G,,, such that v, = N (K, \E Kk ,, K" ;E, k).

Proof under Assumption (a)

Consider first the case F, =F, , ; then it holds that E,, = EN =7Q, " (The subsequent proof

also covers the case F, =F, , with E, = E,=1,,) Hence,

~ ~ 3
vy =Nk E .k, -k E .k, ), whichcan be written as v, = > v, with
i=1

vy =Nk, -k, )Ey(k, -k, ,) (B.65)
Von = N_l(k.r,N - k.r,N)'ENk.s,N

VB,N = N_lk.’r,NEN (k.s,N _k.S,N)

Note that

~ N S
k.s,N _k.s,N = [IT ®(IN _me,NM:n,N +h.s,N _[IT ®(IN _me,NM;n,N)_l]h.s,N (866)

m=1 m=1

We next show that v, , =0,(1), i=1...,3, invoking the following theorem (see, e.g., Resnik,

1999, p. 171): Let (X,X,,N >1) be real valued random variables. Then, X, & X if and
only if each subsequence X, contains a further subsequence X,. that converges almost

surely to X' .

As we show below we will be confronted with terms of the form:

Ny =N, (I @ MYE, (I, ®@M)h, (B.67)

where M, is a matrix, whose row and column sums are bounded uniformly in absolute value
by some constant ¢... By the properties of E, =7Q, ,, the row and column sums of the

matrix (I, ® M))E, (I, ® M) are bounded uniformly in absolute value, and X = O0(1)
(compare Remark A.1 in the Appendix).

"For F, =F, ,,wehave G, = (e, ®I,). Hence

G’NGN = (eT ®IN) (e'r ®IN)
=(e;e; ®1,)=(J, ®I,) = 7Q, -
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Now, let the index N, denote some subsequence. In light of the aforementioned equivalence,
there exists a subsequence of this subsequence (N, ) such that for events we A4, with

P(A°) =0, it holds that
B, (@)= p x| >0, m=1...8 (B.68)

and that for some N’ >N,

‘NSQ’) (a))‘ <K, forsome K with 0< K <o, and (B.69)
S

S SupN z pm,N‘+p*

Z‘ﬁmwg (a))‘ < pe., Where p.. = '”:12 <1. (B.70)

m=1

S
In the following, assume that N, >N, . Since Z‘ﬁmw; (a))‘<l, it follows from Horn and
m=1

S
Johnson (1985, p. 301) that (I, - Z,Bmm (0)M,, ) is invertible, such that
m=1

k.s,N;, - k.s,N; = [IT ® (IN - me,N;, (a))MmN) ' -1, ® (IN - me,Ng,Mm,N;) l]h.s,N;, (B.71)
=1

m=1

={I, ®[I, + i(ZEmN (a))M’mNJ -1 ®[0, + i(zpm,N;M;n,N;j I

=1 \m=1 1=1 \m=1

o s ! s !
=1, ® ;{(Z_‘iﬁmm (w)M:nN) _[z_lpm,N;M:n,N;) :|h.s,N; .

Substituting into v, ,. , we have

Vin: =N K,y =K, VEy (K =K ) (B.72)
o s ! s !
=1y 1 ~
=N, h.r,N;IT ® Z{ me,N[’, (a))MmNj _(me,N;Mm,N;J }
=1 m=1 m=1
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m=1

s k s k
XEN;IT ®|:(me,]\’; (a))MmNj _(me,N;Mm,N;J } h.s,N; ’

where E,, =7Q, ,, for F, =F,, (and E, =1, for F, =F, ,). A single element with index

(k,[) of this infinite double sum over kand / is given by

s 1 s !
N;ilh.'r,zv;lr ® |:[me,N; (a))Mm,N; j - [me,N;Mm,N; ] :| :
m=1 m=1

!

s k s k
S ®[[ PN, (w)Mm,N;,J _(me,N;Mm,N;j } h v (B.73)

m=1 m=1

Next note that for any values of p,. and any BN; (w) there exist matrices 1\7[N; and MN;,

whose row and column sums are bounded uniformly in absolute value, such that:

s s _ s s 3
me,N;M,m,N; = me,N;MN; and zpm,N; (w)M:nN :me,zv;, (a))MN;, : (B.74)
m=1

m=1 m=1 m=1

MN; and MN; can thus be factored out of the sum, yielding

[[iﬁmzv (a))j 1\7[]1\/ _[ipmzvj MIN} - (B.75)

m=1 m=1

S S
By the same reasoning, for any values of (Z,Bmm (a))j and (z pm’Nt,’j , there exists a matrix

M, , whose row and column sums are bounded uniformly in absolute value, such that:

[(iﬁmw; (a))j Miva _[Zs_lpm,zv,;J Miva} = [[iﬁm}\/a (a))j _(Zs_lpm,N;J }Mﬁv . (B.76)

m=1 m=1

Substituting M ,, into v, ., we obtain

!

0

% s I rs Mo
Vin =N, z,z_lzzh.’r,N;IT ®[(Z,Bm,zv; (a))j _(me,zv;,j } M;\lf

k=1 I=1 m=1 m=L

29



s k s ]
XEN;IT ®szm,1\& (a))j _(me,N;J }Mf\/;h.sw;

m=1 m=1

Hence, we can write

Vi = ii){,@” , (B.77)

k=11=1

where X = g R0 with

s ! s ! s k s k
{[25m,N;) _[me,N;j ] [(Zﬁm,N;j _[me,N;J }
a(k’l) _ m=1 m=1 m=1 m=1
N, —

- - and (B.78)
Ps ou
Ns\]f{;’l) = N:zilp’lfkh.'r,N(', (IT ® M;\l’; )EN; (IT ® Mf\/)hsN; . (B79)

Note that \a;@”\ao in light of the aforementioned results and since N{:” <K <o, it

follows that ‘X}V’f"" — 0. Moreover,

s ! s Lrs ! s k
[Zﬁm,N;J _(zpm,zvgj (Zﬁm,zv,;j _(me,zv;]
‘aN;‘: m=1 pi m=1 m=1 p* m=1 (880)

! k I+k
. Z(&] {&J =4(&] |
p* p* p*

For N,>N,, ‘N%‘i” (a))‘ < K., such that we have

I+k
‘X](V/ZJ)‘ < gk — 4KN[%J . (B.81)

Hence, there exists a dominating function BY* for all values of k. Moreover, since

(p—**j <1 by construction, we also have that

p‘k
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ii‘B("“‘ — S B <o (B.82)
k=11=1

k=11=1

i.e., the dominating function is integrable (summable). It follows from dominated
convergence that

lim,. . v,,. =0. (B.83)

The same holds for the v, ., i=2,..,3. It follows that v, ,, —0 as N, — oo and in light of

Resnik, 1999, p. 171) that v\ —o0,(1).

Thus, N"'F,F, - N'F.,F, = 0,(1). That N"'F E,F, =0(1) follows from the properties of
F, and E, (compare Remark A.1). As already mentioned above, an analogous proof applies

to the case F, =F, , with E =1~<3N =1,,.

Proof under Assumption (b)
We first consider the case F,=F,,. Then, F,=G,K, with G,=Q;, and

s
K, =[,®(, - me,NMm,N)]HNv such that E, = Q;lzvg;lzv = Q;ZN = (0-;4QO,N + O-£4Q1,N)

m=1

and E N = Ez;?N =(0,"Qq y + 07, 'Q, ) . Notice that the subsequent proof also covers the case

F,=F .’

— *uN‘

- -~ 7
First, we rewrite v, = N (k, JE k  , —K’ JE K ) as vy, => v, with
-1
Vin = N_l(k.r,zv - k.r,N)’(EN - EN)(k.s,N - k.s,N) ) (B-84)
VZ,N = Nﬁl(k.r,N - k.r,N)’(EN - EN)k.s,N’
Van = N_lk.’r,N(EN _EN)(k.s,N _k.s,N) '
Van = N_lk.'r,N(EN -E\ )k, .

Vsn = N_l(k.r,N - k.r,N)'EN(k.S,N _k.s,N) '

S
In  case F,=F,, =[c;’(e; ®L ), ®(U,-> p, M, ,)JH,, we have

m=1

G, =[o;%(e; ®1,)],suchthat E, =o,%(e, ®1,)0,° (e}, ®I,) =0, (e,€, ®I,) =0,'Q, .
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Ven = N_l(k.r,N - k.r,N)’ENk.s,N )

V7,N = N_lk.!r,NEN (k.s,N _k.s,N) .

For the sake of simplicity, we define E,=E,, +E,,, where E;, =0,'Q,, and
E,, =0,"Q,, and consider only E, , in the following; it is obvious that an analogous proof

applies to E, , and thus also E, . Next, consider

~ s s
k,yv—k,y=[®(, - me,NMm,N)]h.s,N —[I, ®(I, - me,NMm,N)]h.s,N : (B.85)

m=1 m=1

We next show that v, , =0,(1), i=1,...,7. Consider

S S S
IT ®[IN _ZEm,NMm,N]_IT ®(IN _me,NMm,N) = IT ®Z(5m,N _pm,N)Mm,N (B86)

m=1 m=1 m=1

and note that for any values of p, , and p, ., there exists a matrix M, , whose row and

column sums are uniformly bounded in absolute value, such that

s s o
I,® z(ﬁmN — Py IM,, =1, ® 2(5mN ~ Py )M, (B.87)

m=1 m=1

Substituting MN; into (the first part of) the expression for v, , , we obtain

S - s o
Vin = Nﬁlh.'r,zv [IT ® z(pm,N - pm,N)M;V ]El,N [IT ®Z(pm,N ~ Pun )MN ]h.s,N (B-88)
m=1 m=1
) s o s .
-N- h.’r,N (1, ®Z(pm,N _pm,N)M;V IE, \[1; ®Z(pm,N - pm,N)MN]h.s,N :
m=1 m=1

s 2 — T NA
= N_l{z(ﬁm,zv _pm,N)j| b, (I, ®My)E, , (I, ®My)h

m=1

s 2
_N_l|:2(pm,N _pm,N):| h.’r,N (IT ®M;V)E1,N (IT ®MN)h.s,N .

m=1

s 2 . .
= 5-14N _1{2(/0%1\1 _pm,N)j| h.'r,N(IT ®MN)Q1,N(IT ®MN)h.s,N
m=1
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s 2 . L
- 014N1|:Z(pm,N - pm,N):| h.'r,N (I, ® M;\T)Ql,N(IT ® MN)h.s,N .

m=1

s 2 . .
= (5:1_4 - 01_4)N_1|:Z(5m,N _pm,N):| h.,r,N(IT ®M;\/ )Ql,N (IT ®MN)h.S,N

m=1

—0, (00,0 =0, (1)

The same holds for the v, ., i=2,...,7. Obviously, an analogous proof applies for E, , and
thus also for E,=E,,+E;,. It follows that v, —>o,(1). Thus,
N'F,E,F,-N'F.E,F, = 0,(). That NF,E,F, =0(1) follows from the properties the

F, elementsof E, , (E, ).

Proof of part (ii) of Lemma B.2

Denote the r-th element of the difference N‘lf?jvaN ~N7'Fj,a, as w,, which is given by

wy =NY(f ., —f a,), r=1..R, (B.89)
or

wy =N (K, Gy —k,,Gay).

Proof under Assumption (a)

S
Consider first the case F, =F, , = (e; ®I,)[I, ® (I, —ZPM,NM;,N)&]HN- We then have

m=1

S
F,=G,K, with K,=[,®0,-> p, M, )'H, and G, =(e; ®I,). Hence,
m=1

G, = (e, ®I,). Obviously, the subsequent proof also covers the case F, =F, , . It follows
that

wy =N (K, —K, \)a,), (B.90)

where the elements of the vector a, = (e, ®1I,)a, are uniformly bounded in absolute value
since the row and columns sums of (e, ®1I,) are uniformly bounded in absolute value and

since the elements of a, are uniformly bounded in absolute value. (See Remark A.1 in the
Appendix.)
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In light of the properties of Q, ,, Q, . and a,, it follows directly from the proof of part (i)
of Lemma B.2, where we showed that v,, = N‘l(l;,'N -k, )Ek ,=0,), that
wy=0,(1) and thus N7'Fla, -N'Fla, =o0,(1). That N7'Fya,=0() follows
immediately from the properties of F,, and a, by Remark A.1.

Proof under Assumption (b)
Consider first the case F, =F,,. Then, we have F,=G,K, with G, =9 and

S
K, =[I,®(, —me,NMm,N)]HN. Notice that the subsequent proof also covers the case
m=1

Fk

F, =F, . Inthat case,

Wy = Nﬁl(l‘;’r,Né,NaN -k, vG\ay) (B.91)
= Nﬁl(l;.'r,N _k.,r,N)ﬁ;J}VaN + Nﬁlk.,r,N (ﬁ;lzv - Q.;lN)aN *

Substituting Q. =5,°Q, v +5,°Q, . We have w, =w,, +w),, where

v o ATl =2 1y, 1 -2
wy =Nk, y0,5Qoyay =N K, yo,7°Qqay,

1 _ =2 —13 =27,/
wy =0 yNK, yQyvay —or 'K, Q, yay .
Considering w), , we have wy, =wy, +w, ,, Where

Wy =GN K, K Qo (B.92)

~_2 2y p7-1
W;,N = (0, -0, )N k.'r,NQO,NaN'

The first term wy, =0,(1) by arguments analogous to the proof of Part (i) under Assumption
(b) by the consistency of p, ,, s=1...,S. In light of the properties of k, ,, Q,,, and a,,
N7k, yQ,ay =0@) and since (5,5 —0,°)=0,(), it follows that w,,=o0,(1) by
substituting Q% — Q% = (5.2 - 06,%)Q,  + (6,7 —0,7)Q,. Analogous arguments apply to
wy such that w, =o0,(1). Since this holds for all r=1..,P, we have that

Fx!

N7Fva, —~N7Fya,=o, (). That N'Fya, =0() follows from immediately from the
properties of F:*N and a, by Remark A.l. Analogous proof can be used to show that
N7'F

v

*x!

vay—N"'F  a, =0, (1) and that N"'F, ,a, = O(1), which completes the proof.

Proof of Theorem 3
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As part of proving Theorem 3 it has to be shown that ‘i’N —-¥, =o0,(1). Observe that in light

of (15), each element of ‘i"N and the corresponding element of ¥, can be written as

Fkkk

éf:} _@Pq _}_prq +€qu _}_QE’quN , (893)

Hkk Sekkok

€Ly =L LT e e
for p.g=1,...4,(a,b), r,s=1..,.S+1", where

szqu—ZN 104 TI"(A q,s, N)+2N 10— Tr(AP’N ;l'S’N)'

prN

=v

PN D —1"“ 2 ~u ~u
QEV,S,N O-VNN prNaqu—i_O-yNN aprNaqu
~ NT N

Pg™ _ SG) AN (Y v ~©3) Al ~u i ~u i
er,s,N - O-v,NN (ap,r,i,Naq,s,ii,N +ap1 ii, N q,8,i, N) + G,u NN (ap,r,i,Naq,s,ii,N +ap,r,ii,Naq,s,i,N !

N
Eror = (59 —354 )N @) _354 \NIN GH g
er s,N ( N)N Zap i, Naq s,ii, N +(O- 36;1,N)N zap,r,ii,Naq,s,ii,N '
i=1 i=1

and

Erel = 2N ol Tr(A, (AL )+ 2N o Tr(AL (ALY L),

prN

Pq _ 2 u u
er,s,N _O-VN aplN qu+O_N aprNaq,s,N’

N
P (3) A71 v v (3) A7 u H u u
er s,N O' N Z(ap 7 Naq s,ii,N + ap,r,ii,Naq,s,i,N) + O-y N Z(ap,r,i,Naq,s,ii,N + ap,r,ii,Naq,s,i,N !
i=1l

NT N
(4) AN v 4) AN u u
=(0," =30, )N E Ay iy sin T(0, —30,)N E (Lo, rii N s, N

i-1 i-1

Fekkk

P.9q,
ervN

To proof that ¥, —¥, =o (1), we show that Erar _grir =0,(), gra —-eril=o0,@),

*kk Fkk Reiioid Fokkk

efsqN szqu = 0 (1) and QE) S, N gf:}N = Op (l) '
i) Proof that €77y —€”%} =0 (1)
Consider

Cran —@rin = (G0, — o) 2NTTr(AY, (AL ) +(Gh, — o) 2N Tr(AY (AY ),

p.r,N

° See equations (34) in the main text for the structure of the matrix ¥, and the proper

indexation of its elements.
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A’ A“ and A“_,, are

and note that the row and column sums of the matrices A’ vons ALy N

prN

uniformly bounded in absolute value by some constant, say X, . It follows that

2N7'Tr(A), yA) ) S2N'NTK = 2TK} = 0(1),

p.rN

2N'Tr(A% (AY )<2K?=2N"'NK;=0(1),

p.rN

and thus €29y —€2%% =0 (1).

ii) Proof that €747 €7 =0 (1)
Note that

FPA gepg =2 1~ DT T D ~2 1~y DY T D

ety =€y =0, N a’p,r,NPNFv,NFv,NPNa’q,s,N+O_y,NN up,)‘,NPNFy,NFy,NPNaq,s,N
2 a7-1

-o.N"o

o 2 a7-1,,1
p,r,NPNFv,NFv,NPNaq,s,N _O-HN a

o
p,r,NPNFﬂ,NFy,NPN(”q,S,N

= N0+ AP where

p.g**y _ =2 -1~ L T DS 2a7-1,,1 (B
Ar,s,N - GV,NN up,r,NPNFv,NFv,NPNaq,s,N - GVN a PNFV,NFV,NPN(lq,S,N7 and

pr\N

pg*u _ =2 -1~ D' T D = 271 v B n
AN =0, NTa, JPVF F G Pa, oy —o,Na, (PUF L F Pa

Consider A?*™, which can be written as

p.g**yv _ =2 1= 5 5 = _ 2a7-1 1 o
Ar,s,N - o-v,NN a’p,r,NPNFv,NFv,NPNaq,s,N O-v N a’p,r,NPNFv,NFv,NPNa’q,s,N

p.q**yv _ (=2 2 =17 AN
Ar,s,N - (O-V,N O_v )N ap,r,NPNFv,NFv,NPNa’q,s,N

+ 5-v2,N(N_la:u,r,NP]'VFlf,NFv,NPNaq,s,N - N_la'p,r,NP]’VF\:,NFV,NPNaq,s,N) .

Note that (o, —o’)=0,(1) and that &7,=0,(1). By assumption f’N—PN:op(l),
P, =0() and thus l~>N =0,(1), where the dimension of P, is R.xP; by Lemma B.1
o, —ay=0,1), ay=0@) and thus a, =0,(1), where the dimension of a, is Px1.
Moreover, N'F.,F,,~N"F,,F,, is o,() and N'F F,, =0() by Lemma B.2. It

follows that A??*" =0 (1). By Lemma B.2 it also holds that N’lf?;,va?#‘N -N"'F, \F,, and

accordingly, AV =0 (1). It follows that €277 —Era = 0,(1), and in light of Lemma B.2
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it is readily observed that this also holds when F,’, and F,, are used instead of F,, and

F ..

Fkk

iii) Proof that €71 — €77 =0 (1)
Observe that

EPG g2, V2 B VX B
er,s,N er,s,N Ar S, N Ar S, N ’

where
@ NT @ NT

p.q. >y _ = -1 ~v v v ~v -1 v v v v

Ar s,N - O-v,NN Z (ap,r,i,Naq,s,ii,N + ap,r,ii,Naq,s,i,N) O-v NN Z(ap,r,i,Naq,s,ii,N + ap,r,ii,Naq,s,i,N) '
i=1 j
N

P.q.* _ =@ —12 Su u u ) —lz u u

Ar s,N - O-y,NN (ap,r,i,Naq,s,ii,N +apl i NaqSlN) O-/z NN (aprtNaqszzN +ap,r,ii,Naq,s,i,N )

i=1 i=1

wok

Next consider A7 ™" and note that a, , , = Fv,Nf’NfipmN; moreover, define a)  as NT x1

vector made up of the main diagonal elements a, of matrix A’ . . It follows that

p.r,ii,N

~

=v ! %

P9, *** (3) v
A = O'v NN (a aq s,N ap,r,N aq,s,N

! ©)
r.s,N aprN qu)+O_ N (aprN

prlN qu

v ! v

3 3 a
+(O-( ) ( ))N (aprN q,s,N +an”vN aq’S'N '

Note that o =0(1), (60, -c?)=0,1), ¢ =0,(1). Moreover, by the properties of

a, /v, a, v, N (ap, va, y+a va’ )=0(1) such that the term in the second line is
0,(1) . Next note that aprNa;rN p,NPF xa, .y, and aprNa;,N o, PyE A
such that the first term in the first line is given by

p,NP’ N'F ,a VA, —o PINTF @ . By assumption P,-P, =0 (1), P,=0()

and thus PN =0,(1), where the dimension of P, is P.xP. Moreover, a, —a, =o0,(1),

a, =0@) and thus a, =0,(1), where the dimension of a, is Px1. By Lemma B.2, part

(i), we have that N'F’ a’, .- N'F,,a va,,y=o0,1) and N7F,,a, . =0(@). It follows

prN

' —1g —v ' 1y —v
prNPN FvN prN prNPN F prN

that a' =o0,(1). By analogous arguments the

ok

second term in the first line is o, (1), from which it follows that A7? “"=0,(1). An

*** Fkk

analogous proof can be used to show that A”7"* =0 (1). Hence, €”¢}" ~¢”""" =0 (1).
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Fekkk Fekkk

iv) Proof that @ffN €2y =0,()

Consider

¢re —erd ™ = [(6Y -360) - (01 -30))IN 3}, A,

prN qu

+[(6Y =35 (¢ —35")IN a3

prN qu

v
Aqu’

A/l

p.r,N?

By the properties of the matrices A" andA” , it follows by arguments

p.r,N?

analogous to above that N'a)  a  ,=O(1) and that N'a%' @’ , =0(1). Since

prN qu
(6% -0 =0,) and () -0W)=0,(), and since (G2, -0’)=0,(1),
(6iy—0o2)=0,(1), and thus also (o, —0))=0,1), (0, ,—0,)=0,(), it follows that

Fkkk Fkkk

P9, P9,
QErsN _GISN

=0,(1).

Fkk

We have shown that @747 —@»¢" L@, EPar _gra = L@, EPa _gra — L@,

Fkkk Fekkok

and QSffN —-e€nh =o,() for all elements of ¥, p,qg=1..,4,(a,b), r,s=1..,S+1. It

follows that ‘I’N -¥,=0,0).

We are now ready to prove consistency of the estimate of the variance-covariance matrix, i.e.,
that Q; -Q; =o0,(), where Q; (0,)=(,0,J,)"J,0,¥,0,J,(J,0,J,)".

0y

proved above, we have ‘?N—TN =0,(1). By Assumption 5, we have éN—G)N =0,(1),

@,=0Q) and @, =0,()). Let E, =J,0J, =B, T, 0, B, as defined in Theorem 2

and EN = jﬁv(:)j,v = %'N f’N(:)Nl:N%N . In Theorem 2, we showed that J, = 0,0, J,=00),
and jN y=0,(1) and that E v=0,0, E =)= =0, and that = —E,‘vlzop(l). It now

follows that QEN _QaN =0,(1).

I11. Proof of Theorem 4 (Joint Distribution of p, and Other Model Parameters)

" Thereisa slight discrepancy to the definition of éN in Theorem 2: Here %N is used rather
than 3, , which does not affect the proof, however, noting that both p, and p, are

consistent.
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The subsequent proof will focus on the case F, , and F, ,; this also convers the case for F,,
and F,,, . The first line in Theorem 4 holds in light of Assumption 7 (for N*?A ), bearing in
mind that T, , = F, ,P, , and Theorem 2 (for N*%(8, —9,,)).

We next prove that &, , =¥, }(N"%\F,.qy)H>N(0,I,. , ) by verifying that the

assumptions of the central limit theorem A.1 by Kelejian and Prucha (2008) are fulfilled. Note
that A, (¥, )= C;a >0 by assumption. In Theorem 2, we verified that the stacked

innovations &, the matrices A, .,..,A, ,, s=1..,5§, A, ,,and A, , and the vectors

a, - Ay, s=1..,5, a,,,and a, , satisfy the assumptions of central limit theorem
by Kelejian and Prucha (2008, Theorem A.1).

Next, consider the two blocks of F, = (F; ,,F, )", which are given by

s
F yv= [, ®(I, _me,NM:n,N)_l]HN ,and
m=1

S
F,,=[o7%(e, ®L)]Q, [, ®U, - p, M, ) H,.
m=1

S
Since the row and columns sums of [o,%(e} ®1,)], Q,,, and [I, I, -> p, M, )]
m=1

are uniformly bounded in absolute value and since the elements of the matrix H, are
uniformly bounded in absolute value, it follows that the elements of F,, are also uniformly

bounded in absolute value. Hence, the linear form F.§, =F v, +F, \n, also fulfils the

assumptions of Theorem A.1. As a consequence, &, ,->N(0,1,. , ).

In the proofs of Theorems 2 and 3, we showed that ‘i’N—TN =o0,(1), ¥,=0(), and
‘f’N =0,(1) . By analogous arguments, this also holds for the submatrices ¥,, , and ¥,

Hence, ¥, , ~¥,,=o0,(1), ¥,,=0@) and ¥,, ~¥,, =0, (1),andthus ¥, , =0, (1).

By assumption f’N -P,=0,(), P,=0(Q), and f’N =0,(1) as well as @)N -0, =0,0),
0, =0(1) and @N =0,(1). In the proof of Theorem 2 we showed that 3N -Jy=0,0),
J,=0@),and J, =0,(1), and that (J,0,J,)" - (3,0,J,) " =0,@), (30,J,)"=0(),

39



and (j'N(:)NjNY =0,(1). It now follows that fzoyN -Q,,=0,01) and Q,, =0(1) and thus

Q,,=0,0Q).

APPENDIX C.
Proof of Lemma 1.

In light of equations (4a) and (4b), Assumptions 3 and 8, as well as sup,[B,|<b <o, it

follows that all columns of Z, =(X,,Y,) are of the form 9, ==, +I,¢,, where the
elements of the vector =, and the row and column sums of the matrix II, are bounded

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix D, =-Z,

are bounded uniformly by some finite constant and that Assumption 6 holds.

Next, note that

(NT)"2(3, —8,) = P, (NT) 2. \v, + P, (NT)F,

where f’N is defined in the Lemma, and

S
Fv,N = [IT ® (IN - zpr71,NM:n,N)7l]HN and
m=1

S
Fy,N = [Gl_z(e'T ®IN)]QS,N[IT ® (IN _me,NM:n,N)_l]HN )
m=1

In light of Assumption 10, 13N -P,=0,(1) and P, =0O(1), with P, as defined in the Lemma.
By Assumptions 2, 3 and 9, the elements of F, , and F, , are bounded uniformly in absolute
value. By Assumption 2, E(v,)=0, E(n,)=0, and the diagonal variance-covariance
matrices of v, and p, have uniformly bounded elements. Thus, E[(NT)*"?F/ ,v,]=0 and
the elements of the variance-covariance matrix of N"'*F v, i.e., (NT)*c’F.,F,,, are

v

bounded uniformly in absolute value (see Remark A.1 in Appendix A). Moreover,

E[(NT)"*F; yn,1=0, and the elements of the variance-covariance matrix of N"'*F, ., ,
ie, (NT)'c:F,,F,,, are bounded uniformly in absolute value. It follows from

Chebychev’s inequality that (NT)™Y?F.,v,=0,1), (NT)"’F,,ny=0,@), and

consequently (NT)2(3, —8,) = P, (NT) Y2F \v, +P, (NT)Y?F, yny +0,(2) and
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P, (NT)™"*F, yv, + P (NT)*F, \p, =0,(1). This completes the proof, recalling that

TN = (TV',N’ T;J,N)’ = (PI'VF\:,N’ PIIVFL,N)l'

Proof of Lemma 2.
The FGTSLS estimator is given by

~ ~
= dokl = ek

8, =(Z7Z) Ly, , where §u =278, +1uy with
_ S
uy =Q L, o0, - 5, M, ), .
m=1

Substituting Zy =P .Zy =H, (H, Hy) H} Z} , we obtain

(NT)"?[3, —8,]=(NT)"?A%, = (NT)?P; ' Hy ay , with

doxl S ok — ok = ok = okl = ok

P = (VD) 2 HNUNT) BT VT) B Z1Y (V) 2 BV H T

Next note that

- . N - N N
u,(0,)=u,(00,)- Z(IOm,N - pm,N)Qg,lzlvz (I, ®M,)u,,

m=1
- S
+ (Q;,lll\/z - Q;,ljl\lz)[IT ® (IN - me,NMm,N )]uN
=1
+ (Q;Kfz - Qj}(/z)(lr ®MN)uN

~ S —
- (9;11/\12 - Qj}/vz)z (/szv - pm,N)(IT ®M,)u,,

m=1

where M, is a matrix, whose row and columns sums are bounded uniformly in absolute

value, satisfying

s s
Z(bm,N _pm,N)Mm,N = Z(pmN _pm,N)MN :

m=1 m=1

Substituting for u, , we obtain

~ 5
(NT)?(8, —8,) = (NT)?A =0y + 0, + 05+, + 05, = .0, , Where

i=1

41



sk =2 Sk ]

=(NT)?PHy QNs,

S
2N - (NT)71/2PN (ON) HN Z(pmN pmN)gzal/z(I ®MN)[IT ®(I pr11,NMm,N)7l]8N'

3N_(NT -1/2 **’V’;‘(Q—l/Z _1/2)8N1

ok = **! _1/2

~ (NT) VB (@2 - @)L, @ ML), O, — 3 o M, ) Jen

S
5N - (NT)_l/ZP Z(pm N pm N)(gz_l/2 _9_1/2)(1 ®MN)[IT ®(I me,NMm,N)_l]aN )

m=1 m=1

Note that the FGTSLS estimator uses (generated) transformed instruments, which are based
on the estimate 6 v - Observe that

H H Z(pmN pmN)Q 1/2(1 ®MN)H

m=1

- S
+(Q;:,LI/V2 _1/2)[1 ®(I zpm,NMm,N)]HN

m=1

QN - (I, ®M,)H,,

_(Qillz_ﬂillz)Z(pmN pmN)(I ®MN)H

m=1
Substituting for H};', we obtain 9, => 0, ,, i=1...,5. Considering d, , , we have

Kkl g Kk *x !

0, = (NT)YV2PY'E v, + (NT) 2P Fy ) by, with

Fl*;/’:va'[(U_zQON"'Ul QlN) H, Qng and

F21v _H o’ (e, ®1,).

12N (NT)71/2P**,2(pmN pmN)H (I ®M;\/)ﬂ

m=1

N
0y, =(NT) P H, 1, ® (1, —meN QY -0 e,
Oy = (NT) ?PIHY (I @ M )(Q,7 - 2.10)Q e,

055 v =—(NT) 1/ZPHIZ‘,(,DmJ\f P, VH (I ®M;\7)(Q -, 1/2)9311/\/231\/
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Regarding 9, , we have

s s
Oy y = (NT)J/ZPN H), Z(/;mN mN)Q 1/2(1 ®MN)[I (I, me,NMm,N)il]gN’

m=1 m=1

0y =~ (NI 2B 1D (B, = P )PHL (1 @M, (1, @MYL (L, ~ D 0,0 M, ) ey,

m=1

D' S -~ ’ S ’
Opyy = (NT)&/ZPN Z(pm,N _pm,N)HN[IT (I, _zpm,NMm,N)]

m=1 m=1

s
(@ - QA1 @M )L ® (1, - p,,\M,, ) ey,

D™ S = ' Vi
Oy = (NT)_UZPN Z(pm,N _pm,N)HN(IT ®M))

m=1

s
(@ - QA1 @M )L ® (1, - p,\M,, ) ey,

— xx/ S - 12 Na/’
Oy y = — (NT)_UZPN [z (P n _pm,N)]zHN(IT ®Mj)

m=1

S
><(Q-“2 Q1 @M )1, ®(1, me,NMm,N)-l]aN.

Regarding 9, , we have

**l

31N _ (NT)flIZP (Q -1/2 —Q 1/2)81\”

Oy = (NT)*l’ZP**'Z(pmN P Hy (I @M)QH(Q7 -1 e,,

m=1
ot s
Oy y = (NT)ilIZPN H’N[IT ®(I, _me N 1\/)](971/2 —971/2)(971/2 —971/2) €y
s s
= (NT)&/ZPN H’N[IT ® (IN - me N N)](grl/2 _971/2) gy,

034’]\/ = (NT)fl/Zl\i]’:/*’HrN (IT ®M;\,)(ﬁ:l_}/\/2 —1/2)(971/2 Q 1/2)8

= (NT)™"?P, H, (I, ®M;v)(gz-“2—gz-“2) g,

Oy = (NT)*“ZP“'Z(pmN P L (I @ ML) (Q2 - 12)(Q12 - Q) e,

(NT)’l’ZP**'Z(pmN P H (I @M )( Q17 -2.10) g,

m=1

Regarding 9, , we have
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*xf

41N (NT)_1/2P

Oy = (NT)_HZPWZ(pm N P, yHY I ® N[N)Q_l/2

m=1

B s
x(Q - M @M ), ® (1, - p, M, ) ey,
172 5! S
0,y =(NT) Py HY [1, ®(T,, me,NM'm,N)]
s
(@ -1, @M)L ® X, - p, M, 1) '1ey
0,y =(NT) V2P + HY, (I, @M)(Q.7 - Q1) (1, @M, )[I, ® (I,
D! S = ’ BV 1
Opsy = — (NT)ilIZPN Z(pm,N _pm,N)HN(IT ®M,)
m=1
s
(@ -1, @M )L ® X, - p, M, 1) '1ey

Regarding 9, , we have

S

51 N _(N-T)_ll2 'Hp;, Z(:bmzv _pm,zv)(gz_ll2 _Q_ﬂz)(lr ®MN) [[T ®(I

m=l m=1

05, v :(NT)_UZP [Z(szv pmN)]ZHN(I M, )9_1/2

m=1

S
X(Q—llz —1/2)(1 ®MN)[I ®(I me,NMm,N)_l]sN'

s s
Ogsy =— (NT)JIZPN Z(,me _pm,N)H;\f[IT (I, - zpm,NM;n,N)]
m=1

m=1

S
x (2 —Q2(1L, @M )L ® (1, — Y p, M, 1) ey,

m=1

p’ 3 - ’ eV U
054,N =- (NT)_llzPN Z(pm,N _pm,N)HN(IT ®MN)

m=1

s
% (9*1/2 _ 9’1/2) (I, ® MN)[I ®(I, zpn1,Nan,N)7l]8N )
m=1

D’ S = ' VU
[ (NTYUZPN [Z(Pm,zv _pm,N)]ZHN (I, ®Mj)

m=1

S
X(Qfllz_g—l/Z) (I ®MN)[I ®(I meNMmN)il]sN

S
H, (Q‘“2 QI ML @1, - p, M

m,N)_l]sN !

S
me,NMm,N)_l]SN
m=1

Mm,N)_l]aN '
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Summing up we have

5 5

(NTY2AS =220,y -

=1l j=1

Next note that, in light of Assumption 10 and since 0, is N*'?-consistent, it follows that

(NT)'Z Z7y —~ Q pere Qoo Q e = 0, (1) . (D.4)

By Assumption 10b we also have  Qupm QuepeQpuege =0@Q) and  thus
(Qegoe Qo Q ) - = O(L) . 11 follows as a special case of Potscher and Prucha (1997,
Lemma F1) that

ok I = ek =)

[ (NT)_liN Z, ]_l - (QH’**Z** QH**H**QH**Z**)_l =0, @. (D.5)
It follows further that P, — P} =o0,(1) and P, =O(1) with P, defined in the Lemma.

Next observe that (p, —p,)=0,(1) and that (ﬁg‘N -Q, ;) =o0,(I,,. Note further that all

terms 9, except for v, are of the form op(l)F;*'(NT)‘l/ZCD’NaN, where D, are NT xP.

S
matrices involving products of (I, ® M), [I, ®(IN—me]NMm’N)‘1], H,, Q . ()

mel
and QY% (Q:47). By the maintained assumptions regarding these matrices it follows that the
elements of ©, are bounded uniformly in absolute value. As a consequence,
E[(NT)™*®/,]=0 and the elements of the variance-covariance matrix of (NT)™"*®'¢,,
ie, (NT)"D\Q,,D,, are bounded uniformly in absolute value (see Remark A.1l in
Appendix A). It follows from Chebychev’s inequality that (NT)™"°®'.¢, =0,(1). As a

consequence, all terms o, , except for 9,,, are o,(1), and 9, =0,(1). Finally, observe

e

that 9, , = (NT) Y2Py'E7 v, + (NT) Y2P'F p,y , with

S
Fv,N = (O-;ZQO,N + JJZQl,N)HN = Q:LN[IT ® (IN - zpm,NMm,N)]HN ! and
m=1
S
F,u,N = [0_172 (e’T ® IN)]HN = [G{Z(E'T ® IN)][IT ® (IN - me,NMm,N)]HN 1
m=1

which completes the proof, recalling that T, =F, P} .
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