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1. Introduction 

This paper analyses seasonality in the presence of structural breaks. Modelling 

seasonality is still a hotly debated topic in the time series literature. Hylleberg (1986) 

classifies seasonal models in three categories. The first includes purely deterministic 

seasonal models, which are characterised by seasonal dummy variables of the form: 
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where yt is the observed time series data with s observations per year, Dit is a seasonal 

dummy adopting a value 1 if t belongs to the ith period of the year and 0 otherwise, and 

ut is a white noise. The definition of the seasonal dummy simply allows for the mean of 

the series to vary by season, and therefore it raises no statistically interesting issues. The 

reason for using models like (1) is that the factor that might produce the seasonal 

variation can be readily identified. 

A second type of seasonality is the one defined in terms of a seasonal stochastic 

stationary process, where yt is specified as 

    ,...,2,1,)()( == tuLyL t
s

t
s θφ    (2) 

and φ (Ls) and θ(Ls) are seasonal AR and MA polynomials with all roots lying outside 

the unit circle. Finally, if the seasonal component is changing across time, seasonal 

differencing is usually adopted. In such a case, the process is said to contain seasonal 

unit roots, and the model is expressed as 

     ....,2,1,)1( ==− tuyL tt
s     (3) 

Many test statistics have been developed in recent years for testing seasonal unit 

roots: Dickey, Hasza and Fuller (1984), Hylleberg, Engle, Granger and Yoo (1990), 

Tam and Reimsel (1997), etc.  Nevertheless, all these types of seasonality can coexist in 

a single framework, which, in its more general form, can be written as: 
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where the difference between stationary and nonstationary seasonality comes from d 

being equal to 0 and 1 respectively. 

 However, the value d in (4) is not necessarily an integer number. If d is allowed 

to be any real number, the process is said to be seasonally fractionally integrated, with 

much greater flexibility in the dynamic behaviour of the series (see Gil-Alana, 2005). 

The notion of a fractional Gaussian noise with seasonality was suggested by Jonas 

(1981) and extended in a Bayesian framework by Carlin et al. (1985) and Carlin and 

Dempster (1989). Porter-Hudak (1990) applied a seasonally fractionally integrated 

model to quarterly US monetary aggregates, and concluded that a fractional ARMA 

model was more appropriate than the usual ARIMA specification for these series. Other 

recent empirical papers on seasonal fractional integration are those of Gil-Alana and 

Robinson (2001) and Gil-Alana (2002). 

 The present study focuses on the model given by equation (4), extended to 

incorporate endogenously determined structural breaks. Note that fractional integration 

(at the zero frequency) has been recently related to structural breaks (see, e.g. Granger 

and Hyung, 1999; Gourieroux and Jasiak, 2001; Diebold and Inoue, 2001; etc.), and 

thus we should expect a similar relationship in the presence of seasonality. The outline 

of the paper is as follows: Section 2 describes the procedure for estimating the 

parameters in the model. In Section 3 we carry out several Monte Carlo experiments to 

examine the finite sample behaviour of the seasonal procedure we implement. An 

empirical application is carried out in Section 4, while Section 5 contains some 

concluding comments. 
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2. The statistical method 

In this section we present a procedure that enables us to examine the deterministic and 

stochastic (stationarity/nonstationarity) seasonal nature of the series of interest in a very 

general framework. This has a number of advantages. Firstly, instead of restricting 

ourselves to the standard I(0) (stationarity) or I(1) (nonstationarity) cases, we consider 

the possibility of fractional orders of integration. Secondly, since seasonal dummies are 

also included in the model along with seasonal fractional/integer differentiation, we are 

able to consider the models described in Section 1 as special cases within our 

framework. Thirdly, we allow for structural breaks, with the breakpoint(s) being 

endogenously determined by the model. For simplicity we start by considering the case 

of a single break and assume that yt is generated as follows: 
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where the α's and the γ's are intercept and dummy coefficients respectively; )1(d and 

)2(d  can be any real number and correspond to the orders of integration of each 

subsample, ut is I(0), and Tb is the date of the break which is assumed to be unknown. 

Note that the model in equations (5) and (6) can also be written as: 
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it DLdD −=  i = 1, 2. 
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 The approach adopted here is based on the least square principle. First, we 

choose a grid for the values of the fractionally seasonal differencing parameters )1(d and 

)2(d , for example, )(i
jd = 0, 0.01, 0.02, …, 2, i = 1, 2. Then, for a given partition {Tb} 

and given )1(
od , )2(

od -initial values, we estimate the α's and the γ's by minimising the 

sum of squared residuals, 
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for uncorrelated ut, or, alternatively, using GLS for weakly autocorrelated disturbances. 

Let ),;(ˆ )2()1(
oob ddTα  and ),;(ˆ )2()1(

oob ddTγ  denote the resulting estimates for partition 

{Tb} and initial values )1(
od  and )2(

od . Substituting these estimated values in the 

objective function, we obtain RSS(Tb; )1(
od , )2(

od ), and minimising this expression for 

all values of d1o and d2o in the grid we obtain: 

).,;(minarg)( )2()1(
},{ jibjib ddTRSSTRSS =  

Then, the estimated break date, kT̂ , is such that 

)(minargˆ ...,,1 imik TRSST == , 

where the minimisation is over all partitions T1, T2, …, Tm, such that Ti - Ti-1 ≥ |εT|. The 

regression parameter estimates are the associated least-squares estimates of the 

estimated k-partition, i.e., }),ˆ({ˆ )()(
k

ii Tαα =  }),ˆ({ˆ )()(
k

i
k

i
k Tγγ =  and their 

corresponding differencing parameters, }),ˆ({ˆ )()(
k

ii Tdd = for i = 1 and 2. 
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The model can be extended to the case of multiple breaks by considering the 

following specification: 
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for j = 1, …, m+1, T0 = 0 and Tm+1 = T. Then, the parameter m is the number of 

changes. The break dates (T1, …, Tm) are explicitly treated as unknown and for i = 1, 

…, m, we have λi = Ti/T, with λ1 < … < λm < 1. Following the same procedure as 

before, for each j-partition, {T1, …Tj}, denoted {Tj}, the associated least-squares 

estimates of α(j), )( j
iγ  and the d(j) are obtained by minimising the sum of squared 

residuals in the d(j)-differenced models, i.e., 
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where )(ˆ),(ˆ jij TT γα and )T(d̂ j  denote the resulting estimates. Substituting them in the 

new objective function and denoting the sum of squared residuals as RSST(T1, …, Tm), 

the estimated break dates ( )ˆ...,,ˆ,ˆ 21 mTTT  are obtained by 

),...,(min 1)...,,,( 21 mTTTT TTRSS
m

 

where the minimisation is again obtained over all partitions (T1, …, Tm). 

 

3. A Monte Carlo simulation study 

This section examines the finite-sample behaviour of the procedure described in Section 

2 by means of Monte Carlo simulations. We generate Gaussian series using the routines 

GASDEV and RAN3 of Press, Flannery, Teukolsky and Wetterling (1986), with 10,000 

replications in each case. 

 First, we consider the following data generating process: 
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with d(1) = 0.3, d(2) = 0.7 and Tb = T/2, and follow the procedure described in Section 2 

for ( ) −
= 2,1

)(
i

i
jd values equal to 0, 0.1, 0.2, …, 0.9 and 1, with the estimated break dates 

T* = T/10, T/10 + 1, …, 9T/10 – 1, 9T/10. 

 Table 1 displays the percentage of cases when the breakpoint is correctly 

determined for different sample sizes. It can be seen that, even for a small sample size 

(T = 120), the procedure correctly detects the break date in a large percentage of cases 

(47.6%); this percentage rises to 81.8% when one time period before and after the break 

is included. Increasing the sample size the method becomes more accurate – for T = 

720, with the percentage of cases when the break date is correctly determined being 

equal to 98.5%. 
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TABLE 1 

Probabilities of detecting the break date Tb = T/2 

 T = 120 T = 240 T = 480 T = 720 

T/2 – 5 0.013 0.004 0.000 0.000 

T/2 – 4 0.016 0.007 0.001 0.000 

T/2 – 3 0.025 0.010 0.003 0.000 

T/2 – 2 0.045 0.021 0.006 0.001 

T/2 – 1 0.270 0.084 0.041 0.012 

T/2 0.476 0.651 0.942 0.985 

T/2 + 1 0.072 0.019 0.007 0.002 

T/2 + 2 0.062 0.003 0.000 0.000 

T/2 + 3 0.008 0.001 0.000 0.000 

T/2 + 4 0.012 0.000 0.000 0.000 

T/2 + 5 0.001 0.000 0.000 0.000 
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TABLE 2 

Probabilities of detecting the parameters in the model Tb = T/2, d(1) = 0.3 and d(2) = 0.7 

d(1) d(2) T = 120 T = 240 T = 480 T = 720 

0.1 0.4 0.001 0.000 0.000 0.000 

0.1 0.5 0.006 0.002 0.000 0.000 

0.1 0.6 0.020 0.017 0.003 0.001 

0.1 0.7 0.026 0.037 0.009 0.003 

0.1 0.8 0.012 0.012 0.002 0.000 

0.2 0.4 0.001 0.000 0.000 0.000 

0.2 0.5 0.008 0.001 0.000 0.000 

0.2 0.6 0.047 0.102 0.065 0.014 

0.2 0.7 0.094 0.103 0.096 0.026 

0.2 0.8 0.031 0.060 0.037 0.008 

0.3 0.4 0.001 0.000 0.000 0.000 

0.3 0.5 0.013 0.003 0.000 0.000 

0.3 0.6 0.066 0.101 0.090 0.054 

0.3 0.7 0.093 0.306 0.569 0.858 

0.3 0.8 0.026 0.059 0.044 0.017 

0.4 0.5 0.002 0.000 0.000 0.000 

0.4 0.6 0.010 0.016 0.007 0.001 

0.4 0.7 0.012 0.023 0.018 0.003 

0.4 0.8 0.004 0.008 0.002 0.000 

0.4 0.9 0.001 0.000 0.000 0.000 

0.5 0.6 0.001 0.001 0.000 0.000 

0.5 0.7 0.001 0.000 0.000 0.000 
 

 Table 2 focuses on the values for the fractional differencing parameters when T* 

is correctly assumed to be Tb. One can see that in this case, if the sample size is small (T 

= 120), the probability of correctly determining the seasonal fractional differencing 
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parameters is very small (9.3%) and the highest value (9.4%) corresponds to the close 

alternative d(1) = 0.2 and d(2) = 0.7. However, when increasing the sample size, the 

highest probabilities correspond to the true values, being higher than 85% for T = 720. 

For this size the closest departures are d(1) = 0.3 and d(2) = 0.6 (5.4%), and d(1) = 0.3 and 

d(2) = 0.8 (1.7%). 

 

TABLE 3 

Probabilities of detecting the break date Tb = T/4 

 T = 120 T = 240 T = 480 T = 720 

T/4 – 7 0.002 0.001 0.000 0.000 

T/4 – 6 0.006 0.003 0.000 0.000 

T/4 – 5 0.009 0.006 0.002 0.000 

T/4 – 4 0.003 0.004 0.001 0.000 

T/4 – 3 0.021 0.012 0.003 0.000 

T/4 – 2 0.053 0.051 0.007 0.002 

T/4 – 1 0.143 0.130 0.019 0.005 

T/4 0.565 0.659 0.943 0.991 

T/4 + 1 0.114 0.083 0.013 0.002 

T/4 + 2 0.043 0.032 0.008 0.000 

T/4 + 3 0.015 0.007 0.003 0.000 

T/4 + 4 0.007 0.007 0.001 0.000 

T/4 + 5 0.002 0.001 0.000 0.000 

T/4 + 6 0.002 0.001 0.000 0.000 

T/4 + 7 0.002 0.001 0.000 0.000 

T/4 + 8 0.007 0.001 0.000 0.000 

T/4 + 9 0.004 0.001 0.000 0.000 

T/4 + 10 0.002 0.000 0.000 0.000 
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TABLE 4 

Probabilities of detecting the parameters in the model Tb = T/4, d(1) = 0.8 and d(2) = 0.4 

d(1) d(2) T = 120 T = 240 T = 480 T = 720 

0.5 0.2 0.006 0.000 0.000 0.000 

0.5 0.3 0.011 0.002 0.000 0.000 

0.5 0.4 0.014 0.002 0.000 0.000 

0.5 0.5 0.005 0.000 0.000 0.000 

0.6 0.1 0.002 0.000 0.000 0.000 

0.6 0.2 0.011 0.005 0.001 0.000 

0.6 0.3 0.015 0.004 0.000 0.000 

0.6 0.4 0.017 0.006 0.006 0.000 

0.6 0.5 0.022 0.009 0.007 0.000 

0.7 0.1 0.003 0.000 0.000 0.000 

0.7 0.2 0.011 0.004 0.002 0.000 

0.7 0.3 0.034 0.020 0.013 0.002 

0.7 0.4 0.050 0.032 0.099 0.007 

0.7 0.5 0.022 0.031 0.025 0.003 

0.7 0.6 0.006 0.001 0.000 0.000 

0.8 0.1 0.003 0.000 0.000 0.000 

0.8 0.2 0.018 0.024 0.011 0.001 

0.8 0.3 0.060 0.044 0.095 0.087 

0.8 0.4 0.090 0.292 0.477 0.850 

0.8 0.5 0.024 0.040 0.062 0.015 

0.8 0.6 0.007 0.002 0.000 0.000 

0.9 0.1 0.003 0.002 0.000 0.000 

0.9 0.2 0.015 0.008 0.003 0.000 

0.9 0.3 0.037 0.033 0.024 0.004 

0.9 0.4 0.048 0.029 0.088 0.012 

0.9 0.5 0.016 0.021 0.020 0.010 

0.9 0.5 0.002 0.001 0.000 0.000 

1.0 0.2 0.001 0.000 0.010 0.000 

1.0 0.3 0.009 0.001 0.000 0.000 

1.0 0.4 0.012 0.003 0.000 0.000 

1.0 0.5 0.001 0.000 0.000 0.000 
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Tables 3 and 4 are similar to Tables 1 and 2 and concern the same DGP as 

before, but with d(1) = 0.8, d(2) = 0.4, and Tb = T/4. It is apparent that the probability of 

correctly determining the break date is slightly higher than in the previous case, though 

with a larger dispersion across T* (see Table 3). Once more the procedure becomes 

more accurate as the sample size increases. Focusing now on the fractional differencing 

parameters (Table 4), we find that, even for the smallest sample size (T = 120), the 

highest probability (9%) corresponds to the true values of the d parameters, and again it 

increases with T. 

 

4. An empirical application 

The time series analysed in this section are US Gross Domestic Product (GDP), 

Personal Consumption Expenditure (PCE) and exports and imports of goods and 

services, quarterly, seasonally unadjusted, for the time period 1947Q1 – 2005Q4, 

obtained from the National Economic Accounts, US Department of Commerce, Bureau 

of Economic Analysis (BEA). 

Figure 1 contains the plots of the four raw series. Visual inspection suggests that 

all them are nonstationary and trending upwards. Unit root tests (Dickey and Fuller, 

1979; Phillips and Perron, 1988) on the log-transformed series produce in all cases 

strong evidence in favour of unit roots. Thus, in the following analysis, we focus on the 

first differences of the log-transformed data (the growth rate of the series). These appear 

to be stationary (see Figure 2). 
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FIGURE 1 

Raw time series (US National Accounts) 
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FIGURE 2 

Growth rates  
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 Next, we perform the procedure described in Section 2. Specifically, we 

consider models of the type given by (5) and (6) with s = 4, i.e., 
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and estimate all the parameters for the three cases of white noise ut, (in Table 5), AR(1) 

ut (in Table 6) and a seasonal (stationary) AR(1) process of the form: ut = ρut-4 + εt, with 

white noise εt (in Table 3). Note that, although we do not explicitly provide confidence 
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intervals for the fractional differencing parameters in the procedure presented in Section 

2, they can be obtained by using Robinson’s (1994) univariate tests (specifically 

designed for the seasonal case) for each subsample. These values are also displayed in 

the tables. 

Overall, the results suggest that the seasonal patterns in the quarterly time series 

under examination are not constant for the whole period, if a structural break is taken 

into account. Starting with the results based on white noise ut, we find that for GDP and 

PCE the break takes place at 1981Q1 and the two series behave very similarly: d(1) (the 

order of integration for the first subsample) is 0.49 for GDP and 0.48 for PCE, while d(2) 

is equal to 0.80 for both series, and the unit root null hypothesis cannot be rejected for 

these two series in the second subsample. Therefore, there is an increase in the degree of 

persistence after the break. It is interesting to note that the seasonal dummy variables 

are statistically significant in both cases before the break, implying the presence of a 

systematic component. On the contrary, after the break most of the dummies are 

insignificant, indicating a decrease in the relevance of the systematic component of the 

seasonality in these series. As suggested by van Dijk et al. (2001), this decrease could 

be due to the use of "just-in-time" techniques that have affected the seasonal cycle in 

inventory investment.  
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TABLE 5 

Estimates of the parameter coefficients: White noise case 

  GDP PCE EXPORTS IMPORTS 

d(1) 0.49 
(0.17, 0.62) 

0.48 
(0.15, 0.59) 

-0.07 
(-0.37, 0.12) 

-0.11 
(-0.34, 0.19)

)1(α  -0.0834 
(-7.05) 

-0.0840 
(-7.06) 

0.0380 
(-3.48) 

0.0374 
(1.31) 

)1(
1γ  0.1171 

(7.01) 
0.1191 
(7.09) 

0.1167 
(7.65) 

-0.0518 
(-1.35) 

)1(
2γ  0.0980 

(5.86) 
0.0947 
(5.63) 

-0.0630 
(-4.13) 

-0.0476 
(-1.24) 

 
 
 

First 
Subsample 

)1(
3γ  0.1469 

(8.79) 
0.1492 
(8.87) 

0.1028 
(6.67) 

-0.0434 
(-1.13) 

Time of the break 1981Q1 1981Q1 1970Q4 1953Q1 

d(2) 0.80 
(0.56, 1.01) 

0.80 
(0.44, 1.00) 

0.39 
(0.17, 0.63) 

0.28 
(0.05, 0.37) 

)2(α  0.0104 
(1.97) 

0.0105 
(1.92) 

0.0105 
(0.74) 

-0.0188 
(-1.38) 

)2(
1γ  0.0173 

(2.27) 
0.0176 
(2.30) 

0.0136 
(0.67) 

0.0724 
(3.66) 

)2(
2γ  

0.0118 
(1.54) 

0.0116 
(1.52) 

-0.0385 
(-1.89) 

0.0173 
(0.87) 

 
 
 

Second 
Subsample 

)2(
3γ  

0.0061 
(0.80) 

0.0059 
(0.78) 

0.0194 
(0.95) 

-0.0131 
(-0.66) 

 

 Moving on to exports of goods and services, the break is found to occur at 

1970Q4, with the order of integration of the first subsample being negative (-0.07) and 

d(2) being equal to 0.39. For this series the I(0) hypothesis cannot be rejected in the first 

subsample, while both the I(0) and I(1) hypotheses are rejected after the break. Once 

again the dummies are only significant in the first subsample. Finally, for imports, Tb = 

1953Q1, d(1) = 0.11 and d(2) = 0.28, the I(0) hypothesis cannot be rejected in the first 

subsample, and practically all dummies are insignificant. 
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 Next, we allow for weak dependence in the error term. Specifically, in Table 6 ut 

is assumed to be AR(1). The results are fairly similar to those presented above for the 

white noise case. More in detail, for GDP and PCE the break takes place at the end of 

the 1970s/beginning of the 1980s, the orders of integration being around 0.5 for the first 

subsample and close to 0.8 after the break, the unit root null is not rejected in the second 

subsample and the dummy variables are only statistically significant in the first 

subsample. Also, note that the AR coefficients are in all cases positive but small. For 

exports the findings are to some extent different. The break date is now 1952Q4, the 

order of integration before the break is substantially smaller than previously and 

significantly different from zero (d(1) = -0.74), and all the dummy variables are now 

significant. For imports, they are no big differences compared to the white noise case. 

The break date is the same (1953Q1), d(1) is slightly negative (-0.18) and d(2) is positive 

(0.27), and both are statistically significant. 
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TABLE 6 

Estimates of the parameter coefficients: AR(1) case 

  GDP PCE EXPORTS IMPORTS 

d(1) 0.50 
(0.22, 0.71) 

0.49 
(0.24, 0.80) 

-0.74 
(-0.94, -0.13) 

-0.18 
(-0.55, -0.02)

)1(α  -0.0849 
(-7.15) 

-0.0842 
(-7.07) 

0.0118 
(-0.96) 

0.0365 
(1.41) 

)1(
1γ  0.1206 

(7.18) 
0.1193 
(7.09) 

0.0405 
(2.56) 

-0.0499 
(-1.45) 

)1(
2γ  0.0983 

(5.85) 
0.0945 
(5.63) 

-0.1058 
(-6.69) 

-0.0458 
(-1.33) 

)1(
3γ  0.1478 

(8.79) 
0.1491 
(8.87) 

0.0340 
(1.95) 

-0.0422 
(-1.22) 

 
 
 
 

First 
Subsample 

AR coeff. 0.271 0.158 0.574 0.290 

Time of the break 1979Q2 1981Q1 1952Q4 1953Q1 

d(2) 0.73 
(0.52, 1.02) 

0.83 
(0.56, 1.04) 

0.31 
(0.05, 0.44) 

0.27 
(0.05, 0.41) 

)2(α  
0.0071 
(1.06) 

0.0112 
(1.83) 

-0.0166 
(-1.08) 

-0.0200 
(-1.55) 

)2(
1γ  0.0206 

(2.40) 
0.0172 
(2.25) 

0.0622 
(2.80) 

0.0740 
(3.93) 

)2(
2γ  

0.0099 
(1.16) 

0.0114 
(1.49) 

-0.0448 
(-2.02) 

0.0191 
(1.01) 

)2(
3γ  0.0200 

(2.34) 
0.0055 
(0.71) 

0.0593 
(2.68) 

-0.0117 
(-0.62) 

 
 
 
 

Second 
Subsample 

AR coeff. 0.341 0.231 -0.198 0.026 
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TABLE 7 

Estimates of the parameter coefficients: Seasonal AR(1) case 

  GDP PCE EXPORTS IMPORTS 

D(1) 0.61 
(0.45, 0.72) 

0.57 
(0.41, 0.70) 

-0.99 
(-1.42, -0.17) 

 0.28 
(-0.14, 0.43)

)1(α  -0.0833 
(-5.92) 

-0.0084 
(-6.11) 

0.0168 
(-5.83) 

0.0381 
(0.95) 

)1(
1γ  0.1194 

(6.01) 
0.1218 
(6.26) 

0.0759 
(19.76) 

-0.0289 
(-0.52) 

)1(
2γ  0.1047 

(5.27) 
0.0988 
(5.07) 

-0.0853 
(-20.93) 

-0.0528 
(-0.95) 

)1(
3γ  0.1581 

(7.95) 
0.1585 
(8.14) 

0.0769 
(18.89) 

-0.0420 
(-0.76) 

 
 
 
 

First 
Subsample 

S. AR coeff. -0.282 -0.214 0.527 -0.607 

Time of the break 1981Q1 1981Q1 1958Q3 1954Q1 

d(2) 0.84 
(0.64, 1.13) 

0.84 
(0.64, 1.11) 

0.31 
(0.13, 0.39) 

0.40 
(0.27, 0.61) 

)2(α  0.0118 
(1.92) 

0.0119 
(1.94) 

-0.0026 
(-0.16) 

-0.0105 
(-0.60) 

)2(
1γ  0.0166 

(2.17) 
0.0169 
(2.20) 

0.0466 
(1.98) 

0.0650 
(2.61) 

)2(
2γ  0.0113 

(1.68) 
0.0112 
(1.66) 

-0.0507 
(-2.16) 

0.0053 
(0.21) 

)2(
3γ  0.0052 

(0.68) 
0.0050 
(0.65) 

0.0421 
(1.79) 

-0.0148 
(-0.59) 

 
 
 
 

Second 
Subsample 

S. AR coeff. -0.104 -0.105 -0.163 -0.265 
 

 Finally, we also consider the case of stationary seasonal autoregressions for the 

error term. This is the most general specification, since it includes in a single framework 

the three types of seasonality, that is, deterministic seasonality (through the dummy 

variables), stochastic stationary seasonality (through the seasonal AR coefficients), and 

fractional/integer differentiation. In Table 7 ut is assumed to follow a seasonal AR(1) 
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process. The results are consistent with those presented in the earlier tables. For GDP 

and PCE the break occurs at 1981Q4, and the orders of integration are around 0.6 before 

the break, and around 0.8 after that date. The seasonal dummy variables are now all 

significant for both series in both subsamples. For exports, the most important result is 

that d(1) is close to 1 (-0.99), implying then that the original series is I(0) in the first 

subsample, with seasonality being captured by a combination of deterministic and 

stationary stochastic AR components. Finally, for imports the break occurs at 1954Q1, 

both orders of integration are positive and higher after the break, and there is no 

evidence of deterministic seasonality. 

 

5. Conclusions 

This paper considers a general model which allows for both deterministic and stochastic 

forms of seasonality, including fractional (stationary and nonstationary) orders of 

integration, and also incorporating endogenously determined structural breaks. Monte 

Carlo analysis shows that the suggested procedure performs well even in small samples, 

accurately capturing the seasonal properties of the series, and correctly detecting the 

break date. As an illustration, the model is estimated for four different US series 

(output, consumption, imports and exports). The results can be summarised as follows. 

First, we find evidence of a structural break in all the series, with the seasonal pattern 

changing over time. Second, the systematic component of the seasonality, captured by 

the seasonal dummies, becomes insignificant in the last period of the sample, while the 

persistence of the series increases. The decrease in the seasonal amplitude of the series 

might reflect technological change, changes in institutions or habits, such as the use of 

the "just-in-time" production techniques (see van Dijk et al., 2001). The fact that the 
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seasonal patterns of the series tend to change over time raises the question of the 

consequences of using seasonally adjusted series in macroeconomic modelling.  

 This paper can be extended in several directions. First, other deterministic linear 

or even non-linear models can be included in the regression models (4) and (5), and the 

estimation can be carried out adopting the same procedure described here. Second, 

confidence intervals directly based on our procedure can be obtained using 

bootstrapping  methods,  although these are highly computationally intensive, especially 

if the sample size is large. Another possible extension is to consider different degrees of 

seasonal integration at each of the frequencies for each subsample. Note that the 

polynomial (1 – L4) can be decomposed into (1 - L)(1 + L)(1 + L2), and therefore using 

the polynomial (1 – L4)d implies that the same order of integration d is imposed at all 

frequencies. However, a problem with this approach is that it is even more 

computationally intensive, given the greater number of values required in the grid-

search procedure. 



 21

References 

Carlin, J. B. and A. P. Dempster, 1989, Sensitivity analysis of seasonal adjustments: 

Empirical cases studies, Journal of the American Statistical Association 84, 6-20. 

Carlin, J. B., A. P. Dempster and A. B. Jonas, 1985, On methods and moments for 

Bayesian time series analysis, Journal of Econometrics 30, 67-90. 

Dickey, D. A. and W. A. Fuller, 1979, Distribution of the estimators for autoregressive 

time series with a unit root, Journal of the American Statistical Association 74, 427-431. 

Dickey, D.A., D.P. Hasza and W.A. Fuller, 1984, Testing for unit roots in seasonal time 

series, Journal of the American Statistical Association 79, 355-367. 

Diebold, F. And A. Inoue, 2001, Long memory and regime switching, Journal of 

Econometrics 105, 131-159. 

Gil-Alana, L.A., 2002, Seasonal long memory in the aggregate output, Economics 

Letters 74, 333-337. 

Gil-Alana, L.A., 2005, Deterministic seasonality versus seasonal fractional integration, 

Journal of Statistical Planning and Inference 134, 445-461. 

Gil-Alana, L.A. and P.M. Robinson, 2001, Testing of seasonal fractional integration in 

the UK and Japanese consumption and income, Journal of Applied Econometrics 16, 

95-114. 

Gourieroux, C. and J. Jasiak, 2001, Memory and infrequent breaks, Economics Letters 

70, 29-41. 

Granger, C.W.J. and N. Hyung, 1999, Occasional structural breaks and long memory, 

Discussion Paper 99-14, University of California, San Diego. 

Hylleberg, S., 1986, Seasonality in regression, Academic Press, New York, NY. 

Hylleberg, S., R. F. Engle, C. W. J. Granger and B. S. Yoo, 1990, Seasonal integration 

and cointegration, Journal of Econometrics 44, 215-238. 



 22

Jonas, A. B., 1981, Long memory self similar time series models, unpublished 

manuscript, Harvard University, Department of Statistics. 

Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in a time series regression, 

Biometrika 75, 335-346. 

Porter-Hudak, S., 1990, An application of the seasonal fractionally differenced model to 

the monetary aggregate, Journal of the American Statistical Association 85, 338-344. 

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Wetterling, 1986, Numerical 

recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge. 

Robinson, P.M., 1994, Efficient tests of nonstationary hypotheses, Journal of the 

American Statistical Association 89, 1420-1437. 

Tam, W. and G. C. Reimsel, 1997, Tests for seasonal moving average unit root in 

ARIMA models, Journal of the American Statistical Association 92, 725-738.  

Van Dijk, D., Strikholm, B. and Teräsvirta, T., 2001, The Effects of institutional and 

technological change and business cycle fluctuations on seasonal patterns in quarterly 

industrial production series, Econometric Institute Report EI 2001-12.  

 



CESifo Working Paper Series 
(for full list see Twww.cesifo-group.de)T 
 

___________________________________________________________________________ 
 
1924 Adrian Pagan and M. Hashem Pesaran, On Econometric Analysis of Structural Systems 

with Permanent and Transitory Shocks and Exogenous Variables, February 2007 
 
1925 Hans-Werner Sinn, The Welfare State and the Forces of Globalization, February 2007 
 
1926 Michael Smart, Raising Taxes through Equalization, February 2007 
 
1927 Øystein Foros, Kåre P. Hagen and Hans Jarle Kind, Price-Dependent Profit Sharing as 

an Escape from the Bertrand Paradox, February 2007 
 
1928 Balázs Égert, Kirsten Lommatzsch and Amina Lahrèche-Révil, Real Exchange Rates in 

Small Open OECD and Transition Economies: Comparing Apples with Oranges?, 
February 2007 

 
1929 Aleksander Berentsen and Cyril Monnet, Monetary Policy in a Channel System, 

February 2007 
 
1930 Wolfgang Ochel, The Free Movement of Inactive Citizens in the EU – A Challenge for 

the European Welfare State?, February 2007 
 
1931 James K. Hammitt and Nicolas Treich, Statistical vs. Identified Lives in Benefit-Cost 

Analysis, February 2007 
 
1932 Wilhelm Kohler, The Bazaar Effect, Unbundling of Comparative Advantage, and 

Migration, February 2007 
 
1933 Karsten Staehr, Fiscal Policies and Business Cycles in an Enlarged Euro Area, February 

2007 
 
1934 Michele Bernasconi and Paola Profeta, Redistribution or Education? The Political 

Economy of the Social Race, March 2007 
 
1935 Axel Dreher, Martin Gassebner and Lars-H. R. Siemers, Does Terror Threaten Human 

Rights? Evidence from Panel Data, March 2007 
 
1936 Naércio Aquino Menezes Filho and Marc-Andreas Muendler, Labor Reallocation in 

Response to Trade Reform, March 2007 
 
1937 Gebhard Flaig and Timo Wollmershaeuser, Does the Euro-zone Diverge? A Stress 

Indicator for Analyzing Trends and Cycles in Real GDP and Inflation, March 2007 
 
1938 Michael Funke and Michael Paetz, Environmental Policy Under Model Uncertainty: A 

Robust Optimal Control Approach, March 2007 
 
 



 
1939 Byeongchan Seong, Sung K. Ahn and Peter A. Zadrozny, Cointegration Analysis with 

Mixed-Frequency Data, March 2007 
 
1940 Monika Bütler and Michel André Maréchal, Framing Effects in Political Decision 

Making: Evidence from a Natural Voting Experiment, March 2007 
 
1941 Giacomo Corneo and Olivier Jeanne, A Theory of Tolerance, March 2007 
 
1942 Qing Hong and Michael Smart, In Praise of Tax Havens: International Tax Planning and 

Foreign Direct Investment, March 2007 
 
1943 Yin-Wong Cheung, Dickson Tam and Matthew S. Yiu, Does the Chinese Interest Rate 

Follow the US Interest Rate?, March 2007 
 
1944 Panu Poutvaara and Mikael Priks, Unemployment and Gang Crime: Could Prosperity 

Backfire?, March 2007 
 
1945 Burkhard Heer, On the Modeling of the Income Distribution Business Cycle Dynamics, 

March 2007 
 
1946 Christoph A. Schaltegger and Lars P. Feld, Are Fiscal Adjustments less Successful in 

Decentralized Governments?, March 2007 
 
1947 Giovanni Facchini, Marcelo Olarreaga, Peri Silva and Gerald Willmann, Substitutability 

and Protectionism: Latin America’s Trade Policy and Imports from China and India, 
March 2007 

 
1948 C. Mirjam van Praag and Bernard M. S. van Praag, The Benefits of Being Economics 

Professor A (and not Z), March 2007 
 
1949 Astrid Hopfensitz and Frans van Winden, Dynamic Choice, Independence and 

Emotions, March 2007 
 
1950 Guglielmo Maria Caporale and Luis A. Gil-Alana, A Multivariate Long-Memory Model 

with Structural Breaks, March 2007 
 
1951 Mattias Ganslandt and Keith E. Maskus, Wholesale Price Discrimination and Parallel 

Imports, March 2007 
 
1952 Michela Redoano, Fiscal Interactions Among European Countries. Does the EU 

Matter?, March 2007 
 
1953 Stefan C. Wolter, Rémy Hübschi and Matthias Müller, Push or Pull? An Empirical 

Analysis of the Demand for Individual Project Grants from the Swiss National Science 
Foundation, March 2007 

 
1954 Scott Alan Carson, African-American and White Inequality in the American South: 

Evidence from the 19th Century Missouri State Prison, March 2007 
 
 



 
1955 Peter Egger, Marko Koethenbuerger and Michael Smart, Do Fiscal Transfers Alleviate 

Business Tax Competition? Evidence from Germany, March 2007 
 
1956 Panu Poutvaara and Lars-H. R. Siemers, Smoking and Social Interaction, March 2007 
 
1957 Stephan Danninger and Fred Joutz, What Explains Germany’s Rebounding Export 

Market Share?, March 2007 
 
1958 Stefan Krasa and Mattias Polborn, Majority-efficiency and Competition-efficiency in a 

Binary Policy Model, March 2007 
 
1959 Thiess Buettner and Georg Wamser, Intercompany Loans and Profit Shifting – 

Evidence from Company-Level Data, March 2007 
 
1960 Per Pettersson-Lidbom and Mikael Priks, Behavior under Social Pressure: Empty Italian 

Stadiums and Referee Bias, April 2007 
 
1961 Balázs Égert and Carol S. Leonard, Dutch Disease Scare in Kazakhstan: Is it real?, 

April 2007 
 
1962 Paul De Grauwe and Pablo Rovira Kaltwasser, Modeling Optimism and Pessimism in 

the Foreign Exchange Market, April 2007 
 
1963 Volker Grossmann and Thomas M. Steger, Anti-Competitive Conduct, In-House R&D, 

and Growth, April 2007 
 
1964 Steven Brakman and Charles van Marrewijk, It’s a Big World After All, April 2007 
 
1965 Mauro Ghinamo, Paolo M. Panteghini and Federico Revelli, FDI Determination and 

Corporate Tax Competition in a Volatile World, April 2007 
 
1966 Inés Macho-Stadler and David Pérez-Castrillo, Optimal Monitoring to Implement Clean 

Technologies when Pollution is Random, April 2007 
 
1967 Thomas Eichner and Ruediger Pethig, Efficient CO2 Emissions Control with National 

Emissions Taxes and International Emissions Trading, April 2007 
 
1968 Michela Redoano, Does Centralization Affect the Number and Size of Lobbies?, April 

2007 
 
1969 Christian Gollier, Intergenerational Risk-Sharing and Risk-Taking of a Pension Fund, 

April 2007 
 
1970 Swapan K. Bhattacharya and Biswa N. Bhattacharyay, Gains and Losses of India-China 

Trade Cooperation – a Gravity Model Impact Analysis, April 2007 
 
1971 Gerhard Illing, Financial Stability and Monetary Policy – A Framework, April 2007 
 
1972 Rainald Borck and Matthias Wrede, Commuting Subsidies with two Transport Modes, 

April 2007 



 
1973 Frederick van der Ploeg, Prudent Budgetary Policy: Political Economy of Precautionary 

Taxation, April 2007 
 
1974 Ben J. Heijdra and Ward E. Romp, Retirement, Pensions, and Ageing, April 2007 
 
1975 Scott Alan Carson, Health during Industrialization: Evidence from the 19th Century 

Pennsylvania State Prison System, April 2007 
 
1976 Andreas Haufler and Ian Wooton, Competition for Firms in an Oligopolistic Industry: 

Do Firms or Countries Have to Pay?, April 2007 
 
1977 Eckhard Janeba, Exports, Unemployment and the Welfare State, April 2007 
 
1978 Gernot Doppelhofer and Melvyn Weeks, Jointness of Growth Determinants, April 2007 
 
1979 Edith Sand and Assaf Razin, The Role of Immigration in Sustaining the Social Security 

System: A Political Economy Approach, April 2007 
 
1980 Marco Pagano and Giovanni Immordino, Optimal Regulation of Auditing, May 2007 
 
1981 Ludger Woessmann, Fundamental Determinants of School Efficiency and Equity: 

German States as a Microcosm for OECD Countries, May 2007 
 
1982 Bas Jacobs, Real Options and Human Capital Investment, May 2007 
 
1983 Steinar Holden and Fredrik Wulfsberg, Are Real Wages Rigid Downwards?, May 2007 
 
1984 Cheng Hsiao, M. Hashem Pesaran and Andreas Pick, Diagnostic Tests of Cross Section 

Independence for Nonlinear Panel Data Models, May 2007 
 
1985 Luis Otávio Façanha and Marcelo Resende, Hierarchical Structure in Brazilian 

Industrial Firms: An Econometric Study, May 2007 
 
1986 Ondřej Schneider, The EU Budget Dispute – A Blessing in Disguise?, May2007 
 
1987 Sascha O. Becker and Ludger Woessmann, Was Weber Wrong? A Human Capital 

Theory of Protestant Economic History, May 2007 
 
1988 Erkki Koskela and Rune Stenbacka, Equilibrium Unemployment with Outsourcing and 

Wage Solidarity under Labour Market Imperfections, May 2007 
 
1989 Guglielmo Maria Caporale, Juncal Cunado and Luis A. Gil-Alana, Deterministic versus 

Stochastic Seasonal Fractional Integration and Structural Breaks, May 2007 




